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tubular four manifolds with nontrivial circle bundles over Riemann surfaces as
section.

0. Introduction

This is the first of two installments in which we study Yang-Mills instantons, i.e.
anti-self-dual connections with finite Yang-Mills energy on tubular manifolds Y x R,
where Y is a non-trivial circle bundle over a Riemann surface.

For a circle bundle Y on a Riemann surface Σ, the space Y x R admits a complex
structure and can be compactified to a ruled surface S by, roughly speaking, adding
a copy of Σ to each end of the tube Y x R. On the other hand, the finite energy
condition and Uhlenbeck's compactness theorem implies that on a manifold with
ends any instanton is asymptotic over each end to a flat connection on the section
over the end. For a circle bundle 7 on a Riemann surface Σ, flat connections on Y
can be divided roughly into two classes, those with non-trivial holonomy along the
fibre circle as one and those with trivial one as the other one. Accordingly instantons
on Y x R can be divided into three classes, those with flat limits without holonomy
along the fibre circle as the first one, those with flat limits with holonomy along the
fibre circle as the second one and those with mixed limits as the last one. Roughly
speaking, in this first installment, we prove that there is a natural injection of the
set of instantons in the first class into the space of holomorphic bundles over S
which are flat along the two added divisors. In the next installment, we shall prove
that there is a similar injective map from the set of instantons in the second class
to the space of certain equivariant holomorphic bundles on a canonical covering of
S, branched over the two added divisors, with some preferred filtration and unitary
structures in the restrictions over the two divisors. Complex holomorphic description
for instantons in the third class can be obtained as a corollary to these two results.
For precise statements, see the main text.

To establish our main results, we need to show that given an appropriate in-
stanton, there is naturally an associated holomorphic bundle with required properties
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and vice versa. We first go from holomorphic bundles to anti-self-dual connections.
We use the evolution equation

Λ,
OS

(where H* denotes the transpose for H and similarly for others in the article) to
demonstrate the existence of an anti-self-dual connection with appropriate properties
on Y x R from the holomorphic data provided. We then solve a "<?" equation to
show that the holomorphic bundle on Y x R determined by an instanton on Y x R
extends to give a holomorphic bundle on the associated ruled surface S with the
corresponding structures.

The evolution equation method was first developed by Donaldson [6] in the
context of holomorphic bundles over compact project! ve surfaces and was later
generalized by Bando [2] and Simpson [19] for bundles over noncompact Kaehler
manifolds. The method depends nontrivially on the geometry of the base manifold,
and since the geometry of our base manifold 7 x R is a combination of those con-
sidered by Bando [2] and Simpson [19], our argument is a combination of those
used by Bando [2] and Simpson [19]. Since the tube metric used to deform the
evolution equation is only a Hermitian metric with respect to the complex structure
on Y x R, we no longer have the convenience of the Kaehler geometry: we have
to generalize some of the basic facts about the solutions of the evolution equa-
tion in the case of Kaehler base manifolds to the more general case of Hermitian
base manifolds. This is, however, compensated by the fact that the spectral geom-
etry of Y x R with the tube metric is relatively simple. In fact, the tube metric
is conformal to a Kaehler metric, as we shall see in Sect. 3, and we could have
used the Kaehler metric to deform the evolution equation as well, but we are un-
able to establish a couple of key properties of the heat kernel of Y x R with this
metric.

The complex holomorphic approach to the study of instantons is of course
not a new one. On the contrary, until recently, most of the applications of Don-
aldson's new invariants are achieved through algebraic holomorphic geometry. In
complex dimension two, conformal geometry, which is the relevant geometry for
the Yang-Mills instanton equation, interwines closely with Kaehler geometry, and
this leads to the complex holomorphic description of the instanton moduli spaces
on complex surfaces. Algebraic geometry is then applied to study these moduli
spaces.

There are some new aspects to the problem in our situation, due to the fact
that tubular manifolds are non-compact. First, in the compact case, holomorphic
data used to describe the instanton moduli spaces is obtained more or less as a
consequence of the Newlander-Nirenberg integrability theorem. In our case here,
the integrability theorem only gives holomorphic data on a non-compact space, thus
to obtain the relevant holomorphic data, we have to go a step further. Second, the
analysis involved has to be on non-compact spaces. Technically it is mainly with
these two new aspects of the problem that this paper is concerned.

As with the case of compact manifolds, the results in the paper can be viewed
from a totally complex holomorphic point of view. In complex holomorphic geom-
etry, one is interested in the existence of various Hermitian Yang-Mills connections
on holomorphic bundles. As is now well known, on compact Kaehler manifolds
the condition for the existence of such connections is that the relevant holomorphic
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bundle be stable, in the sense of Mumford. In another word, there is a one to one
correspondence between the space of stable holomorphic bundles and the space of
(irreducible) Hermitian Yang-Mills connections [18, 6, 22]. This is the Kobayashi-
Hitchin correspondence. For bundles on non-compact base manifolds, similar results
are obtained by Bando [2], and Simpson [19], for rather different non-compact base
manifolds. In complex dimension two, the notion of Hermitian Yang-Mills connec-
tion and instanton coincide. The results here thus can be viewed as another kind of
Kobayashi-Hitchin correspondence. The basic difference is that the stability condi-
tion is replaced, in the case of bundles on manifolds with an infinite volume, by a
condition which essentially is a boundary condition at infinity.

The rest of the paper is organised as follows: In Sect. 1, we describe the space of
flat connections on a nontrivial circle bundle and collect some fundamental analytic
results about asymptotic behaviour of instantons on tubular manifolds. These pre-
liminary results are needed for the precise statments of our main results as well as
their proof. In Sect. 2, after introducing some notation, we give a formal statement
of our main results. In Sect. 3, we study the Kaehler and Hermitian structures on
our cylinder Y x R. This enables us to obtain in Sect. 4 some interesting properties
of the heat kernel of the relevant linear operator. The results in Sects. 3 and 4 may
be of independent interest. With the preparation in Sects. 3 and 4, we prove one
of the main theorems in Sect. 5. We then complete the proof of the other main
theorem in Sect. 6.

1. Some Preliminary Results

In this section we briefly discuss the space of flat connections on a non-trivial circle
bundle Y and collect some basic facts about the asymptotic behaviour of instantons
on manifolds with tubular ends. These will be needed for the precise statements of
our main results as well as their proof.

Let M be a 4-manifold with a finite number of ends and Y be a three manifold
as in the last section. Let A be an anti-self-dual connection on P = M x SU(2) with
finite energy, i.e. JM\FA 2 < oo. By restricting A to the slices Y x {t} over the end
Y x R+, we obtain a family of connections A(t) on 7. Generally A(t) depends on
the choice of the gauge of P on M over the end. Denote by [A(t)] the image of
A(t) in the space B of equivalence classes of connections on 7, then [A(t)] is well-
defined. The following fundamental theorems concerning the asymptotic behavior of
[A(t)] are standard (see [8, 20]).

Theorem A. The connection \A(t)] converges in Ck to a flat connection [A^] on
Y as t —» oo.

Theorem B. If the limiting flat connection [A^] on Y is a nondegenerate critical
point of the Chern-Sίmons function on B in the sense of Bott, then there is a
number δ > 0 such that

\FA\ ^Ce~δt .

Morever, we can choose a gauge on the end Y x R+ such that

\Vk

A(A-A^\ ^Ce~δt, k = 0,1,....



740 G.-Y. Guo

Here AQQ denote the pull-back connection on the end Y x R+ of some representative
of |/4 oo ] by the obvious projection from Y x R+ x SU(2) to Y x SU(2) given by
the chosen gauge.

A critical point of a function on a space is said to be nondegenerate in the sense
of Bott if the Hessian of the function is nondegenerate on the subspace normal to the
critical set at the point. Such critical points are sometimes called Morse-Bott points.

By Theorem A, the moduli space M. of finite energy instantons on M is di-
vided into a number of subsets parametrized by the set of combinations of the same
number as that of the ends of components of the space of SU(2) flat connections
on Y. In particular, when M is a tube Y x R, ΛΊ is the disjoint union of its sub-
sets M^-ooifoo), where T-^ and T^ run over all components of the space of
flat SU(2) connections on Y and M^-oo^oo) is the subset of M consisting of
instantons with limits in f-^ and in f^ over the two ends respectively.

We now limit ourself to the case M — Y x R, where Y is the unit circle bundle
of a line bundle L with nonzero Chern class over some Riemann surface Σ of genus
g. The fundamental group n\(Y) of Y is a group generated by 2g + 1 generators
{ai,bi,c,ί= !,...,#}, where #/,&/ are the usual generators of π\(Σ) and c is the
generator in the fibre, subject to the following relations:

(i) c is central;

Denote |cι(Z,)| by K. K is a positive integer. One sees easily that the set of
equivalence classes of flat connections on Y consists of the components described
as follows:

(a) JΓ+ = {p G Hom(πι(7),St/(2))|p(c) = 1 I/conjugation;
(b) F_ = {p G Hom(πι(7),Sΐ/(2))|p(c) = - 1 j/conjugation;

(
J2πi \

e κ °_£E }/conjugation, for
0 e - J

1 ^7 <f.

See also [20].
It is easy to see that each of the components above are path connected and f+ is

identical to the space of flat SU(2) connections on Σ. Clearly all the irreducible flat
connections are contained in F+\JF-. If c\(L) is odd, then all the flat connections
contained in T- are irreducible. In particular, the flat connections contained in Fj
are all reducible.

