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Abstract: We examine a family of probability measures on RL with real parameter
ζ > 0 and integer parameters N9L > 0. Each such measure is equivalent to the lat-
tice version of a one-dimensional discrete chiral-invariant fermionic quantum field
theory with quartic interaction, with N the number of flavours. After applying the
Matthews-Salam formula, the model becomes a statistical mechanical model of a
chain of continuous Gaussian spins, coupled with a certain non-standard weight
function. Finally, the model can also be considered as a probability measure on the
set of tridiagonal matrices with fixed off-diagonal and random diagonal entries.

Our analysis shows how to develop an asymptotic expansion in I/TV, valid for all
L and £, for the fundamental expectation values. From this it follows that the two
point fermion correlation function decays with a mass which agrees to the leading
order in l/N with the mean field value calculated by the argument of Gross-Neveu.
The analytical technique we develop in essence combines a transfer matrix method
with the Laplace method (steepest descent) for asymptotics of integrals.

1. Introduction

It was argued some years ago [NJ, GN] that a chiral invariant fermion theory with
quartic interaction will acquire a mass dynamically by spontaneous symmetry break-
ing. The effective potential shows degenerate minima in the one-loop approximation,

leading to a ground state with non-vanishing expectation of ψψ.
Rigorous control of multi-phase theories was developed by Glimm-Jaffe-Spencer

[GJS] who devised an expansion about the mean field theory by combining a cluster
expansion with an expansion in phase boundaries.

The present paper is part of a program which aims at understanding the mech-
anism by which mass is generated dynamically in models with four-fermion inter-
actions. We here consider a one-dimensional discrete chiral lattice model and show
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that a fermion mass is generated without symmetry breaking. Our procedure com-
bines transfer matrices with a steepest descent method to produce an asymptotic
expansion in l/N which agrees to leading order with the mean field theory and can
be viewed as an alternative to the expansion proposed in reference [GJS].

1.1. The Model. For fixed ζ > 0 and integers N > 0, L even, we consider the joint
probability measure μι(Φ) on Rz, whose density #/,(</>) is given by

where (φ, φ) = Σ
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are L x L matrices. The partition function

ZL = Sll (, =ι \
(1.3)

normalizes the measure.
We will be interested in the large N behavior of the limiting measure μ obtained

from μι as L — > oo. The existence of this limit will be a consequence of our analysis.
The measure μL arises from the application of the Matthews-Salam formula to

the one dimensional fermionic system on a lattice A C aL with \A\ = L9 described
by the action

(1-4)

Here s/(ψ, ψ} is a functional on the Grassmann algebra generated by the fermionic

field (^>*A) wim scalar product, ^ χ — ΣjaψJ<xX«> running over "flavours"
j = 1, . . .,N, and spins, α =|, |. /D is the symmetric difference operator whose kernel
is given by i

σ3 ,

where α is the lattice spacing and σ^ the diagonal Pauli matrix, aλ2 — ζ2 is a
dimensionless coupling constant.

This equivalence requires in particular the elimination of the spin degrees of
freedom. To see how this can happen, we set Φ = ΦL 0 1 2, where ln is the n x n
identity and notice that, due to the fact TT

L = —Γι,

(1.5)

(1.6)

det(ιαD + (ζ/VN)Φf = det(ΓL + (ζ/VN)ΦL)2N .

This (det)^ can now be written as the TV-flavour Grassmann integral

/ Π dψxd
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The Matthews-Salam formula is based on the identity

' ̂  ( 1 7 )'

Using (1.5)-(1.7), the partition function (1.3) can thus be written as a Grassmann
integral

ZL = fUdφxdιl*xe«W. (1.8)
xEΛ

Remarks.

1. The action (1.4) is the one-dimensional Euclidean lattice version (the only
direction is time) of the Gross-Neveu model [GN]. The equivalence between (1.3)
and (1.8) can be easily extended to ^/-dimensional regular lattices with d>\, Cayley
trees and other graphs [FHM]: If ^ is a graph with L sites labeled by {!,...,/,},
ΦL is as in (1.2) and ΓL is a conveniently defined skew-symmetric matrix with
(ΓL)ij = ±1 if ij are linked sites in ̂  and 0 otherwise.

2. The model in aZ} is of special interest since the massive version of (1.4) is
perturbatively renormalizable and asymptotically free in the ultraviolet [GK, FMRS]
(provided N > 1 ), which allows one to remove the lattice cutoff by a limiting
procedure. Our results in d = 1 are uniform in the lattice spacing a provided
λ = λ(a) = (/A/a for any 0 < £ < oo.

3. The symmetry φ — > —φ of the measure (1.1) corresponds to the discrete chiral
symmetry

ψ^e^il/, ψ^ψe*?*2 ,

of the action (1.4).
4. Most of our results are valid if we consider a measure VL defined

in CL whose density is given by (1.1) with det(Γ + (ζ/^/N)Φ) replaced by
I det(Γ + ((/Λ/ΛOΦ)!- By the Matthews-Salam formula, this measure represents a
fermion system described by the action (1.4) with the local interaction (ψx ψx)

2

replaced by

, (1-9)

where 02 is the imaginary Pauli matrix. Notice that (1.9) is invariant under the
continuous chiral transformation

ψ^jfail/, lA-^e'Ή 0G[0,2π) .

