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Abstract: We show that for a long range percolation model with exponentially de-
caying connections, the limit of critical values of any sequence of long range per-
colation models approaching the original model from below is the critical value for
the original long range percolation model As an interesting corollary, this implies
that if a long range percolation model with exponential connections is supercritical,
then it still percolates even if all long bonds are removed We also show that the
percolation probability is continuous (in a certain sense) in the supercritical regime
for long range percolation models with exponential connections.

1. Introduction

The purpose of this paper is to investigate the continuity from below of the critical
value for long range percolation models We begin with a description of long range
percolation We let Tϊι denote the standard ^/-dimensional cubic lattice with the usual
L\ norm given by \(x\,X2, ,x(j)\ — Σ/^i IΛ'/I ^ S a n d T are subsets of Zcί

9 we
let d(S, T) = mins(Ξsj£T \s - t\ be the L\ distance between S and Γ. If |γ - v| = 1,
we call v and v nearest neighbors We will also sometimes need the L^ norm
given by ||(;η,X2, 5*</)|| — max, |x,| Everything we will define in this paper will
implicitly depend on the dimension d However, we will not mention this d, and all
our results will be valid for any d ^ 2. Given a set R C Z ί7, we let ΛV(R) — {x ^ R
\x - v| = 1 for some v G R} and call this the vertex boundary of R We also let
ΔC\R) = {{x,y} x G R, y ^ R, \x ~ y\ = 1} and call this the edge boundary of R

We now introduce probability into the setup For n = 1,2, , let pn G [0,1) be
such that

We picture edges or bonds {x, y} between all pairs x and v, γ # y , and declare
such an edge to be open with probability pn if \x — y\ = n independently of all
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other edges (Formally an edge is a subset of 7,d with two elements and the length
of an edge will be the L\ distance between the two points comprising the edge.)
By Borel-Cantelli, the convergence of the above sum is equivalent to every vertex
having a finite number of edges emanating from it a s

We will sometimes write p(x) by which we will mean p\λ\ An open path is a
sequence of vertices ΛTO,XI,. ,xn, where {x/?x/+i} is open for i = 0, ,/? — 1 Let
the origin be denoted by 0 and let

C = {x G Zcl 3 an open path from 0 to x} ,

which we call the cluster of the origin and we let

which we call the percolation function, which depends on p\,p2, (as well as on
d) If 0(p\,p2, ) > 0, we say that there is percolation under p\, p2,

An interesting and historically important case is when pι = 0 for / ^ 2 The
above percolation function then simply becomes a function of one variable, which
we write as 0(ί/)(/?). In this case, it had been known for a long time that for d ^ 2,
0(d\p) is 0 for p near 0 and positive for p near 1, the latter already making
things interesting In two dimensions, it was proved already in 1960 (see [7]) that
^ ( 2 )(l/2) = 0 Building upon work of Russo, Seymour and Welsh, Kesten (see [8])
proved that 0{2\p) > 0 for p > 1/2 Combining these two statements, we write
pc(2) = 1/2 and say that the critical value in two dimensions is 1/2 for ordinary
bond percolation, ordinary meaning that p2 = p$ = = 0

The usual approach to long range percolation in one dimension (see [9] and [2])
is that one fixes all the connection probabilities pi,p^ and then considers p\ as
a parameter We will use this approach as well in which case it is then natural to
define the critical probability pc(p2, P3, ) as

Pc(P2,f3, ) = inf{/?i 0(pup2,...) > 0 } ,

noting of course that this depends on pi.pz, (as well as on d) It is nat-
ural to think of the cases p\ > pc(pi > Pi, )> P\ < Pt(P2 > P?> > ) and p\ =

PC(P2>PΪ, ) as the supercritical, subcritical, and critical regimes respectively.
The main result of this paper is a sufficient condition under which the critical

value is continuous from below for long range percolation models To state this
result, we first state a condition which we will assume the model satisfies This
condition does not seem natural but we will see afterwards that models with expo-
nentially decaying connections satisfy it. Before stating the condition, we need to
introduce some notation which comes from [6]

For each positive integer n, we let B(n) be the set

{.r G Z'1 \\x\\ rg „}

We say that p2, pi, satisfies Condition C if for all p\ e (0,1), there exists c > 0
such that for all n ^ 1, if R C B(n), y € B(n) and y | R U Δί:(R), then

Σ P(χ-y)^c Σ p(χ-v)
\eAι(R)ΠB{n) \d(RUAι(R))ΠB(n)
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R e m a r k s . 1 N o t e t h a t t h i s i n e q u a l i t y i m p l i e s t h a t i f y ^ R U ΔV(R), t h e n

Σ Pi* - ;') ^ c Σ P(x - 7)
xeΛι(R) \£RUΔ>(R)

This is clear if R is finite since we can then simply take n large enough in Condition
C Next, once we know this for finite R, a simple limiting argument proves this for
all R (using the fact that ΣQΦYGZ'/ P\\\ < °°)

2 The reader can check that if for some p\ £ (0,1), there exists a c with the
desired property, then the same is true for all p\ £ (0,1) (although the constant c
will of course depend on p\)

3 Similarly, the reader can check that assuming pi — 0 implies that pi+\ = 0,
then whether P2, P3, satisfies Condition C only depends on the tail of the
sequence

Theorem 1.1. Let d ^ 2 Assume that P2, P3, satisfies Condition C, and that
p*2, p'i, we such that for all i ^ 2 and n ^ 1, p" ^ pt and that for all i ^ 2,
Γim^oo p" = pt Then

lim Pt(pl2,P3, ) = Pc(P2,P3, )•
/7—i OC

As an immediate corollary, we obtain the fact that a supercritical long range
model which satisfies Condition C percolates if we cut off all long edges

Corollary 1.2. Let d ^ 2 Assume that P2, Pi , satisfies Condition C and let
p\ > Pc(p2-> P3, ) Then there exists some integer k so that there is percolation
under (p\, p2, ,/?/v,0,0, )

It is easy to show that in 1 dimension, if P2, P3-, satisfies Condition C and
p\ < 1, then the model does not percolate It follows that Theorem 1 1 is then
also true in 1 dimension since all the critical values involved are 1 However, in 1
dimension, Theorem 1 1 cannot be true in general with the assumption of Condition
C removed, since in 1 dimension, long range percolation models can percolate (see
[9] and [2]) while finite range models cannot

The next result tells us that a long range model with exponential connections
satisfies Condition C. We do not believe that Condition C is much stronger than
having exponential connections but we find it convenient to have stated our results
in this way

Theorem 1.3. Let d ^ 2 Assume that {pn}^L2 ^ suc^ ^mt either

(i) the sequence {pn} is strictly positive up to a finite point and then becomes
identically 0 after that, or

