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Abstract: We continue our study of matrix models of dually weighted graphs.
Among the attractive features of these models is the possibility to interpolate be-
tween ensembles of regular and random two-dimensional lattices, relevant for the
study of the crossover from two-dimensional flat space to two-dimensional quan-
tum gravity. We further develop the formalism of large N character expansions.
In particular, a general method for determining the large N limit of a character is
derived. This method, aside from being potentially useful for a far greater class of
problems, allows us to exactly solve the matrix models of dually weighted graphs,
reducing them to a well-posed Riemann-Hilbert problem. The power of the method
is illustrated by explicitly solving a new model in which only positive curvature
defects are permitted on the surface, an arbitrary amount of negative curvature being
introduced at a single insertion.

1. Introduction

Hermitian one matrix models were introduced and for the first time solved in the
large N limit in the seminal paper by Brezin, Itzykson, Parisi and Zuber [1]. These
models generate ensembles of planar, random graphs whose vertex coordination
numbers are controlled by the matrix potential. By varying the potential, different
classes of diagrams may be obtained, e.g. random square or random triangular
lattices. However, despite this freedom, there is a class of physically important
lattices that cannot be generated by simply tuning the potential: regular, flat lattices
with fixed coordination numbers of both vertices and faces. To attain them it is
necessary to study planar graphs having coordination number dependent weights
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for both the vertices and faces. It is straightforward to define modified hermitian
matrix models producing such graphs, but they can no longer be treated with the
methods of [1]. In fact, until very recently this class of models of dually weighted
graphs seemed intractable. However, an important but little noticed observation due
to Itzykson and Di Francesco [2] has made possible the explicit treatment of dually
weighted graphs. The number of degrees of freedom of these models is crucially
reduced by rewriting the model in the language of group theory. It should also be
noted that this method, based on expanding the matrix model potential in Weyl
characters, was already used presciently in a special case in another early paper
by Itzykson and Zuber [3]. In a recent work [4] we demonstrated that this new
approach leads indeed to a problem amenable to mathematical analysis once the
large N limit is taken.

The physical importance of matrix models has been elucidated through a large
body of work over the last ten years. In [5,6] matrix models were first introduced to
furnish a description of two-dimensional quantum gravity and non-critical bosonic
strings and successfully used to calculate the critical properties of these theories.
This approach is based on the representation of the sum over world-sheet metrics as
a sum over dynamical triangulations as originally proposed in [5-7]. Studying the
crossover from random, dynamical graphs to regular, static graphs, then, will corre-
spond to suppressing the curvature fluctuations of the world-sheet metric and result
in a flat two-dimensional metric. Our work, in conjunction with [4], should thus
be seen as representing a first attempt towards establishing a connection between
integrable two-dimensional models both coupled to and decoupled from quantum
gravity.

To be precise, let us consider general planar graphs and introduce a set of cou-
plings t*, t£9. t*9..., namely the weights of vertices with 1,2, . . . , # , . . . neighbours,
and a dual set t\9t29...9tq9•••, the weights of the dual vertices (or faces) with ap-
propriate coordination numbers. The partition function of closed planar graphs G is
defined to be

z(t\t) = Σ Π ζvuf\ (l.i)
G υ*,vqeG

where v*9vq are the vertices with q neighbours on the original and dual graph,
respectively, and #v*,#vq are the numbers of such vertices in the given graph G.
Choosing t* = tq = δq 4 the only allowed graphs are regular square lattices (see
Fig. la).

