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Abstract: The dynamic stability of vortex solutions to the Ginzburg-Landau and
nonlinear Schrodinger equations is the basic assumption of the asymptotic particle
plus field description of interacting vortices. For the Ginzburg-Landau dynamics
we prove that all vortices are asymptotically nonlinearly stable relative to small
radial perturbations Initially finite energy perturbations of vortices decay to zero
in L / ;(R 2) spaces with an algebraic rate as time tends to infinity We also prove
that under general (nonradial) perturbations, the plus and minus one-vortices are
linearly dynamically stable in L2, the linearized operator has spectrum equal to
( —oc,0] and generates a Q semigroup of contractions on L2(IR2) The nature of
the zero energy point is clarified, it is resonance, a property related to the infi-
nite energy of planar vortices Our results on the linearized operator are also used
to show that the plus and minus one-vortices for the Schrodinger (Hamiltonian)
dynamics are spectrally stable, i e the linearized operator about these vortices has
(L1) spectrum equal to the imaginary axis The key ingredients of our analysis are
the Nash-Aronson estimates for obtaining Gaussian upper bounds for fundamental
solutions of parabolic operators, and a combination of variational and maximum
principles

1. Introduction

In this paper, we study the dynamic stability of vortex solutions of the Ginzburg-
Landau and nonlinear Schrodinger equations

ut = Διι + {\-\u\1)u = ^ , ( 1 1 )
il

-ίιιt = Δ u + (\ - \ ι ι \ 2 ) κ = ^ (12)

Here, n — ιι(t,x) is a complex valued function defined for each t > 0 and .r =
(*iΛ"2)£=IR2 ^ — ?̂ + v̂, denotes the two-dimensional Laplacian The energy
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functional

&= I (l-\Vu\2+l-(\u\2-\)2)dx (13)
R2 \ 2 4 /

The Ginzburg-Landau equation arises in the theory of superconductivity, see
[4, 11,20] and references therein The nonlinear Schrδdinger equation is a basic
model for superfluids, see, for example, [7,10,24,15,12] These equations also play
a central role as universal envelope equations for bifurcation problems and pattern
dynamics, see, for example, [25]

Equations (11) and (12) admit vortex solutions These are solutions of the
form

Ψπ(x) = Uπ(r)em(\ n = ±l,±2, ,

Un(0) = 0, C/,,(+oc) = 1 , (14)

where (ι\0) denote the polar coordinates IR2 The functions Ψn(x) define complex
vector fields in the plane (x\,X2) *—> (Real Ψn, Imag Ψn), whose zeros are called
vortices or defects Since the evolution equations (11) and (12) define continuous
deformations of the complex vector field, ιι( ,x), if the initial total winding number
or circulation at infinity is different from zero, one expects a principal feature of the
dynamics to be the interaction of vortices or local flow fields organized around the
zeros of u(t,x) A description of the dynamics of an ensemble of spatially separated
vortices, each having the local structure (1 4), is therefore of fundamental interest

The systematic study of this problem was initiated by Neu [24], see also the
work of Pismen and Rubinstein [30], and E [11] In these works, the regime of
small β, the ratio of vortex core size to the separation distance between vortices,
is considered In addition to his asymptotic analysis, Neu [24] presents numerical
evidence for the stability of one-vortices and the fission instability of /7-vortices
(|/?| §: 2) This motivates the underlying assumption of these asymptotic studies
that the one-vortices (\n\ = 1 in (1 4)) are stable. For ε small, a solution is sought
in the form of a product of one-vortices plus small error terms of higher order

u(t,x) = Π ψn, ( ~X'^LΛ + θ(ε) , ( 1 5 )

where n, = -Jbl, Λ; ^ 2 Since, Un(r) —> 1 as r ^ oc, the ansatz (15) incorporates

the assumption that for x in a neighborhood of x,(t, β), ιι(t,x) ~ ΨΠ/ f λ~λ^Λ") j

In the small β limit, matched asymptotic analysis is used to derive a coupled
system of ordinary differential equations for the functions xt(t), / = 1, , N, which
describe the centers of the widely separated vortices In the Ginzburg-Landau case,
the motion of the vortex centers is governed by gradient flow dynamics, while in the
Schrόdinger case, by Kirchhoff 's equations for point vortices of ideal incompressible
Euler equation, see [12] for another formal derivation

An alternative approach is to rescale (1.1) and (12) by X = β.v, T = ε2t The
rescaled equations are the same except that the factor ε~2 appears in front of non-
linearities The problem then is to take the singular limit β —> 0 In recent work,
F -H Lin ([20,21]) proved the validity of the motion law of vortices in the rescaled
Ginzburg-Landau equation on a bounded domain with Dirichlet boundary data (see
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also [31] for related results) The main tool is energy comparison based on the
energy functionals and the characterization of their minimizers in the limit r, —> 0
studied earlier in Bethuel, Brezis and Helein [4] for static vortices

Regarding stability, there is work on the Ginzburg-Landau equation considered
on the unit disc Lieb and Loss [19] showed that S\ restricted to functions satis-
fying certain symmetry assumptions, has nonnegative second variational derivative
at n = ±1 vortices More recently, Mironescu [22] further showed that the sec-
ond variational derivative at the n — ±1 vortices is positive definite, and hence the
spectrum of the linearized operator is strictly positive This result can be recovered
using our method See Theorem 5.2 for a nonlinear asymptotic stability result in this
case

For the case of the entire plane, IR2, it remains an open problem to prove the
validity of the effective particle description of interacting vortices on long time
scales A principal difficulty is that vortex solutions have infinite energy (see (13))
and are therefore difficult to treat by variational methods. (A construction of the
vortices as minimizers of a relative or renormalized energy was given in [34].)
For the Ginzburg-Landau equation (11), Bauman, Chen, Phillips, and Stemberg
[3] proved the large time asymptotic convergence of a class of solutions with zero
winding number to the finite energy steady states consisting of constants of modulus
one \u\ = 1 The vortex solutions of the gradient flow generated by the Abelian
Higgs functional in the case of critical coupling turn out to have finite energy [16].
Demoulini and Stuart [9] showed the convergence of each solution to a unique static
vortex solution of the same winding number

Our goal of this paper is to investigate the stability properties of the vor-
tex solutions (1 4) under finite energy or L2(IR2) perturbations We confirm the
basic assumption of the interacting particle plus field description of interacting
vortices concerning the stability of one-vortices We view this as a step toward
providing a rigorous description of the motion of well-separated vortices on the
plane

Our main results are

T h e o r e m 1.1 ( G i n z b u r g - L a n d a u V o r t i c e s ) . Consider ( 1 1 ) with initial data

z/0(0,r, 0) - Ψn + i>o(r, 0)em0, n = ± 1 , ±2,

where vo(rj)) is a general complex valued function We decompose solutions of
the initial value problem as.

u(t,r,θ)= Ψn + υ(t,r,0)eιn\

and v satisfies the evolution equation

;O,=*'CO+wU
where M is the self-adjoint linearized operator and N( ) consists of nonlinear
terms Then

1) Nonlinear asymptotic stability for radial data. If vQ — vo(r) e Lp Π/^(1R2),
where p e [3,6), q = γ~]p, γ e (1 + f , 3 ) , there exists an ε = ε(/?,y, Ψn) > 0

such that as long as ||t?o|IL/TIL*/ ύ >̂ Eq ( 1 6 ) has unique global mild solution
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o G C ( [ O , x ) , L / ; ) Moreover,

\\v(t)\\υ> ^ C ( l + O " " ( ; " 1 ) / ; " ,

for t ^ 0 with positive constant C = C(ε)

2) Linear dynamic stability for general data. // vo — vo(r, 0) G £ 2(IR 2) <://?<:/ |/?| — 1,
solution v = v(r,0,t) of the linearized equation vt = Mv satisfies

\\v(t)\\L2 ^
L2,

3) Resonance at zero energy. The I? spectrum of the operator, M, is ( —oc,0]
Associated to the zero point in the spectrum is a resonance mode, generated by
translation invariance of (1 1) This function does not lie in L2 but lies in Lp for
any p > 2

4) Nonlinear asymptotic stability of vortices on |x| ^ R. The n = ±1 vortices,
em0UR(r), defined on the disc of radius R, Bf>, are nonlinearly exponentially asymp-
totically stable relative to all small L2 perturbations which vanish on the boundary

Remark The result concerning the zero energy resonance has implications for
the behavior of the resolvent, (M — /J)^ 1 as λ —> 0, and therefore the time-decay
properties as t —> oc of the linearized evolution in suitable function spaces [17] The
resulting slower time decay is a subtlety which would have impact on a nonlinear
stability theory of vortices in the plane

Theorem 1.2 (Spectral Stability of Schrodinger Vortices). Consider (1.2) with ini-
tial data.