(ii) the sequence {pn} is strictly positive and eventually exponential, meaning
that there exist α > 0, p £ (0, 1) and No ^ 2 so that pn = αp" for n ^ No Then
{pπ}^t2 satisfies Condition C

We next mention an application of Theorem 1 1 whose proof uses a method
developed in [3] It says that if a sequence converges in L\ to a supercritical model
which satisfies Condition C, then the percolation probabilities converge to that of
the limit It is also the case that if the sequence converges in L\ from above,
then this is still true without either the supercriticality or Condition C assumption
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We note that any long range model p\, pi , can be viewed as a real valued

function on Ttι by p\,p2, OO = p\λ\

Theorem 1.4. Let d ^ 2 Assume that p\, p\, p]\, converges to p\,p2,P3, in
L\ of TLd with counting measure (and hence pointwise) Assume also that for all
i ^ 1 and n ^ 1, p" ^ pi Then

lim 0(pn

]9p2\ .) = 0(puP2, •)

Assume that p2,P3, satisfies Condition C and that p\ > pc(p2,p3, ) Then
for all sequences p'\, pι

2\ p]\, which conυeige to p\,p2,P3, in L\ of 7J-1 with
counting measure (and hence pointwise), it follows that

lim 0(p'l,p2', ) = 0(pup2. )
;—>oc

We end this section with a rough sketch of the mechanism used to prove
Theorem 1 1 Actually, it is a little clearer to concentrate on Corollary 1.2 at this
point The approach is based on the renormalization technique of Grimmett and
Marstrand ([6]) Consider a rectangular grid of large disjoint cubes with side length
N, say We order these boxes in some way and investigate each of these boxes
in the given order, declaring each of these boxes to be either occupied or vacant
according to some rule Three things will be important for this rule

(i) the probability for a new box to be occupied, conditioned on the past of the
procedure, should always be larger than, and uniformly bounded away from, the
critical probability for ordinary nearest neighbor independent site percolation,

(iί) the rule by which we declare boxes to be occupied or vacant should be
compatible with the underlying long range percolation in the sense that if there is a
nearest neighbor path of occupied boxes, then there must be a corresponding open
path in the underlying model, visiting all boxes in this open path,

(iii) the event that a certain box is occupied should depend on the state of a
uniformly bounded number of edges with a uniformly bounded length

The strategy is to show that if there is percolation in a certain long range model,
then we can find some large TV and an appropriate rule with the properties mentioned
above In such a case, it follows that the renormalized model percolates as a nearest
neighbor model, which implies, using properties (ii) and (iii), that the underlying
model percolates using only edges up to a certain finite length It is clear that one
of the key steps is to define a suitable rule

The outline of the present paper is as follows In Sect 2, we will prove the
main lemma needed to obtain Theorem 1 1 This lemma is a long range analogue
of Lemma 2 6 in [6] Once this lemma is proved, we carry out in Sect 3 the
renormalization and show how it leads to a proof of Theorem 1 1 In Sect 4, we
will prove Theorem 1 4 as well as a number of other applications of Theorem 1.1
Finally, the proof of Theorem 1 3, which is intuitively obvious, will be given in
Sect 5

We end this section by mentioning the paper [1] which also contains results con-
cerning continuity (and strict monotonieity) of the critical value of certain models
Some of the systems considered there are certain percolation models and ferromag-
netic Ising models
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2. The Main Lemma

We begin this section with a certain amount of notation, and we will then state
Lemma A, the main result of this section With only this notation and Lemma A,
the reader can continue on to Sect 3 to read the proof of Theorem 1.1 After the
statement of Lemma A, this section will be devoted exclusively to its proof and
will not be needed otherwise

If £ is a set of edges and V is a set of vertices, we say E is contained in V
(EC V) if both endpoints (or elements) of all edges in E are contained in V We
also let E Π V denote the set of edges in E both of whose endpoints are in V If
A and B are disjoint subsets of Zr/, we write A <-> B if there is an open path from
some point of A to some point of B If A and B are as above with A U B C C, then
A <-> B( in C) will mean that there is an open path contained in C from some point
of A to some point in B Finally, we will allow ourselves to write A ^ B( in C)
even if A and/or B are not subsets of C by which we will mean that the open path
between A and B is contained in C as much as possible in the obvious sense For
example, if A C C but B (J C, then all vertices of the path are required to be in C
except for the last one. We also write A —>• oc when there is an open path from
some point of A to oc

We introduce two further subsets of Zd Let T(n) be the set

{x = (xi,x2, ,Xd) G 7jd xi = «,0 S x] ύ n for j = 2, ,d} ,

which is a special subset of a face of B(n) For positive integers m and n with
2/77 < /?, we also let

2/w+l

7X/w,/2)= U {/>i + W } ,

where e7 is the vector which is 1 in the yth coordinate and 0 otherwise
Next, a translate of B(m) is called an open m-pad if each pair of vertices in this

set is connected by an open path in this set Finally, we let K(in,n) be the subset
of T{n) consisting of all vertices x which are such that there is an open edge from
\" to x + e\ and x + e\ is contained in an open m-pad which is contained in T(m,n)

It will turn out to be useful to introduce continuous uniform random variables
for the edges of length 1 which will allow us to simultaneously couple all of the
processes as p\ varies and with p, for / ^ 2 fixed. Let E\ denote all edges of length
1 (or equivalently all subsets of 2 elements consisting of nearest neighbors), let Eι
denote all edges of length larger than 1 and let Ω = [0, l]Eι x {0, \}Rl- equipped
with the usual σ-algebra and with product measure P where each measure on [0, 1]
is uniform, and if e G E2 has length k ( ^ 2) then the marginal for e is pj{δ\ + (1 —
Pk)OQ (Of course, for e G E2, 1 represents the edge being open.) For x G E\ and
ω G Ω, we let ω(x) denote the value at x (which has a uniform distribution) We
say that x G E\ is p-open if co(x) < p and that it is p-closed if ω(x) ^ p. If we
look at the set of p-open edges of length 1 together with the open edges of length
larger than 1, we obtain a realization of long range percolation with parameters

f>,P2,Ps,
We can now state the main result of this section.