However, it is easy to see that a regular square lattice cannot be of spherical
(i.e. planar) topology. Positive curvature defects have to be added in order to be

+ D - 1 * O
ί 4 14 2

(a) flat space (b) positive curvature (c) negative curvature

Fig. 1. Flat space and curvature defects



Almost Flat Planar Diagrams 237

able to close the surface. Considering for the moment only even couplings, we
must therefore "turn on" couplings t2 or f2*, or both (see Fig. lb). Exactly four
such defects are needed to close the square lattice. Adding more defects then re-
quires balancing the total curvature by also adding negative curvature defects. The
simplest examples for such negative defects, corresponding to the couplings tβ and
tβ, are shown in Fig. lc. Allowing for an arbitrary number of positive and negative
curvature defects we expect to generate random graphs which, at critical values of
the couplings, corresponding to very big graphs dominating the sum in the partition
function (1.1), allow us to reach a continuum limit lying in the universality class
of pure two-dimensional quantum gravity [5,6]. On the other hand, having "tuned
away" the negative curvature couplings tq, t* with q > 4, no such continuum limit is
possible. Then, only a small, finite number of positive curvature defects are allowed;
this brings us back to the phase of essentially flat surfaces. The main physical mo-
tivation for studying the models of dually weighted graphs, then, is to understand
the transition between these two very distinct phases.

In the present paper we continue to develop powerful techniques which per-
mit us to address this physical problem. Furthermore, we will present the full and
explicit solution of a non-trivial problem: the case of flat, planar graphs with an
arbitrary number of positive curvature defects and a single negative curvature defect
(see Fig. 2(a)) adjusted to balance the total curvature. We call the resulting lattice
surfaces "almost flat planar diagrams." A typical surface of this type is shown in
Fig.2(b).

This model provides a non-trivial example of the problems that can be addressed
by the method presented in this paper. It cannot currently be treated by previously
known, standard matrix model techniques.

It should be stressed that the methods we develop here are general and could
have applications going beyond the problem under investigation. Given that the
model of dually weighted graphs seemed entirely inaccessible even a short while
ago, we regard the present approach to be an important step in extending current
large N techniques.

We will quickly recall in the next section some of the results of our previ-
ous paper [4] and precisely define the class of models we are studying. Then,
in Sect. 3, we demonstrate how to derive the large N limit of group theoretical
characters. The model of almost flat planar diagrams will be solved and interpreted
in Sect. 4. The full model capturing the transition from flat to random graphs will be

a b

Fig. 2a. Negative curvature defect of angle (2 — q)π and b a typical surface
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briefly discussed in Sect. 5. We demonstrate how to reformulate it as a well-posed
Riemann-Hilbert problem. We conclude in Sect. 6 and present an outlook on how
our approach might be put to further use in the near future. Technical details and
additional illustrations are included in two appendices.

2. Review of the Character Expansion Method for Matrix Models
of DuallyWeighted Graphs

The partition function (1.1) for dually weighted graphs can be formulated as the
following matrix model:

with

VB(MA) = £ j TrBk(MA)k . (2.2)
k=\ *

The matrices A and B are fixed, external matrices encoding the coupling constants
through

^ and tq = ^ΊτA*. (2.3)

The model generalizes, for 4̂ + 1, the standard one matrix model first solved by
Brezin, Itzykson, Parisi and Zuber [1]. It can no longer be solved by changing
to eigenvalue variables; a reduction to TV variables is nevertheless possible. An
expansion of the potential into a sum over invariant group characters allows all
integrations to be performed and (2.1) to be reformulated as a statistical mechanics
model in "Young-tableau weight space." This reformulation should be called, after
its discoverers, the "Itzykson-Di Francesco formula" [2] and reads

Here c is a constant that we can drop, the weights {he} are a set of N/2 even,
increasing, non-negative integers while the weights {h°} are N/2 odd, increasing,
positive integers, and the sum is taken over all such sets. The characters can be
defined through two equivalent formulae. The first is the Weyl formula:

( 2 ' 5 )

where the a^ are the eigenvalues of the matrix A and A(a) is the Vandermonde
determinant. The second definition makes use of Schur polynomials, Pn(θ), defined
by

e Σ £ z% = g z

nPn(θ) with θi = - Trμ1"], (2.6)
Λ=0 l

in terms of which the character is

χ{h}(A) = d e t ( M ) ( P A t + 1 _ , ( θ ) ) . (2.7)
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It was demonstrated in [4] how to take the large N limit of this expansion.
In this limit, the weights jjht condense to give a smooth, stationary distribution
dhp(h), where p(K) is a probability density normalized to one. For technical reasons
we restrict our attention to models in which the matrices A and B are such that
traces of all odd powers of A and B are zero. This means that our random surfaces
are made from vertices and faces with even coordination numbers only. As was
discussed in [4], this ensures that the support of the density p(h) lies entirely on
the real axis, and thus simplifies the solution of the problem.3 The matrix A will
satisfy this condition if we introduce a n | x | matrix y/a in terms of which A and
the character X{h}(A) are given by

A= ' v " °

(2.8)
We now focus our attention on three intimately related models which capture

the transition from flat to random graphs,

oo 1

I. VA(MA) = Σ ^7 Ίx[A2k](MA)2k ,
k=\ 2k

II. VA4(MA) = l-(MAγ ,

oo 1

I I I . VA(MA4) = £ - Ύr[A2k](MA4)
2k . (2.9)

t — i ^LK

Here A4 is defined to satisfy TrJX^)*] = Nδk,4

 a n d A is as defined in (2.8). The
first model is self-dual, i.e. vertices and faces having the same coordination number
have the same weights. The second and third models are dual to each other (the
lattice of one corresponds to the dual lattice of the other) and are in turn related to
model I by a simple line map. That is, we place the diagonal of a square belonging
to model III (or alternatively a four-vertex belonging to II) onto each propagator
of model I. Thus the vertices and face centres of model I become the vertices of
model III (or alternatively the faces of II). We illustrate this in Fig. 3 below.4

From this line map one can see that the expectation values in models I and III are
also the same. More specifically

k]^ = ^Ύr[(MA4)
2k]^ . (2.10)

Notice, however, that they are not equivalent to (^Ύr[(MA)2k])jj in model II.
We can now return to the discussion of the large N limit and write the sad-

dlepoint equation for these three models. Looking for the stationary point in (2.4),

3 We do not want to suggest that models with odd coordination numbers cannot be treated with
our methods.

4 Note that this line-map is only valid on the sphere. The ^ corrections of I and III will thus
be different. A careful analysis shows that the spherical free energy of model I is precisely twice
the free energy of models II and III (since there are two ways of choosing the diagonal of a
square in III, or alternatively two ways of splitting a four-vertex of model II). Note also that
this non-trivial correspondence is predicted from our formalism, since we indeed obtain the same
TV = oo equations in all three cases.
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Model I.

Model II.

Model III.

Fig. 3. Graphical relationship between models I, II and III

one finds from [4], in all three cases, the following equation, valid on an interval
[b,a] with 0 ^ b ^ 1 ^ a:

}dh' ^ - = -\nh. (2.11)
n n

The solution requires, evidently, the knowledge of the large N limit of the variation
of the characters in Eq. (2.8):

=Vn
Λψ)

(2.12)

The determination of F(h) is the subject of the next section. Let us also recall here
the definition of the resolvent H(h):

H(h) = ]dti
h-hf

(2.13)

In [4] we demonstrated, via a simple functional inversion, how to relate the results
of the weight formalism to the resolvent W(P) = (^ Tr jzη^) of the matrix model
(2.1). In the model investigated in this paper, however, it is more natural to study
the correlators (^ Tr((M4)2^)) . The results of the following section will provide a
simple way to calculate such moments.

3. Large N Limit of the Character

In the saddle point Eq. (2.11) we introduced the function F(h) defined in Eq. (2.12)
as the derivative of the logarithm of a character. This function F(h) depends upon
the moments of the matrix A, i.e. it contains all the information on the weights
that one assigns to the faces of our discrete surfaces. In order to proceed with the
solution of the saddle point equation, one would like to take the large N limit of
(2.12) and express F(h) in terms of H(h) (which specifies the Young tableau) and
the set of moments tq of the matrix A (the weights assigned to the faces).