z/o(O, r,θ)= Ψn + yo(r, 0)eιn0, n = ± 1 ,

where VQ(ΓJ)) is a complex valued function We decompose solutions of the initial
value problem as

u(t,r,0)= Ψn + v(t,r,0)ein0 ,

where v satisfies the evolution equation

Here iσM denotes the linearized operator, N( ) is the nonlinear part, and

_( \ 0

Then the Lr spectrum of iσM is equal to the imaginary axis

The remainder of the paper is organized as follows. In Sect. 2, we derive
Eq (16) for perturbation v and write the equation as a coupled parabolic system
for the real and imaginary parts of v Sections 3 through 5 address the dynamics of
vortices in the context of the Ginzburg-Landau equations, with Sects 3 and 4 focus-
ing on the radial case In Sect 3, we employ the vortex profile equation to convert
the linearized operators into divergence form Due to the vanishing of the vortex
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profile at r = 0, the parabolic operator of divergence form is degenerate at zero
We adapt the classical Nash-Aronson estimates using cutoff functions to obtain a
pointwise Gaussian upper bound for the fundamental solutions In Sect 4, we apply
these results to get decay estimates for linear semigroup and then prove the non-
linear asymptotic stability of all «-vortex relative to radial perturbations In Sect. 4,
we use the variational characterization of principal eigenvalues, and the maximum
principle to prove parts (2) and (3) of Theorem 1 1 We identify the possible growth
modes of perturbations in /7-vortex, \n\ ̂ 2 We also comment on how to adapt our
method here to show nonlinear asymptotic stability of one vortices on the finite disc
domain with given Dirichlet data as treated in [19] and [22], see Theorem 5 2 In
Sect 5, we prove Theorem 1 2 using results in Sect 4, as well as the Hamiltonian
structure of (1 7)

2. Preliminary Analysis

We consider the Ginzburg-Landau equation*

ut = Λu + (1 - |M|2)W, x e R 2,

u\t=o = woCO > (2.1)

where u R̂ _ x IR2 —> R 2, and A is the two dimensional Laplacian. It is known
that (2.1) admits vortex solutions of the form:

Ψn = U,,{r)eM\ « = ±1,±2, . (2 2)

The basic properties of Un(r) are [24]

1) Uπ(r) is the unique solution to the ODE problem

Un + -ί/, -~U + (l -U2)U = 0,
r rz

£/(0) = 0, U\r) > 0, ί/(+oo) = 1 (2 3)

2) Un(r) has asymptotic behavior.

^ ) a s r - 0 , (2.4)

where a is a positive constant, and

2

U,,(r) ~ι~^> as r ->(X) . (2.5)

We are interested in studying problem (2.1) with initial data.

(Ul,(r) + υo(r,θ))el"υ , (2.6)

where (r,0) is the polar coordinate of R 2 , and VQ(Γ,0) is a small perturbation in
Z/(R 2 ), with p > 1 to be specified. We remark that writing the perturbation as in
(2 6) is technically convenient for our later analysis and has no loss of generality
To examine the evolution of perturbation VQ(Γ, 0)em(\ we write u as

w(/,r, 0) = (Un(r) + υ(t,r, θ))em0 (2 7)
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Substituting (2 7) into (2 1) and using Eq (2 2), we derive the following equation
for υ

-Un\v\2 - (2UnRe{υ) + \v\2)v , (2 8)

where Mυ is the linear part and N(v) is the nonlinear part Later, we will write v
into its real and imaginary parts (v = α + //?), and will also use M to denote the
resulting linear operator. Some details in deriving (2 8) are.

(υein0)t = A(Un{r)eιn0) + A(υem0) + (1 - \Un + υ\2)(Un + ι;)e"ϊ0 ,

vt = -(l~U2)UIΊ+e-ilή)A(veiίή)) + (l~\Un^v\2)(Uπ + v),

where we have used

e~m A(veιn ) = Av -\ ^~VQ — —u ,

and

V0= -(-sin0,costf)
r

If we express v in terms of its real and imaginary parts, υ = α + //?, Eq (2.8) can
be rewritten as the system.

α, = zlα -Bn -

- ^ - + 1 - υ2

n )β - 2Unaβ - (α2 + β2)β , (2.9)

with initial data (αo(r, θ\βo(r, 0))

Remark 2 1 In the case of the dynamics of Schrόdinger vortices, then we replace
the left-hand side of (2.1) with —iut. Subsequently in (2 9), the left-hand side vector
(vLt >βt)τ is replaced by — Jo(aίt,βt)τ, where JQ is the unit symplectic matrix ( °} ~

] ) .

We shall first consider the radial case, i e , α0 = αo(r), βo = βo(r) For functions
α = α(r, t), and /? = β{r,t\ the system (2 9) reduces to

ft = J^M )0 - 2ί/Hα/J - (α2 + β2)β , (2 10)

where
/ ?2 o \

-̂ 2 + 1 - 3 £ / 2 ( r ) J , (2 11)

-ί + . -tf.V)).

The operators have domain of definition ^ = { κ e // 2 (R 2 ) . r~2u e I 2(IR 2)} We
will estimate the semigroups generated by these two operators, and establish decay
of solutions for system (2 10) in the coming two sections Our results will hold for
any /?, so for ease of presentation we only consider n = 1 We will replace Un by
U, and abbreviate the operators in (2.11) and (2 12) into i^/? / = 1,2
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3. Gaussian Upper Bound for the Semigroup e^τt

In this section, we derive the Gaussian upper bound for the fundamental solution of
the parabolic equation

(3 1)

Equation (3 1) is not in divergence form The key idea is to make use of the vortex
profile equation (2 3) to convert it into one Let us verify the identity.

= U'2V (U2Vq) , (3 2)

for any smooth function q = q(r,0) We compute

Δ(Uq) = (ΔU)q+UΔq + 2VU -Vq

1

so

= - (1 - U2 - \ ) Uq+UΔq + 2VU Vq ,

- U2 - -2 j (Uq) = &2(Uq)

-χ (U2Aq + 2UVU Vq) = U~ι V (U2Vq) ,

which is just (3 2) The semigroup eu>lt is positivity preserving by parabolic max-
imum principle or by the Feynman-Kac formula [32]. If U were not zero at
r = 0, then in view of (3 2), we could directly apply the results of Nash [23],
Aronson [1], Osada [27] and others (see [8,13,26] and references therein) to con-
clude that U~ι£?2U or ^2 itself has pointwise upper and lower Gaussian bounds
for their solution kernels. However, the fact that U(0) = 0 makes the problem de-
generate and prevents us from doing so Actually there is no Gaussian lower bound
for J^2 This is easily seen, because for r ~ 0, i^ 2 ~ (Δ + 1 - 4 ) which implies
exponential decay of e^2t near r = 0 To establish the Gaussian upper bound, we
will introduce a smooth cutoff function // compactly supported in a ball centered
at zero Outside this ball we use identity (3 2) and inside the ball we use the — \
term of ̂ 2 to help us overcome the degeneracy caused by £/(0) = 0 A careful con-
struction of η is necessary to piece the two parts together and achieve the Gaussian
upper bound for the solution kernel of i^ 2 We find it convenient to proceed along
the line of proofs in Osada [27], who in turn followed the original ideas of Nash
[23], Aronson [1], as well as Aronson and Serrin [2]

The properties of the function η are summarized in

Lemma 3.1. There exists a CQ([0, 00)) function η = η(r), r ^ 0, such that

1) η(r) = 1, if r e [0,r0], where r0 e (0, 1),
2) η(r) = 0, if r ^ r1? where r\ G (r0, 1), and η > 0 if r G [0,ri),
3) 0 ^ η(r) ^ 1, η,(r) ^ 0, for all r ^ 0,
4) for any r e supp{;7},
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and

rι ηz η

Proof See appendix.
Let p = p(t — s,x,y) be the fundamental solution of (3 1), which satisfies the

semigroup property

p(t -s,x,y) = J'p(t - τ,x,z)p(τ -s,z,y)dz, s < τ < t (3 3)

We then have*

Proposition 3.1. For any s < t, x, v G IR2, there is a positive constant C, depending
only on the vortex profile U, such that

fp2(t-s,x,y)dy ^ C(t - s)~] , (3 4)
R2

Jp2(t -s,x9γ)dx S C(t-s)~\ (3.5)
R2

p(t-s,x,y) ^ C{t-syλ (3 6)

Proof Note that (3 4) and (3.5) are similar, and (3 6) follows from (3 4) and (3 5)
by the semigroup property So we focus on the estimate (3 4) Next observe that
we can, without loss of generality, set s = 0, and x = 0 It follows from (3 2) that

= U-]q\7 (U2V(U~]q)) (3 7)

Let
E(t) = f p2 (η2 + (1 - η)2)d>> (3 8)

With the notation, f = fR2 d\\ we have

E, = j'2pPl(η2 + (1 - ηf)dy = J2p^2p(η2 + (1 - η)2)dy (3 9)

+j2p(\-ηf(Ap+(\-U2~^\p] (3 10)

= 1+11 (311)

Concerning /, our strategy is to use the dominance of —r'2 for small r

/ = - J 2V(pη2) S7p + 2j(pη)2 ί l - U2 - -3

= - 2 / [ηX7(pη) + pηVη] • Vp + 2jp2η2

= -2 j V(pη) • (ηVp + pVη) + 2/ pV(pη) • Vί?