Lemma A. Let p2, />3, . satisfy Condition C, p G (0,1) and 0(p,p2,p3, ) > 0
and let E, 0 > 0 Then there exists m and n such that 2m < n and such that
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// B(m) CRC B(n\ (R U Aι(R)) Π T(n) = 0 and if β . AL\R)ΠB(n) -> [0, 1 - <5],
//?<?/? P(G\H) > 1 - ε , u'Aere

// = {Vβ G /( i?) i l5(«) ,e w β(e)-c/osed}

and G is the event that there is a path y from R to K(m,n) in B{n), such that only
the first vertex is in R, the first edge e is oj length 1 and is (β(e) -f δ)-open, and
all subsequent edges are open, the edges of length 1 after the first being p-open

For the rest of this section, we have a fixed p2,P3,- satisfying Condition C
and a p G (0,1) such that 0(p,p2, ) > 0 There therefore exists c > 0 such that
for all n ^ 1, if R C B(n), y £ B{n) and ^ U A[\R), then

Σ p{χ-y)^c Σ P(x-7) (2 1)
x(ΞAι(R)ΠB(n) \e(RUAι (R))Γ\B(n)

(where p(y) = p if \y\ = 1)

Remark From a previous remark, this inequality implies that if R C Ίβ and
y ^ Λ U ^ ι ( Λ ) , then

Σ p(*-y) ^c Σ P(χ-y)
xEΔι(R) \eRUAι(R)

We start off with three elementary lemmas concerning independent 0,1-valued
random variables

Lemma 2.1. Let c > 0 Let {X,}/e/ όe independent 0,1 valued random variables
with pι = P(X; = 1) Let {Yj}jej be independent 0,1 valued random variables with
p, = P(Y, = 1) // Σ/e/ Pi = ̂ Σ 7 GJ ^/ ^7 β / ? for a^ inteaers k and ε > 0, either

or

Proof If the second inequality fails, then E[ΣjeJ Yj] ^ jF + ψ It follows by our

assumption that E[Σιei^i] = 7 + 2/c, whence

/£/ /6/

The first and fourth inequalities follow from the fact that E[ΣieI Xi\ ^ 2k and the
second inequality is Chebyshev's inequality D
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Lemma 2.2. Given M and ε there exists L — L(Λ/,ε) such that if X\,X2,... are
independent 0,1 valued random variables with p, = P(X, = 1) and ]ΓV pι g M,
then for all subsets S C {1,2, }, ir<? have

P < ε

Proof We can assume without loss of generality that p { > 0 for all / G S (oth-
erwise leave out the indices / for which p, = 0, the event on which we condition
remains the same) Conditioned on ΣιeSXι ^ 1, the distribution of Xifi^S is
unchanged and for / G S, Xι — 1 with probability

Pi

We next show that the sum of the new p,'s (conditioned on Σιesχι = 1) is
bounded, uniformly in S To do this, we need only consider the sum over S which
is done as follows

Σ,esP' ^ Σ,eSPi g s u p _ *
1 - Π/esO -Pi) ] j

Finally an application of Markov's inequality completes the proof. Π

Lemma 2.3. Given b,y G (0,1) and N ^ 1, there exists δ = δ(b,y,N) such that if
{Jf/}/e/ are independent Bernoulli random variables with pι = P(Xj = 1) g b foi
all i and such that P(Σιe/

χi ^ Π ^ ι ~ <>> t h e n p(Έιe/
Xi = N) = l ~ V

Choose α = %(b) > 0 so that 1 - x ^ ^"α λ for all x G [0,/?] Let (5 be such
that — log δ/cc > 27V and 4α/ — log δ < 7 Then, a simple calculation shows that
P(Σ,aχi = Π = ^ ~ ^ implies that ^ / e / />, ^ -log(5/α which is in turn larger
than IN Chebyshev's inequality then gives

z3 ( x x, < N } < P

4^<v π

Lemmas 2 4 and 2 5 below are the key ideas we use to tame the fact that we have
long range percolation rather than finite range percolation Lemma 2 4 tells us that
if there are many open edges from a certain random set to a fixed set together with
its vertex boundary, then there are a fair number of open edges from this random
set to the vertex boundary of the fixed set with high probability Lemma 2 5 in
turn tells us that if there are many open edges from a certain random set to a fixed
set, then there are a fair number of vertices in the fixed set with an open edge to
this random set with high probability (Note that for finite range models, or more
generally, when there is an a priori bound on the degree of a vertex, this is obvious )
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Lemma 2.4. Let R C B(n) with (R U AV(R)) Π T{n) = 0 Lei S fee <:/ random subset
of (RU AV(R))C Π B(n) which is measurable with respect to the edges contained in
{R U Aι\R))c Let E be the set of open edges from S to Aι(R) Π B(n) and let F be
the set of open edges from S to (R U A1 (R)) Γ) B(n) Then for all integers k and
all ε > 0,

P(\E\ ^k,\F\^^j + —
\ cε/ cε

where c is as in (2 1) Also, if R C Zd, S is a random subset of (R U AV(R))L which
is measurable with respect to the edges contained in (RUAV(R))C, E is the set oj
open edges from S to AV\R) and F is the set oj open edges from S to RU AV(R),
then for all integers k and all ε > 0,

Proof We prove only the first case where R C B(n) with (R U Aι(R)) Π T{n) = 0
The second statement is proved identically using the remark after (2 1). By inde-
pendence of different edges, it suffices to show that

cε
S = Γ) < c

for all Γ C (R U Aι{R))c Π B(n) with P(S = Γ) > 0. To do this, it suffices by the
FKG inequality (see [5]) and the assumed measurability of S (with respect to the
edges outside of RUAι(R)) to show

P(\E\ ^ k \ S =
I

S = Γ) < ε

for all Γ C (R U A'(R)Y Π B(n) with P(S = Γ) > 0 Fix such a Γ By Lemma 2 1,
it suffices to show that

Σ p(χ-y)^c Σ piχ-y)
;eI x£(RUΔι (R))nB{n),;£Γ

By summing over γ G Γ last, this follows from (2 1) D

Lemma 2.5. Given ε and k, there exists a(k,ε) such that if S\ C Z^, ̂ 2 is a random
subset oj Zcl\S\ which is measw able with respect to the edges contained in ZcI\S\,
E is the set of open edges from S2 to S\, and V is the set of vertices in S\ which
are an endpoint of an open edge to Sj, then

P(\V\ S K\E\ ^ a(k,ε)) S ε

Proof It will be enough to show that for a(k,ε) sufficiently large,

P(\V\=k,\E\ ^ a(k,c)) g ε. (2 2)

For any vertex z G S\, let D(z) be the number of open edges from z to Zd\S\ From
Lemma 2 2, it follows that for any ε > 0, there exists an L(ε) such that for any set
S C ZJ\SU the conditional probability that D(z) is at least L(ε) given there is an
open edge from z to some element of S is at most ε We now let cι(k,ε) = kL(ε/k).
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The left-hand side in (2.2) is bounded from above by

' =A)P(V =A)