By the above discussion, the space M of instantons on Y x R is thus the disjoint
union of its subsets as follows:

u u, M(Fi,f+) u

Let F+ now be the smooth part of F+ and let p G •?•"+. The tangent space of

B* at p is TPB* = {a e Ωl(adP)\d*pa = 0} and that of JF* is Tpf*

= {a G Ωl(adP)\(dp + J*)α = 0}. Thus the subspace of TPB* normal to *̂* is
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NPF* = {a G Ωl(adP)\a G Im(J*)}. On the other hand, the Hessian Hp of the
Chern-Simons function at p is given by

Hp(a,b) h-> -fΎr(dpa Λ b) = (*dpa,b) .
Y

We see that the Hessian Hp is nondegenerate in NPF*> i.e. p G J7* is a Morse-Bott
point.

Corollary a). Lei A be a finite energy ίnstanton on Y x R. If [^±00] € «?"*» then
there exist numbers δ > 0, C > 0 swc/z

Moreover, we can choose a gauge on Y x R such that

v4±oo denote the pull-back connection on the end Y x (±Γ, ±00), for T > 0
enough, of some representative of |/4±oo] 0« ^ &y *λe obvious projection of

Y x Rx SU(2) to Y x SU(2) given by the chosen gauge.

on
Similarly since Fj are smooth path components of the space of flat connections
7, every point in these components is a Morse-Bott point. Therefore

Corollary b). The result in Corollary a) still holds if [^4±oo] € f j .

In fact, according to Taubes [20], a stronger result holds. Taubes result says
that if 7 is a circle bundle with negative Chern class, then the curvature of any
instanton on M decays exponentially over the end Y x R+. It follows trivially from
this that if 7 is a circle bundle with positive Chern class, then the curvature of any
instanton on 7 x R decays exponentially over the end 7 x (— oo,0].

Given any flat connection AQQ with [A^] G T^ we can associate with it a holo-
morphic flat line bundle LAoo on Σ in a canonical way. Indeed the representation of
πι(7) corresponding to A^ splits into two abelian representations in the eigenspaces
of the central element c9 with corresponding eigenvalues J- and — J-. Each factor rep-
resentation gives rise in an obvious way to an abelian representation of Π\(Σ), hence
determines a flat line bundle on Σ. Define the flat line bundle L^ on Σ associated
with ^oo to be the one correponding to the eigenvalue J-. The flat structure also
determines a holomorphic structure on L^.

2. Statements of the Main Theorems

Let (E,HQ) be a fixed complex Hermitian bundle over the tube Y x R, for a three
manifold 7, associated with the principal SU(2) bundle 7 x R x 5(7(2) on Y x R.
We identify connections on 7 x R x SU(2) with metric connections on E. Define
M. to be the space of equivalence classes of anti-self-dual connections with finite
energy, i.e., instantons on (£,//o)> the equivalence relation being the usual unitary
gauge equivalence between connections on (E,Ho). By the discussion in Sect. 1,
we know that for a circle bundle 7 on a Riemann surface Σ with non-zero first
Chern class, the space ΛΊ is the disjoint union of its subsets parametrized by the
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set of pairs of the path components of the space f of the space of flat connections
on Y.

On the other hand, for a circle bundle Y there are natural complex holomorphic
data associated with Y x R. Y x R can be identified as the complement to the zero
section of a holomorphic line bundle L on Σ with first Chern class c\(L) = c\(Y),
and has a natural complex compactification S which is the holomorphic CP1 bundle
associated with L. Clearly S \ Y x R is the union of the zero section and the section
of points at "infinity" each of which is a copy of Σ. Denote the zero section by
ΣQ and the section of points at "infinity" by ΣQQ. We now consider holomorphic
bundles on S with certain structures.

Let £c(+,+) be the set of rank two holomorphic bundles on S with trivial
first Chern class such that their restrictions over ΣQ and ZΌo are unitary flat with
some given preferred unitary structures. There are a few slightly different kinds of
symmetries in 8C(+,+). First we forget the unitary structures over ΣQ and Σ^ and
consider the ordinary equivalence relation of holomorphic bundle isomorphism in
£c(-K+) We define Λ4C(+, +) to be the resulting space of equivalence classes of
elements of £c(+>+) under this equivalence relation. Secondly, we also need to
consider holomorphic bundle isomorphisms which are unitary with respect to the
given unitary structures over the end ΣQ or ZΌo depending on the sign of the Chern
class of Y. If the sign of the Chern class of Y is positive, we define two bundles in
£c(~K+) to be equivalent if they are holomorphically isomorphic by an isomorphism
which respects the given preferred unitary structures of the two bundles over the
end ΣQ, and define ΛίMC(+,+) to be the resulting space of equivalence classes of
elements of £c(+,+). Similarly, if the sign of the Chern class of Y is negative, we
define the space ΛΊCW(H-, +). We could of course also consider holomorphic bundle
isomorphisms which are unitary with respect to the given unitary structures over
both ends and define the resulting moduli space Λ4M(+,+). It turns out, however,
the relevant spaces in our descriptions of instanton moduli space M*(T+>F+} are
the preceding ones rather than this ΛίM(+,+). This is perhaps not surprising as the
topology of Y should enter in our picture somewhere.

In general, the spaces Λ4C(+,+) and Λicw(+,+) or Muc(+,+) are different.
There is an obvious projection map from ΛίMC(+, +) or Λ4CU(+, +) to Λic(+, +) by
forgetting the unitary structures. Let Λ4*(+,+) be the part of Λ4c(+,+) consisting
of equivalence classes of bundles in £c(+>+) whose flat structures over ΣQ and
ΣOQ are irreducible and similarly ,M*c(+,+) or .M*M(+,+), then it is easy to see
that the projection is an 1-1 map from Λi*M(+,+) or Λ4*C(-K+) onto M*(+9+).
The map is obviously onto. Now on an irreducible holomorphic bundle, flat unitary
structures are unique up to a constant, thus if 8\ and 82 are two holomorphic
bundles representing the same element of .M*(+,+), i-e they are isomorphic by a
holomorphic bundle isomorphism, h say, then the flat unitary structures of 8\ and
82 over the end ΣQ or I^, depending on the sign of Chern class of 7, differ by
a constant under h. Multiplying h with this constant gives a holomorphic bundle
isomorphism between 8\ and 82 which is unitary with respect to the given unitary
structures of the two bundles over the specific end. Thus 8\ and 82 represent the
same element of Λί*c(+,+) or Λί^(+,+).

Before we state the main results of this article, we simplify some of the notation
introduced in the last chapter. We shall replace Λί(J>, J>) by .M(+,+) and shall
simplify the notation for other subsets of M in a similar way. Thus, for example,
-M *(+,+) will be the subset of Λ1(-K+) consisting of instantons with irreducible
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flat limits in F+. Also let ΩQ be the form associated with the Hermitian tube metric
on Y x R introduced in Sect. 3 (see the discussion before Lemma 3.2).

The main theorems of this article can now be stated as follows.

Theorem 2.1. Let 8 G £C(-K+) be a holomorphic bundle over S representing an
element of M.c(-\-,-\-\ There exists a unique Hermitian metric H on E\YXR for
which the following statements hold:

(1) The curvature FH of the Chern connection AH of(S,H)\YxR satisfies

IAFH = 0 ,

where A is the adjoint to the wedge product on forms by ΩQ on Y x R.
(2) H is bounded in the sense that for any smooth Hermitian metric K, say, on

£, there is a positive number C such that d(H,K) < C, where d is the distance in
the space of Hermitian metrics (see [6, 16]). Moreover, if c\(Y) > 0, H extends
continuously over ΣQ and coincides with the given unitary structure of 8 over
ΣQ, and if c\(Y) < 0, H extends over ZΌo and coincides with the given unitary
structure of 8 over ΣQQ.

(3) If c\(Y) > 0, then the connection AH on Y x R has a flat limit [^_oo]
over the end Y x {—oo,0] which is given by the lift to Y of the given flat unitary
structure of 8 over ΣQ. If c\(Y) < 0, then the connection AH has aflat limit [A^]
over the end Y x [0,00} which is given by the lift to Y of the given flat unitary
structure of 8 over ΣQQ.

Theorem 2.2. There is an infective map from Λ/l*(+, +) to Λ4*(+,+).

Remark. Our original goal is to prove that the above map is a one to one cor-
respondence between Λ/ί*(+,+) and «Λ/ί*(+,+). Theorem 2.1 gives a map from
the set M *(+,+) to the set of gauge equivalence classes of ASD connections on
Y x R, and in a suitable sense the map is a left inverse to the map of Theorem 2.2.
But this still falls short of what we would like to prove: the map is actually the
inverse to the map in Theorem 2.2. We are unable to prove that for a general class
of such bundles, the corresponding gauge equivalence class of ASD connections
on Y x R have finite Yang-Mills energy. For the very same reason, we have to
state our results in a less strong way than we would like to when we give complex
descriptions of the sets Λί(Fz ,Fy ) in part II.

The map in Theorem 2.2 would also be onto if the following conjectural state-
ments hold for the metric H in Theorem 2.1, in addition to (1), (2), and (3).

(27) The Hermitian metric H extends not only over one end as in (2), but over
both the ends ΣQ and Σ^. Moreover, the restrictions of H to the two ends are
constant under the flat gauges of S .

(3') The connection AH is an instanton with

\\FH\\2

L2 = 8π2c2(£),

where cι(£) denotes the second Chern number of the bundle 8. The flat limits
[/4_oo] and [A^] of the instanton AH coincide with the lifts to Y of the given
unitary flat structures 8 over ΣQ and Σ^ respectively.

As a consequence of the discussion in the appendix, we shall see that (2')
implies (3') Thus if (2') is true, then the conjectural statement below would also
be true.