— 2/ j/V/7 pVp + 2j p2ιf
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= -2f\V(pη)\2 + 2j pX7(pη)-Vη

+JV(ηVη)p2+2jp2η2 ί 1 - U2 - - J ( 3 12)

^ - ί I V(/7//) | 2 + / [|V//| V + V ( / ? V ) ? ) p 2 + 2η2p2 f l - U 2 - ^ - ] ]

By the N a s h inequali ty [23]. | | M | | ^ ^ cQ

ι | |w | |? | |Vw| |2,

=<„,/,¥,= , (3,4,

where CQ is a universal constant Inequal i ty (3 14) implies from (3 13) that"

I S -co(fp2η2)2 + fp2η2 h-2U2-^ + ̂ f- + ̂  ) (3.15)

Now using (3 7), we have

// = 2j(l-j;)2{/-1;7V (ί/2V(ί/-1/7))

= -2/ί72((l -//)V((1 -η)U-'p) + (\ - η)U~] pV(l - η))-V(U~ι p)

= -2fU2[V((\ -η)U-]p)((\ -η)V(U-ιp) + U-ιpV(\ - ;/))

- ί/- ' /?V( l ~ ; 7 ) V((1 - ;/) ί/- '/7) + (l -/;)t/- '/7V(l - η) • V(U~ι p)]

= -2f U2[\V((] ~ η)U~l p)\2 - (I/"1 pf\V(\ - η)\2}

= -2\ U2\V(( 1 - η)U~ V)| 2 + 2/p2|V//|2

^ -2cηj\V((\-η)U-]p)\2+2fp2\Vη\2, (3 16)

where here and below cη > 0 denotes a constant depending on y Again, by Nash
inequality, we have

J\V((\-η)U-]p)\2 ^ c ; / (/( l-//)V) 2 (3 17)

Inequalities (3 17) and (3.16) yield

/ 2 / 2 / / 2 (3 18)
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Combining (3.15) and (3 18), we get*

Et =1 + 11

;?

2)2 + (/(l - ηf p1)2)

)Ϋ~ ηf)

or

2-2U2 - 4

Ί r Ί Ί ( 9 2 4IV/7I2 Aη\

2 ,^cη)E2 + Jp2η2 I 2 - 2U2 - - + -±-£- + -±\ . (3.19)

By Lemma 3 1, we then have.

Et S --mm(c0,cη)E2 - jp2η2 , (3 20)

which implies*

E, g -^mm(co,cη)E2 , (3 21)

or
E(t) S -, V ί > 0, (3 22)

where C depends on // and U Inequality (3 4) follows This completes the proof

Proposition 3.2. Let r > 0,(σ,x) be fixed Let v(y) e L2(IR2) ΠL^ilR2) such that
v(y) = 0 if \y — x\ < r Suppose that u(t, y) is a solution of the Cauchy problem
of (d( — ̂ 2)u = 0 in (σ, oc) x R 2 with initial value u(σ,y) = v(y) Then for any
t, σ < t ^ σ + / , we have

\u(i,x)\ ^ C(t - σ)~5 . exp{-Cr2/(/ - σ)}| |y| |2 , (3 23)

with C a positive constant

Proof Without loss of generality, we assume (σ,x) = (0,0) For 0 < s < t, define

h(s, y) = -C\ Iy\2l{2t - s), (3 24)

for some C\ > 0 to be chosen Consider the equation

ut = Δu+(\- U2(r) -^)u = ^2U , (3 25)

and set
m(r) = η2 + (1 - η)2

Multiplying both sides of (3.25) by m(r)ue2l\ integrating over (0, τ) x IR2, we have:

/ Jm(r)ue2hus dsdy = JdsJ m(r)uelh{Au + (1 - U2 - r~2)u)dy (3 26)
OR2 OR2
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The left-hand side of (3 26) is-

/ X-m{r)e2hu2dy\s

sZl - / Je2hmu2hs ds dy . (3.27)
R2 2 0 R2

The right-hand side of (3.26) is.

Jfη2ue2h(Au + (l - U2 -r~2)u)dyds
o

- η)2ue2h(Au + (1 - U2 - r~2)u)dyds

2e2h(Au + (l - U2 -r~2)u)dyds

- η)2e2h(U-]u)V(U2V(U'ιu))dyds
o

= }fη2ue2h(Au + (l - U2 - r~2)u)dyds
o

0

= / + // (3 28)

We can rewrite the first term as.

/ = / / - V{η2ue2h) - Vu + η2u2e2h{\ - U2 - r~2)
o '

= -}jη2e2h\Vu\2 - JfuV(η2e2h) Vu + }fη2u2e2h(l - U2 - r~2)
o o ' o

= ~}jη2e2l \\7u\2 + \jμ(η2e2")u2 + Jfη2u2e2"(\ - U2 - r~2) (3 29)
o 2 0 0

Using the Cauchy-Schwarz inequality, the second term can be estimated as follows:

// = - / / ( I - η)2 U2e2h\V(U-ιu)\2 dy ds - } fUuV((l - ηfe2h) V(JJ-λu)dy ds
o o

= - / / ( I - /7)2^/2β2/?|V(C/~1w)|2φ^ - J / ^ ^ ί 1 - η)22e2hVh V(U~ιu)dyds
o o

-/JίΛ/e2/7V((l -η)2) V(U~ιu)dyds
o
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h<)\2 dyds

+8//ί- 2 V|Vλ | 2 dyds + 8//M

2e2/'|V)/|2 dyds
o' o

It follows, using the properties of // in Lemma 3 1, that

(3 30)

ύ
An
— + 10

e2hη2u2dyds

V + 10|V/z|2 + Δh)e2hu2dyds
o

^ }j(Δh+ \\\Vh\2)e2hu2dyds
b'

By (3.26),

-Jm{r)e2hu2\\zl ^ JJ(mhs + ll |V/z|2 + Λh)u2e2hdyds

m \

( 3 3 1 )

44C, C, - ^
,

(3.32)

Choose C) = ^ min{m(r) : r G IR f} Then (3.32) implies, since v is supported
where y > r, that

sup / e2hii2(s,y)dy ^ C / m(r)e2hυ2(y)dy . (3 33)

For (.v, v) such that 5 G (0 ,0 , 4 |v | 2 ^ /, /?(^,j) ^ - ^ , for (5,3;) such that s G (0 ,0 ,
Ivl > r

2 ί - ^ ~ 2/

Thus

and so

sup f u\s,y)φ> ^Ce-^ J v2(y)dy ^
j

u2(s,y)dy ^

U' ,

By the local parabolic estimate (see Proposition 3.4 below)*

w(ί,0) ^ C r 1 ( f j u2cfyds\ ,

for some C > 0. It follows from (3 34) and (3 35) that

w(*,0) ^ Q~5e~ C f l ί r | | ι ; | |2 ,

for t G (0,r 2 ] The proof is complete.

(3.34)

(3 35)

(3 36)
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Theorem 3.1. Let p(t,s;x,y) be the fundamental solution of ut — ̂ IU Then

0 < p(t-s,x,y) ^ Cx(t-s)-λe-C2\χ-v\2{t-s\ (3 37)

for all t > s, x, y, where C\ and Ci are Uvo positive constants depending only
on U

Proof We follow the arguments of Aronson [1] or Osada [27], and include them
here for the sake of completeness First, if t — s > r2, by Proposition 3.1:

p(t,s,x,y) ̂  C(t-s)~ι g C(t -s)-]e~1-^ (3 38)

We now focus on the case t — s^r2. As in the proof of Proposition 3.1, the
pointwise bound (3 37) is obtained using the semigroup property of p{t — s,x, y),
(3 3) We first break the integration region in (3.3) into the regions {z \z — x\ §: r}
and {z \z — x\ ^ r}, and apply the Cauchy-Schwarz inequality to obtain

p(t-s,x,y) ^ J\ + J2 ,

where

J\ = I / p\τ-s,x,z)dz\ I / p2(t-τ,z,y)dz)
\\z-x\^ ) \\z-x\^ )

and

J2=l f p2(τ-s,x,z)dz) ( [ p2(t-τ9z9y)dz) ,
\\z-x\ϊ, ) \\z-x\^ )

where s < τ < t We now show that for t — s ^ r2

/ p2(t-s,x,y)dy S C(t-s)-]e-^ (3 39)
I v—Y| >/

To this end, we consider

u(s,x) = J p(s - σ,x,z)p(t - σ, y,z)dz , (3.40)
\z—v\ >ι

which is the solution of equation ιιs — ϊfiu, s ^ σ with initial data

u(σ,x) = 0, if \x - y\ < r, u(σ,x) = p(t - σ, y,x), if \x - y\ > r (3.41)

By Proposition 3 1, u(σ,x) e L2 nl°°(IR 2), and by Proposition 3 2

u(t,y)= j p2(t-σ,y,z)dz ^ C(t - σ)~^e~^ ||t/(σ,z)||2 ,
\z—v\ >ι

which implies (3 39) by Proposition 3 1 Similarly,

/ p2(t-σ,y,z)φ> S C(t-σ)~ιe~^ . (3 42)
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Now set r = 2 •> τ = ^T^ a n c^ a s s u m e t — s ^ r1. Using (3.39) and Proposition
3.1, we get

J\ ^ C{t - s)~ιe~c^ ^ C(t - syι exp j - c ^ ^ 1 (3 43)

For y25 we see that \z — x\ ^ r = ^^ implies \z — y\ ^ r Hence we have

Ji ύ I I P2(s-τ,x,z)dz) I J p2(t-τ;z,y)dz)

^ I p2(s-v9x,z)dz) f p2(t-τ,z,y)dz)
\|z-v|̂ / / \\z-y\^r J

by (3 42) and Proposition 3.1

g C(t -syιe'CJ^L (3.44)

Thus (3 37) holds if t — s g r2 This completes the proof.

