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Abstract: We derive necessary conditions on a Lie algebra from the existence of
a star product on a neighbourhood of the origin in the dual of the Lie algebra for
the coadjoint Poisson structure which is both differential and tangential to all the
coadjoint orbits. In particular we show that when the Lie algebra is semisimple there
are no differential and tangential star products on any neighbourhood of the origin in
the dual of its Lie algebra.

1. Introduction

The notion of star-product on a Poisson manifold, introduced in [1, 2], has been
extensively studied in the literature. The existence of star-products has been shown
in complete generality in the case of symplectic manifolds using several different
approaches. See [5, 6, 11] and the references cited therein. Recently some progress
has been made for Poisson manifolds in various special cases [6, 10, 12].

Any Poisson manifold is foliated by symplectic manifolds [14] called symplectic
leaves and it is natural to ask if star-products can be constructed on Poisson manifolds
by gluing together star-products on the symplectic leaves. Such a star-product we call
tangential. In the case of regular Poisson manifolds where the leaves have constant
dimension the symplectic methods extend to yield tangential star-products.

The simplest Poisson structures are those where the Poisson tensor is linear in
coordinates and these are obtained as the dual of a Lie algebra (the structure constants
are obtained from the Poisson brackets of linear functions). These Poisson tensors are
not regular as they must vanish at the origin. The dual of the Lie algebra of 517(2) has
symplectic leaves which are round 2-spheres centered at the origin and so is regular
outside the origin. We initially tried to see if we could choose Fedosov style star-
products on the leaves in a way which would extend over the origin. To be tangential
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at the origin would require the higher order terms to vanish there. We found this led
already to a contradiction at the second order terms even if we allowed the choice of
symplectic connection to vary from leaf to leaf.

In this paper we work from the opposite direction with a given Lie algebra by
assuming that we have a tangential star-product on its dual and seeing what conditions
are imposed on the Lie algebra by the smoothness of the second order terms.

We show that, when we have a tangential star-product on the dual of a Lie algebra,
each invariant quadratic form on the dual forces an associated ideal to be two-step
nilpotent. If the quadratic form is non-degenerate then the ideal is the whole Lie
algebra. The proof uses only the existence of the star-product in a neighbourhood of
the origin and only needs existence and associativity to second order. It essentially
says that when a Lie algebra has a sufficiently complicated coadjoint orbit structure
near the origin then it cannot also have a tangential star-product. In particular we
obtain (Corollary 2):

Theorem 1. If g is a semίsimple Lie algebra there is no differential star-product on
any neighbourhood of the origin in g* which is tangential to the coadjoint orbits.

Let K be a compact semisimple Lie group and K€ = KAN a Iwasawa decom-
position of its complexification. Lu and Weinstein [8] show how K and AN have
Poisson structures which make them into Poisson Lie groups. The Poisson structure
on AN is locally isomorphic to that on t* in neighbourhoods of the identity and origin
respectively. By Theorem 1 AN gives an example of a Poisson Lie group which does
not have a differential star-product which is tangential to the symplectic leaves. We
do not know if the same is true for the Poisson Lie structure on K. See Remark 6
for more information.

2. Notation

In what follows we employ the summation convention on pairs of upper and lower
indices.

Let G be a connected Lie group with Lie algebra g. If X\,..., Xn is a basis for
g the structure constants Cik are defined by

[Xi,Xj] = Cij Xk

so Cijk = —Cjik and the Jacobi Identity translates as

C l ΛΊ m . SΊ I SΊ m . /Ίf I r~i m r\
ij Uik + Ujk ίsli + ^ki ^lj = U.

Let g* be the dual space of g and ξ 1 , . . . , ξ n the dual basis so that (ξα, X^) = δ%.
The basis determines linear coordinate functions x\,..., xn on g* by

ξ = Xa(ξ)ξa, Xa(ξ)={ξ,Xa).

(#> 0 ^ 9'ζ = £°Adg - 1 denotes the coadjoint action of G on g* and this differentiates
to give the action X ξ = — ξ o adX of g.

Let β be a symmetric bilinear form on g* with associated quadratic form Δ(ξ) =
β(ξ, 0' Then A = βahxaxh, where βab = β(ξa, ξb). β defines a linear map β: g* -> g
by
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(η,β(ξ))=β(ξ,η), V£,r?eg*.

We transfer the coadjoint action to bilinear forms by (g /?)(£, 77) = β(g~ι £, g~x 77).
Then

so
g β = Adgo/Jog" 1 .