The measure VL is thus £7(1) invariant.

1.2. The Mean Field Approximation and Peίerls Estimate. As usual, the first step
in understanding a probability measure in equilibrium statistical mechanics is to
consider the mean field approximation. It consists here in conditioning the measure
μι(φ) on constant configurations {φi = <p}f=1. Denoting the mean field density by

it follows that:

Proposition 1.1. For any ζ > 0 and L > 2/ζ2 - 2,

(i) hL(φ) = hL(-φ\
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(ii) hι(φ) achieves its maximum at φ = ±φ* = ±mι^/N/ζ, where mi = mι(ζ)
is the unique positive solution of the "mean-field" equation

,L fL(m)

where fι(m) = det(Γ^ + m\L) (note that (1.10) does not depend on N).
(iii) For large L, mL is given by

mL=m(ζ) + 0(l/L)9

where m(ζ) = (2(1 + ζ4)1/2 — 2)1/2. Furthermore, φ = 0 is a local minimum of
hL(φ) and

hι(±φΊ > CLN
Ai(0) -

for some constant c = c(ζ) > 0.

From Proposition 1.1, the effective potential (see details in Sect. 3)

VL(φ)=^lκhL(φ) (Ul)

is a symmetric double-well-shaped potential with minima separated by a barrier of
width O(VN) and height O(N) at φ = 0. When N — > oo, the density hL(φ) can be
well approximated by a sum of two Gaussians centred at φ = ±<p*, corresponding
to two pure phases. The expectation with respect to the mean field measure of any
function K(φ) is of the form of a Laplace integral. It is thus given, in the limit as
L — > CXD, by

00 1

Eh[K] = lim / dφhL(φ)K(φ) = -(K(φ*)+K(-φ*)) . (1.12)
L^°° -oo 2

To refine this double-well picture, it is necessary to have control over large
fluctuations between the two minima (i.e. a Peierls estimate) and small fluctuations
about the minima. This is usually done by use of an explicit — /(Vφ)2 term in the
action. In our present problem, no such gradient term is present. As an indication
that nonetheless the measure does inhibit large fluctuations, we have a Peierls-type
estimate:

Proposition 1.2 (Peierls Estimate). Given an Isίng-like configuration {σ/ =
/ — 1,...,L, let us denote by σL the diagonal matrix whose entries are σ/ί// and
set /z,(0") = det(Γ^ + σ^). There is mo such that for m > m^ there exists δ < 1,
uniformly in L, such that

fι(σ)
^ δp ,

Mm)

where p is the number of flips in the spin configuration σL.

In higher dimensions, such an estimate is an indicator of symmetry breaking: at
low temperatures, this energy estimate dominates over the entropy estimate, and the
system shows multiple phases. In one-dimension as here, no such conclusion is pos-
sible, since the entropy estimate dominates at all temperatures (i.e. all values of ζ).

Mass generation is in fact expected to occur in the two or higher dimensional
lattice Gross-Neveu model (1.4). Balaban and Gawedzki [BG], for example, have
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established spontaneous symmetry breaking in the two-dimensional pseudoscalar
Yukawa model, where an explicit gradient term is present. Recently mass gener-
ation in the two-dimensional Gross-Neveu model at large N has been proved by
Kopper, Magnen and Rivasseau [KMR] with a different choice of ultraviolet cutoff
than the lattice cutoff we use.

Before we turn to the original measure (1.1), we shall write the fermion mass
gap value in the mean field approximation. For this, we introduce the two-point
function

(Ψt Ί'yΪL-J-f Π dfak^'Ήk'Ψy (1.13)
^L X£Λ

and denote by {ψx ψy} its thermodynamic limit. The fermion mass gap m (inverse
correlation length) is then defined by

The mean field mass gap mMp is obtained by setting φl . = φ, i = 1,...,L, in the
Matthews-Salam representation of (ψx ψx).

Proposition 1.3. The mean field mass gap WMF, is given by

(1.15)

1.3. The Main Results. Our first main result controls the partition function of the
model.

Theorem 1.4. Given ζ e (0,oo), there exist NQ = Nv(ζ), c0 = c0(C) > 0 and
c\ = c\(N9ζ) € (0, 1), such that, if N > NQ the following holds:

ZL =

Here v > 0 is given by

v = sup /(*,;;)- In -^ >0 , (1.16)

where J - {(z,z7) G [0, 1]2 : z + z' ̂  1},

-(i-χ- ^)in(i -χ-y) (i.π)
with e

g(z) = (1 -z)ln(l -z) -z Inz - In

and μ\ — μ\ (C) < 1 is an eigenvalue of an associated integral equation (4.16).

Remark. f(x,y) is a concave symmetric function with maximum at (f,f) G «/,
where

varies from 0 to \ as £ varies from oo to 0.
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The positivity of v leads to a free energy

F = lim ( l / L ) In Z/, = vN + O( I ) .
L—> oo

The next result shows that the fermion two point function has an exponential
decay rate given to zeroth order in l/N by the mean field value:

Theorem 1.5. For any ζ e (0,oo), there exists NQ = Λ/o(0, such that for N > NQ
the following upper and lower bounds:

hold with m = m(ζ) = mMF + O(l/N).