Finally, we outline the proof of the local parabolic estimate.

Proposition 3.3. Let u be a solution to ut = ̂ 2u and

Q = Q(y,σ,t) = {x e R2 \x- y\2 < (t-σ)/4} x (σ,ί)

Then there exists a constant C independent of w, σ, t and y such that

\u{Uy)\ g C ( ί - σ ) " 1 ίju2\ . (345)

Proof In view of (3.2), and that by comparison $£2 is below A near r = 0, it
is easy to check that the fundamental inequalities of Aronson and Serrin [2] (or
Proposition 2.2 of Osada [27]) hold for operator i^2 The rest follows from [2] on
local properties of solutions of parabolic equations.

4. Nonlinear Asymptotic Stability in the Radial Case

In this section, we prove that any n-vortex solution is asymptotically stable under
small radial perturbations (part (1) of Theorem 1.1). We will proceed with n — 1;
the proof in the general case is the same except for minor modifications. Let us
consider the parabolic system

where

α, = ^\0ί-U(a2 + β2)-2Ua2 - ( α 2 + β2)α, (4 1)

βt = ^2β ~ 2Uotβ - (α2 + β2)β , (4 2)

= ΔOL + ί-\ + 1 - 3U2(r) j α , (4.3)

- - r + l - U H r ) ) β . (4 4)
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The initial data (αo,/?o) £ (LP(1R2))2, for some p e (l,oo) to be specified. When
(αo,/io) is radially symmetric, system (4 1)—(4.2) governs the dynamics of radial
perturbations of the one-vortex solution We will establish a decay result for mild
solutions of (4 1)—(4.2) in Lp spaces without assuming radial symmetry.

We first note that the semigroups ety', i = 1,2, are positivity preserving. Re-
sults of the last section imply that eτ^2 has a Gaussian upper bound, and so by a
comparison argument, we have

Proposition 4.1. The semigroup et<J>1 satisfies'

We'^φWp ύ C\\φ\\p, V t ^ 0, V/?e[l,+oc], V φ G L^(IR2) , (4 5)

and
lje'%11, g CΓ^Γ'^')\\ψ\\p, VI S p < q ύ ^ , (4 6)

with C > 0 independent of p.

The next step is to obtain an upper bound for e{^1. Following the proof of
Proposition 3.1, inequality (3.20), and writing <f\ — i^ 2 - 2U(r)2, we find that

R2

where Γ is the fundamental solution of the equation ut — $έ\u, satisfies the
inequality

E, g -l-c,,E2 - JΓ2η2 ~2fΓ2U(rf(η2 + (1 - ηf)

g ~l-cηE
2 - JΓ2[η2 +2U(r)2(η2 + ( 1 - η)2)] . (4.7)

Since η = 1 for r e [0, r 0], we have on this interval that

η2 + 2U(r)2(η2 + (\ - η)1) ^ η2 = (η2 + (1 - η)2)

On the other hand, r > r$, we have

2U(r)2(η2+(l -η)2) ^ 2U(ro)
2(η2 + (1 - η)2)

It follows that

E, g --c,,E2 -mm(\,2U(ro)
2)JΓ2(η2 + (\ - η)2) =-cϋE

2 - cxE . (4 8)

Integrating (4 8) from zero to ί, and using £ —> +oo, as ί —> 0+, we get

which implies that
E(t) ^ CΓχe~Lχi , (4 9)

for any ί > 0, where C > 0 depends on c0 and ci It follows that Proposition 3 1
holds for Γ with (t — s)~ιe~C](t~s^} replacing (t — s)~x We are ready to show
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Proposition 4.2. The semigroup etψχ satisfies

\\e''y'<\\p SC, (4 10)

for C > 0 independent of p G [1,+oc],

\WyJ]\\2 ^ Ce~C]t , (4 11)

for any 1 S P < a = +00

of First w e d e d u c e from Γ(t,x,y) ^ Ct~]e~Cιt, Vx, y, / > 0, that

(4 13)

For any UQ G L / ; Π L°°, 1 ^ /? < oc, let UQ — u^ — u0 , where u+ = max(wo,O),
UQ = -min(w o ,O) Then etψHι = etψHι4

Q - etίfΉι~ For any t > 0, etSfχu^ > 0 by
strong maximum principle. The comparison principle says that

for any t,x It follows that

\W(/\ί0\\P ^

^ 2C\\uo\\p, (4 14)

for any p G [1,+oc] Interpolating (4.13) and (4.14) gives (4 12) Finally if we
replace Γ by the solution u of equation ιιt = <£\iι in the proof of Proposition 3.1,
and drop the terms -f\V(uη)\2 and —2/^/2|V((l - η)U~ιu)\2, we obtain without
using the Nash inequality

Et ^ -c}E,

which gives the L2 bound (411) The proof is complete.

Remark 4 1 The estimate (4 11) may be true for any p G [l,oc], however we will
not pursue it here since (4 10) and (4 12) are sufficient for our stability proof

Based on Proposition 4 1 and Proposition 4.2, we present

Theorem 4.1. Let us consider the system of integral equations corresponding to
(4 1)-(42)

α = e'^ αo - J ^ ' " 0 ^ 1 [C/(α2 +/52) + 2t/α2 + α(α2 +/i2)] , (4 15)

β = e / y ^ o - Je(t-')y2[2Uoiβ + (α2 + β2)β] , (4 16)

with initial data (ao,/Jo) £ (Lp ΠI¥(1R2))2, itΆίTέ? ? G [3,6), q = y~] p, ye
(1 + f,3) 77?ί77 /Λerέ? exists ε > 0 depending only on U, p, )\ such that if
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max(| |(αo,β o ) \\pA\(y*o>βo)\\q) = ε> system (4 15)--(4 16) has unique mild solutions
(α, β) G C([0, -foe), (LP(R2))2) Moreover, we have the decay estimates.

\MP(t) ύ C(\ +t)-('-l)p~~] , (4.17)

11011,(0 S C(l+t)-*'-l)P~ι , (4 18)

for all t ^ 0, where C = C(ε) > 0 /« particular, (4 17) W (4 18) imply the
asymptotic stability of the vortex solution U(r)e±l() under small radial perturba-
tions

Analyzing with the same method the analogous parabolic system

α, = Se^\ - Un(y? + β2) - 2Uπx
2 - (α2 + β2)* , (4 19)

(] — Ψ^t\ — 111 vR — (Ί2 4- R2ΛR (A ?0λ

where

(421)

Π

J ' "'/ * ! β, (4 22)

we obtain.

Corollary 4.1. Any n-vortex solutions Un(r)eιn0, n = ±l,±2, . , are asymptoti-
cally stable with algebraic rates given by (4.17) and (4.18) under small radial
perturbations in LpΠLq(]R2).

Proof of Theorem 4 1 First we show that (4 15)-(4 16) has unique local solutions
in C(\6,T*),(LP(R2))2) Letting (Rλ,R2) be the right-hand side of (4 15)-(4.16),
we estimate*

\\Rλ\\p ^ C \ \ ^ \ \ p \ λ

o

S C\\ao\\p + Cj(t - s)-' "e-o^'-^WzW2,, + \\β\\2

p)ds
0

+Cj(t - sΓ2 »e-2"P-'^\\\a\\l + \\β\\3

p)ds ,
0

so for t G [0, T], T > 0, we have

sup | | / ? i M θ = l|tfi||/Λoc ύ c\\z0\\P + cτι-kM2

Poo + \\β\\2

Poc)

I ^ ( | | α | | 3

Λ O O + | | α | | 3

/ , > o o ) (4 23)
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Similarly,

p + Cf\\*β\\p,2(t-sΓi:'>ds
0

which gives

sup j
te[0,τ] o

sup \
te[0,τ] o

sup J
te[θ,τ] o

A A ^ o c (4 24)

It follows from (4 23)-(4.24) that (R\,R2) is a bounded map from C([0, Γ],

(Lp(R2))2) into itself; moreover, if Γ ^ (5 = δ( | | (αo, j8 o ) | | p ) , then there is a unique

solution (α, β) G C([0, Γ], (LP(R2))2) by the contraction mapping principle. Such a

solution can be continued to any t < Γ*, for some Γ * ^ + o o

Next we proceed to derive the estimate of | |(α,β)\\ p(t) 9 independent of Γ, where

t e [0, Γ], T > δ Let us define the norms.

| | |α | | | p = sup (l+0Ί|α|W0>
/G[0,Γ]

I I I ^ I H , = s u p (l+t)h\\β\\p(t), (4 25)

reίO.r]

where T G (0, Γ*) and a > 0, /? > 0, to be chosen It follows from (4 15) that

Wαlll, ^ sup (1 + θ Ί k m α 0 | | p

+ sup ( l + 0 7
te[0,τ\ o

+ sup ( l + ί ) f l /
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(5yΊ|αo|U sup {Γλ e~c^~l ~ p'\\

sup

407

f((t -
0

+ sy3a\\\σ2\\\3

pds

under the condition

The integral term

a < 2b

(4.26)