There is a 1-1 correspondence between Λi*(-h, H-) and .Λ/f*(+,+).
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3. Hermitian and Kaehler Structures on Y x R

Let Y —> Σ be a circle bundle over a Riemann surface Σ. We identify Y with the

unit circle bundle of some Hermitian line bundle L -—> Σ. We also embed the tube
Y x R into L as the complement to the zero section by the map

Φ: Y x R — > L

where r(t) is the radial distance in the fiber over π(y). Using r as a coordinate in
an obvious way, the image of Y x R in L can be written as Y x R+, and in the rest
of this paper, we will think of Y x R and Y x R+ as two coordinate presentations
of the same underlying manifold.

Now let g be a metric on 7, then the standard tube metric on Y x R is (g +
dt (8) dt). This metric is pushed forward by Φ to give a metric on its image in L
which is given by

r~2(r2g + dr ® dr) .

On the other hand, we can give L a complex structure. This is done simply by
choosing a connection on L (naturally we would like the connection to be compatible
with the Hermitian metric on L}. Since every connection on a Riemann surface is
integrable, this is equivalent to fixing a holomorphic structure on L which makes
the given connection its Chern connection. The complex structure on L induces a
complex structure on Y x R+. The question then is whether or not the metric

r~2(r2g + dr <8> dr)

or any conformally related metric is a Kaehler metric on the complex manifold
Y x R+. With g randomly chosen, one cannot expect a reasonable answer. So we
restrict ourself to a class of g constructed naturally from the given connection on
L. Let Θ be a Kaehler metric on Σ, and let θ be the connection form of the given
connection on Y. Then

is clearly a metric on 7. The factor — / is there because θ takes value in the Lie
algebra of U(l) which is iR.

Let (V9w) be a general local complex coordinate on the Riemann surface Σ. Let
{eh} and {eu} respectively be some local holomorphic gauge and unitary gauge of
L over V and (W,ZA) and (w,zu) be the corresponding local coordinates for L. Let
h(w) be the Hermitian metric form and Ah be the connetcion form on L under the
gauge βh. By some elementary calculation (see [12]), it is easy to see that

r2g + dr®dr = - \zh \
2h(w)[d log h(w) 0 3 log h(w) + 3 log h(w) <g) d log h(w)]

+ -zAλ(w)[31ogλ(w) (g) rfzA + rfzΛ <8> 31ogλ(w)]

+ -zhh(w)[dzh <8> 31og A(w) + 31og A(w) Θ έ/zA]

+ -A(w)[έfeΛ 0 </ZA + dzh 0 rfzΛ] + r2π*(<9) .
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Apparently this is a Hermitian metric, and its associated fundamental 2-form is

lΩ = r2π*( zh

 2h(w)Ah -zhh(w)Ah Λ dzh

+ -zAA(w)rfzA f\Ah + -h(w)dzh Λ JzA .

Here, and also in the following we denote the Kaehler form of Θ by Θ itself. Thus

/ _
dΩ = -Zhh(w)dzh Λ [—2iπ (Θ} — Fh]

2

So the Kaehler condition dΩ — 0 reduces to

l-zhh(w)dzh Λ [-2/π*(<9) - Fh] = 0 ,

-zhh(w)dzh Λ Γ-2/π*(<9) -t-FΛ] = 0 ,
- 2

i.e.
77 9/7Γ*f£M

And if this is satisfied, then the Kaehler form of the metric is

Ω = -[—\zh\
2h(w)Fh + Zh\2h(w)Ah f\Ah + Zhh(w)Ah f\dzh

+zhh(w)dzh /\Ah+ h(w)dzh Λ dzh]

— -[\Zh\2ddh(w) + zhdh(w)/\dzh+z Λ

The condition Fh — 2/π*(Θ) means that L is a negative line bundle. Essential
examples are that Σ is some smooth projective curve and L is the pullback of the
universal bundle.

More generally consider the metric f(r)(r2g + dr 0 dr), where f(r) > 0 is
some function of r. We decide the condition of f(r) for the metric to be a Kaehler
metric on Φ(Y x R). The fundamental 2-form associated with the metric is Ω' —
f(r)Ω, and its differential is given by

dΩ' = df(r) Λ Ω + f(r)dΩ

= zhh(w)dzh Λ

Λ
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Thus the condition for the metric to be Kaehler is

:*(β)+^/(r)FΛ = 0.

To solve this equation, choose the holomorphic structure on L so that π*(Θ) +
±Fh = Aπ*(<9), where λ is determined by the Chern class of L, then the above
equation reduces to

So the solution is /(r) = r~2A up to a constant. Thus the condition for f(r)(r2g +
Jr 0 rfr) to be Kaehler is f(r) = r~2λ up to a positive constant. Note that λ > 1,
λ = 1 and A < 1 correspond respectively to the cases L is positive, trivial and
negative, and also that by normalizing the metric Θ on Σ, we can make λ to be
any number bigger than 1 in the case L is positive, and smaller than 1 in the case
L is negative.

Now assume that Fh does satisfy

π*(θ)+l-Fh = λπ*(θ)

for some λ > 1 or λ < 1 depending on the Chern class of L. So r~2λ(r2g + dr x
rfr) is a Kaehler metric on the complex manifold Φ(Y x 7?). In terms of the complex
coordinates {w,zh}, its Kaehler form is

— - dw Λ rfzΛ + -zh dzh Λ </w + -h(w)dzh Λdw 2 ow 2

We sum up the above discussion in the following lemma.

Lemma 3.1. Let Σ be a compact Riemann surface with a Kaehler metric Θ. Let
Y be a circle bundle over Σ. Then there is a metric g on Y and a holomorphic
structure on Y x R such that

e(2~2λ}t(g + dt Θ dt)

is a Kaehler metric on Y x R. The complex manifold Y x R can be compactiβed
to a complex ruled surface.

Proof. As in the above discussion, embed Y as the unit circle bundle into a Her-
mitian line bundle L and Y x R as the complement to the zero section. Choose a
holomorphic structure on L such that the Chern connection is a Hermitian Yang-
Mills connection, i.e.

The above discussion then applies to

r~2λ(r2g + dr 0 dr) = e(2~2λ}t(g + dt O dt) .

A holomorphic line bundle L has a natural complex compactification, i.e. the
associated protective line bundle S which is obtained by adding a point {00} to
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teach fiber of L. S is a ruled surface and S \ (Y x R) is a disjoint union of two
copies of Σ, the zero section in L and the section of points at infinity added to it.
We shall denote the two sections by ΣQ and Zoo respectively.

The metric we use most is the tube metric g + dt 0 dt — g + r~2dr 0 dr on
Y x R. It is clearly a Hermitian metric. We shall denote its associated 2-form by

fio
For later convenience, we give the explicit formula of the metric on the cotangent

bundle Γ*(7 x R) induced by Ω' = r~2λ(r2g + dr 0 dr).

Lemma 3.2, The induced metric on T*(Y x R) by the Kaehler metric

Qr = r~
2λ(r2g + dr 0 dr) = e(2~2λ}t(g + dt 0 dt)

on T*(Y x β) is given by

where

/-) rl r\

ψ = A3(w)— Θ ~= - zaA2(w)— 0
dw dw dzh

aw dzfr

and

d d ,2 r , N δ δ
— 0 -TΓ- + ZA

 2Aι(w)—- 0 — ,

Proof. By a linear algebraic calculation.

4. Spectral Geometry of Y x R

The successful application of the evolution equation

to the proof of the main theorem depends crucially on certain properties of the heat
kernel of the linear operator associated with the equation. For general Hermitian
manifolds, the operator is iAdd, where A denote the adjoint to the wedge product
by the fundamental form of the Hermitian metric on forms. For a Kaehler base
manifold this is of course just half the ordinary Laplacian. In this section we study
the heat kernel of this operator on the complex manifold Y x R with the Hermitian
tube metric g + dt®dt as in the last section. The results obtained here may be of
interest for their own sake.

We start the discussion with some simple facts on the geometry of Y x R with
the Hermitian tube metric.

Recall that ΩQ is the fundamental 2-form associated with the tube metric. By
simple calculations, we have
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Lemma 4.1. The two form ΩQ satisfies

dΩQ = !-r-2zj;h(w)dzh Γ\Fh = (λ - I)— Λ Θ ,

dΩQ = l-r~2zhh(w)dzh f\Fh = (λ- 1)-^ Λ Θ ,
2 zu

ddΩQ = 0 .

Let P = iΛdd = —ίAdd. The following two lemmas are essential to our discus-
sion in the next section. The first one gives the relation between the operator P
and the Laplacian on Y x R and the second gives the formula of the heat kernel
of P in terms of the heat kernel of the Laplacian Δγ of Y and an explicit function
involving only t.

Lemma 4.2. Let A be the Laplacian of Y x R with g + dt 0 dt. We have

(1) P = \Δ + (λ - 1)|, where t is the parameter of R in Y x R.

(2) Let φ = e2(λ-l}t, then Pφ = 0.

Proof. (1) On any Hermitian manifold, we have

Δf = 2Pf + i * (δΩ' Λ df) - i * (dΩf Λ δ/).

See Buchdahl [4]. It follows from Lemma 4.1 that

( 1 Ά f 1 ^ f \

-^Γ- + -τz- ) * (dzu Λ dzu Λ Θ) .
zudzu zudzuj

Let {r, 9} be the polar coordinate in the fiber as in Sect 3. It is easy to see that

dzu Λ dzu — 2irdθ Λ dr ,

and

zu dzu zu dzu r dr

Thus

.e.

= 2Pf + 2(1 - λ)- * (rfr f \ d θ f \ Θ ) = 2Pf + 2(1 - A)- ,

(2) Simple calculation.

Lemma 4.3. Let Kγ(x\,X2,s) be the heat kernel of the Laplacian Δγ of Y, then
the heat kernel of P is given by

K[(xl,tl),(X2,t2),S]=KY' " ' l
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Proof. First note that P = \AΎ - \ Jj + (λ - 1)|. The formula is then derived by
the usual Fourier transform method. We check that it does satisfy the requirements
of a heat kernel, i.e.