Say β is invariant if g β = β, V# £ G, then /? is invariant if and only if β intertwines
the adjoint and coadjoint representations. Since G is connected, β is invariant if and
only if the differentiated condition

holds. This is equivalent to

βabChd

c + βcbChd

a = 0. (1)

If we define

cjk = βjbcih\ σf = βiacaj\ cijk = βίaβjbcab\ (2)

then invariance of β implies that C is odd when permuting any upper indices.
If β is invariant then the equivariance condition differentiates to give

so the image β(g*) of β is an ideal in g.
We shall consider the Hochschild coboundary operator 6 for the algebra TV of

smooth functions on a manifold M. A p-cochain is a p-linear map from N x . . . x N
(p copies) to N. On 1- and 2-cochains δ is given by

(δF)(u, v) = uF(v) - F(uυ) + F(u)υ\

(δC)(u,v,w) = uC(v,w) — C(uυ,w) +C(u,υw) — C(u,v)w.

We consider only cochains which vanish on the constants. A cochain is called differ-
ential if it is given by differential operators on each argument.

It has been shown by Vey [13], that any differential 2-cocycle C can be written
as

C = δF + B,

where F vanishes on the constants if C does and B is an antisymmetric differential
2-cocycle which is of order 1 in each argument.
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3. Tangential Star Products

Let (M, P) be a Poisson manifold with Poisson bracket

{w, v} = (du A dv, P)

and set N = C°°(M). (M, P) is called regular if P has constant rank. Recall [1] that
a star-product on (M, P) is a multiplication map *: TV x TV

u * v = uv + y^ hrCr(u, v)
r>\

such that the binary operation it induces on TV[[/ι]] is associative, has the constant
function 1 for identity and the commutator at first order is given by the Poisson
bracket

C\{u, v) — C\(υ, u) = 2{u, v}.

We say the star-product is differential if all its cochains are.
We are interested in differential 2-cochains C(u, v) which are tangential to the

symplectic leaves of the Poisson manifold and there are a number of ways to define
this depending on how close to regular the Poisson structure is. However we shall
not need the full strength of tangential, but only require that the 2-cochain does not
differentiate any function that is constant on the symplectic leaves. If Δ is such a
function then we say the 2-cochain C(u, v) is Δ-tangential if it vanishes on constants
and satisfies

C(Δu, v) = ΔC(u, v) = C(u, Δυ), Viz, υ G N. (3)

Lemma 1. A 2-cocycle C is Δ-tangential if and only if

C(ί,u) = C(u, 1) = C(Z\,u) = C(u, Δ) = 0, \/u G N.

Proof Vanishing on constants is common to both conditions. If C is Zi-tangential
then C(Δ,u) = C(Δl,u) = ΔC(l,u) = 0 and similarly for the second argument.
Conversely, δC = 0 implies that C(Δu,v) = ΔC(u,v) + C(Δ,uυ) - C(Δ,u)v =
ΔC(u, v) if C(Δ, u) = 0 and similarly for the second argument.

Note that this lemma is not true for general 2-cochains. Since coboundaries are
cocycles we obtain immediately

Corollary 1. A 2-coboundary δF of a 1-cochain F vanishing on constants is Δ-
tangential if and only if

F(Δu) = ΔF(u) + F(Δ)u, \/u G N.

Remark 1. If δF is Zi-tangential then F(Δ) = 0 if and only if F(Δu) = ΔF(u\ for
all u G N.

Remark 2. If F{Δu) = ΔF(u), for all u G N and * is a Zi-tangential star-product
then the equivalent star-product *7 defined by

u *' υ = (1 - hF)~ι(((l - hF)u) * ((1 - hF)υ))

is also zi-tangential and the first order term is given by C[ = C\ — δF.
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Remark 3. Given any star-product * which is Z\-tangential then C\, which is a cocycle
from associativity at order 1, is given by the Poisson bracket plus a coboundary δF
where δF is 4-tangential. If we show (cf. Lemma 2 below) that δF = δF\ where
F'(A) = 0 then the star-product *' given in Remark 2 is Z\-tangential and its first
order term is the Poisson bracket.

In the case where M = g* is the dual of a Lie algebra with its coadjoint Poisson
structure, then G-invariant functions A will be constant on leaves and so satisfy (3).

Lemma 2. Let F be a 1-cochain vanishing on constants whose 2-coboundary δF is
Δ-tangential where A is an invariant quadratic polynomial on g*. Then δF = δFr

where Ff(Δ) = 0.

Proof. Take linear coordinates x% on g* and suppose F is a differential operator of
order k

k

r=\

where the coefficients are smooth and symmetric with respect to permutations of the
indices. We have δF(Δ, v) = 0 and hence,

/ j

r=2 r=3

or, relabelling,

k-\ fc-2 ,

s=l s=l

Since υ is arbitrary, we must have

A^ c?*1^ = 0; (4)

Now
F(Zi) = A( 1 } 9 M + A^2) diχilA. (6)

We try to replace the second derivatives in (6) by first order terms which we can do
recursively using (5). However it is the first of the two terms in (5) which has to be
used, and that has the wrong number of derivatives on A. When we differentiate this
also adds a derivative to the other terms. This means that when we come to the next
step we need two derivatives and so on, up to the top term which will need fc — 2
derivatives. The process terminates here since there is no d%λ%1 A term in (4) before
differentiating. Proceeding in this way, we reduce all the derivatives in F(Δ) to first
order, say F(Δ) = X(Δ). Since this process does not introduce any Oth order terms,
it follows X is a derivation. If we now set F1 = F — X we have the result.