(4 27)

sup (l +ί)7(f-*Γ 1 Pe-
C^{t-S\l Λ-sy2bds

te[Q,τ] o

appearing in (4.26) is uniformly bounded in T under (4 27) Indeed,

sup (\+t)a\{t-s)-χ'pe-c'p~X{t-sX\+s)-lbds
[oδ] o

(4 28)

On the other hand, for t E (<5, Γ], we have

(4.29)

and

(ί - .v) t - (ί -

(4 30)
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The other integral terms in (4 26) are analogous Combining (4.28), (4 29), and
(4.30), we arrive at (4.26). We obtain from (4 16) that

/; ^ max C sup
te[όj]

+ C sup (\^t)bj\t-s)-{'-χ)p~ \\aβ\\p;ds
[0τ\

+ C sup (\+t)h[(t-sr2p~\\\x2β\\p3 + \\β3\
[0Γ]

(4 31)

We choose

and note that

q~λ =

Now (4 31) gives

sup (\ ̂  t)hJ(t -
te[0,τ] o

+C sup (\+t)bf(t-s)-2r-\\\*\\),
ίG[0,7Ί 0

Then if

by (4 15) again

(y- \)p-χ ,

+ / \\e('-s)'Λ{U{o? + β2) + 2Ua2 + (α2 +
0

< CΓ(q

(4 32)

(4-33)

ds

(4 34)

(4.35)

\pU
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^ a - ^ " 1 - ^ - 1 ^ " 1 ^ 1 ^ " 1 - ^ 1 - 1 ^ " 1 ^ ^ ! ! ^ / (4 36)

Thus

sup (1 + tf'Ί g C ( | | | α | | | ^ + \\\β\\\2 + \\\a\\\3 + \\\β\\\2 | | | α | | | p ) , (4 37)
/€[o.η

where we have used the integrals

+sy2h)

(4 38)

J((t - s)
o

SC(l+ty2h, (4 39)

where C = C(a9b, p,y) under the condition

0 < (3 - γ)p~x < 1, 0 < (4 - y)p-χ < 1 (4 40)

Combining (4 34), (4.36), and (4 37), we get

\\\\\P ύ C | | j 8 o l k ^ + C||αo||,-111^111/. s u p ( l + 0 Λ

t€[0.Γ]

+C sup (\+t)bf(t-s)-{''-l)p~\l+s)-3bds
[θτ]

t<E[O,T\ 0

where

f
te[θ,τ] o

sup ([+t)bf(t-sΓ2P~\l+sΓ3bds, (441)

We optimize the decay rate by choosing

a = 2b, (4 42)

b = (γ-l)p-1 , (4 43)

1 < (y- l)p~] +2b . (4 44)
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It follows from (4 43) and (4.44) that

y > 1 +/?/3, 3b > 1 , (4 45)

which implies that 2a -\- b — 5 b > 1 Now (4 40) requires that y < 3 Since p ^ 3,

(4 45) says that y > 2 and 3 rg p < 6. Thus given any p 6 [3,6), we pick

7 E (1 +/?/3,3), (α,6) according to (442) and (443), q~ι = b + p~] = yp~ι

Then (4 35), (4 40) and (4 44) hold It follows from (4.26) and (4 41) that

| | | (α,/0 | | | / ; ύ C | | ( α o ^ o ) | U L . + / ( | | | α | | | p , | P | | | , ) , (4.46)

where f = f(x,y) is a fourth degree polynomial containing no linear terms. Thus if

||(αo,βo)||/^n/// is sufficiently small, | | |(α,β)\\\ p remains bounded for all time. The

proof is complete.

5. Linear Stability in the Nonradial Case

In this section, we consider the evolution of general (nonradial) perturbations of

vortex solutions, and prove part (2) of Theorem 1 1 We will see that, in contrast

to the \n\ — 1 vortices, there is a potential for destabilizing \n\ > 1 vortices due to

nonradial effects This is in agreement with J Neu's [24] numerical observations of

the instability of higher |/?|-vortices, in particular the splitting of a «-vortex (\n\ ^ 2)

into n individual one-vortices under suitable perturbations

The system governing the perturbation υ — α + iβ of an w-vortex solution Une
w0

is

<X, = Sf^\ - 2lβ(} _ Un(y2 + β2) __ 2Una2 _ ((χ2 + β2)y ? ( 5 l )

βt = ^ β + ^OLO - 2Unxβ - (α2 + β2)β , (5 2)

where

(p ί-^ + λ -3UJ;(r)j a, (5.3)

Jf(fβ = Δβ + ί~ + 1 - £/») β (5 4)

Consider the linear part In view of the θ independence of the coefficients, we
expand into Fourier series:

α = E V"'" , (5 5)
mez

β=Σ βJ'"" (5-6)

mez

Then (oίm,βm) satisfies

imj = Afocm + ί - — + 1 - 3ί/π

2(r) j α/M + ~^(-m2am - 2inmβm) ,

βmJ = A,βm + ( - ^ + 1 - C/W

2(r)^ ^ + ^(2mmα / ; ι - m 2 ^ ) , (5.7)
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or in vector notation:

/ - £ + l-3t/n

2(r) θ \

~linm

where A, is the two dimensional radial Laplacian. The operator formed by the first
two terms on the right-hand side of (5.8) is the operator we have analyzed in the
radial case It is easy to show that this operator has continuous spectrum equal
to ( — oo,0] and the Nash-Aronson estimates in Sect 3 imply that the L2 spectrum
equals ( —oo, 0] The "rotational terms" r~2βo and r~2cco produce the matrix

(5 9)

whose determinant is equal to m2{m2 - An2). Therefore, the matrix (5 9) has positive
eigenvalue if

m + 0, m2 < An2 , (5 10)

and the possibility of instability exists As n increases, the number of potentially
destabilizing modes increases

In case \n\ = 1, only m = ±1 could be a source of linear instabilities While if
w φ =b 1, then (5 9) is nonpositive, so by our results in the radial case, such (zm,βm)
would decay to zero with time in Lp spaces Let us consider n = 1 and m = 1, the
other cases of \n\ = \m\ — 1 are treated identically

Let us transform (5 8) into a real coefficient system by first writing it as

= (A, + l-U2(r))( *λ ) (5 11)

i — J

The matrix

- 1 -i
i - 1

has eigenvalues 0, —2, corresponding to eigenvectors -\=(i, — 1) Γ , 4=(/, l ) r . Let us

make the change of variables"

then
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where

JS* = ( 4 + 1 - £/*(r))Id + i ( jj j ) - t / 2 ( ! I ) (514)

The following property of the one-vortex profile U is very useful in analysis ap-
pearing later in this section

Proposition 5.1. Let U = U(r) be the one vortex profile Then

r~xU{r) > U,(r\ V r > 0

Moreover, the self-adjoint operator

^ 3 = A, +(1 -3£/ 2 (r)) ,

defined on //2(1R2) has spectrum σ ( i ^ ) inside ( — 00,-^0), for some positive con-
stant ao

Proof. Recall that U(r) satisfies the equation

Un + -£/, - - ^ £ / + (l -U2)U = 0,

r rι

£/(0) = 0, £ / ( + o o ) = l , £/,(/-)> 0, (5 15)

for any r > 0. Differentiate (5.15) to r and denote U, by w to get.
1 2 2

w,, + -w, ^w+ —ί/ + (l -3^/2)w = 0,
r r1 rJ

or

M'ι; +-w, + ( l - 3 ί 7 2 ) w = - ( w - Γ " 1 ^ ) (5 16)

Now letting F = r~]U9 we have from (5.15) that

(rV)n + r - ^ r F ) , - r" 1 F + (1 - t/2)^/ = 0 ,

or
rVn + 2F, + F, + r" 1 F - r" 1 F + (1 - ί/2)ί7 = 0 ,

or
Vπ +3r~ιV, =r~](U2- l)U < 0 , (5 17)

for any r > 0 We consider inequality (5 17) on r G [c,ri], where ε <C 1, 7*1 >> 1
For r small, ί/(7") ~ «r(l — ̂  + O(r4)), for some constant « > 0 Thus F(7') is
monotonely decreasing in r if r is small enough. With ε sufficiently small, we see
that V(r) has to go through a local minimum if V(r) increases with r at all In
other words, there exists an interval [7*2,7*3] strictly inside [ε,r\] such that V has a
minimum over [7*2,7*3]. However, inequality (5 17) and strong maximum principle
imply that V{r) — const for r G [7*1,7*2], or U{r) = const r Therefore if r G [7*2,7*3],
Un = 0, r~xU} - r~2U = (r~l U), - 0, but (1 - U2)U > 0, contradicting (5 15)
We conclude that

V\r)= (-\ ^ 0, (5 18)

V r J,
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or rU, ^ ί/(r), for any r ^ 0 If V'{rA) = 0, for some r4 > 0, then (5.17) says
that V"{r/[) < 0, contradicting (5.18) Thus we have strict inequality in (5 18), and
rU} < U(r), for any r > 0.

Next we consider the spectrum of J^3 By WeyΓs theorem on the essential spec-
trum, we have that σcss(i^3) = ( —oc, —2] Moreover, i^3 has a principal eigenvalue
σ\ and corresponding ground state eigenfunction u\ = u\(r) > 0 in L2(IR2) such
that

(5 19)

or what is the same
Auλ + (1 - 3U2(r))uι = σxιιx , (5.20)

for any (x, v) G IR2 By elliptic regularity ιi\ is a smooth function. Similarly, we
write (5 16) as.