(2) For any bounded continuous function /CM) on Y x R,

lim

(3) For any bounded continuous function f(x,t) on Y x R,

u(x9 t,s)= / K[(y, ξ\ (x, 0, s ] f ( y , ξ)dydξ
YxR

is a solution to the heat equation

(1) can be shown by direct calculation.
To show (2), note that as s —> 0, the following two limits hold:

9 X 2 9 s ) f ( x ι 9 t 2 ) d x ι = f(x29t2)9

The second limit is uniform for x\ as Y is compact. (2) then follows easily.
Finally, we note that the differentiations can be carried out under integration,

since the integration of the results of the differentiations involved converge absolutely
and uniformly. (3) then follows from (1).

The key property of the heat kernel of P needed to construct a solution to the
Hermitian Yang-Mills equation by the evolution equation method is the following
lemma.

Lemma 4.4. Let f be a function on Y x R such that

Let

/2πs

and
OO

u(t2) = fds / K[(xι9tι)9(x29t2)9s]\f(xι9tι)\dxιdtι .
0 YxR

The following two conclusions hold for δχ = min{l,2|l — λ\}:

(1) If λ < 1, then

I 771

G^= .
<
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and

(2)Ifλ> 1, then

f _J__Λ2(l-λ)f / *> n
7~ι 7Te ' * = υ

( A - l ) '

0(e^fe),

Proof. WQ show (1). (2) follows similarly.
First we note that

where g(ί) = J^°-=e~5 J"^ = g(—t). Thus to prove the first result, it suf-

fices to prove the case t ^ 0, in which we write

"/*
/

°

Let .s' = ^~(1

2~
A^ . By simple calculation, we have

V2π(l - λ)

,
x f -̂ - , v = - e~s ds'

o ^s

(4.1)v ;

We have used in the above proof the following simple fact:

' + (1 - λyt - ^s12 + 2(1- λ)ts' +^s' + (l-λ)t+ vV2 + 2(1 -

To prove the second result, we note that by the hypothesis,

- - l " !
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It follows that

u(t2) = fds /
0 YxR

< C
- o R

751

Thus if ί2 ^ 0, then

+ JV'-^Λ,
0

- 2A)

and ti < 0, then

κ(fe) ^ 7
•

/ + JWfi +

(1-rr (3-2AΓ J '

The result then follows easily.
The next two lemmas assert that the maximum principle holds for the operator

P, both in the elliptic case and in the parabolic case. These will be needed in the
next section to establish the existence and the uniqueness of the solution to the
evolution equation.

Lemma 4.5. (The maximum principle, elliptic case). Let D be a compact domain
in YxR and let u be a function on D such that

Pu g 0 .

Then u achieves its maximum on the boundary of D.

Lemma 4.6. (The maximum principle, parabolic case). Let v( ,s) be a function
defined on D x [a,b) such that

— +P }v ^ 0.
OS

Then v achieves its maximum on the boundary of D x \a,b\
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Proof of Lemmas 4.5 and 4.6. We note that P differs from \A by a first order

term (k — 1)^, which vanishes at an inner point of maximum value, should such a
point exist. Thus the proof of the maximum principle for ordinary Laplacian works
for our case. See [11, 16].

Remark. It follows plainly from the proof of the maximum principle that if u (resp.
v) are non-negative functions, then the conclusion of Lemma 4.5 (resp. Lemma 4.6)
still holds if

Pu ^ 0 (resp. ( — +P]υ ^ 0

whenever u > 0 (resp. v > 0). Thus we can, as we do in the following, apply
the lemmas to the function |zΆF(s)| which may not be smooth at points where it
vanishes.

5. The Existence Theorem

In this section we prove Theorem 2.1 and then describe how Theorem 2.1 gives a
map from M, *(+,+) to the set of gauge equivalence classes of ASD connections
on Y x R.

Given a holomorphic bundle on S representing an element of ΛΊC(+, +), we
deform a suitable initial Hermitian metric on the bundle to a desired one, through
special paths defined by the solution to the evolution equation

using the tube metric on Y x R.
We restrict ourselves in Theorem 2.1 to holomorphic bundles of rank two and

trivial first Chern class. However it will be clear from the proof of the theorem that
the results of the theorem hold without these restrictions on rank and first Chern
class.

For a holomorphic Hermitian bundle on a Hermitian manifold, let PA = iΛddA
and PA = —iΛd^d, in addition to P = ίΛdd = —iΛdd.

We now begin the proof of Theorem 2.1. We suppose c\(Y) < 0. The proof
for the other case is almost identical. First we prove the uniqueness part of
Theorem 2.1.

Proposition 5.1. Let 8 be a bundle as in Theorem 2.1 and H\ and H2 be two
Hermitian metrics on S. If H\ and HI both satisfy (1) and (2) of Theorem 2.1 ,
then H\ = H2.

Proof. Let h be the endomorphism of S determined by

Then h is positive self-adjoint with respect to both H\ and H2. Let σ(H\,H2)
tr(A) + tr(h~l) - 2r, where r is the rank of 8. If

h=
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then

and the equality holds iff λi = 1, i — l,...,r. Thus it suffices to show that
σ(Hl9H2) = 0.

Locally under a frame H2 = hlH\ , so we have

A2 = HdH = h~lAιh + h~ldh

thus

F2 = Fl+d(h~ldAlh).

By the hypothesis,

iAFi = iΛF2 = 0 .

It follows that

iΛh~l~ddAlh ~ iAh-l(dh)h~l Λ dAlh = 0 .

Multiplying it by h on the left, then taking the trace, we get

ίΛdd(toh) = iΛtr[(dh)h~l Λ dAlh] .

The right-hand side of the above equation is negative. To see this, for any point
x G Y x R, let (e\,...,er) be a local frame of the bundle around t, unitary with
respect to H\, such that the matrix representation of h under this frame is diagonal

/ A , \
at x, say . ,A Z > 0, and the connection form of A\ vanishes at x,\ *, )
then at this point

iAtr[(dh)h~l A dAlh] = (dh) ••• Λ dh

j i

We have used the facts that hy = hβ9 and that for a (l,0)-form φ9 iΛφ Λ φ = — \φ\2.
It follows that

Ptr(A) ^ 0 .

Similarly,

) ^ 0.

Therefore

Pσ(Hι,H2) ^ 0.
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On the other hand, note that σ and the metric d are equivalent in a neighbourhood
of zero, i.e. there are constants c\,c2 > 0 such that for d sufficiently small,

cλd
2 ^ σ ^ c2d

2 .

By the hypothesis, H\ and H2 both satisfy (2) of Theorem 2.1. It follows that

σ(Hl9H2) ^ C

and

Let
φ = e*λ-1*

and let
C φ

' e-2(λ-\)ί '

The above and (2) of Lemma 4.2 imply that

Pψ ^ 0.

Consider the function ψ on the domain Dy = Y x [—i,j] in Y x R. On the boundary
dDtj = Y x {-/} U Y x {/},

It follows from the maximum principle in Lemma 4.6 that

σ(#ι,#2) g e

C

2(λ

Φ

l}i +max{0,σ(Hl9H2)(yJ) - C^λ~1

independent of i,j. As ί and j tend to oo, the right-hand side tends to 0, thus

This completes the proof of Proposition 5.1, i.e. the uniqueness part of Theorem
2.1.

We now move on to prove the existence part of Theorem 2.1. We need a suitable
Hermitian metric on S to start with.

Lemma 5.2. Let E be a holomorphic bundle as in Theorem 2.1. Let HQ be a
smooth Hermitian metric on 8 which extends the given unitary structures of ε over
ΣQ and ΣOQ. Then with respect to the Hermitian tube metric ΩQ = (g + dt 0 dt\
the curvature FH> of the Chern connection of HQ satisfies

\FH,\Ωo= 0(e~\t\\

and
oo

fds /
0 YxR

(
\

0(e-^\ h — > +00
0(1), fe — > -oo .

Here δχ is the positive number defined in Lemma 4.4.
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Proof. As in Sect. 3, let (z,w) be holomorphic coordinates in some neighbour-
hood U of some point at the end ΣQ, say. Thus U Π ΣQ = {z = 0}. Choose a local
holomorphic trivialization of £ over the neighbourhood. Then the curvature FH> is
a matrix valued (l,l)-form and can be written as

FHι — F\\dz Λ dz -f F\2dz Λ dw + F2\dw Λ rfz

Since the bundle £ is flat over the end,

By Taylor expansion,
\F22(z,w)\ = 0(\z\), |z|— > 0 .

On the other hand, we have, by the formula in Lemma 3.2,

\dz\ao,\dz\Ωo=0(\z\), |z |->0,

It follows that in any compact subset of the neighbourhood,

__ <9(|z|) — O(e~\*\), \t\ —> oo .

But this holds for the whole neighbourhood of the end, since we can always choose
a finite number of such neighbourhoods to cover the end.

The second assertion follows from the first assertion and (1) of Lemma 4.4,
recalling that we assume c\(Y) < 0 here.