The proof of Theorems 1.4 and 1.5 is based on a formula which expresses
det(Γ/, + (C/λ/ΛOΦi) as the generating function of a monomer-dimer problem (see
e g [L]) with the monomer activity at site / proportional to the random field φj
(Theorem 2.3). This provides us with a way to write the partition function Z/, as
the trace of a (N + 1) x (N + 1) symmetric matrix T raised to the power L, multi-
plied by a projection matrix to enforce the correct boundary condition at each end.
For small N, T can be explicitly diagonalized with its largest eigenvalue govern-
ing the behavior of expectation values in the measure μ/,. When N is large, T is
approximated by an integral transfer matrix whose eigenvalues can be evaluated by
the Laplace method.

The main results of this paper, Theorems 1.4 and 1.5, give the sense in which
the 1/TV-expansion is an expansion about the mean field theory.

This paper is organized as follows. In Sect. 2 we present our determinant ex-
pansion. We prove Propositions 1.1, 1.2 and 1.3 in Sect. 3. Theorem 1.4 will be
proven in Sect. 4. Section 5 is a general discussion of higher order terms in the l/N
expansion. The generation of a mass gap will be analyzed in Sect. 6. Finally, in the
concluding section, we discuss features of the model which concern correlations of
the φ field (i.e. ψψ correlations).

2. The Monomer-Dimer Expansion

We start by writing the determinant in (1.1) in a power series of {φj}j=l. Let
& — [19L] Π Z, Z even, and set

ΰL) (2.1)

(later we shall set $, = (ζ/VN)φi, ί = 1,...,L). Since the determinant is a multi-
linear function of the matrix elements, the Taylor expansion of FL is given by

Σ (2 2>

where d/dΰγ is shorthand for the multiple derivative Π/ey ^l^ί and $7 = ΓLer ^/
To write FL as a monomer-dimer problem, we introduce some notation. For a

given X C <£ , X denotes the subset of [— 1/2, Z + l/2]_obtained by replacing each
/ G X by the unit interval centred at site /. Let (X\9 . . . ,Xn) be the decomposition of

X into disjoint subsets and let (X\,...,Xn) be the partition of X with Xι = Xi Π Z.
Calling this the regular partition of X, it is such that all sites in Xι are in consecutive
order and dίst(Xί9Xj) ^ 2, iή=j.
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Lemma 2.1. For X C <g , let (Xι,...9Xn) be the regular partition of X. If
Y = Se\X = Xc, then

,, detΓμr2 | - - -detΓμζ.1 (2.3)

is equal to 1 provided |Jζ | is even for all i = l,...9n and 0 otherwise.

Proof. To prove (2.3) it suffices to show that

This follows by noting that dFi/dΰi = det^4z , where AΪ is the cofactor matrix of
the element $z . Lemma 2.1 is then proved since detΓ/t = 1 if k is even and
0 otherwise. D

We now consider objects in JS? called aimers which consist of a bond and its
end points. To each non-overlapping collection of dimers in j£?, the set X of sites
covered by this collection is such that (2.3) is nonvanishing. Conversely, to each
X C JS? whose regular partition (X\9...9Xn) is such that (2.3) is different from 0,
there exists a unique dimer configuration with X being its covered set. This one-to-
one correspondence leads us to the following definition:

Definition 2.2. X is a compatible set of sites if it coincides with the covered set
of a dimer configuration in &.

We have proven the following theorem:

Theorem 2.3.

det(ΓL + (ζ/>/tf)ΦL) = Σ Π (t/VN)φj (2.4)
compatible Jf j£Xc

is the generating function of a stochastic monomer -dimer problem on JS? whose
monomer activity at site i is given by the Gaussian random variable

The remainder of the paper is based on Eq. (2.4).

3. Mean Field and Peierls Estimate

Proof of Proposition LI. By setting φι = φ, i = l,...9L in Eq. (2.4), the effective
potential VL, given by (1.11), can be written as

(3.1)

where
fL(z)= E z ̂ l . (3.2)

compatible X

The critical points of (3.1) are of the form φ* = m^/N/ζ with m satisfying the
self-consistency Eq. (1.10) which can be written as

- l ! - ι r ι (3 3)
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Since L is an even number, fι(z) is an even polynomial in z. This implies
V(—φ)= V(φ) and item (i) of Proposition 1.1.

In order to prove items (ii) and (iii), we shall find the set of all solutions
of (3.3) and determine their stability.

Equation (3.3) can be written as

m2

φ = EL,m(X) . (3.4)

Here £/,?m(X) is the mean of a discrete probability distribution on [0,1]:

PrL,m(X = l/L) = - — d C / V , / = 0, 1,...,L (3.5)
JL\m)

and CL(l) is a combinatorial factor which accounts for the number of different ways
of placing (L — /)/2 dimers on a lattice of size L. Notice that C/,(/) = 0 if L + /
is odd.

Cι(l) satisfies the recurrence relation

since the left-most site is occupied either by a monomer or a dimer. Note also that

CL(L) = 1 .