It is therefore enough to show that for all sets A C S\ of size k, P(Σ^e4D(z)
a(k,ε) I V — y4) is at most £ To prove this, we condition further on S2 to obtain

=• Έ p [ ΈD(Z) ^ α O U ) | V =A,S2 = Γ P(S2 = Γ\V = A ) ,
ICZ'I\S] \zC4 J

and so we now need only show that for any subset Γ of Zcl\S\ and any set A C S\
of size /c,

However, conditioned on the event {V =A,S2 — Γ} and using the measurability
of S2 with respect to the edges of Z'^SΊ, the random variables {D(z)}=eί are
independent and by the way L(ε/k) was chosen, they each assume a value at least
L(ε/k) with probability at most r,/k under the above conditioning Since

z) £ kL(φ)\ C U {D(z) ^ L(φ)} ,
) zeΛ

the conditional probability that ^2^e4D(z) ^ kL(ε/k) is at most ε, as desired D

We now need to introduce some further notation. If n ^ m -\- 1, let Wnun be the
set of vertices in B(n — 1) which are connected to B(m) in the box B(n — 1) Let
Fnun be the set of open edges from WmjΊ to B{n - If, Emjl be the set of open
edges from Wmjl to A1 (B(n — 1)) and Vnun be the set of vertices in Aι(B(n — 1))
which have an open edge to Wmjι

Lemma 2.6. For all k and m ^ 1,

lim P(\Fmj1\ S k,B(m) -> DO) = 0
/? — oc

Proof Fix /c and m Fatou's lemma tells us that

) -> oc) ^ P (\imsιψ{\FnLll\ ^ ^,5(/π) -^ 00}

We now argue that the latter event has probability 0 Let Rn be the set of vertices in
B(n — 1 )c (possibly empty) which are the endpoint of an open edge in Fmjl Define
(random) integers n\,n2, inductively as follows Let n\ — m -f 1, n2 = inf{z > n\
RΠ]CB(i- l),\FmJ\ ^ k } , a n d /z/ + 1 = i n f { / > n, RΠι C B(i - \),\Fmj\ ^ k] In
addition, if RΠι = 0, let n^\ = 00 If some n, = oc, let all subsequent /?,'s be oc
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Letting, for r ^ 1,

£, = {n, < oc, there is an open edge between 7?,,; and WL

m lh},

it is immediate that

limsup{|/v/? | ^ £,5(m) -> 00} C

and so we need only show that the latter has probability 0 However, it is clear from
independence and the fact that \Rn\ ^ \Fm.n\ that there exists α = x(k) < 1 such that
for all r ^ 1, P(£, + i \E\ Π E2 Π Π £,) ^ α from which the above follows D

Lemma 2.7. For «// k and m ^ 1,

lim P(\Vnun\ <L KB(m) -> oc) = 0

Let k,m ^ 1 and let ε > 0 Let c be as in (2 1) and a(k,ε) be as in
Lemma 2 5 We then write

P(\Vmn\ S k,B(m) -+ oc) ^ P( |F Λ , W | g * , |£ W , ; I | ^ r/(/c,ί:))

/ 4 2a(k r)
+P \Em.,,\ < a(k,t:),\Fmj,\ ^ — + — ^ ^

\ cΐ- cε

ct. cε

The first term is at most ε by Lemma 2 5 (with S\ = Aι(B(n — 1)) and 52 = JF/7, / ?),
the second term is at most ε by the second statement in Lemma 2 4 (with R = {z
d({z},B{n- 1)) ^ 2} and 5 = ^ . ; ? and noting that RU Aι(R) = B(n- l)c and
Aι(R) — Aι(B(n - 1))) and the third term goes to 0 as n —> oc by Lemma 2 6. Λs
ΰ > 0 is arbitrary, the result follows •

The next proposition is the analogue of Lemma 5 of [6] for long range per-
colation The main difficulty of extending their result to long range percolation is
guaranteeing that there are many points on the vertex boundary of B(n — 1) which
are connected in B(n) to a smaller box B(m) assuming that {B(m) —> 00}. This lat-
ter fact was established by Lemma 2 7 We will prove Lemma 2 8 below to make
this paper self contained but we mention that given Lemma 2 7 above, the proof
essentially follows that of Lemma 5 in [6]

Lemma 2.8. Let α > 0 Then there exists integers m and n such that 2m < n and

P(B(m) <-* K(mjι)(in B{n))) > 1 - α

Proof The first step of the proof is to show that for all m and /' §; 1,

l iminfP( |F; i w | ^ /) ^ 1 - (P(B(m) /> o o ) ) ^ ,
n

where V'mn is the set of vertices in T(n) which have an open edge to WllhΠ To
do this, we note that there exists a group of symmetries of the cube, of order
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(2d)2d~x = d2d', and with the following property if the elements of the group
transform T(n) into T\{n), ,Tdla(n), then

Λι(B(n - 1))C \jT,(n)
/ = 1

It follows that

Γ K K J <f}Q{\Kun\ <d2dί],
ι=\

where Vι

m n is the set of vertices in T,(n) which have an open edge to Wmn The
FKG inequality gives us

p{\vIUJ1\ < didn ^ UP(\KJ < n = (P(\vL\ < nrl2ί,

which implies that

P{\V'mn\ ^ n ^ \-P{\Vm.n\ <d2drφ

By Lemma 2 7, it follows that

d2d/\)

+> oc) g P(B(m) ^ ex))

We therefore obtain

K j ^ /) ^ 1 - (P(B(m)

as desired
Next, since 0(p, p2, pi, ) > 0, there exists m — m(d, p, α) so that

) ~ ^ oc) > \ - (-

Next let ry be the probability that i?(/7z) is an open /?z-pad and that there is an
open edge between each vertex of {x G B(m) x\ = -m} and its unique nearest
neighbor whose first coordinate is —m — 1 Next choose M sufficiently large so
that at least one of M independent events each with probability q will occur with
probability greater than 1 — α/2

Next, choose / so large that for any n and for any subset S of T(n) of size / or
more, S will have the property that there will be M disjoint translates of B(m) in
T(mji) each distance 1 from some point of S Next, by the first half of the proof,
choose n > 2m so large that

p{\v'm,,\ > n > \ - \

Finally, the way ί and M were chosen, it follows that

P(B(m) ^ K(mji)('m B{n))) > 1 - α Π

The next step is to prove that there are paths from Aι(R) Π B(n) to K(m,n) rather
than just from B(m) This is done in the next two lemmas
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Lemma 2.9. Let ε > 0 and f ^ 1 Then there exists m and n such that 2m < n
and such that if B(m) CRC B(n) with (R U Aι(R)) Π T(n) = 0, then if W is the
set