Remark. By the proof of this lemma, it follows that if e is a local holomorphic
frame in a neighbourhood of some point at the end ΣQ or Σ^ such that the restriction
of e over the end is flat in the obvious sense, then the connection 1-form under
this frame AH^ its covariant differential V(AH^) and the covariant differential of the
curvature form V(F///), viewed as matrix-valued forms, satisfy

Actually all the higher derivatives decay in a similar way over the ends.
Starting with H^ we shall now construct a Hermitian metric H on 8\YxR which

satisfies
iΛFH = 0

d(H9Hl)(y9t) = 0(e-*«), t —> oo

using the evolution equation

rtJJt ί v\

= -iΛF(s)v ' ds

of Hermitian metrics.
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Consider the Dirichlet boundary problem

(**)

= -iΛF(s)

k Hij(s)\dDij = H^\dD.

for Hermitian metrics on £\Dij9 where DIJ is the compact domain Y x (— i,j) in
Y x R for i9j G N. This is a nonliear parabolic equation. Its linearization is

We refer to Sect. 6 of [19] for the fact that on each Dy there is a unique solution
HΪJ(S\ 0 g j < oo to (**) .

We now show that for each pair i 9 j 9 HΪJ(S) converges to some Hy on E\-p as

s — >• GO. We need the following lemma.

Lemma 5.3. For a solution H(s) to the evolution equation

Hermitian manifold, we have (J^ +P)|/AFy| ^ 0 whenever i

Proof. The norm | | depends on the parameter s. Nevertheless, since iAF(s) is
always self-adjoint with respect to H(s), we see that

iΛF(s)\2 = Ύr(iAF(s) Λ iΛF(s)) .

The right-hand side is an expression independent of the norm. This simplifies the
d_
dscalculation of the •$- component of derivatives. A simple calculation then shows that

= -(PA(s)(iΛF(s)),iΛF(s)) - (iΛF(s\PA(s}(ίΛF(s})) .

On the other hand, we have in general

Γ P|α|2 = (PAa,u) + (<X,PAΛ) -

whenever αφO. Let α = iΛF(s) and V = VA(S), then we see that

2\iΛF(s)\ (%-+P\ \iΛF(s)\ = \d\iΛF(s)\\2 - \VA(s)(iΛF(s»\2 ,

whenever iΛF(s)ή=Q. The result then follows from Kato's inequality,

\d\iΛF(s)\\2 ί



Yang-Mills Fields on Cylindrical Manifolds and Holomorphic Bundles I

By this lemma and the remark at the end of the last section, we have,

= \iΛF,j(s)\ ^ fKDv(s,x,y)\iΛFHi(y)\dy,
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ds Ay

where K£>tj(s9x9y) is the heat kernel ([5]) of P on Ay with Dirichlet boundary
condition. Now the maximum principle implies [5] that

KDiJ(s9x9y) ^ K(s,x,y),

where K(s,x,y) is the heat kernel of P on Y xR as in the last section. Thus
furthermore we have

, SHUs)
T—t / \ U ds £ fdsfKDιj(S,X,y)\iΛF0(y)\dy

0

oo

f K(s,x,y)\iΛF0(y)\dy.
0 YxR

By Lemma 4.4,

so for any given ε > 0, if s\,S2 > 0 are suίϋciently large, then

ds < ε.

Hence we have

ds g ε ,

where d(Hij(s\\Hij(s2)) denotes the distance between Hij(s\) and //ί/^) in the
space of Hermitian metrics with the complete metric as above. Thus ////(s) con-
verges in C° to some H^ on Π*(E) \^ . (As the referee pointed out, the preceding

arguments are basically the same as those used by Donaldson in [7], Sect. 2.4.)
Now by Lemma 6.4 in [19] and the remark following it, we know that H^s) are

bounded in L%hc9 i.e. bounded in Lξ over any compact subset of Ay CO- Therefore

there is a sequence {s/}, / — > cχo such that HΪJ(SI) converges, as / — >• CXD, in C1 and
also weakly in Lξ to some //^-(oo) which is necessarily //// on TT*^)!^. Since
\iAFff.j(Sl)\ -^ 0 as / — > CXD, /AF/^ = 0 weakly. By elliptic regularity, ///,- is smooth
and satisfies iΛFHιj — 0 in the normal sense. Clearly.

Next we show that, for each fixed /, the sequence {Htj9j = 1, . . . , } converges in
C° on any compact domain of Z)/ = 7 x (— z, oc) to a Hermitian metric /// on £ Dι

which satisfies
i = 0
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Consider again the pointwise distance d(Hij,Htk) between H^ and H& for any
positive integers j9 k, j < k say. We have

d(Htj,Hjk) ^

lim
s—+00

i Ha(s))]

'J v ' ds

ί 2~fds J K(s,x,y)\iΛFHί(y)\dy.
0 YxR

Again by Lemma 4.4,

maxd(Hij,Hik)(x) ^ C e~δλj.

On the other hand, for the function

defined on Dy, we have shown in the proof of Proposition 5.1 that

Pσ(Hij,Hik) ^ 0 .

By the maximum principle,

σ(Hij,Hik)(x) ^ max^/7 σ(Hij,Hik\ x G Ay

ds

Now σ and d are equivalent in a neighbourhood of zero, i.e. there are constants
c\,C2 > 0 such that for d sufficiently small,

cλd
2 ^ σ ^ c2d

2.

Thus for j sufficiently large, we have

for some constant C' > 0. Again since σ is equivalent to d, we see that {////}
converges in C° to some Hermitian metric, Ht say, on Π*(E)\Dr

By the discussions above, we see again that {//#}, or a subsequence of it,
converges weakly in Lζ to Hi on any compact subset of D, and Hi is smooth with

iAFHl = Hm iAFij = 0 .

Moreover, since

l^Hi) = lim
ds

ds

^ fds f Kl(yι,tι),(y2,t2),s]\iΛFHi(yl,tι)\dyίdtι .
0 YxR
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It follows from Lemma 5.2 and Lemma 4.4 that

759

and the bound O(e~δλt) can be chosen to be independent of i.
Finally, we now show that as / — > oo, the sequence {Hi} converges in C° to a

Hermitian metric H on £\YXR and H satisfies

iAFH = 0

d(H9Hβ ^ C

^ ) ( y 9 t ) = 0(e-^)9 t -^ oc .

As before, for any integers i9k, i < k say, we have

Δσ(Ht,Hk) ^ 0 .

On the other hand,

d(HhHk) ^

ds
ds

^ fds / K[(yl9tl)9(y29t2)9s]\iΛFHi(yl9tl)\dyιdtl g C
0 YxR

by Lemma 5.2. Here as before C is a general constant independent of i,k.
Now consider the function

C

on A, where φ = e2(λ~l}t. By (2) of Lemma 4.2, Pψ ^ 0. Choose C' large, C1 = ec

say, then ψ ^ 0 on dDi and that lim/.-.oo ψ = 0. Thus by the maximum principle,
we have

Φ ^ 0.

i.e.

It follows that Ht converges in C° to some Hermitian metric H on S\YxR as i tends
to oo. Then as before, elliptic theory ensures that H is smooth and

iΛFH = lim iΛFH = 0 ,
I—>00

i.e., the Chern connection of// is an Hermitian Yang-Mills connection on 8\γXR
with respect to the tube metric (g -f dt 0 ί/ί) This proves (1) of Theorem 2.1.
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By the construction of H, it also follows that

= lim

and

The fact

shows that // extends continuously over IΌo on which it is the same as HQ, i.e. the
given unitary structure of £ over ΣQQ. Thus (2) of Theorem 2.1 is also proved.

We now go on to show (3) of Theorem 2.1. We need the following lemma.

Lemma 5.4. For the solution H obtained above, we have the following estimates
on its derivatives:

\AH-AH<\ =

\dAH,(AH,-AH)\=o(\\ f - > o o .

The lemma is a direct consequence of the proposition in the appendix. The proof
of the proposition involves an application of the Schauder estimates and a scaling
argument.

(3) now follows easily from Lemma 5.4, for by Lemma 5.4, AH and AH> must
have the same asymptotic limits as t — >> oo and clearly AH> limits to the lift to Y

of the flat stucture of £ over Σ^ . This completes the proof of Theorem 2.1.
With Theorem 2.1 in hand we can now describe the map from ΛΊ *(+,+) to

the set of gauge equivalence classes of ASD connections on Y x R.
Let £ E £c(+>+) be a holomorphic bundle on S representing an element of

Λi*M(+, -f) and let H be the unique Hermitian metric on £ as in Theorem 2.1. Note
that the smooth bundle underlying ε\γXR is necessarily isomorphic to the bundle E
as smooth bundles, thus we can identify the former with E and consider £ \YxR as
a holomorphic structure on E. The connection AH then is an ASD connection on E
over Y x R. In general it is not compatible with the metric HQ. However, we can
associate with it an ASD connection AHO on (E,H$) in a canonical way as follows.

Pull AH back to a connection AHO on (E,H$) by the positive self-adjoint gauge
transformation g of (E,H) (as well as (£,//o)) determined by

The connection AHO plainly has the same energy (finite or infinite) and asymptotic
limits (exist or not) as those of AH. Furthermore the uniqueness of Theorem 2.1
implies that the gauge equivalence class of ASD connections on (£,//o) represented
by AHO depends only on the equivalence class of Λίcw(+, -f ) represented by £, not
on £ itself. So there is a map from Mcu(+,+) to the set of gauge equivalence
classes of ASD connections on Y x R . By the discussion following the definitions
of Λίc(+j+) and Λ/ίCw(+5+), we see that this also gives a map from ΛΊ*(+, +)
to the set of gauge equivalence classes of ASD connections on Y x R.
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6. From Instantons on Y x R to Holomorphic Bundles on S

In this section, we prove Theorem 2.2.
Let (E,HQ) be a fixed complex Hermitian bundle associated with the principal

SU(2) bundle P = Y x R x SU(2). We identify connections on P with connections
on E compatible with HQ. In this section, connections on E will always be taken to
be compatible with the hermitian metric on HQ unless otherwise stated.