2
Δw + (\ -3U2(r))w= ~2(w-r~ιU) < 0 (5 21)

Both ιiι and w decay to zero as r —> oc Multiplying (5.20) by w, and integrating
over R 2, we get with integration by parts that*

fu\Aw + J(\—3U )wιi\ = σ\ Ju\w ,
R- R2 R2

whose left-hand side is JR2 Λ(ί/, ~r~]U)ιi\ < 0 Noticing that JR2 u\w > 0, we
infer that σ\ < 0, and the proof of lemma is complete

Proposition 5.2. The vector

satisfies Jf(yo,δo)
Γ = 0, for any r = (x2 + v2)^ However, (70,^0) φ I 2 ( R 2 ) but is

in Lp(ΊR2) for any p > 2

Remark A mode of this type is frequently called a resonant state It is known to
influence the decay rate of the linear evolution operator generated by it See, for
example, [17]

Proof It follows from (5 14) that W = y + δ satisfies.

Wt = A,W + ( l - 3 U 2 ) W - ^ δ (5 22)

The pair {W,y) is the solution to the system

Wt = A, W + (1 - W2W - ~{W - y) ,
rλ

y, - A,y + (\~U2y<-U2W (5 23)

Differentiating Eq (5 15) to r and letting Wo = U,, we get-

^(r-]U -U,) = 0 (5 24)
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Denoting

Wo U Wo U

we have from (5 24) and (5.25) that

Al Wo + (1 - 3U2)Wo ~ 4^o = A, Wo + (1 - 3U2)W0 - -ΛWo - To) = 0

Now using (5 24) and (5 15), we verify

(4 +(\-U2))γo-U2Wo

= \{Λ} + (1 - U2)) (wo + 7

= r~2(Uι -r-]U)+Ur~lUπ -2r~2U} +2r-3U + r~2U, -r~3U)

- U2)U

~xA,U + r^U - 2r-2U}) + {2r)-\\ - U2)U

= r~2{U, - r~x U) + \zr~ZU -f \ ^ U ~ 2r~2U, ) = 0 (5 26)

Thus ( 7 o Λ ) = ( f + |f, f - |f) vanishes JSf. Apparently, (yo,<5o) φ(L2(IR2))2,
however, belongs to (L/;(1R2))2 if /? > 2. By Proposition 5 1, <50 < 0, and 70 > 0,
for any r ^ 0 The proof is complete.

Proposition 5.3. Consider the self-adjoint operator ^£ defined on

Q = {()\δ) eH2 xH2 r~2δ e L2(3R2)} ,

Then the spectrum of 5£ is equal to (—00,0]

Proof By WeyΓs essential spectrum theorem, σ c s s ( i θ = ( —oc , 0] So we only
need to prove that there is no positive eigenvalue Suppose that σ\ > 0 is the
principal (the largest) eigenvalue of $f By the variational characterization of the
principal eigenvalue, we have

o\ = sup β(Λ/,<5), (5 27)
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where

415

Q(a,b) = -J(γ2 + δ2) + /(I - 2t/2)(y2 + δ2) - 2/ U2γδ - 4/ r~2δ2 (5 28)r~2δ2

R2 R2 R2 R2

Notice that the maximizer (y*,<5*) of Q must have <5*(r) —> 0 as r —> 0 for <g
to stay finite ()'*,£>*) is a classical solution for r > 0. It is not hard to obtain
δ*{r) ^ O(r2) by balancing terms in (<f - σλ )(y*,(5*) = 0 In fact, it follows from
the δ* equation that

A,δ* - 4^* (5 29)

for any /7 G [2, oo) due to (y*,(5*) G//^IR 2) and Sobolev imdedding We can
regard (5 29) as the e2ι() mode restriction of the two dimensional Laplacian Hence,
(5* G J^2'/;(JR2), p > 2, and is imbedded into C1+\ ε G (0,1). Now we conclude
by Taylor expanding (5* at zero, r " 2 ^* G I2(1R2) with (5 28), and (5 29) Thus
0>*,<5*) £ £>(^) Thanks to the term -2 JR2 U

2γδ and that /^2 |V f\2 ^ /^2 |V |/ | | 2

for any f G / / ^ R 2 ) , we have

which implies that 7* and ̂ * have opposite signs That is either 7* ^ 0, (3* ^ 0 or
vice versa We arrange 7* ^ 0 Now forming the inner product in L 2 (R 2 ) (denoted
by ( , O2) of

(i?-<7i )(}'*, <5*) = 0, (5 30)

with (70,^0) Since σi > 0, (y*,<5*) decays to zero exponentially fast as r —> 00.
This can be seen as follows. The asymptotic behavior of U at infinity (2 5) implies
that (5 30) is a weakly coupled elliptic system for large r.

where Λ(r) is a smooth 2 by 2 matrix in r, and ||Λ||oc ^ O(r~2) The matrix

1 1 +σi

is positive definite and so can be diagonalized by a constant orthogonal matrix Q\.
Let

then (y\,δ\) satisfies

( 5 3 1 )

for λ, > 0, / = 1,2, and a matrix B =
2 + δ]^ O(r~2) Letting (7 = 72 + δ],
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we have from (5.31)

Δtq = 2 7 , ^ 7 1 2 2

^ 2yxA,y\

^ 271(2,7! + bxx(r)γx + bX2(r)δx) + 2δx{λ2δx + b2X(r)yx + b22(r)δx)

^ λ\y]-\-λ2δ] ^i mm(λx,λ2)q , (5 32)

if r is large enough depending on /,,, / = 1,2. Now it is easy to find a comparison
function q = e~/w, μ > 0 such that

(/I, — min(/i,/,2))<7 = (μ2 — μjr — min(/i,/2))e~//; = 0 .

By comparison principle of scalar elliptic operators, we infer that

q S Ce~μ} ,

for some constant C if r is large enough. In other words, (;'*,<5*) decays exponen-
tially fast as r —> oo

Thus we can perform integration by parts to get from (5 30 )•

((7*,^),^(7o^o))2 = σ1((7*,^),(7o^o))2, (5 33)

whose right-hand side is strictly positive, and left-hand side is zero, impossible
Hence no positive eigenvalue exists for i^, and σ(J^) is ( —oc,0] This completes
the proof

We are now ready to prove part (2) of Theorem 1 1.

Theorem 5.1. Consider the linearization of (5 \)-(5.2) for the plus or minus one
vortex and let α + iβ G L2(IR2) be the solutions to the linearized system

a, = ^x-lβ,,,

β, = ^β+^OLo, (5 34)

with initial data (α0 + ίβ0) e 12(IR2) Then

\\(y.,β)\\2(t) g | | ( α o , / J 0 ) | | 2 , ( 5 3 5 )

/or tf«y / ^ 0, / e the plus or minus one vortex is linearly dynamically stable in
I? with respect to arbitrary (nonradkil) L2 perturbations Moreover, the linearized
operator in (5 34) denoted by M is self-adjoint and nonposίtίve

Proof By our earlier discussion, we decompose (α,/i) into the Fourier series'
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The problem is reduced to an analysis of the linear evolution operator on each
invariant subspace corresponding to eιj(\ j G Z By a comparison argument with the
reduced problem on each Fourier mode /, we find that the only source of instability
of plus or minus vortex comes from j = ±1 This further reduces the problem to a
study of semigroup etV\ Since £f is dissipative (the real part of the L? inner product
Re(J/'f,f) ^ 0), self-adjoint and densely defined, we have by the Lumer-Philips
Theorem (Pazy [28]) that

\WvXf,g)\\2 ύ \\(f,g)\\2

The theorem now follows

Remark. There is another way of proving Proposition 5 3 and Theorem 5 1 We
take m = n = 1 in (5 8), and make the change of variables a = ioί\, b = βx We
obtain the following system with real coefficients for (a,b)

d, + 1 -3U2(r) 0 λ / a

0 Δ, + 1 - U 2 ( r ) ) \ b

(5 36)

Clearly, (a,b) and (y,δ) are related by a rotation

(5 37)

Then the zero resonance vector for the right-hand side operator in (5 36) is
(a,b) = (U,,U/r\ whose two components are strictly positive By the same varia-
tional argument, we can show that the right-hand side operator in (5.36) or equiv-
alently ^ has spectrum ( —oo,0] The advantage of the (a,b) variables is that we
do not need Proposition 5 1 to prove Proposition 5.3 or Theorem 5 1 Also the
zero resonance vector (U,,U/r) is simpler The zero resonance vector comes from
the translation invariance of the Ginzburg-Landau and Sehrodinger evolutions (11)
and (1 2)

We are however interested in obtaining a more refined understanding of the
character of the zero point in the spectrum of the linearization about a vortex. We
show, in our next result that the zero point is a pure resonance, i e there is no L2

eigenfunction at zero energy This provides an understanding of the resolvent of the
linearized operator at zero energy which is required in obtaining decay estimates
for the associated evolution operator See, for example, [17] To prove this result,
it appears that the (y, <5) variables are most expedient

Proposition 5.4. Zero is a resonance and not an eigenvalue of &

Proof The maximum principle is the main tool of the proof Our method is a linear
version of the sliding domain method (Berestycki and Nirenberg [6]) for nonlinear
problems, and was used in an earlier work (Xin [37])