Remark 4. It is worth observing that the process for constructing the derivation X in
the above proof is the same for all quadratic functions A so that X depends only on
F and not on A.
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As a consequence of this lemma and Remark 3, in studying Z\-tangential star-
products on g* for invariant quadratic forms Δ we are free to assume that the first
order term is the Poisson bracket.

Lemma 3. Let A^k e C°°(U), where U is a star-shaped neighbourhood ofO in $*,
symmetric with respect to permutations of all its indices. If β is an invariant symmetric
bilinear form on g* and

Xrβ Λijk = XrXsβ tsai Lsfrj (7)

on U then β(g*) is two-step nilpotent: [β(g*), [/?(0*),/?(g*)]] = 0.

Proof Since U is star-shaped with respect to 0, A^k has a Taylor expansion at 0 to
any order. Let aijkx\ be the linear term, then comparing quadratic terms in (7) we
have

xrβ
rkaijk

sxs = xrxsβ
abCai

rCbj

s,

hence
ark „ s , ask „ r aab/^i rs-Ί s . nabry s SΊ r

β aijk + β aijk = β Lai Cbj + β Cai Cbj .
If we define

aabcd = βaiβbjβckaijk

d,

then we have, using the symmetry of a in its first three indices,

using (2).
Interchanging r and i in (8) we have

Now

= βabCb

jrCa

is-βabCb

jsCa

ir,

hence (9) becomes

firijs +~srji = _2β
abCa

irCb

jS + βabCa

ίSCb

jr. (10)

Adding twice Eq. (8) to Eq. (10) gives

3arίjs + 2asijr + asrji = 3βabCa

isCb

jr.

The right-hand side of this equation is skew symmetric in j and r, so taking the skew
part of the left-hand side gives

asijr -asirj =3βabCa

isCb

jr.

But the right-hand side is also skew in i and s and the left-hand side is now symmetric
in i and s, so both must vanish. Thus
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0 = βabCa

isCb

jr = -βasCa

ίbCb

jr.

Contracting with Xr gives

which is the required condition.

In the coordinates x\,..., xn the Poisson structure on C°°(g*) is given by

{u,v} = xrCidι

rdiιudjιυ.

Define a 2-cochain on C°°(g*) by

Up to a normalization this is the order 2 term in the star product coming from the
enveloping algebra via Poincare-Birkhoff-Witt. We leave the routine verification of
the following lemma to the reader.

Lemma 4.

6C(u, υ, w) = {{u, w}, v}.

Proposition 1. Let g be a Lie algebra, β an invariant bilinear form on g*, and A G
C°°(Q*) be defined as above. If there is a differential 2-cochain D(u,υ) on C°°(U),
where U is a neighbourhood ofOiny*, and satisfying

(i) D(Δ,υ) = 0, \/υeC°°(U);
(ii) 6D(u, v, w) = {{w, w}, v},

then β($*) is two-step nilpotent.

Proof Shrinking U if necessary we may assume it is star-shaped with respect to 0.
We show that the existence of such a cochain D implies the existence of functions
Aijk satisfying the conditions of Lemma 3.

By condition (ii) and Lemma 4 it follows that δ(D — C) = 0 hence D — C has
the form

where B is a 2-cocycle involving differential operators of order (1,1) and T is an
arbitrary 1-cochain. From condition (i) it follows that

C(Δ, v) + δT(Δ, v) + B(Δ, v) = 0, W e C°°(U)

and hence that C(Δ, v) + δT(Δ, υ) is a differential operator on v of order 1. Let k be
the order of T, then δT(Δ, v) has order k — 1 whilst
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C(Δ,υ) = l-

= xrxsCaji

rCbJ2

sβabdjιj*v

- ^xrxsCJ2b

aCajl

rβsb^hυ - ί

= xrxs
Cajι

rCbh

sβabdj'hv

Hence

δT(Δ, υ) + l-xrxsCah

 rCbh

sβabdj'j*v (11)

is a differential operator in v of order 1.
We write T as

k

r=0

where the coefficients are smooth functions on {/, symmetric with respect to permu-
tations of the indices. Considering terms of order 2 or greater in (11) we have

r=3

k

 r(r _ 1 \

V - 4 ^
/ j 2 *i ^

r=4

so that

Atf . r0M + t^p±Atf irΘ^Δ = 0, r > 4, (12)

^Δ = \xpxqCa^Cb^βab. (13)

The argument now follows the same lines as in Lemma 2: we express the terms

•^-fXjιj29
lιΊ'2Λ in (13) as first order operators acting on A using Eq. (12) recursively.