Given an anti-self-dual connection A on E with finite energy, it is well-known
that A determines a holomorphic structure on E, viewed as a complex vector bundle
on the complex manifold 7 x R C S. On the other hand, we have seen in Sect. 1 that
the one parameter family of connections [At] on Y obtained in an obvious way from
A converges in C°° to a flat connection [A^] (resp. [A-^]) as t — •> oo(resp. — oo)
and if |/4±oo] E F+9 then we can choose a gauge for E such that the connection
form and its covariant derivatives decay exponentially at the ends. Rewriting this in
terms of complex coordinates on S, we shall see that these are sufficient conditions
to extend the bundle E on Y x R over the whole S.

Theorem 6.1. Let A be an antί-self-dual connection on E with finite energy. If
\ £ P+, then the following three statements hold.

(1) The bundle E on Y x R with the holomorphic structure determined by A
extends to a holomorphic bundle 8 on S such that

(2) The restrictions of the bundle S over ΣQ and ΣQQ are unitary flat. The flat
structure on ΣQ, when lifted to 7, is given by [^_oo] and the flat structure on ΪΌo,
when lifted to 7, is given by [A^] .

(3) The Hermitian metric HQ on E extends continuously over ΣQ and Σ^ to
a Hermitian metric on 8. The extended metric agrees with the unitary structures
of the restrictions of £ on ΣQ and ΣQQ given in (2).

We prove Theorem 6.1 in a series of lemmas. Roughly speaking, we first extend
E and A locally by solving a local "3" equation. We then show that the local exten-
sions patch together to give a global extension. Finally we show that the extended
bundle satisfies (2) and (3). We shall only prove the theorem for the end Zoo- The
proof for ΣQ is almost identical.

Recall that 7 x R is the complement to the zero section of the line bundle L.
As in Sect. 3, let (w9z^) be a local complex coordinate on L coming from some
holomorphic trivialization of L. Let z = j-, then z = 0 represent points of Σooin S
and (w,z) is a local complex coordinate in S around these points. We can take such
a complex coordinate around any point of S in I^. So without loss of anything
we suppose U is a neighbourhood in S of some point in ΣQQ with (w,z) defined
on it. Clearly U contains a subset of 7 x R of the form 7 w x [Γ, oo), where W is
some open subset of Σ on which w is defined and T is some positive number. So E
and A are defined on U\{z = 0}. We first extend E over {z = 0} locally on each
such U.

For convenience of presentation, we denote e\ = dz, e^ = dz9 e^ — d*w and
e^ = dw, and we define σ(/Ί, . . . ,/ / ), for any j -tuple ( / i , . . . , / / ) of integers with
1 ^ // ^ 4, to be the total number of 1 and 2 appearing in z ' i , . . . , / / , for example



762 G.-Y. Guo

σ(l,2,4, 1) = 3. Note that by the formula of Ω0 on the cotangent bundle T*(U \{z =
0}) in Sect. 3, we have |eι|Ωo,|β2|β0 = 0(|z|),|e3 flo,|e4|fi0 = O(l).

Lemma 6.2. For U small enough, we can choose a gauge gu on £|t/\{z=o} such
that the connection form A satisfies the following condition:

Identify End(E\u\{z=o}) with the trivial bundle and A as a section of it by gu,

if
£ Aio...ijeio®eil® ..®eij, ./ = 0,1,2,... ,

where V is the coυariant derivative of the trivial connection on End(E\u\{z=Q})
T*(U\{z = Q}\ then

for some positive number δ .

Proof. We prove the following two claims. The result then follows.

Claim A) If B = Bιl...ιkeιl

that

then

eιk is a A: covariant tensor on U\{z = 0} such

* |->0,

1

Claim B) There is a gauge gu on £|ί/\{z=o} such that the connection form A of
the instanton satisfies

y = 0,1,2,....

Claim A) follows easily from the formula of Ω0 on the cotangent bundle in
Lemma 3.2.

To prove Claim B), we note that by the discussion in Sect. 1, we can choose a
gauge on E such that

\VJ

Aoo(A - A^)^ ^Ce~δt, t—*oo, 7 = 0,1,2,....

Here the covariant derivative V^ on End(E) 0 T*(U\{z = 0}) is induced by the
connection AVQ on E u\{z=o} an(l me Levi-Civita connection of the metric ΩQ on
T*(U\{z = 0}), hence it is different from the covariant derivative V required in
Claim B).

Since AQQ E F+, it is trivial on U if U is small enough. Thus, if neccessary
shrink U to a smaller open subset, we can choose a local gauge gu in which
A oo — 0 locally. So we have

i.e.

(**) 7 = 0,1,2,.
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To finish the proof, we induct on j. It is trivial for j — 0. Suppose \VkA\Ωo =
O ( y ) a n d l e t

then by Claim A),

Since A^ = 0, we see that

fc Vflbfeo ® . - ® eik) ,

where Vβ0 is the covariant derivative of the Levi-Civita connection of the metric
ΩQ on tensor bundles of £/\{z = 0}. By (**), it suffices to show that

|Λ0..,*VΩo(β/0 ® - ® eik)\Q, = O f μp J

Working out the connection form of Vβ0 under the basis {^1,^2^3,^4} (i-e. the
Cristoffel coefficients. This is of course a clumsy way, but the author knows no
simpler way of reasoning), we see that

and

It follows that

which together with (* * *) imply that

iΛ i* Vβo(έ?ίo ® - ®

This finishes the proof of Lemma 6.2.
The following Lemma is due to Buchdahl [4]. It is the key lemma in our local

extension of E.

Lemma 6.3. Let U be a neighbourhood of the origin in C2. Let A e Lj(U),
j ^ l,P ^ 4 be a matrix valued (0, \)-form on U such that

~dA+Af\A =-0,

then there is a matrix function g e Lj+1(C7), possibly defined on a smaller neigh-
bourhood, such that

~dg = -Ag .



764 G.-Y. Guo

Proof. See Lemma 8 in BuchdahΓs paper [4].
To extend E locally on U\{z = 0} over {z = 0}, we consider, following Bando

[2], a branched covering Um of U:

φ : Um —* U ,

where m is some positive integer. Pull back E and A on U\{z = 0} to Um\{zf = 0}
by φ. Denote the pull-back bundle and connection still by E and A. The identity of
E is pulled back to a cyclic transformation group Gm of order m of the pull-back
bundle on Um and the gauge gu to an Gm invariant gauge, which will be denoted
still by gu, for the pull-back bundle. Clearly Gm acts holomorphically. By simple
calculation, one sees that Lemma 6.2 implies that on (w',zf) plane,

\VJA\ = O
|z/|(/+l-m<5)y '

Thus for any given y, we can choose m large enough so that

and in particular we can suppose that A vanishes on z' — 0. On the other hand, the
anti-self-duality of A means that on both U and Um planes A satisfies

So by Lemma 6.3, shrink Um if neccessary, there is a matrix function g E Lj+l(Um)
such that

dg = -A°>lg .

Note that there are many functions satisfying the above equation, for if g is such
a one, so is gf for any holomorphic matrix function / on Um. Since A vanishes on
zf — 0, we see that 0(0, w) is holomorphic; thus we suppose g is the identity over
z' — 0, for if neccessary, we can always take g g~l(Q,w) instead.

Now let g'υ = gvg, under g'υ the connection form is given by

g~lAg + g~ldg = g~lA^g + g'ldg ,

i.e. it is of type (1,0). Thus g'υ is a holomorphic basis of the pull-back bundle on
Um\{z' = 0}. We extend the pull-back bundle holomorphically over {z' = 0} by
defining g'v as a holomorphic basis on Um.

Consider now the action of Gm on g'v. Denote by ίo the generator of Gm which

covers the multiplication by e~^ on the z' coordinate on Um downstair. Since gu is
invariant under Gw, we have

As both the action and the basis g'y are holomorphic, the matrix representation of

the action under the basis, that is g~l(e^z',w)g(z',w), is also holomorphic. On the
other hand, g is differentiate on Um, being in Lj+l(Um) for a given j large enough,
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one sees that g~l(e~^z',w)g(zf,w) is bounded, hence it extends holomorphically
over z' = 0, on which it is easily seen to be the identity matrix /. Consequently Gm

extends to a holomoφhic transformation group on the extended bundle which acts
as identity over {z1 = 0}. It follows that

9u = Σ t(9u)
t£Gm

is a Gm -invariant holomoφhic basis of the extended bundle on Um or perhaps a
smaller open subset. So the quotient of the extended bundle by Gm is a holomoφhic
bundle on U which clearly is a holomoφhic extension of the bundle E u\{z=ϋ} and
g'ύ projects to a holomoφhic basis, which we still denote by g'{j, of this extension
of E on U.

We now look at g" more closely. By construction

0V,w) = 0W*>)[' + 0~V,wM^

= 0t/(z', w)[g(zf, w) + g(e^z', w) + + g(e~(m~«*m z1 , w)] .

Let 7V(z',w) = 0(z',w) + 0(e^V,w)H ----- h g(e~(m~^*m z' ,w). Since both g'{j
and gu are Gm invariant, 7V(z',w) is a Gm invariant matrix function, as can be
seen directly. Thus it descends to a matrix function on U\{z = 0} which we still
denote by Tυ. Clearly on the (z,w) plane,

Since #(z',w) — » /, as z1 — » 0, we see that TU(Z, w) —> ml as z — > 0, thus it has a
continuous extension over {z = 0}, on which it is the constant matrix ml. Conse-
quently, gu can also be extended over {z = 0} at least continuously to give a basis
of the extended bundle on U and in turn the Hermitian metric HQ on E\u\{z=Q} can
be extended over z = 0 to give a Hermitian metric on the extended bundle which
is continuous and smooth away from z = 0 and in the w direction at z = 0.