Suppose (yf,όf) e L2 x L2 is an eigenfunction of $£ corresponding to zero,
which is the principal eigenvalue by Proposition 5.3. By variational arguments, as
in Proposition 5 3, y' and δ' have opposite signs and δ'{r) —> 0 as r —> 0 We
choose δ1 ^ 0, for any r ^ 0. The equations for (WQ = )Ό -f ^o,^o) = (Uf,δo) and
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(W ΞΞJ' + δ\δ') are

Δ,W + (\ -W2)W - ^(5 = 0, (5 38)

Λ,<5 + (1 - U2 -4r~2)δ- U2W = 0 (5 39)

This implies, for λ G 1R, that the functions

Wλ = λW0 - W\ δ} = λδ0 - δf ,

satisfy

A, W; + (1 - 3U2)W} = 4 ^ , (5.40)

A,δλ + (\ - U2 - 4r~2)δλ = U2WA (5 41)

We first set λ > 0 It follows from (5 40) that W} ~ 0{r'2δ}) due to 1 - 3U2 ~ - 2
as r —•> oo By (5.41) we have then. zl/^Λ ~ O(r~2δλ), which implies by direct
integration that δ^, ~ ^ ( r " 1 ^ / ) , and δ ̂ n ~ O(r~2^;.) Going back to (5 40), we
see that W^ ~ O(r~xW/) and ^FΛ// ~ O(r~2^;.) or Zl, ̂ F; is a higher order decay
term than W, So by (5 40), W}^ -2r~2δ;, + h o t Substituting this into (5 41)
along with 1 — U2 ~ r~2 + h.o t, we obtain

zl,(5> + ( - r " 2 + hot)δ; =0 (5 42)

Since (5; G I2(1R2), for any given λ > 0, there is r0 = ΓO(Λ) > 1 such that δλ(r0) < 0
We can choose ro(λ) large enough so that the above asymptotics become valid.
By (5 42) and the fact that δ;(r) —> 0 as r —» oo, we deduce from the maximum
principle that δ; has neither a nonnegative maximum nor a nonpositive minimum
for any r > ΓQ Therefore, δ; is negative for r > ΓQ, and monotonically increases
to zero as r —* oo In other words, δ' decays faster than O(δo) In particular, there
exists Ro such that:

δλ = λδ0 - δ' < 0, if r ^ ^ 0 , A ^ 1 (5 43)

By making Ro larger if necessary, we have U ^ 2/3 for r ^ RQ We infer from
(5.40) that

A,Wλ + (l -3U2)Wλ ^ 0, (5 44)

if λ ^ 1, r ^ 7?o For r G [0,^0], there exists A\ = A\(R0) ^ 1 such that if/ ^ yli,
PF (r) > 0 and δλ(r) < 0, for any r e [0,R0] Thus if λ ^ Au (5 44) and the
maximum principle imply that W;(r) > 0, any r ^ 0 Also δ; < 0, V r G [0, oc)
Similarly, there is A2 ^ 1, such that if / ^ -Λ2, then W>(r) < 0, (5; > 0, for any
r ^ 0. Define

μ Ξ inf{/ G l R ' l ^ H and ί ; . ^ 0 , V r 6 [0,oo)}

Then μ G (-A2,A\\ Wμ ^ 0, ^ ^ 0, Vr G [0,OO] NOW suppose that μ = 0, then
δμ — — δ' ^ 0 However, as initially observed, δr g 0, and so (57 Ξ 0 By (5 38)
and Proposition 5 1, we infer that W = 0, or )/ = 0, contradicting the assumption
that (y',δf) is an eigenfunction. We deduce that μ > 0
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With λ = μ in (5 40) and (5.41), δμ ^ 0, Wμ ̂  0, strong maximum principle
implies that either Wμ > 0, δμ < 0, or Wμ = δμ = 0 for all r G [0,oo) The latter
implies μδo = δ' and therefore δo £ />2(1R2), a contradiction

Now suppose that there is a sequence {λn}9 λn G (0,//), λn —> μ, as n —> oo, such
that

inf W) (r) < 0 ,

for each λn Since W;n(r) -> 0 as r -> oo, there is a sequence {r/2} such that

Wλn(rn) = inf Wλπ(r) < 0

If {rn} is unbounded, there is a subsequence, still denoted {rn}, with rw —> oo If /2
is large enough, r/? > 7?o, then evaluating

at r = r/7 >> 1 yields

(zl,^,, +(1 -3(/2)^.,,)(r,,) ^ (\-W2{rn))W/:ι{rn) > 0,

while

because λn —> μ > 0, and ̂ r decays faster than δo at infinity as we have showed
above by (5.42) We have a contradiction.

Therefore, {rn} is a bounded sequence, and there exists a subsequence, which
we also denote {/*,/}, along which we have rn -^ r* G [0, oo) It follows that

as n —>• oc, contradicting Wμ(r) > 0, any r ^ 0 This means that there is a number
μ\ G (0,//) such that

inf Wλ(r) ̂  0, Vλe(μuμ)

By minimality of μ, we have

sup^ .(r) > 0, VΛ G (μi,μ)

Therefore, there exists a sequence {/',}, /^ G (μi,μ), Λ'7 -^ μ, as /? —> oo, and a
sequence of {r^} such that

r) > 0

If {r'n} is unbounded, then r'n —> oo, up to a subsequence still denoted the same By
Eq (5 41) with λ = λn

A,δλn + (1 - U2 - 4r~2)δλπ = U2Wλn ^ 0 (5 45)
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Ifr,', > 1, then

\-U2(r'n) = (\ - Uir'JXl + UOi))

which shows that
\ - U2(r'n) - 4(r>nΓ

2 < 0

Evaluating (5 45) at r = rn ^> 1 implies that the left-hand side is

a contradiction Finally, {/*,'} is bounded, and ru —> r** G [0, oc) along a sub-
sequence still denoted the same We have ό / ;(r**) ^ 0, contradicting our early
conclusion that δμ < 0 Thus all roads from the assumption of zero being an L2

eigenvalue lead to a contradiction We conclude that zero is not an eigenvalue but
rather a pure resonance The proof is complete

Finally, we comment on how to adapt our method to treat stability of one vortices
on the disc of radius R, denoted by BR We will consider the plus one vortex to
be specific Let n = Uf>(r)e'° be the plus one vortex solution on BR, and consider
perturbation of the form υ(ί,r,0)eι() such that v(t,R,0) = 0 Going through the same
derivation as before, we see that (5 1-52) hold for the real and imaginary parts of
ι\ with Un replaced by UR We then decompose solutions into Fourier modes as in
(5 5-5 6) For the radial part, or m = 0, we follow the estimates in Proposition 3 1,
however, they can be carried out directly on any solution v of the linear equation
vt = J/?2V since we can use the Poincare inequality instead of the Nash inequality
thanks to the zero Dirichlet boundary condition of perturbation v at r = R The result
is that v decays to zero exponentially fast in the L2 norm with a rate depending
on R Thus we only need to verify that the linearized operator i ^ , which is just
Jf in (5.14) with U replaced by UR corresponding to the m = 1 mode, has strictly
negative spectrum Using this strict negativity of i*%, we can prove

Theorem 5.2. Let UR(r)em() be a \n\ = 1 vortex on BR the disc of radius R
Let u = (UR(r) + v(t,r,0))e'ϋ, where v is the perturbation satisfying v(t,R,0) = 0
and v(0j\0) e L2(BR) Then there exists constants y = y(R) > 0, and C =
C ( | | i ' ( 0 , 7 " , 0 ) | | 2 ) > 0, such that ij | | i ;(O,7-,0)| | 2 is small enough.

\\u(t,rj))- UR(r)ew0\\2 ^ Ce~;t ,

holds for all t ^ 0 In other words, the one vortices are nonlinearly asymptotically
stable with exponential rate

Proof We show that the operator ϊ£ # has strictly negative spectrum Since we are
on a finite domain, ^f ^ has only discrete eigenvalues in the spectrum except for
— oc Suppose that λ\ ^ 0 is the leading eigenvalue corresponding to eigenvector
(tfi,r2) By the variational principle, we can arrange so that v\ ^ 0, ι;2 :g 0 Forming
the L2 inner product of (70? ̂ o)
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integrating by parts, and using the zero boundary condition on (^1,^2), we get

/ (vllyo

jrv2jδo) = λι((yo,δol(vuv2))2 (5 46)
f=R

On the other hand, υ\j ^ 0, v2j ^ 0, at r = R, hence it follows that λ\ ^ 0 So it
is only possible that λ\ = 0 Then the equation for v\ is

(A, + 1 - 2Ul(r))υλ - U2

R{r)v2 = 0 ,

or
(A, - 2 U 2

R ( r ) ) V l = - v { + U 2 ( r ) v 2 ^ 0 ,

which implies via the strong maximum principle that either v\ = 0 or υ\ > 0 if
r < R. Similarly, v2 satisfies the differential inequality