It follows that

/ / fT i 7\ /O \

C i ( / ) H V ' ) i f i + / i s e V eV (3.6)

otherwise

From this one can see that

1. jE/, j/n(X) increases monotonically from 0 to 1 as m increases from 0 to infinity;
2. for small m,

EL,m(X) = m2(L + 2)/4 + 0(m4). (3.7)

Therefore the self-consistency Eq. (1.10) has a unique solution if ζ2 > 2/
(L + 2). Since the correction to the leading term in (3.7) is negative, one can show
there is no solution if ζ2 < 2/(L -f 2). This proves (ii).

To prove (iii) we use Stirling's formula for any / £ {I,...,//} to get:

/ / L-l L-l

as L — > oo.
Therefore

CL(l)ml = exp{Z/w(//L) + O(lnL)} ,
where

1 +x l+x x 1 -x 1 -x
--- In -
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is a concave function with maximum at f determined by the equation

4i2

„><, -I*, =' <3 8)

The Laplace asymptotic method can now be used to approximate the probability
distribution of X:

L J oo

fL(m) = Σ, CL(l}ml ~ - / exp{LIm(x)}dx
1=0 Z-oo

(3.9)
[_^μ Λ^ i J

and

£ι,m(X) = r Σ -CL(l)ml~χ.

In these formulas, the fractional error is O(l/L).
The self-consistency Eq. (3.4) can thus be written as

m2 ί m2 \|

2C'-V4w; ' (3JO)

which has one unstable solution mo = 0 and two stable solutions

m± = ±[2(1 + C4)1/2 - 2]1/2 . (3.11)

The profile of V(φ\ in the limit as L —> oo, follows from the expression (see

= in ' (3 12)

where Jc(φ) = (1 + jπ)"1/2. This diverges logarithmically as φ — > ±00 leading to

a parabolic growth of V(φ) for large φ. For small φ, the logarithm dominates the
quadratic term and V(φ)/N ~ — 2x(φ) ~ —(ζ/\/N)\φ\ approaches 0 from negative

values. V(φ) attains to its minimum value at ±φ* =m±^/N/ζ which, by (3.11),
behaves as

* „ ί ^ί for ί sma11

~ \ V2N for ζ large

This implies

ί -Nζ2 for ζ small
V(φ*)^{ 0 , (3.13)

[-27V(ln2C2- 1) for ζ large

which concludes the proof of Proposition 1.1. D

Proof of Proposition 1.2. Each Ising-like configuration, {σ/}f=1, determines a

sequence {^i}f=ι of integers with ]Γ)£^ ^ = //, corresponding to the number of
sites between two successive flips (f\ and %,+\ being the number of sites from the
boundary to the closest flip).
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From Eq. (2.4)

compatible^ i£

For each compatible set X we distinguish dimers, whose covering set is X9

according to whether they occupy flip positions or not. By summing non-flip dimers
first, (3.14) can be written as

Λ(tf) = E/Λ-«ι(™+)//2-«2-«ι(™-) •" fsp-np-np^(ιn-) fsp+l-np(m+) , (3.15)
n

where the summation is over all /^-tuples n = (n\9...9np) £ {0,1}^ with HJ = 1 if

the position of the yth flip is occupied by a dimer and 0 otherwise. Notice that

Λ(/π_) = (-l)*Λ(w+). (3.16)

The full proof at this stage continues with an elementary cluster expansion ar-
gument to deal with the ratio of two partition functions. Since the result is not of
direct interest to the main body of the paper, this somewhat long argument will be
omitted.

To give instead a simple argument which needs only the binomial theorem, let
us assume

2x

with x given by (3.8). This is asymptotically true when either /o —» oc or m —>• oo.
Equation (3.17) can be obtained either from (3.9) or by iteratively solving the
equation

fs(m) = mfs-ι(m) + ft-ι(m)

for At = fs(m)/fs-ι(m).
In view of (3.16), (3.17) and (3.8), (3.15) can be written as

Similarly,
Mm)

Π p+ fp(m\y=l Jέj\m)

Equations (3.18) and (3.19) lead to

Mm)

_
l + j c

l-x\p

(3.18)

(3-19)
V '

(3.20)

with x, from (3.8) and (3.11), strictly less than 1 for any 0 < ζ < oo.
The cluster expansion argument converges for large m, and agrees with (3.20):

O(l/mβ))]p . D
Mm)
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Proof of Proposition 1.3. We start by writing the two-point function (1.13) in the
Matthews-Salam representation. Using (1.5 )-(!.?) with (1.6) replaced by

/ Π dψzdιk ^ - ψy exp
Z<EΛ

= 2N(ΓL + (ζ/VN)ΦL)ΰl

k=x/a, l = y/a, (3.21)

and recalling (1.1) and (1.3), the two-point function can be written as

(φx ψy)L = 2Nf Π dφί9L(φ}(ΓL + (ζ/Vϊf)ΦL)ΰl . (3.22)
i=l

(We have used the evenness of L in (3.21) to write (-ΓL + ϋL)~l = (ΓL + ^z,)^1-)
In the mean field approximation φj = φ, i=l9...,L and the density #/, is

replaced by hL. The mean field two-point function is then given by

(ψx - ψy)L = 2NfdφhL(φ)(ΓL

which can be written, from (1.12), as

(3.23)

where m — m+ is given by (3.11).
To avoid boundary influences, it is convenient to replace J£? by J&?' =