Up to now, we have showed that locally E\s\Σσo extends over ΣQQ. We now show
that these local extensions, patch together to give a global holomoφhic extension
of E over Σ^. It suffices to show that for any U\ and C/2 as above, the transition
function of the two gauges g'{jλ and g'{j2, which is defined and holomoφhic on
U\ Π ί/2\£oo> eχtends to a holomoφhic ftmction on U\ Π C/2, for then the cocycle
condition follows from the continuity of the transition functions and the cocycle
condition for E\S\ΣOO.

Let 0ί/j = gu2T. So T is a function on U\ ΓΊ C/2\^Όo with value in SU(2). In
fact Γ is constant because the connection forms of the flat connection A^ under
0t/j and gu2 vanish. So in particular it is bounded. The transition of g'^ and g'{j2 is

Since TU} and TU2 are bounded, being continuous, the matrix function T
which is holomoφhic on U\ Π t/2\^oo5 is also bounded on U\ Π L^^oo? hence it
extends holomoφhically over U\ Π C/2 ΠlΌo. This proves the first half of (1) of
Theorem 6.1.

Next we show that the extended bundle is unitary flat over I^ with the flat
structure which, when lifted to over 7, is given by [A^]- This is quite obvious
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from the above discussion, for at z = 0, 0^(0, w)'s give a trivialization of the re-
striction of the extended bundle. The transition between #^(0,^) and #^2(0,w) is

Γ^TTV^OjW), i.e. Γ(0,w). As mentioned above, T is constant, thus #^(0,w)'s
give a flat structure of the restriction of the extended bundle over z — 0. Since T
takes value in ST/(2), being the transition function between two gauges of an SU(2)
bundle, the flat structure is also a special unitary flat structure. Since 0^(0, w)'s are
holomorphic gauges, the flat structures is compatible with the holomorphic structure.

Now take Y to be the boundary of a tubular neighbourhood of ΣΌo, small enough
to be covered by the C/'s in the above extension. (Of course the orientation of Y is
reversed, but it does not matter here.), Then the local gauges 0t/|y's determine the
flat structure [A^]. Since 0c/|y's have the same transition functions as 0^(0, w)'s,
we see that |/4oo] is the lift of the new unitary flat structure over ΣOQ. This proves
(2) of Theorem 6.1.

Since each of the original unitary gauges gu also extends over ΣQQ to a local
frame of the extended bundle, the Hermitian metric HQ on E extends at least con-
tinuously over ΣQQ to give a Hermitian metric on 8 which, restricted to ZΌo, is
clearly the same unitary structure of 8 on Σ^ defined by the transition T above.
This shows (3).

Finally, to complete the proof of Theorem 6.1, we show that the second Chern
number of the bundle 8 on S thus obtained equals J^T H^ll^. Since 8 is an element
of £c(+, +), Lemma 5.2 implies that there is a smooth metric HQ on 8 which extends
the unitary structures over ΣQ and ΣΌo, i.e. agrees with HQ on the ends. On the other
hand, by uniqueness the solution H in Theorem 2.1 for 8 must be the Hermitian
metric HQ we start with. So in this case, ( 1 ) of the proposition of the appendix is
satisfied for both ends ΣQ and Σ^. Consequently we have the following estimates:

M//o' -AHo\ =o(l), f-> ±00,

and
\dAH,(AHi-AHo)\=o(l)9 t^±oo.

On the other hand, by the Chern-Weil formula, we have

Λ FHί ) - / Tr^ Λ FHt )
D,j

= f Ίτ{(AH, -An, ) Λ [2FH> +dAfI, (AH> -AH,)+-(AH, -AH, ) Λ (AH> -AHo )]} .
SD,j ° ^

It follows that

= . Urn -
V-+00 sπ

u, (AH, -AHo)+ 2-(AH ύ -AHo)/\ (AH, - AHo ))] \

~
δπ YxRπ

This completes the proof of Theorem 6.1.
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Theorem 6.1 essentially gives the map of Theorem 2.2. We now describe this
in precise terms. We need two small lemmas to put things straight.

Lemma 6.4. Let U be a local coordinate neighbourhood of some point of Σ^ as
above. Let AQ and A\ be two I -forms on £/\ΣΌo with values in the Lie algebra
su(2) of SU(2) and gu be a function on t/\IΌo with values in SU(2). Suppose
the three are related by

If there is a real number δ > 0 such that for k ^ 0,

where V denote the covariant differentiation of the trivial connection on ί/\ZΌo x
su(2) tensor ed with the Levi-Cίvita connection of the tube metric on forms, then
9u(y>t) converges to some constant SU(2) valued function on YlunΣoo* hence also
on U Π Î .

Proof. This is simple. We write

Since gu is SU(2) valued, it is bounded. By the hypothesis

\dgu\Ωo ^ C(p4o|flo + ^i l^ i) = Ce *•

Here and in the following C denote some general constant large enough. In particular

^ C(e~δt),
, dt

and

\dγgu\ g Or*.

The result then follows easily.
In Theorem 6.1, we restrict ourselves to instantons on E compatible with HQ.

Of course the construction applies to instantons compatible with other Hermitian
metrics on E as well.

Lemma 6.5. Let AQ be an instanton on (£,HQ) and A\ be another one on (E,H\)
for some other Hermitian metric H\ on E. If AQ and A\ are gauge equivalent by
a gauge g G Aut(£), then the holomorphίc bundles £0

 ana £\ on $, constructed
from AQ and A\ in Theorem 6.1, are isomorphίc as bundles in £c(+,+) by an
isomorphism which extends g and is unitary with respect to the unitary structures
of SQ and S\ over the ends ΣQ and ZΌo constructed in Theorem 6.1.
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Proof. Note that the gauge transformation g is a holomorphic bundle isomorphism
between EQ\YXR and S\\YXR. We shall show that g extends locally over {z — 0} on
each local coordinate U as above to give a holomorphic isomorphism between SQ\U
and S\ u> The extension is also unitary on {z = 0}. Then by the continuity of the
extensions, these local extensions of g necessarily agree on overlaps, hence gives
a global holomorphic extension of g. The extension is by construction unitary on
ΓOQ. Thus SQ and S\ are isomorphic as bundles in £c(+, +).

To show that g extends locally on C7, recall that in the construction of £Q
and £ι, there is an 577(2) gauge #o on (E, HQ)\U\ΣOQ and an SU(2) gauge g\ on

such that the connection form of AQ under go satisfies

= 0(e-*«)9 t^oo

for some real number <50 > 0, and the connection form of A\ under g\ satisfies

for some real number δ\ > 0. Recall also that there is a holomorphic gauge g$ of
SQ\U such that

for some GL(2, C) valued function TO(Z,W) such that Γ0(z,w) — » ml as z — > 0, and
there is a holomorphic gauge g" of EI\U such that

for some GL(2, C) valued function Γι(z, w) such that T\(z,w) — > m/ as z -> 0. Now
let ^ί/ be the matrix of the gauge transformation g under the basis g$ and g\9 i.e.,

β(9Q) = 9ι9u •

g being a gauge transformation between (E,HQ) and (E,H\), we see that gft/ is
SU(2) valued. Since g pulls A\ back to ^4o5 we have

i.e.,
9ϋl(i9u =AQ

It follows from Lemma 6.4 that

as ί — > (X), or equivalently z — > 0 on U, for some SU(2) valued function #00 on Σ^
which is actually constant. Now consider the transformation g under the holomorphic
gauges #o and #'/,

is defined and holomorphic on U\Σ infty , for g is an isomorphism be-
tween holomorphic bundles £o|ί/\Γoo and ε\\u\Σoo. By the above discussion, it tends
to goo as z goes to 0, so is bounded, hence extends holomorphically over U Π ΣQQ .
Consequently, the bundle isomorphism g extends over U Π IΌo to give a bundle
isomorphism of £o|t/ and £ι\u The extended isomoφhism is clearly unitary on
U Π ΓOQ. We are done.
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Lemma 6.5 implies in particular that the extension of E in Theorem 6.1 is in-
dependent of the choices of the various gauges and representatives of the flat limits
on 7, for by Lemma 6.5, the identity map of E extends to an isomorphism between
bundles constructed from different choices made in the construction. Thus these bun-
dles are actually the same one under different holomorphic trivializations.

By Lemma 6.5, the class of λ4*u(+,+) represented by the bundle E constructed
in Theorem 6.1 depends only on the gauge equivalence class of the instanton A,
thus there is a map from M*(+> +) to Λ4*M(+,+), hence also ΛΊ*(+,+), which
we define to be the map in Theorem 2.2.

To prove that the map is injective, it suffices to prove that the composite of it
and the map defined in the last section is the identity map of ΛΊ*(+, +). But this
follows trivially from Theorem 6.1 and Theorem 2.1. Thus the proof of Theorem
2.2 is completed.

In the rest of this section, we explain why if (2') (see Sect. 2) is true, then the
two maps constructed in the last section and this section would be inverses of each
other.

So assume that (2') is true, then the Hermitian metric H of Theorem 2.1 sat-
isfies (1) of the proposition in the appendix over both ends ΣQ and Σ^. By the
proposition, (3') also holds. Thus the map constructed in the last section is a map
from Λi*(-f,+) to Λί*(+,+) and is a left inverse of the map in Theorem 2.2, and
we only need to show that it is also a right inverse.

To this end, we start with a bundle E representing a given element of Λ4*u(+, -f ),
apply Theorem 2.1, we get a Hermitian metric H on E whose Chern connection
AH is an ASD connection on (E9H) over Y x R. The assumption that (2') holds
implies that AH is an instanton on (£,//). We then pull back AH to an instanton
AHO on (E,Ho) by the gauge g e End(jδ"), positive self-adjoint with respect to both
HQ and H, determined by

for any sections of E. The connection AHO then represents a class of 8 in Λί*(+, +),
which is the image of the map.