Δ, - 2U2

R(r) ~^)vi = -V2 + U2

R{r)v, Z 0 ,

and so either v2 = 0 or v2 < 0 for r < R Since (1̂ 1,̂ 2) is an eigenvector, one of
its components is nonzero. Let us assume that v\ > 0 (or v2 < 0), r < R Then by
the Hopf lemma, Ό\J < 0 (or v2j > 0), at r — R It follows that the left-hand side
of (5 46) is strictly negative We deduce a contradiction, and so λ\ < 0 Since the
spectrum is strictly negative, the linear evolution of the perturbation has to decay
exponentially in time, and so is the nonlinear one as long as the initial perturbation
is small enough The proof is complete

6. Spectral Stability of the Schrodinger One-Yortex

In this section, we show that the linearized operator for the Schrodinger one-vortex,
iσM = JM, has spectrum equal to the imaginary axis Therefore the Schrodinger
one-vortex is spectrally stable The perturbation v(t,x) = (α, β)τ to the Schrodinger
one-vortex solution satisfies'

(6 47)

ignoring the nonlinear terms of v By WeyΓs theorem, the continuous spectrum
of JM is the entire imaginary axis, so we only need to show that there is no
eigenvalue on the right half plane Hamiltonian symmetry then ensures that there
are no eigenvalues in the left half plane either

Theorem 6.1. The operator iσM has L2 spectrum ecμial to zΊR

Proof The proof follows from a general result appearing in [29] We present the
argument in the current context Suppose JM = iσM has an eigenvalue /,, Re{λ} >
0, corresponding to the eigenfunction φ. Then

JMψ = λψ, (6 48)

and so
eJMtψ = e/tψ (6 49)
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Using skew symmetry of J and symmetry of M, we have for any u(t,x) satisfying
ut = JMw

— (Mu,u) = (M — U,U) + [Mu,—u
dt \ dt J \ dt

= (MJMu, u) + (MJ*Mu, w) = 0 , (6 50)

for any u E &(M). It follows rather that

0 = ^(Me^ψ^'ψ) = ^-e^^iMφ.φ) ,
dt dt

which implies that

) = 0 (6 51)

Since — M is a nonnegative self-adjoint operator,

(—Mφ, φ) = (V'—Mφ, V'—Mφ) = 0 , (6 52)

implying

\l—Mφ = 0 ,

and so A/ι/f = 0 In view of (6 48), we deduce that φ = 0, a contradiction, and the
theorem is proved.

Remark 6 J The previous theorem does not immediately imply linear dynamical
stability of the Sehrodinger one vortex A key ingredient in controlling the time
evolution of the linearized Sehrodinger flow is an expansion of the resolvent of M
near the zero energy point. Proposition 5 4 is a component of this analysis, which
we hope to pursue in future work Note also that the operator JM is not skew
symmetric, so there is no immediate L2 uniform bound

7. Appendix: Proof of Lemma 3.1

Let us consider the C °̂ function

fix) = U + ( t a n - ! | * ) J , if* e [0,1]

= 0, if x ^ 1 , (7 1)

where a > 0 is a positive constant to be determined We compute for x G [0,1)

- π t a n " 1 ^
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where equality holds at x = 0, and

4π (tan"1 f )2 f π f

423

(a + (tan"1 f )2)3(1 + (f )2)2 (a + (tan"1 ^ ) 2 ) 2 (1 + (fx)2)2

π tan"1 f

(α-Ktan-1 f ) 2 ) 2 ( l+( fx) 2 ) 2

LetJ=a + (tan"1 f )2, // = 1 -f (f )2, then

f"(x)=Γ3IΓ 2π2 tan ! - - — α + tan

π _, πx
--x tan -—

/ i — \ 3 ^ ( i π x \ 2

πxftan"1^) + 3 ^ " ^ ^ +

( 7 3 )

tan x — ] - •

We see that G(x) ^ +oo as x —> 1, and for x0 = -Λ=, x0 > I, tan" 1

πv3 ^

(7 4)

= tan"1 4=
v3

2 π

2 /π
- 1 α < 0, (7 5)

if α > (-^( f ) 3 + 3(f) 2 )(l - ^ j ) " 1 Ξα*. Thus 3x* =x*(a), x* G ( | , l ) , such

that G(x) > 0 if x G (x*, 1) and G(x*) = 0 Let us consider

(7 6)

for x G (x*, 1) Since

πx δ~ι

x2 (tan y j

and
, πx\ (5 !

 7 δ
" 1 j ^ X2 +x (tan y J ^ —-x + - (̂ tan "1 πx\2

for any constant δ > 0, we get

G ( x ) ^ π ^ ( t a n " 1 y + 3
i πx\4 / πdα

" 1 - - + 3 + —
_, πx\ 2

tan-'y)
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and so
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7T

y

π

Ύ

-1 f )4 + (3 + ψ + %- - - 1 π.τ \2 1 ^ - 1 ;

tf2+2α(tan-' f )2+(tan^' f >

•+l3+^ + ^)(2a)-t

πδ~

- 1

4a

It follows that Vc > 0, 3δ = <5(c), a = α(c)), such that

0 < /"(x)//(x) S ε, \

Obviously,

(JC*, 1)

(7 7)

(7 8)

v-r fix) ,-1 /(x)

We have now a function'

/(x) e C\[x\ 1]), /;(x) ^ 0, f"{x)lf{x) S ε ,

f'\x) ^ 0, /(x) ^ 0, Vx E [x*, 1], //7(x*) = 0

Let us define the function.

- f (2x* — x) x G Γ2x* — l,x*l

It is easy to check that

g(x) e C2([2x* - 1,1]), </'(x*) = 0, ^(x) ^ 0,

g\x) < 0, Vx E(2x* - 1,1),

^f, VxG(xM),

2aJ*){-a2~χ*-χr Vx E (2x* - l,x*) .

(7 9)

(7 10)

(711)

Notice that in (7 11), f"(2x* - x) ^ 0 Moreover, /'(x) ^ 0 for x G [x*, 1] and
2x* — x ^ x* on x G (2x* — l,x*) implies

/(2x*-x) g f(x*),

f(2x*-x)-2f(x*) g -/'(x*) < 0,

(7 12)

(7 13)

on xG(2x* - l,x*) It follows from (7 13) that g"(x)/g(x) g 0, for any x £ (2x* -
l,x*), while (7 12) gives

2/(x*) - f(2x*-x) ^ /(2x* - x ) ^ 0 ,

or
f'(2x'-x)

2fix*)- f(2x*-x)

/'(2x*-x)

f(2x*-x)
(7.14)
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for x G [λx* - l,x*] It follows that

g(x)e C2([2x* - 1,1]),

- α o
g(x) > 0, V x c Ξ [2x* - 1 , 1 ) ,

# ( / ) ( l ) = 0, i = 0,1,2,

g{i\2x* - l ) = 0, i= 1,2,

g(2x* - 1) = 2f{x*) > 0 ,

\g'(x)/g(x)\ ύ sup | / ( x ) / / ( x ) | , Vx G [2X* - 1 , 1 ] ,
T G [ Ϊ * , 1 J

g"ix)lg{x) ^ ε, Vx G [2X* -1,1] (7 15)

Now since 2x* — 1 > —1, we extend

gix) = 2fix*\ Vx G [-l,2x* - 1], #00 = 0, V J C G [ 1 , + O O ) . (7.16)

To summarize, we have

g(x) e C 2 ( [- l ,+oo)) , g(x) = 2/(x*) on [-l,2x* - 1) ,

\g\x)/g(x)\ ^ sup l/^x)//^) ! , V x G [ - l , + o o ) ,
Y G [ X * , 1 ]

Ξ O , VX ^ 1 (7 17)

We define

η(x) = ( 2 / ( x x ) ) - ^ ( - - l ) , Vx ^ 0 , (7 18)

where α > 0 is a constant to be chosen It follows from (7 18) that

*)EC0

2(Rί), 0 ^η SK

η(x)= 1, VJCG [0,2αx*],

/f = 0, Vx ^ 2α (7.19)

Let ro = 2αx*, r\ = 2α If α G (0, ̂ ), then ro < r\ < 1 Moreover,

η(x)
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By our

So

construction,

ί X N

n' 1
y [ [

Vα s

/?(χ)

VII
VII

V

sup
γ>0

sup

τα
Γa'

f(χ)

πtan""1 ψ

a+ (tan^)2

Vx > 0

MI V\

π
= 2 ^

(7 20)

On the other hand,

η(x) η(x) α2 g (*- - l)
(721)

Combining (7 20) and (7 21), we conclude that V̂  > 0,3η(r) G C$(R]

+) such that*
η(r) = 1, if r G (0,r0), where r0 G (0,1), ;?(r) Ξ 0, if r ^ ru where n G (r0,1),
and 0 ^ //(r) ^ 1, ;/(r) ^ 0, Vr ^ 0 Moreover, we have

A,η

// η ccz η η 2a^a

for all r ^ 0 For r G (0, r\), that is on the support of η, we have

(7 22)

2--2t/ 2

-

2

2

1

π2

α2α
1

• 1

ε

y2

A,η
1

Ά

< 2

u

2
2

(7 23)

Similarly,

2a / α2 '

We take 1: = ^, then choose α = α(ε) as in (7 8) and a > 40π2, finally we make α

small enough in (7 23) It follows that there exists α = αo G (0, i ) such that

4α2 ""

ηz
η

(7 24)

(7 25)

for all r G (0, r\ = 2αo) which includes the support of η. This completes the proof
of the lemma
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