[-L/2 + 1,1/2] Π Z. The inverse matrix in (3.23) can be readily evaluated by the
method of cofactors. It is given by

!-'-l(OT) . (3.24)

We now use the Laplace asymptotic method to evaluate the right-hand side
of (3.24). In the limit as L —> oo, expression (3.9) can be used to obtain the fol-
lowing behavior:

(ΓL + m\L)-λ = (-1)^1 e-\ι-k\ιm(χ) + 0(1/z/)

-JcM/-*l/2

which, by using (3.8) and (3.11), gives

(ΓL + /fi l/Ow 1 - (-1)*+/[(1 + C4)1/2 - C2]'7""172 + 0(l/L). (3.25)

The proof of Proposition 1.3 follows from (3.23) and (3.25). D

4. Proof of Theorem 1.4

Asymptotic analysis and a transfer matrix technique will now be combined to eval-
uate the partition function ZL.
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Let μ^o be the free measure given by (1.1) with f = 0 and notice that
μ*L,o(Φ) — Πj μβ(Φj) is a product measure with

(recall detΓL = 1).
Inserting the determinant expansion (2.4) into (1.3), we have

r-
Π ( ζ / V N ) φ y , (4.1)

where X = (X\,...,X2N) πins over all collections of 2N compatible sets.
Performing the Gaussian integrals in (4.1), this equation can be written as

2(N-nL)\2(N-n,}

2n2

2(N

2nL

xa(2(N - m - (4.2)

where

and

«(*) = fdμo(φ) -f

if A: is odd

....ι f" ιseven (4-3)

In expression (4.2), the occupation numbers n = (WI, . . . , «L) count how many
' of copies of each dimer there are in the collection {Xi}. To each configuration

n a weight is associated due to the integration (4.3) at each site (the second line
in (4.2)). The sum over X with n held fixed is counted by the binomial factors.
The Kronecker delta δnι^ enforces the open boundary condition at each end.

Expression (4.2) can be symmetrized and written in the following compact form:

ZL = af' Tr(Po^) . (4.4)

Here α = α(2Λf), ^o is the projection |<5o)(<5o|, and T is a (N + 1) x (N + 1) sym-
metric matrix whose elements are given by

T(n,n') = S(n)R(n,ri)S(ri) (4.5)

with

and
Nl

where χ(P) = 1 if the relation P is satisfied and 0 otherwise.
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Theorem 1.4 will follow from the usual transfer matrix method: let {λj9ιl/j}J=0 be
the eigenvalues and eigenvectors of T listed in order of decreasing absolute value:
\λj\ ^ |A/+ι | . Let us assume that λo > λ = sup7>j \λj\. The partition function can
thus be written as

(4.6)
ι=0

The eigenvalues of T are given by the following result which will be proven
using asymptotic analysis.

Lemma 4.1. For any 0 < ζ < oo, there exist NQ = Λ/b(0, nQ — wo(C) and <?o =
such that, for N > NQ, the first n0 eigenvalues of T can be written in the following
form:

7 = 0,1,. - . , * < > , (4.7)

«o is chosen so that |μ 0) — μj0) ^ (9(1) for all iή=j ^ HQ. Here f =

f(x,y) = f(x,x) is defined in Theorem 1.4. The quantities μ = 1 #ra/ μj0),
y = 1,...,JV, are determined by an associated integral equation (4.16). Moreover

sup

Remark. We only really need (4.7) for 7 = 0, 1.

Conclusion of Proof of Theorem 1.4. In view of (4.3) and Lemma 4.1, (4.6) can
be written as

ZL = (δ0\φ0)
2[c0e

vN(\

with

for any 0 < ζ < oo (recall 0 < f < l / 2 by (1.18)). This concludes the proof of
Theorem 1.4. D

Lemma 4.1 will be proved by finding a workable continuum approximation
to the matrix T. We begin by writing an asymptotic expansion in \/N. In order
to apply Stirling's formula to expression (4.5) it is convenient to introduce a set
AM€(1/NZ)2 given by

AM = {fez7) e [1/M, I]2 Π (l/N Z)2 : z +z7 ^ 1 - 1/M} ,

where M will be taken depending on N with M/7V — > c as Λf — > oo for some
0 < c < 1/2. We set ̂  — ^v,oo and notice that AM excludes points closer than
l/M to the border of J>N.

Writing (n,nf) — (Nx,Ny), M can be chosen such that if (x,y) G AM,

(4.8)
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with K being any of the functions NX, Ny or N(l — x — y). The transfer matrix
(4.5) can thus be written as

T(Nx,Ny) = =L(*> y} exp {Nf(x, y)} (l + ̂ ~ + ° * ' (4'9)

where / is given by (1.7),

and

The next proposition gives us properties of f(x9 y) which will show that T can
be approximated for large N by an integral transfer operator.