{x e (RUAι(R)Y ΓιB(n) x <-* K(m,n)(in B(n) Π {R U A1 (R)J )}

(which includes K(m,n) by convention) and F is the set of open edges from (RU
Aι(R))ΠB(n) to W, then P(\F\ ^ /) ^ 1 - c

Proof In the notation of Lemma 2 3, we let b = sup, pι (where p\ = p), y = ε/2
and N = ί and let δ be as in the conclusion of that lemma, requiring also that
δ < ε/2 By Lemma 2 8, we then choose integers m and n such that 2m < n and

P(B(m) <-> K(m,n)( in B(n))) > 1 - δ2

If w e n o w h a v e R sa t i s fy ing B ( m ) CRC B ( n ) w i t h (R U A L ( R ) ) Π T(n) = 0, it fol-
l o w s t h a t

P((RU AV(R)) Π B(n) ^ K(m,n)(in B(n))) > 1 - δ2 ,

which tells us that P(\F\ ^ 1) > 1 - δ2 It follows that there is a subset ff C ff
(where <f is the set of all subsets of (R U AL(R))C Π B(n)) such that P(\F\ ^ \\W =
S) ^ 1 - δ for all S e -c/; and P(Pf G yy /) ^ 1 - (5 From Lemma 2 3, the fact that
W is independent of the edges which have an endpoint in (R U Aι(R)) Π B(n), and
the definition of δ it follows that if S G ,9 '̂, then P ( | F | ^ /|^f = S) ^ 1 - β/2
and hence (since P{W e -cf) ^ I - δ) P(\F\ ^ ί) ^ (1 - ε/2)(l - ^) ^ 1 - ε, as
desired D

Lemma 2.10. Let ε > 0 <://?<:/ k ^ 1 Γ/zβ/? i/zere exists m and n such that 2m < n
and such that if B(m) CRC B(n) with (R U Aι\R)) Π T(n) =- 0, then if

V = {x e Aι(R)ΠB(n) x ^ K(m,n)(in B(n) Π (R U A1 (/?)) ')},

> /O > 1 -c

Proof. Let « = a(k,ε/2) be as in Lemma 2 5 Next choose m and ? according to
Lemma 2 9 with ε replaced by ε/4 and / replaced by r(r

4

4^2 + 7̂ %j Now let R
satisfy 5(/7?) CRC B{n) with (7? U /TO/?)) Π Γ(«) = 0 Let ^ be as in Lemma 2 9.
Then K is the set of vertices in A1 (R) Π B(n) which have an open edge to W
Let E be the set of open edges from Aί(R)ΠB(n) to W. By Lemma 2 5 (with
S\ = z1'(#)n#(/?) and S2 = W),

P{\V\ S k) S P(\V\ ^ k,\E\ ̂  a) + P(\E\ < a) < |

and so it suffices to show P(\E\ < a) < f Letting F be the set of open edges from
(RU Aι(R))ΠB(n) to W, we get

P(\E\ < a) ^ P[ \E\ < a,\F\ ^
4 2a \

where the last inequalities follow respectively from the first statement in
Lemma 2.4 (with S = W) and Lemma 2 9 together with the way m and n were
chosen D
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Proof of Lemma A Choose t such that (1 - <5)' < ε/2 Choose m and n according
to Lemma 2 10 with / and ε/2 playing the role of k and ε. Then if R satisfies
B(m) CRC B(n) with (R U AV(R)) Π T(n) = 0, V is as in Lemma 2 10, and β
ΛC\R) Π B{n) -> [0, 1 - <5], we have that P{\V\ ^ t\H) ^ 1 - ε/2, since the random
variable \V\ is independent of the event H. Next, each v G V is adjacent to some £ G
7? (if there is more than 1, we choose such a ΰ G R according to some predetermined
nonrandom rule) Given F, let V = {v v G F} By independence, the facts that
(1 - δ)f < ε/2 and P(\V\ Ξ> ί|//) ^ 1 - ε/2 give us

P(\V\ ^ tAi\v) is (/i(r, ί;) +(5)-open for some v G F|//) ^

Finally, noting that

{|H = t,(ι\v) is (/j(i', iT) 4-ί5)-open for some v G F} C G

completes the proof •

3. The Renormalization

In this section we shall describe the renormalization anticipated earlier We shall
see that Lemma A of the previous section implies that this renormalized model
percolates and this in turn is easily seen to be enough to prove Theorem 1 1 The
geometry of the renormalization is almost the same as that of [6], and as such we
describe the procedure rather loosely referring to their paper for all missing details

Let m and n satisfy 2m < n and set TV = n + m + 1. Let d ^ 2 and order the
edges between nearest neighbors of Zβ in some arbitrary way and consider boxes of
the form {4Nz + B(N) z G Zd] These boxes are called site boxes The translates
of B(N) which are exactly between two site boxes are called halfway boxes The
idea is now to examine the site boxes one by one, declaring each of them to be
either occupied or vacant according to certain rules to be specified The geometry of
the procedure is as follows. We write Tf(m,n) and Tf(n) for the images of T(m,n)
and T(n) respectively under the "earliest" isometries (in some arbitrary ordering)
which preserve the origin and map the first coordinate direction onto the ; t h, for
7 = 1, ,2ί/ We define K}(m,n) as K(m,n), replacing T(m9n) and T(n) by Tj(m,n)
and Tj{n) respectively in the definition We start with the site box at the origin and
call the site box B(N) occupied if and only if the following ( l )-(3) are all satisfied

(1) B(m) is an open m-pad
(2) B(m) is connected (in B{n)) to Kj(m,n) for / = 1, ,2d The open m-pads

in the 7}(/7vO's next to the K^mjiYs are called target open m-pads Note that for
any /, there can of course be more than one such open target m-pad In such a case,
we choose one according to a previously determined, nonrandom rule

(3) For all /, the target open m-pad in (2) in the fh direction (written as
bj -\-B(m)) is connected (in b} + B(n)) to a vertex next (and connected) to an open
m-pad in b, + T*(m,n) in the halfway box next to B(N) in the j x h direction, where
Γ*(m,/?) is the image of Tj(m,n) under the symmetry which fixes e7- and sends, for
/fφ/, the unit vector ek to -ek (We call this last m-pad again a target m-pad )

The reflections in (3) are necessary to make sure that the target open w-pads
in (3) are indeed in the appropriate halfway box and the use of such reflections is
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called a steering action Note that the first open m-pad B(m) is connected in two
steps to target open m-pads in the halfway boxes. Next we consider the earliest edge
starting at the origin in the ordering of the edges mentioned above, and we suppose
without loss of generality that this edge is e\, the unit vector in this direction We
call the site box B(N) + 4Ne\ occupied if and only if the following (1 ;) and (2')
are satisfied