In [4] a contour integral formula relating H(h), F(h) and the set of moments tq

was derived. We recall here a single essential step of the derivation, which we will
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make use of shortly. We observed that

N/2 XrFΛa)
Tr[α*] = Σ 2 , Λ where ht = Af + 2qδhk , (3.1)

and the matrix a is the j x j matrix introduced in (2.8). For notational simplicity

we omit an index k on h. In the large N limit (3.1) was then reduced to a simple

contour integral

' 2 ? = ~§ ^-.e"mh)+Fm, where tlq = |, where tlq = | τ r [ α * ] . (3.2)

Note that the definition of F(h) (2.12) differs from that in the derivation in [4]
since we are now restricting our attention to the case where only the even moments
of the matrix A are non-zero.5

As it stands, formula (3.2) is of little direct use. It can however be dramatically
simplified as we sketch out below. We introduce a function G(h) defined as

G(h) = *"<*>+f(*), (3.3)

in terms of which (3.2) becomes

Changing integration variables from h to G we arrive at

t2q = $ ^SG
 h(G) G"' (3'5)

where h(G) is the inverse of the equation for G(h) given in (3.3), and the contour
in the complex G plane encircles the origin. We now assume that there are only a
finite number of non-zero couplings tq. We obtain immediately the solution:

* - 1 = Σ τ | + Ψ(G). (3.6)

Here ψ(G) is an as yet unknown function, analytic in the vicinity of the origin, with
i^(0) = 0. It is trivial to see that this satisfies (3.5). Note that, strictly speaking, we
cannot solve Eq. (3.5) for q = 0 since (3.4) is not defined there. The 1 on the l.h.s.
of (3.6) comes from the normalization of the density p(h) (see Appendix A).

The unknown function φ(G) is not fixed by (3.4) and depends on the specific
model being studied. We now give a very simple physical interpretation to this
function. Let us return to the Schur polynomial definition of the character (2.7).

5 Indeed, it might be asked why we do not directly use formula (3.5) derived in Sect. 3 of [4].
There, the contour integration relation was derived for the general case where both even and odd
moments are non-zero. However, in the special case where we then set all odd moments to zero,
£p{h) c o ntains a cut overlapping with the cut of eH^h\ In this case defining the contour encircling
the cut of eH^ is ambiguous. We have therefore rederived the result for the reduced case of only
even non-zero moments. The same note of caution applies to formula (3.8) of [4].
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Differentiating Eq. (2.6) with respect to θi we see that

~Pn{.θ) = Pn-q{θ) with θq = ^-t2q . (3.7)
Oϋq lq

This implies immediately that

2q d N'2 *{£><*)
^ i n ω ^ Σ ^ π where h{ =h\-2qbuk . (3.8)

From (2.1), (2.4) and (2.8), we see that the left-hand side of this equation is
equivalent to differentiating the logarithm of the original matrix integral (2.1) with
respect to t2q In terms of the dual to this matrix integral (in which the weights
Ϊ2q assigned to the faces are now the weights of the vertices) this is equivalent to
differentiating the coupling constants of the dual potential. So, denoting the dual
matrix by M, the left-hand side of Eq. (3.8) is equivalent to the expectation value
(Ύτ(MB)2q). Now, comparing the right-hand side of (3.8) to Eqs. (3.1) and (3.2),
we see that we have the following relation in the large N limit:

Q KG) G-« , (3.9)

G(h) being defined by (3.3). It is now simple to follow identical arguments to those
used to simplify (3.4) to (3.6) to arrive at