Proposition 4.2. Let f be given by (1.17). It follows that

(i) the critical points of f lie on the circle with centre ((1 -f (~2)/2,(l -f
Γ2)/2) and radius ((1 + C~4)/2)1/2;

(ii) / is a symmetric concave function on the domain «/ = ̂ ^. It attains its
maximum at (x,x) G ./, where x is the solution (1.18) of

2 φ^_x) = l
1 — 2*

wA/cA w gf/t ew asymptotically by

( (1/2C2)[1 - (1/2C2)] C » 1

1/2(1 -C2/2) ί<l

(Notice that (jc,Jc) G J^V,M, provided 2/M < ζ2 < Af/2);
(iii) /Ae Hessian of f at (x9y) is given by

Remark. Plugging this result into Eq. (4.9), and retaining leading order in l/N
implies that

T(n,nf) = N~l/2c0e
Nf~s/(zn,zn>)(\ + O(1/7V)) , (4.14)

where ,— /—
zn = n/VN-VNx, (4.15)

and the kernel j/ is given by

J e^(z'z/^v(z/)dz/. (4.16)
CO

q is the (negative ^definite) quadratic form defined by the Hessian matrix (4.13) at
the critical point, h =. h(f,f), whose entries h//, ij =1,2, are given by

- fin - -h22 = -h12 + 2C2 = -h21 + 2C2 = —^-— + 2C2 . (4.17)
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The values

and

p = -hn + Λ/deth

(ι + C 4) 1 / 2-ι

are defined for convenience.

(2(1 + C4)1/2[l + (1-0 + C4Γ1/2)1/2] - 1}

Proof of Proposition 4.2. Items (i) and (iii) follow by simple calculation. It follows
from (4.13) that / is concave if and only if

(1 - 2x)Xl - y) + (1 - 2y}x(l -*) + (!- 2x)(l - 2y)(l - x - y) > 0 (4.18)

holds. This condition is fulfilled for all (x, y) £ «/ since, by reorganizing (4.18), it
can be written as

(1 — x — y + 2xy)(\ — x — y) .

This shows that h is a negative definite matrix, proving item (ii) and Proposition
4.2. D

The next proposition gives a complete characterization of the spectrum {μj }J^Q

and eigenfunctions of the continuum operator j/ : Z2(R) — > L2(R).

Proposition 4.3 (see e.g. [CE]). j/ w α self-adjoint compact operator in
spectrum σ(jtf) of <$/ consists of the sequence

7 - , . . . ,00

and the corresponding eigenfunctions,

ry(yz), 7 = 0,1,... , (4.19)

wλere

/// w ί/ze 7th normalized Hermite polynomial, are orthonormal with respect to
the inner product ( , } /« L2(R,i/x) w/Y/z weight 1, z.e.,

(ψn^Ψm)=μ(*}δnm. (4.20)

Proof of Lemma 4.1. We shall use a Rayleigh-Ritz argument to show that the
largest eigenvalues of T are approximated to order TV"1/2 by the largest eigenvalues

of ja/. The discrete operator A = c^le~Ήf T : RN+l -> R^+1 is approximated by the
continuum operator jtf : L2(R) —> Z2(R). To establish this, we introduce an isometry
of the vector space R^+1 into piecewise constant functions in the vector space
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Define intervals

with centres zn — n/VN — VN x, for n = 0, 1, . . . ,7V, such that J = U^=o^« *s me

interval (-^7, 1 + ]̂, translated by Jc, then dilated by \/N. Then, for u G
let

(ι(w))(z)= < . (4.22)
0

The adjoint z"1" is given by

. (4.23)

Note that /t/ is the identity matrix.
The operator kernel of iAfi is a step function with step-width \|^/N, which we

will see in the next lemma approximates ^(z,zf) in the operator norm.

Lemma 4.4. 1. The operator norm of the error A A — ίAfi — stf is bounded by

\\AA\\ = 0(l/VN) .

2. There is some value ΠQ = «o(0 ̂  1 such that for each eίgenfunction ψj,
j = 0, 1, . . . , «o of J/, we have

Proof. Introduce the functions

[z]=zn, i f z G Λ (4.24)

and
«z) - z - [z], ξ(z,zO - (z,z7) - ([z], [z;]) (4.25)

defined for z,z7 G/. We note that (4.14) implies that there is a constant α = 0(1) > 0
such that for z = (z,zx) G

α (4.26)

and

while for (z,zx) φTV1/2*/^^/? one has

These facts serve to establish an estimate of the L2-norm of the kernel ΔA(z,z')
sufficient to imply item (1) of the lemma.

For (2), take «o(0 small enough that the estimate

-Ψl2 (4.29)
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holds for all j ^ WQ. Then,

((1 — π'ΐ)ι/f,(l — ifi)ψj) -

D (4.30)

Using this, and the Rayleigh-Ritz formula, we next show upper and lower bounds
on the eigenvalues μy of A for j ^ «o(0 We choose trial eigenfunctions

q>j = cjityj (4.31)

with normalization cy~
2 = (fi\l/j9fi\l/j) = (ψjjΰψj). From Lemma 4.4,

c/2 = ! + {(!- ιϊ%,(l - »%) = 1 + 0(l/>/ΛO . (4.32)

For j ^ w0 even, further use of Lemma 4.4 gives

. (<P,Aφ)
μj = mf sup ^f- — Σ-L

sup (4.33)
.^v.^-z]-1- W^J

sup ίfc^» (4^34)
,φ2,...,φy-2]-

L \^'^/

a sup «̂ M (435)
^€[^,^,...,^-2]^ \^ 'W

= μj0) + 0(l/VΛ^). (4.36)

bound (4.33) is obtained by taking a specific set of vectors {φ0,...,φ7 _2}. Note
that (4.35) is true since the sup in (4.34) is over a subset of the sup in (4.35). We
obtain similar lower bounds for j odd, by replacing A by — A above.