(1 ;) The target open ra-pad in (3) above in the first direction is connected, in
two steps which are analogues to the two steps described above, to a point next
(and connected) to an open /7z-pad in B(N) + 4Ne\ Here we use an appropriate
steering action to make sure that we end up in the correct site box

(27) The target open m-pad in (Γ) is in two steps connected to a point next
(and connected) to an open m-pad in all halfway boxes next to B(N) 4- 4Ne\ which
are also next to a site box which has not yet been examined (In this case there are
Id — 1 such halfway boxes )

This procedure is continued Each time, we look for the "first" edge which
connects some occupied site box to a site box which has not yet been examined
and we decide whether or not the latter site box will be occupied or vacant Of
course, we need the appropriate "steering action" each time to make sure that the
target open m-pad ends up in the correct site box Again, details on this can be
found in [6]

It is well known (see eg [6]) that if at each step the conditional probability,
given the past of the procedure, that a new site box is occupied is at least ^ as.
where q is independent of the site box being examined and strictly larger than the
critical probability for independent nearest neighbor site percolation on Zr/, then the
origin of the renormalized (nearest neighbor) model percolates with positive proba-
bility The construction is such that the renormalized model percolating implies that
the underlying long range model also percolates It is at this point where Lemma A
comes in We shall now show that if p G (0,1) is such that 0(p, pj, ) > 0, i e the
underlying long range model percolates, and // is a small positive number then the
renormalized nearest neighbor model percolates under p + // for a suitable choice of
// and m (Here and in what follows, percolation under a certain parameter q refers
to the fact that the probability for an edge of length one to be open is q.)

Fix p so that 0(p,p2, ) > 0 and let η > 0 Let

and
_ (1 - Pc(site))

where pc(sife) denotes the critical probability for independent nearest neighbor site
percolation on Z,ci Let m and n be as in Lemma A for this choice of p, ε and δ We
shall explain why the renormalized model with this choice of m and n percolates
for p + //

First of all, the probability that B(m) is an open m-pad under p is positive It
doesn't matter that this probability is in fact very small, it serves only as a starting
point for the procedure For inductive reasons, we write C\ for the set of open edges
in B(m), where open is to be interpreted as /?-open if the edge has length one To
estimate the probability under p that the event described in (2) above occurs, note
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that given the fact that B(m) is an open m-pad under p, we have no information
about edges in Ae(B(m)) and so all we can say is that they are 0-closed Now
Lemma A implies that with probability at least 1 — t: there is a path from B(m) to
K(m,n) via Au(B(m)) (in B(n)) such that the edge in Ae(B(m)) is c)-open and all
other edges are open (meaning /?-open if the edge has length one) By symmetry it
follows that the event in (2) occurs under p with probability at least 1 — 2dε Now
define

C2 = C\ U E\ U F\ ,

where E\ is the set of edges in Ae(B(m)) which are <$-open and F\ is the set
of open edges {x,y} contained in B(n)U[j2(iι Tj(m,n)\B(m) which are open (p-
open for edges of length one) and such that there is an open path in B(n)U
U/Li Tj(m,n)\B(m) from x (and hence from y) to some point in Δι(B(m)) which is
an endpoint of some edge in E\ Assuming that the event in (2) above occurs, we
have the following information about the state of the edges outside C2 which share
at least one endpoint with an edge of C2 All edges in Ae(B(m))\C2 are enclosed,
and all other edges outside C2 which share at least one endpoint with an edge in C2

and which are contained in B(n) U I J ^ , 7̂ (/7?,/7)\Z?(m) are closed (meaning ^-closed
if the edge has length one) We have no information about any other edges Next
we estimate the probability under p + // that all events in (3) above occur, given
the information just described For this we apply Lemma A Id times, this time
''centered" at b; rather than at the origin Let R be the set of endpoints of edges
in C2 inside b\ + B(n) For each edge e in AL\R) we know that e is /?(<?)-closed,
where β(e) is either 0, ό or p The extra information about closed edges of length
at least two is irrelevant for the occurrence of the event G in Lemma A and will
also be irrelevant in the future of the procedure Hence we can apply Lemma A as
before and conclude that the (conditional) probability under p + ό of the first of the
Id events in (3) is at least 1 — /; We repeat this procedure for the remaining events
in (3), noting that any particular edge is "updated" at most Id + 1 times (We shall
see that this will be true for all edges in the future of the procedure ) This update
is by an amount δ at most 2d times and by an amount p at most once Hence the
open cluster we find is open under p -\- 2dO = (p + η) The probability that the site
box at the origin is occupied under /> + //, given that B(m) is /?-open is at least
(1 — 2dί:)(\ - v,)2d It is easy to check that by our choice of i: this probability is at
least j ( l + pc(site)) which is strictly larger than pc(site)

It remains to show that also the events described in (I 7) and (27) have sufficiently
high probability under p + ;/ In principle this can be shown in the same way as
above We must be careful however, because it is very well possible that a certain
site box was declared to be vacant and this is negative information which can be
used against us However, the construction is such that any new target m-pad is
always unconditioned In fact, this is the reason that we need the halfway boxes if
we tile the space with translated copies of B(N) and try to connect them up directly
without using halfway boxes, then the event that a certain site box is vacant has
the effect that a potential future open /?z-pad is less likely to be open Finally, we
observe that all r-open edges of length one which we use in the construction above
satisfy r < p -i // We have shown the following

Theorem 3.1. Consider a long range model p, p2< pi, on Zc/, d ^ 2 satisfy-
ing Condition C and suppose that p G (0,1) and 0(p, p2, P3, ) > 0 For any
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η > 0 there exist m and n such that the renormalized site percolation model with
underlying long range model p -f- //, pi, /?3, .. described above percolates as a near-
est neighbor model

Proof of Theorem 1 1 For all n we have pc{pn

2,p
}\, ) ^ pc(p2,p?n . ) We may

assume that pc(p2,P3> ) < 1 Let, for all α > 0, p^ be defined by p^J) =
pc(p2,pi, ) + 3c For any ε > 0, we have that 0(p^2\ p2, P3, ) > 0, and it
then follows from Theorem 3 1 that for a suitable choice of the parameters, the
renormalized model based on the long range model p{ί'\ pi, pi, percolates The
key observation is that the event that a certain site box is occupied depends on the
state of a uniformly bounded number of edges which are all of L\ -length at most 47V,
where N is as in the construction of the renormalization We recall that the reason
that the renormalized model percolates is that the conditional probability that a new
site box is occupied, conditioned on the past of the procedure, is at least q a s for
some uniform q > pc{site) Note that in all applications of Lemma A, there can be
only finitely many different events we condition on It then follows from the point-
wise convergence of the models p(r'\ pn