Q t °° / 1 \
^ - 1 = Σ ^ + Σ -Ύr(MB)2<* ) G« . (3.10)

q=\ CJ* q=\ \Jy I

Given G{h), we have, after a functional inversion, the correlators of the dual model.
To find G(h) we have to connect Eq. (3.10) with the saddle point equation

(2.11). From (2.13) we obtain

h a nih'Λ
H(h) = \n-—-+H(h) with #(*) = / J A ' f ^ , (3.11)

rX — u L It — ft

where the first term on the right is the contribution from the flat part of the density,
i.e. the empty part of the Young tableau. The integral from b to a is the contribution
from the "excited" part of the density, i.e. the non-empty part of the Young tableau.
Noting, from the definition of G{h) (3.3), that lnG(A) = H{h) + F(h\ we replace
the integral of (3.11) by the contour integral

where the contour encircles the [b,a] part of the cut of H(h). The discontinuity
across this cut is precisely ±ίπp(h). Note also that F(h) has-at least for some
range of the couplings - no cut on the interval [b,a]. If we now change the variables
of integration from h to G, as previously, and shrink the contour in the complex
G plane catching poles on the way (see Appendix A), we arrive at the following
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other sheets

Fig. 4. Analytic structure of G(h)

simple relationship between Eq. (3.6) and H(h):

ft <,,(*). (3.13)

Some words of explanation are in order to clarify the meaning of this equation.
Inverting Eq. (3.6) leads to a multi-sheeted function G(h). The general picture is
illustrated in Fig. 4. One of the sheets is the physical sheet and has two cuts, one
corresponding to eH^h\ the other to eF^ι)\ we label this sheet G\{h). The sheets
G2(h\ ... ,GQ{K) are all the sheets connected to G\(h) by the cut of eF(κh)\ there
are exactly Q of these sheets, where Q is the maximum inverse power of G in
(3.10).

In Appendix B several examples are presented to illustrate explicitly this general
analytic structure.

Equation (3.13) together with (3.10) contains sufficient information to find the
logarithmic derivative of the character. These two equations represent a well-defined
Riemann-Hilbert problem for F(h) which can be explicitly solved. We will present
the solution elsewhere.

4. Almost Flat Planar Diagrams

We now have all the tools necessary to reduce our model of dually weighted graphs
to a well defined Riemann-Hilbert problem. In this section we will analyse the
case in which only positive curvature defects are allowed on the surface, arbitrary
amounts of negative curvature being introduced at a single point. This is done by
studying the particular case tq = tiδq^ + Hδq,4, which generates the flat patches
(see Fig. l(a)) and the positive defects (see Fig. l(b)). The correlators (2.10) then
correspond to the insertion of a single defect of curvature (2 — q) π (see also
Fig. 2). They will be extracted using Eq. (3.10), after explicit calculation of the
function h(G).

From the analysis of the large N limit of the character in the previous section,
we know that the product in (3.13) contains only two sheets Gq(h) (see Fig. 4).
We label the physical sheet G\(h) and the sheet connected to it by the cut of eF^h\
G2Q1). Taking the logarithm of Eq. (3.13), we summarize the information extracted
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from the large N limit of the character by

= -ln - - , (4.1)
V *4/

where lnGf(A) = F, (A) + #(A). The two sheets Gi(A) and G2(A) are glued together
by the square root cut coming from F(A). The combination F\(h) + F2(A), evaluated
on the cut of F(A), is twice the constant part of F(A) on the cut (the discontinuous
part of F(A) is of opposite sign on Fi(A) and F2(A) and is therefore cancelled).
We thus have the two equations

" ' 4 ,

(4.2)

the first coming from the large N limit of the character (3.13) and the second being
the saddlepoint equation (2.11). These two equations tell us about the behaviour of
the function 2F(h) + H(h) on the cuts of F(A) and H(h) respectively. We have
introduced the notation If(h) to denote the real part on the cut of F(A), and similarly
for I/I{h). The principal part integral in (2.11) is thus denoted in (4.2) by Iβ(h).