We also have a lower bound on μ0:

μo ^ (<?o,Λ(?o) = 1 + 0(l/VN) . (4.37)

Finally, we can prove lower bounds on μy, j > 0 even, and upper bounds
for j odd. We illustrate with μ2. From (4.36) and (4.37), it follows that a
true μo -eigenvector of A can be written φ0 = φ$ + δq>Q, where (φ,δφ) = 0 and

= O(l/VN). Then

μ2 = sup (φ,Aφ) (4.38)
1

sup (φ,Aφ) (4.39)

(4.40)
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The last step follows because the maximizing φ is of the form αφo + βψ2 with

α2 = 0(\/JN) and β2 = 1 - O(l/y/N).
Continuing the same argument gives lower (upper) bounds for 1 <j ^ n$ even

(odd). This concludes the proof of Lemma 4.1. D

5. Higher Order I/TV Corrections

In this section we outline how to obtain a complete l/N expansion for the first
eigenvalues of T. The main technical ingredient in our method is Temple's Inequality
(for a proof see Problem 15, p. 365 of ref. [RS]):

Proposition 5.1. Let A be a self-adjoint operator. Let I — (a,b) c R be an open
interval and φ be a normalized trial vector such that

and
η<(γ- ά)(b - γ) ,

where γ = (φ,Aφ) and η = (φ,(A — y)2φ). Then the following upper and lower
bounds hold:

>+ <5 41)

Since by Lemma 4.1, we have succeeded in separating the first HQ eigen-
values of A into nonoverlapping intervals of width 0(1) (at least if NQ is large),
Temple's inequality applied to A will allow us to improve the eigenvalue estimate
(4.7) to any order in l/N provided we can systematically improve the approximate
eigenfunctions. This can in fact be done, using Stirling's formula and the Laplace
asymptotic method. One also needs results of the following type to estimate the
error in replacing Riemann sums by Riemann integrals:

Proposition 5.2. Consider the interval [a,b)=\jj=llj, where Ij= [xj-4jr9Xj + 4jr)9

Ax = ̂ ^ and x} = a + (j — 1/2) Ax. Then for any C4 function f:

}f(x)dx - (-^[f'(b) - /'(α)] -AxE f(Xj)
a * 7=1

| | / | U . (5.42)

Remarks.

1. This formula is obtained by Taylor expanding the integrand over each sub-
interval. The important point here is that by including boundary terms, the error
estimate is improved compared to that of the midpoint rule. We shall apply this
formula on the O(VN)- width interval J (4.21) to functions such as «s/(z,z') and
ψj(z) with 0(1) Gaussian decay. Thus the included boundary terms are O(N~k) for
any k.

2. Similar arguments including further boundary terms, lead to more general
formulas with error estimates of the form O(N~k) for arbitrarily large k.
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We illustrate how these ingredients combine to produce the O(l/VN) correction
to Lemma 4.1.

To derive an approximation for the matrix A = c^le~N ̂ T up to and includ-
ing order l/VN, we Taylor expand the functions /, L and / in (4.9) around the
maximum value (x,x), rescaling the arguments by the factor l/^/N. This yields an
integral kernel j t f l ( z , z ' ) of the integral operator given by

(5.43)

where si is given (4.16) and y\ is the integral operator defined by

1 00 f

/ KiMe' * (z'}dzf (5.44)
πcQ Jx,

with r
^1(z1,z2) = ̂ i.z+-</3/.z3.

Here, for z = (z\,z2) and g : R2 ι-> R, we have

d*g z* = Σ a 8g~ (x,x) Zi, - Zfc . (5.45)
iι,...Λe{ι,2}* dz'ι "'^

To write the trial eigenfunctions φy in Proposition 5.1 that allow us to use
(5.2),we have to replace the operator ύ defined previously by a surjection Σ. For
any function v : R ι— > R, we define

Note that for piecewise constant functions in each Jn, \l/(z\

(Σψ,Σψ)=(ψ,ψ).

We choose the trial functions given by

Now we use Temple's inequality. We choose trial intervals

for j g WQ in such a way that Lemma 4.1 ensures there is exactly one eigenvalue
μj in each Ij (for this, NQ should possibly be increased). We must find μj!) so that

γj = (φJ9Aφj) = μf + - / / J 1 } + 0(l/N) (5.46)

and the variance η} = O(l/N).
Now, using Stirling (4.9), (5.2) and the Laplace method we get
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Notice that ψj and the integral kernel jtfl(z,zf) are smooth and rapidly decaying
so that the error in replacing the discrete scalar product ( , ) by the continuum
( , ) is O(\/Nk) with k arbitrarily large.

From (5.47)

Proceeding as in (5.47) and using

ψj, nψj) - (ψj,j*ψj) (ψj, nψj} = o
we have

ηj=(ψj,[A-yj\
2φj)

= 0(1 IN) .

By Temple, we therefore have

μj = μf + -^(ψj^ψj) + 0(1 /N) .

By parity of the integrand, one finds

The above procedure can be extended to all orders in l/^/N. Quite generally, a
parity argument shows that only even powers of l/^/N occur in the expansion for
eigenvalues.