Ί, p'l, . and the key observation above that
for /? sufficiently large, the conditional probability that a new site box is occupied in
the renormalization based on p^'K p'2\ p1!, is at least q' for some q' > pc(site) It
follows that for n large enough, pc{p'2\p't, ) ^ pc(P2,P3, ) + <; and the proof
is complete since r, > 0 was arbitrary D

4. Further Proofs and Applications

The first part of this section is devoted to a proof of Theorem 1 4 We start with
a lemma which is stronger than we actually need A part of the argument of this
lemma is a long range version of the argument in [3] for proving continuity from
the left of the percolation function in independent nearest neighbor percolation in
the supercritical regime

Lemma 4.1. Let p2,/>3, be a long uinge model and assume that we have a
sequence of long range models {p'2\p\, . )n such that p" ^ p{ for all n ^ 1 and
i ^ 2 and lini;,^^ p" = p x for all i ^ 2 Then the following two statements (i)
and (ii) are equivalent

(i) // p\ > p((p2,P3, ) ctnd p" —> p\ from below, then

lim 0(PIP'1 )

(ϋ)

lim Pcip'^p", )= Pc(P2,Pi, )

Proof First we prove that ( i ) implies ( i i) We clearly have that for all n §; 1,

PΛp'LPl ) ^ Pt(P2,P3, ) ,

and so to prove (ii), it suffices to show that if p\ > pc(p2, /?3, ), then p\ ^
p((p2,p", ) for n sufficiently large Now, letting p'\ = p\ for all n ^ 1, it follows
from (i) that

p2, ) > 0.
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and hence 0(p\, p'l , p\, ) > 0 for n sufficiently large, whence

Px ^ MP'LPI )

for all n large enough

Next we show that (ii) implies (i) We fix p\ > pc(P2> Pi, X and a sequence
(p") converging to p\ from below It suffices to show that

0(p\,P2i ) S lim inf 0(p\, p'l, .)

Using (ii), we have that for n large enough, p'\ > pdp1^ Pv ) We c a n c o u p l e

all models (p\,p2, ) and (p\,p\, ) on the same probability space similar to

the discussion preceding Lemma A for any two vertices Λ and v of Tl\ the edge

{.Y, v} is associated with a uniform-(0,1) distributed random variable ω(.γ, v) which

is independent of all other such random variables. The edge {Y, V} is declared to be

open in (///, p\, ) iff ω(.\\ y) < /?j\_vι, and similarly, {x, v} is open in (pu p2, )

iff ω(x, y) < /? | x _, |

The model p\,p2, is supercritical by assumption and hence there is a s a

unique infinite cluster, (see [4]) For all n sufficiently large, the model (p", p", )

is also supercritical and contains therefore (again by [4]) a unique infinite cluster

a s In the coupling of the models described above, the unique infinite cluster in

these models has to be contained in the unique infinite cluster corresponding to

P\,P2,
Now suppose that the origin percolates in p\,p2*. , and denote this event by

{0 —> oc in p\, p2, } The infinite cluster in p% p'ΐ, need not contain the origin,
but there must be a finite path from the origin to this cluster which is contained
in the infinite cluster of p\, p2. Each edge {.Y,V} along this finite path has
o(\, v) < P\\-v\ (note the strict inequality) and since p]] —> p, for all /, we have
shown that if the origin percolates in p\,p2, , then it also percolates in p",p",
for all /? sufficiently large Writing {0 —> oc in p\, p\, } for these last events, we
have shown that in the coupling described above,

{0 —> oc in p\,p2 >- } ^ lim inf{0 —> oc in p",p", } ,

and the result follows from an application of Fatou's lemma •

In the next lemma we consider approximation from above This result is a long

range version of the well known right continuity of the percolation function for

ordinary percolation

Lemma 4.2. Consider the models p\,p2, cind p'\, p]\, foi n ^ 1 and view

them as functions from 7J1 into [0, 1] Suppose that p' ^ p{ for all i and /?, and

suppose that //,', p\, converges to p\,pi, in L\ of Zcl with counting measure

Then l i m ^ ^ 0{p'{,p'l ) = 0(PuP2, )

Proof The assumption on the L\-convergence implies that

lim sup Σ Pn(z) = Q
ιn~-'oc n zeB(ni)1

In particular, the probability that there is an open edge from the origin to B(m)c

tends to zero uniformly in /? when m —> oc We write Pp for the probability measure
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corresponding to p\,pι > and Pp» for the probability measure corresponding to
/?',', p", Fix ε > 0 and take /: so large that

Pp(0^B(k)c) < 0(pup2, ) + c/3

Next choose /?? so large that the probability that there is an edge with one endpoint
in B(k) and the other endpoint in B(m)c is smaller than ε/3, uniformly in all models
(This is possible since the probability of this event is bounded from above by (2k +
1 )d times the probability that there is a direct connection from 0 to B(m — k)L ) We
now write

IKp'lPi, ) = fy(O^oc)

^ Pp.,(0 <-> B(m)\B(k) in B(m)) + Pp»(3 edge from B(k) to B(mf )

^ Ppll(0 ^ B(m)\B(k) in B(m)) + β/3

Note that the first event in the last line depends only on edges in B(m) and by the
pointwise convergence of the model we can take n so large that

Ppn(0 <-> B(m)\B(k) in B(m)) <; Pp(0 <-> B(m)\B(k) in B(m)) + c/3

It follows that

Ppn(0 <-> B(m)\B(k) in B(m)) S PP(0 <-> B(k)() + ε'3

S IKpuPi, ) + 2c/3

Putting things together we find that for n sufficiently large,

and the proof is complete, noting that 0(pu

v pn

2, ) ^ 0(p\,p2, ) for all /? Π

Proof of Theorem 1 4 The first statement of Theorem 1 4 is Lemma 4 2 For
the second statement, we assume that pi, p^, satisfies Condition C and that
p\ > pc(P2*P3, ) If p'ι ύ Pi f°r all n ^ 1 and / ^ 2, then we have from
Theorem 1 1 that lim,,^^ p((p2,p'y ) = p((p2,p3, ) If p}\ —> p\ from below,
it follows from Lemma 4 1 that 0(p", p\, ) ^ 0(p\, pi,.. ) We thus have the
required convergence if the approximating models are such that p' ^ p; for all
n ^ 1 and all / ^ 1 To complete the proof, given p",p'2\ which converges to
P\,P2, (in L\ of 7ud with counting measure) we "sandwich" the approximating
models between two other models, one of which is above the limit and one of which
is below More precisely, let Q] — max{/?",/;,} and q" = min{p", pt} for all / ^ 1
and n ^ 1 A simple coupling argument shows that 0(q",q2\ ) = ^Kp'l^P1^ ) =
0(Q",Q'2\ )• Since p",p'2\ converges in L\ to p\,p2, , it follows that both
Q",Q2\ and q",q2\ converge to p\,pi, in L\ and the proof is complete Π