Our object now is to reconstruct the analytic function 2F(A) + H(h) from its
behaviour on its cuts. To do this we have to understand the complete structure of
cuts. First we notice from (3.6) that G(h) is non-zero everywhere in the complex
h plane except at infinity. The combination F(h) + H(h) thus has no logarithmic
cut point except for the one which starts from h = b. This corresponds to the end
of the flat part of the density p(h). We introduce two functions F(A) and H(h)
defined by

F ( A ) = F ( A ) - l n A and H(h) = H{h) + In —^— , (4.3)
h — b

in terms of which (4.2) becomes

2F(A) + $(h) =ln(A - b) . (4.4)

These two equations define the behaviour of 2F(h) + H(h) on all of its cuts. By
standard methods we now generate the full analytic function 2F(h) + Ή(h). We
introduce three cut points, a, b and c whose values are fixed by boundary conditions
(the points a and b define the cut of H(h) and c defines the starting point of the
cut of F(A) which goes from c to — oo) and generate the full analytic function by
performing the contour integral

ds \n(s — b)
- c)(h - b)(h - a)

CH *Kl (72 - S)y/(S - C)(S ~ 0)(S ~ a)

- AV*
(4.5)

4 2πi (h - s)y/(s - c)(s - b)(s - a)

ds In(-t4(s - b))

6P 2πi (h - s)y/(s - c)(s - b)(s - a)
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(a) Contours for (4.5) (b) Sign convention for y/(h - c)(h - b)(h - a)

Fig. 5. Contours and sign conventions for (4.5) and (4.6)

The contours CH and Cp are illustrated in Fig. 5(a). The slanted zigzag line corre-
sponds to the cut of ln(/z — b). Expanding the contours, catching poles on the way
and using the fact that logarithmic cuts have a discontinuity of ±iπ, we arrive at

2F(h) + H{h) = In f + y/(h - c)(h - b){h - a)
h

- s)
+/

ds

- b)(s -a) J

b (A - s) ^/(s - c)(s - b)(s - a)
.(4.6)

Figure 5(b) clarifies the sign convention for y/(h - c)(h - b)(h - a) on the real
axis above and below the cuts. Note that, for the cuts of l/y/(h - c)(h - b)(h - a)
the signs on the cuts are inverted compared to Fig. 5(b), i.e. +/ <-» — i. The integrals
in (4.6) are defined to be along the upper side.

To fix the constants α, b and c, we expand (4.6) for large h and compare the
resulting power series expansion to that obtained from inverting (3.6):

(4.7)

The terms of ®(j^π) depend on the as yet unknown function ψ(G). Expanding

(4.6) for large h and comparing to (4.7), we find the two boundary conditions

Ϊ4 = q = and (4.8)

with K and K' complete elliptic integrals of the first kind, defined in terms of their
respective moduli k and k1 = \Λ — k2 through

(4.9)

The first condition fixes k and hence the ratio of the distances separating the cut
points, and the second condition fixes a — c, i.e. the scale. The condition needed to
fix the position of the cut points along the real axis is provided by the condition
that the density must be normalized to one.

We now perform the integrals in (4.6) and, after using the first boundary con-
dition and an identity between elliptic functions,6 we obtain

2F(h) + H(h) = -In A - ^
K

(4.10)

6 For this and many other relations between Jacobi's elliptic functions and theta functions useful
for performing the calculations of this section see e.g. [8,9].
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where sn~ι(z,k) is the inverse Jacobi elliptic function. Using the saddle point equa-
tion 2F{h) + Iβ(h) = — \nh and the fact that the resolvent for the Young tableau
can be written as H(h) = Iβ(h) =p ίπp(h), we can immediately write down the ex-
pression for the density of Young tableau boxes as

P(h)=i;™-1 \—ik • (4-11)