Now apply the other map to the element of Λf *(+,+) represented by AHO, by
definition we get the element of Λί*M(+, +) represented by the bundle EQ constructed
from A H0 in Theorem 6.1. On the other hand, it is clear that the bundle constructed
from AH in Theorem 6.1 is the original bundle E. Since AHO and AH are gauge
equivalent by g E End(£), by Lemma 6.5 EQ and E are isomorphic as bundles in
£c(+>+) by an isomorphism which extends g and is unitary over the ends. Thus
we come back to the original element of Λί *„(+,+) represented by E. So it indeed
is also a right inverse.

A. Appendix

In this appendix, we prove Lemma 5.4 of Sect. 5. We state the result in a slightly
stronger way.

Proposition. Let 8 G £c(+,+) be a holomorphic bundle over S representing an
element 0/ΛΊc(+,+) and let HQ be a Hermitian metric on E as in Lemma 5.2.
Suppose H is a Hermitian metric on E\YxR which is a bounded solution to the
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Hermίtίan Yang-Mills equation on Y x R with respect to ΩQ. Then the following
two conditions are equivalent:

(1) H extends continuously over ΣQQ (Σo) on which it differs from HQ by an
endomorphism constant under flat unitary gauges.

(2) The following estimates hold:

M#0' -An =o(l), t -> oo (resp. - oo) ,

\dAHt(AH ~ AH)\ =o(l), t -> oo (resp. - oo) .

Proof. (1)=X2). Since the proof does not depend on which end is considered,
we take the end to be 7 x (0, oo).

To start, let #3(0,r) be the ball of radius r > 0 in P? centered at origin and
g = gιmdxl ® dxm, where x is the standard coordinate of R3, and let be a Riemannian
metric on #3(0,r) such that

Consider the "box" £3(0,r) x (-1,1) in R3 x R1 = R4 with the Riemannian metric
g + dt 0 dt and the operator

-I/I α- Λ—--Λ δλ (λ- ϊ—9 2 g dt 2 9 dt '

Since Δg = —J= dj(g*k\/det ^fδyt), it is easy to see that the error term δήg is small
Λ/det gf

in the sense that the coefficients of its second order entries are bounded by O(\x\)
and its first order by 0(1).

Let D\ D DΊ D jDs be relatively compact domains of #3(0,r) x (—1,1). We need
the following two standard elliptic estimates. One can find their proof in [11] from
which we also adopt some notation here.

Lemma 1. Let r be small enough. Let 0 < α < 1. For any C2 function u on
£3(0,r)x(-l,l),

Hl,α;D2 ^ CίHo^+lP^lo.^)

where C is a constant depending only on the bound of the error term δAg and the
domains D\ and D2.

Lemma 2. Let r, α be as in Lemma 1. For any C2'α function u on #3(0,r) x

(-1,1),

IMI2,0;U3 = C(lMlθ;D2 + l^M0,α;02)'

where as above C denotes a general constant depending only on the bound of the
error term δΔ and the domains DΊ and D^.

As in the main text, let h be the automorphism of E defined by H = h'H^. Then

AH - AH, = lΓλAH,h - AH, + h~ldh
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and

dAH,(AH-AH*) = d(AH-AH,)+AH, Λ (AH - AH>) + (AH -AHi)/\AHi

= -h~ldh Λ h~lAH'h + h~ldAH,h - h~lAH> f\dh- dAH> - h~ldhh~l Λ dhno no no no

+h~lddh + AHi Λ (AH - AH> ) + (AH- AH, ) Λ AHi .

Let e be a local holomorphic frame of £ on a neighbourhood U of some point
at ΣQQ as in the remark following Lemma 5.2. We can cover the end by a finite
number of such neighbourhoods. We then have, for the connection form AH> under
the frame e,

in addition to

It suffices to show that

\ d h \ = o ( l ) , t — > o o ,

and
\V(dh)\ =o(l), t — > o o ,

where /z, by an absue of notation, is the matrix of the automorphism h under the
frame e and V is the covariant derivative on forms by the Levi-Civita connection
of Y x R. We do this by refining a scaling argument initially used by Donaldson
[6] on compact manifolds. Note that (1) implies that h is a constant matrix, h^
say, on Σ^, and

\h - AOO| = 0(1), t — > oo.

To show
\dh\=o(l\ t — >oc,

we argue that the existence of a sequence of points {zj = (yj,tj),tj — > 00} E Y x R
such that

\dh\(zj) = πij ^ c, j — > oc

for any given c > 0 would lead to a contradiction. Choose a normal coordinate Ωj
of y7 so that Ωj is modeled on £3(0,r;) with 77 at the center and the Riemannian
metric of Y in this coordinate is given by

where x is the standard coordinate in £3(0,r7). Since Y is compact, we can choose
Γj so that Γj ^ r if r was chosen small and C7 so that Cy ^ C for some C. Denote
by 5y the 4-dimensional ball of radius ^ and with center (0,/y) in 53(0,r7) x

(ίy — 1,/y -h 1). By taking another sequence if necessary, we may always assume
that

\dh\(zj) ^ \ sup{|dA|(z)} .
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Now rescale each four ball B4 to the standard four ball B4(Q,r) in 53(0,r) x

(—1,1). The Riemannian metric of Y x R in B4 is pushed to

_^_9j ~ m]

on #4(0,r). Thus the operator P on Y x R restricted to B4 is equivalent to

on #4(0,r). We shall mainly need their conformals

g

f. = lδιm + ^Cj x\2 j dxl (8) dxm + Λ ® Λ

and

Since the term ^C/|jc|2 in g'j is uniformly bounded by C|jt|2, we see that the operator

δAg' is unifomly small in an obvious sense.

Consider now the sequence of matrix functions {hj} on £3(0,r) x (—1,1), where
hj is the pullback of A|β,X(,,-ι,fy+i). Clearly \dhj(o)\ = c and \dhj(z)\ ^ 2|rfλ/ (0)| =
2c with the metric g^ hence also with the standard metric (replacing c by some

other constant if necessary). Note that the complex structure on B4 induces a com-

plex structure <97, say, on $4(0, r). For different j, <9/ are in general different and
in particular they are in general different from the standard complex structure on
B4, although in the case that the metric on Y x R is Kaehler we can choose the

coordinates in B4 so that ~dj coincide with the standard one on £4(0,r) for all j.

The metric g'j is then a Hermitian metric with respect to the complex structure δy ,

thus there is an associated fundamental 2-form. Let Λj be the adjoint to the wedge
product by this fundamental 2-form on forms. The Hermitian Yang-Mills equation
for H on Y x R implies that, on £4(0,r),

Pg'hj = iΛjdjhj Λ hjldjhj + iΛ'βjhj Λ hJlAH^hj 4- iΛjAH£ Λ fyhj - iΛjFH>hj .

The terms \djhj\ and \djhj\ are bounded by \dhj\ ^ 2c which does not depend on
the complex structure.

By Lemma 1,

\hJ ~ ̂ ll.α ^O.fr) = C^ ~ k™\W\^r) + l^^lo ^O.Jr)) '

We know that \hj — /Zoo|o;5
4(o,r) = K^U4 — ̂ oo)| = o(l), and since \dhj(z)\ ^ 2c on

54(0,r), it is simple to see that the right-hand side of the preceding equation is

bounded uniformly in j. Thus |^V/2/|o;5
4(o,r) = \^^j^jhj\Q β\Q,r) is also bounded.

It follows from the above estimate that hj is bounded in C1?α over B (0, |r). By
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Arzela's theorem we therefore conclude that, by going to a subsequence if necessary,
hj converges in C1 to some h'^ on #4(0, |r). In particular

1^(0)1 = lim \dhj(0)\ = c .
J— >oo

On the other hand, the points of the ball Bj tend to infinity, thus hj tends uni-
formly to /Zoo, so h'^Q = hoc which is constant under e. This contradicts |ί//
c. This shows

\dh\=o(l), r — > o c .

To show
\V(dh)\ =o(l), t — > o o .

Let z be any point (y,t) E Y x R "near" the end Σ^. So it is in some U as above.
Choose a normal coordinate neighbourhood of z modeled on 5(0, r) as above, but
without scaling. Then as before the equation

iΛddh = iΛdh f\h~ldh + iΛdh Λ h~λAH>h + /A4#0 Λ dλ - /

holds on #(0,r) with the induced tube metric. By Lemma 2,

We know that |A — ^oolo 5(o zr) ~ °(^) anc^ l^lo^ω ar) = °(0 So we only need to

show that |PΛ|α.j(0f|r) = 0(l)
By Lemma 1 again, we have

lAll,α;5(0,fr) =

In particular

We also have
A

and

These and the general fact that

together imply that the | |α.^/0 2r\ norm of the right-hand side of the last equation

above, hence also |^|α.^(0ar) is bounded by 0(1). This completes the proof of the

first step.
(2 )=>(!). Let h, e and U be as above. It suffices to show that for every such local

neighbourhood U of IΌo, the matrix form, denoted by h itself, of the automorphism
h under the local frame e extends over ZΌo and is constant over there, for then
we can define H over Σ^ by the formula H = hlH§ and by the boundedness of
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H the extension must also be a Hermitian metric and also determine the given flat
structure of £ 1 .̂

To this end, let {z,w} be local complex coordinates in U as in Lemma 6.2. We
can write

JΊ dh J dh j_ dh J dh ^_
dh = —dz -f — dz + -T— dw + ^— dw .

dz dz dw dw

The condition

implies that
\dh\=o(\\ ί^oo.

By claim B) of Lemma 6.2,

(I)

and
dh

(π) *, a*
dh

It follows from (I) that h(z,w) converges to some /z(0,w) as z —> 0 and from (II)
/z(0,w) is constant.
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