Lemma A and the renormalization technique have further consequences Sec-
tion 5 in [6] contains some of these in the case of independent nearest neighbor
percolation on 7I1. Here, we give some analogues of their results for long range
percolation models Let F C 7J{ be an infinite set which is connected in the usual
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nearest neighbor structure of Zd The critical probability for independent nearest
neighbor site percolation on F is denoted by pι[ , and the critical probability for
the long range model pi.pz, on F, defined in the obvious way, is denoted by

Theorem 4.3. Let F C Zd be an infinite set, connected in the usual nearest neigh-
bor structure such that p[ < 1 Foi any long range model p2, pi, which satisfies
Condition C we have

lim pf(p2,P3 ) MP,P3 )
λ—>oc

If we take F to be the half space H ' = {z e Zd zx ^ 0} for any d ^ 2, or the
slice S(k) = {z e Zd 0 ^ zy g kj > 2} for any d ^ 3, we immediately obtain
the following corollary

Corollary 4.4. For d ^ 2 and any long range model p2, /?3, . u'Λ/Wz satisfies Con-
dition C, ire

For d ^ 3 and any long range model P2, P3, which satisfies Condition C we

Proof of Theorem 4 3 In the renormalization, we consider site boxes one by one
according to a certain order of the edges in Zd The only thing that needs to be
done now is to order the edges in F rather than in Zd and go from site box to
site box according to this order in the manner we did earlier The fact that p[ < 1
guarantees that if a long range model satisfying Condition C is supercritical, then
we can take the boxes in the renormalization so large that the renormalized model
also percolates (as a nearest neighbor site percolation model). In other words, the
long range percolation model percolates in 2kF -+- B(k) for k sufficiently large (see
[6] for more details). D

5. Proof of Theorem 1.3

In this section, we give the proof of Theorem 1 3

Proof of Theorem I 3 Case (i) is trivial and left to the reader. We prove case
(ii) for d ^ 2 by induction on d (with P2,pi.. fixed) Let p\ G (0,1) For each
d ^ 2, we will prove the existence of a constant Q > 0 (depending on p\) so that
in d d i m e n s i o n s if R C B ( n ) , y e B ( n ) a n d y ^ R U AV(R), t h e n

Σ p(χ - 7 ) ^ cd Σ p(χ - 7 )
TEΛ1 (R)ΠB(n) x£{RUΛι (R))ΠB(n)

We first prove this for d = 2 We first claim that there exists a constant K > 0
such that for all n ^ 1,

Pn ^ * Σ P(χ) ( 5 - 1 )
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It is easy to see that we need only find K > 0 so that (5 1) holds for large n
However, if n ^ AQ, we have

\'\2^H \ 2 = " V | G Z \2—>l \'l G Z V λ i E Z / * P

from which the existence of K follows
A similar computation shows that the above K can also be taken sufficiently

small so that for all (xux2)=¥(0,0) with x] ^ 0,

p((rux2))^κ Σ P((^x2)) (5 2)

We will now for simplicity assume that y — 0, the more general case being proved
analogously

Let
/ = minjm > 0 . (0,m) e RU AV(R)}

and
b = max{/7/ < 0 (0,m) e RU AV(R)} ,

which may be oc or — oc respectively Equation (5 1) now gives us that

))^κ Σ P(x) (5 3)
\eRUAι(R):x2^t

and

7?((0,A)) ^ K Σ P(x) (5.4)

To exhaust all points in RU ΛV'(R), we next take an integer j G (b,t) (noting
that (OJ)^RU Aι(R)) and consider

Γj = min{m > 0 (m,/) G /? U ZlΓ(^)}

a n d
ί, = max{/7? < 0 (mj) eRU Aι'(R)} ,

which again may be oc or — oc respectively. Equation (5 2) (together with its re-
flected version) gives us that

P(r,J)^κ Σ P^ciJ)) (5 5)
(a,/)£RU/\'(R) a^i,

and

)) (5 6)

Of course, if tji or some r} or /̂  is ±oc, the relevant sum does not appear Next,
the union of the right-hand sides in (5 3), (5 4), (5 5) and (5 6) (with / varying over
(b,t)) is RU Aι'(R) and the left-hand sides in the same equations all correspond to
different points in Aι'(R) Π B(n) This proves the result for d = 2 with c^ = K

For d ^ 3, we perform induction as follows Assume now that for / = 2, ,
d — 1, there is a constant c{ > 0, depending on p\ such that in / dimensions if
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R C B(n\ y G B(n) and y^RU Aι(R), then

Σ p(χ-y)^c, Σ p(χ-y)
xeΛ'(R)nB(n) \e(RUAι(R))ΠB(n)

Next note that (5 1) can easily be generalized to give us a constant κc/ (depending
only on the dimension) such that for all n > 1,

Pn ^ κd Σ P(x) (5 7)

As we did for d = 2, we let

ί = m i n { m > 0 (0, ,0,m) G R U Aι(R)}

and

b = max{m<0 (0, ,0,m) e RU AV(R)} ,

which may again be oo or — oc respectively Equation (5 7) now gives that

p(0, Λ0^κd Σ P(x) (5 8)
\£RU \'(R),\ci^t

and that

,o,/?) ^ κd Σ p(y) ( 5 9 )

Now, for integers / G (b,t), consider the hyperplane

Let Rf = RΠ .'/{j and view this (with a slight abuse of notation) as a subset of Zc/~~]

Letting Δ'(R,) = {x G yf,\R, \x - y\ = 1 for some y G R,} (which we think of as
the vertex boundary of R, within the hyperplane .#/), we have that A'(Rj) C Aι(R) Π
# 7 (with possible proper containment) and so, by the induction assumption,

Σ

(5 10)

Next, the conditions of our pn's clearly imply the existence of two positive
constants C' and C" so that for all positive integers u and v, we have that

plίU ^ C'pιι

Pι and pu^ ^ C"pu

Pι

This together with (5 10) implies that

Σ P(χ)^^f- Σ P(χ) (5 11)

As before, the right-hand sides of (5 8), (5 9) and (5 11) exhaust (R U Aι(R)) Π B(n)
and the left-hand sides correspond to different points in Aι(R)Γ\B(n) Letting c\/ =

min{/vv, Cd

c), }, the result is proved G
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