6. Proof of Theorem 1.5

From (3.22), the fermion two-point function can be written as

$x ψy)L = 2N^-9 * = x/a, l = y/a, (6.1)
^Lwhere

(ζ/VN)ΦL)2N~l det(ΓL + (ζ/VN)ΦL)™ (6.2)

with άQtA^ meaning the determinant of the cofactor matrix A^ obtained by delet-
ing the kih row and /th column of A. Let us suppose k ^ /: the opposite case can
be treated in the same way.
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In the free theory (ζ = 0), the two-point function (6.1) is given by
We notice that ΓL with L even is invertible and its inverse can be explicitly
computed

A -B* ... -B* \
B A ... -B'

(6.3)

\ B B ... A J

where

\ B B ... A )

and B =
1 0

It follows that the free two-point function does not decay as |* — y\ —> oo. On the
other hand, Theorem 1.5 states that the two-point function decays exponentially fast
for any ζ Φ 0 and N sufficiently large.

Before replacing the determinants in (6.2) by the expansion (2.4) we notice that

det(ΓL + ΨL)W = det(ΓL + ΨL)<kdet(ΓL + ΨL)>1,

where A<k mean the (k — I) x (k — 1) matrix formed by removing in A all rows and
columns whose labels run from k to L. Similarly, A>1 is a (L — /— 1) x (L — /— 1)
matrix with the rows and columns from 1 to / removed.

Equation (6.2) can thus be written as

ZL = Σ / dμw(φ) Π I Π (C/VN)φy \ , (6.4)
X ι=l

where the summation is now over all collections X = (X\9...9X2N) of compatible
sets with X\ constrained to have the sites from k to I (ends included) covered by
dimers. We notice that this constraint leads Z% to vanish for all k, I such that \k — l\
is even.

Integrating out the φ- variables and performing a resummation, (6.2) can be
written as

Zk

L

l = (-1/+V ^(PQTk-lS(ff)(l-k-^2STL-1) , (6.5)

where T is the ( 7 V + l ) x ( 7 V + l ) matrix whose entries are given by

f(n,ri) = T(n,ri)Δ(n,ri)

with T as in (4.5), A(Nx,Ny) = δ(x,y) with

l/2

and S is a matrix which will not be specified since it does not contribute to the
mass gap expression.

Repeating the procedure of Sect. 4, we are able to write the eigenvalues {λj}J=0

of T in the following form:

7=0,l , . . . ,«o. (6.6)
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The ratio between the partition function (6.1) can thus be written as

kl \k~l\

which implies a mass gap m given by

1(0)

(6.7)
1 λ 1 1(0)

a

In order to prove Theorem 1.5 we need compute only the leading term in (6.7)
and show that it coincides with the mean field mass gap.

Following the procedure in Sect. 4, the matrix A = c^1 exp[—Nf]f in the eigen-
value equation is approximated by an integral operator given by

where stf is given by (4.16) and

*' = ̂ -)=(τ^_)1

In view of (6.7), Lemma 4.1 and (1.8),

= ̂  ln[ζ2 + (1 + C4)1/2] + 0(lVN) ,

which by comparing to the mean field mass gap mMF in (1-5), concludes the proof
of Theorem 1.5. D

7. Concluding Remarks

In the preceding section we have shown that the fermion correlator exhibits an
exponential decay rate which is close to the mean field value WIMF- Another important
aspect of the model is the "bosonic" correlator

Let us begin by defining

where

ZΪ = fdμL^(φ)άet(ΓL + (ζ/VN)φ)(ζ/VN)φi(ζ/VN)φj; ί <j e & (7.2)

is a modified partition function.
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Following the procedure in Sect. 4, (7.2) can be written as

ZL = Σ / dμw(φ) Π Π (ζ/VϊfWz (ζ/VN)φi(ζ/VN)φj (7.3)
X ι=l \_z<EX? \

with X = (X\,...,X2N) running, as before, over all collections of 2N compatible
sets.

Performing the Gaussian integral and some combinatorics, (7.3) can be written
as

ZΪ = αL Tr (P0ΓJ S T0

j~i+lS T^j~λ ) , (7.4)

where Te = T ("e" for "even") is given by (4.5), and

The important point is that the spectrum of the matrix T0 equals that of the
matrix Te, to all orders in the l/N expansion. This is simply because the continuum
approximation of T0 is precisely that of Te, with the arguments z,z' shifted by
In particular,

for any k. Since an exponential decay rate for the bosonic correlator is a consequence
of a gap between these two eigenvalues, in principle, the l/N expansion is incapable
of detecting such a decay rate.

For N finite, it is thus uncertain whether λ^0 < λ^e. Numerical computations
so far indicate that while this inequality is true for most N, C, it can be violated in
extreme cases.

To answer why the fermion correlator has an 0(1) gap, we note that the model
has two "superselection" sectors, odd and even. The partition function Z given
by (4.4) is in fact restricted to the even sector because of the choice of boundary
conditions, and furthermore, the fermion field operator maps even to even and odd
to odd. The bosonic operator, however, maps even to odd and vice versa.

A detailed investigation of these questions is the subject of a paper in
preparation [FHM].
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