The Jacobi elliptic function sn(z,&) is a generalisation of sin(z) with quarter
period K. In fact, in the limit k —> 0, which corresponds to t4 —> 0, the expression

for the density becomes precisely (2/π)sin (y(<z — h)/(a — b)).
Integrating p(h) from b to a and equating the answer to 1 — b to ensure that

the density is normalized to 1 (the flat portion from 0 to b gives a contribution b),
gives the final boundary condition

0 = 1 + -γ~(K2 - EK), (4.12)

where E is the complete elliptic integral of the second kind.
From the expression for the density we now generate the full Young tableau

resolvent, H(h), in the standard way and obtain following expression:

= ln/,-fsn-V^+21nLm r /;^_ \~/a ^ \ . (4.13)

Using the above expression for H(h), Eq. (4.10) for 2F(h) + H(h) and the quasi-
periodicity of theta functions, we can write the expression for G(h),

G(h) = --Θ4 ( ̂ sn-^Γ^-i + -^- I (4.14)

and its inverse

* — f r l V(o)Γ ( 4 - 1 5 >
where the constant D is given by

π ^ / 4 2q*l^

To simplify (4.15) we have used the definition of the Jacobi elliptic function in
terms of theta functions. In view of Eq. (3.10), we see that we have now explicitly
calculated the generating function for the correlators for models I and III.

We will now expand Eq. (4.15) and read off the correlators as the coefficients
of the positive powers of G. Notice that (4.15) is a multivalued function since the
function 04(z) is periodic as z is varied in the real direction and quasiperiodic in
the imaginary direction. We must thus choose the correct zero of the 04 (z) function
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about which to expand. The physical sheet corresponds to expanding about the
zero z — ιJI§- Using the definition of the Jacobi elliptic function sn(ι/) in terms of
theta functions and shifting the arguments of the theta functions using their quasi-
periodicity, we rewrite (4.15) as the pair of equations

Expanding this for small G we find that the first three terms give (as expected
from (3.10)) h = -^ + % + 1 + ®{G). Expanding three orders further, permits us
(using (3.10)) to read off the first three moments of model III (which are also the
moments of model I):

-j- Tr [(MA4)
4]) = τ^-3 (-8(1 + h) + 3/| - 4/2/3 + / 4 ),

+ 4 0 / 2 / 3 + 10/2

where for convenience we have defined

f

 θ4(0) 4 2

/ 4 =

/5 = w = ̂ ( ( 6 " 6 ^ + *4)*2" 10(2" ̂ 2)^ + l5E2)' {4Λ9)

and have then expressed these derivatives as combinations of the complete elliptic
integrals K, E and their modulus k.

We can now give a simple physical interpretation of these moments. The first
two are directly related to the free energy #"(^2,^4). The latter is defined as the sum
over all possible surfaces with the topology of a sphere that can be constructed out
of flat space and positive curvature defects. It is impossible to put a flat surface
onto the sphere, so positive curvature defects are needed to close the surface. Since
the defects in this model have a deficit angle of π it takes precisely four of them
to close the surface into a sphere. The surfaces are in the form of a cylinder
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with both ends flattened. The four fe defects sit at the corners. Below we illustrate
the free energy for model III:

(4.20)

Note that the flattened ends can have an angle of twist between them. The four
h defects correspond to vertices | Tr [(MA4)

2], and all other vertices (with four
legs) correspond to the vertex *f Tr [(MA4)4]. We see that the first two moments
can be written in terms of the free energy ^{t2,H) as

-j- Tr [(MA4)
2]) = 2 ^ -

i Tr [(M44)
4]^> = 4 ^ f e Λ ) (4.21)

We thus read off the free energy

^ (4.22)

Using (4.19), the identity γq = 2 ^ / 2 ^ ? along with standard identies for differ-
entiating complete elliptic integrals with respect to the modulus k, it is trivial to
verify that the moment (^ Tr [(M44)4])//7 given in (4.18) is indeed four times the
derivative of the free energy with respect to t4 = q.