Renaming the left-hand side as \Aiχ^2d
%x A this will satisfy

A r)iι Λ — T T Π rΓi, s Rab

~^^\3\32° ^ - %rXs^aji ^bj2 P ->

where A^ is completely symmetric. Since dlλ A = 2xrβ
ri1 we have a smooth solution

of (7) on a neighbourhood of the origin and so can apply Lemma 3 to give the result.
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This proposition yields immediately the following theorem:

Theorem 2. If Q is a Lie algebra with a star-product on a neighbourhood ofO in g*
which is both differential and tangential to the coadjoint orbits then β($*) is two-step
nilpotent for every invariant bilinear form β on g*.

Proof An invariant bilinear form will yield a quadratic form Δ which is constant on
each coadjoint orbit so the cochains of the tangential star-product are Z\-tangential.
If necessary we replace the given star-product by one whose first order term is the
Poisson bracket and which is also Z\-tangential. The second order term in the star-
product will now satisfy the conditions of the proposition.

Corollary 2. If g is a semisimple Lie algebra there is no differential star-product on
any neighbourhood of the origin in g* which is tangential to the coadjoint orbits.

Proof If such a star-product existed it would be zi-tangential where β is the Killing
form and A the associated quadratic form on g*. Since the Killing form of a semisim-
ple Lie algebra is non-degenerate the image of β is the whole of g. Since g cannot
be both semisimple and two-step nilpotent, no tangential star-product can exist.

Remark 5. If g is two-step nilpotent, the star-product on g* induced by the linear
isomorphism between the symmetric algebra S(Q) C C°°(Q*) and the universal en-
veloping algebra U(Q) given by total symmetrization is tangential and differential.

Let β be an invariant bilinear form on g* and β:&* ^ $ the corresponding
equivariant map. We have observed that the imageJ) = /?(g*) is an ideal in g. It is
also clear that there is a well-defined bilinear form β on f) such that

since β and β have the same kernel K c g*. It is equally clear that β is invariant
under all the automorphisms of f) induced by the adjoint action of G. Moreover, K
is the annihilator of rj in g*. _

Conversely, let g be a Lie algebra with f) an ideal and β a G-invariant non-
degenerate bilinear form on f). Then β induces a bilinear form β* on fj* which can
be extended to g* by zero on the annihilator of fj:

It is easy to check that β is G-invariant.
So we get a 1-1 correspondence between G-invariant bilinear forms on g* and

G-invariant non-degenerate bilinear forms on ideals in g.
Thus the algebras which are of interest are two-step nilpotent and have a non-

degenerate invariant bilinear form. We do not know of a classification of these Lie
algebras. To show that we can not in general reduce the problem any further we
observe that we can obtain examples of such algebras by taking a Lie algebra t without
centre and having a nondegenerate invariant bilinear form βo. We set g = 6 0 I as
vector spaces with bracket

and bilinear form

βdx, xf\ (y, γr)) = fax, Y') + βo(x',
The invariance of β is equivalent to the invariance of /30.
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Remark 6. Let ! be a compact semisimple Lie algebra, g its complexification and
g = ! + α + n a Iwasawa decomposition when viewed as a real Lie algebra, where ίa
is a maximal toral subalgebra of £. In [8] Lu and Weinstein showed that (g, £, α + n)
has the structure of a Manin triple. This gives the simply connected Lie group AN
a Poisson Lie group structure whose Poisson tensor has linear part at the identity
element which is isomorpphic to the coadjoint Poisson structure on 6*. Since I is
compact semisimple, it follows from a result of Conn [4] that the Poisson structure
on AN is linearizable in a neighbourhood of the identity element. In fact, in [9]
Ginzburg and Weinstein have shown that the Poisson structures on V and AN are
globally diffeomorphic, a result which was conjectured by Lu and Ratiu in [7]. Thus
any tangential differential star product on AN which is tangential to the symplectic
leaves would induce a tangential differential star product on t* and as we have seen
that is not possible for semisimple £. Hence the groups AN with their Poisson structure
coming from the Iwasawa decomposition give examples of Poisson Lie groups which
have no differential star product tangential to the symplectic leaves.

A similar argument does not apply to the Poisson Lie structure on K since we
know from [3] that if K is not a product of copies of SU{2) then its Poisson Lie
structure is not isomorphic near the identity element to a neighbourhood of the origin
in (o + n)*. Not only that, but it is not difficult to show (using Remark 5) that (a + n)*
has no invariant bilinear forms, so our approach imposes no conditions on tangential
deformations. Thus it is an open question whether or not there is a differential star
product on K or on (α + n)* which is tangential to the symplectic leaves.
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