Using the definition of f$ in terms of derivatives of the first theta function,
0i(z), along with the standard definition of the theta function as an infinite product,
allows us to write the free energy as

n = l

In this form we recognize the argument of the logarithm to be the partition function
for the torus. The derivative operator acts to mark a single point. We have thus
found, as illustrated in Eq. (4.23), that the free energy can be written as the free
energy for a marked torus. Below we illustrate the connection between a marked
torus and the flattened cylinder diagrammatically.
Starting from the mark on the twisted torus, flatten the torus across its width
(this defines a point on the opposite side), then cut along the flattening and open
out the crimped torus into a cylinder with flattened ends. The two points at ei-
ther end of the flattening on the torus become the four t2 defects of the flattened
cylinder.



Almost Flat Planar Diagrams 249

Fig. 6. Diagrammatic connection between marked torus and flattened cylinder

Higher order moments correspond to inserting a single negative curvature defect.
The lowest order defect of this type is the insertion of negative curvature of deficit
angle —π introduced by the vertex Tr [(MA4)6] (see Fig. l(c) and Eq. (4.18)).

As a final check of our solution, we expand (^ Tr [(M44) 6])m in powers of
q (this can be done directly from the expression for the moment in terms of theta
functions (4.18)):

j-j- Tr [(M4 4 ) 6 ]\ = t5

2(9q2 + 27q4 (4.24)

It is easy to verify that this correctly counts the number of diagrams.
Further moments can be calculated by expanding (4.17) to higher order. They

can always be written as sums of products of complete elliptic integrals.
We now look for a continuum limit in which the size of graphs tends to infinity.

One can see that the critical point, at which the size of the graphs diverges, is at
q=l. Note, however, that (since the critical q is 1), in stark contrast to two-
dimensional quantum gravity [5,6], the leading behaviour for the growth of dia-
grams is not exponential but merely power-like. To extract the power, notice that
the product Π ^ i O ~~ Q2n) m (4.23) can be written in terms of the η function as
q~χlnη(iτ), where q = e~πτ. Making use of the modular invariance of the η(τ)
function under the modular transformation τ —> 1/τ, we extract

4 (4.25)

in the limit τ —> 0. We can easily understand the interpretation of this result by
performing the calculation directly in this limit:

1

° m,n

4
192τ2

.e-iπτnγ 32π
2τ2 V « 2

(4.26)

We see that the largest contribution comes from large m and small n, corresponding
to cylinders which are infinitely short and thus having the maximum amount of
entropy coming from the modular twist.

It is interesting now to investigate the behaviour of the correlators in the large
area (q —•>• 1) limit. Quite generally, for matrix models the correlators correspond
to surfaces with a boundary of length proportional to the power of the correlator,
and one seeks a continuum scaling limit for very long boundaries. The correla-
tors (^ Tr [(M44)2w]) in the present model, however, introduce point-like negative
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curvature and we cannot look for a scaling limit involving long boundaries.7 Nev-
ertheless we can find the limiting behaviour of these negative curvature insertions
in the limit of large area.

Using the modular transformation τ —> 1/τ (with q = e~πτ) for the formula
(4.15), we can also extract a scaling limit for the generating function for the mo-
ments. Specifically, for the theta functions 0i(z) and 04(z), we find that the dominant
contributions are

04(z) =-^=e-^2^ι/\coshy + Θ(q'2)),
v τ

01 (z) =4=e~^ 2 2tf / 1 / 4 (smh j ; + Θ(q'2)), (4.27)
v τ

where y = z/τ and qf = e~^. Holding y fixed as a parameter of order 1, we take
the limit as τ —> 0 (corresponding to q —» 1) and work to the first two orders in τ.
Remembering that q = 1 — πτ + ..., the constants D and a to the first two orders
in τ are given by

We can now define a natural rescaled parameter x = -^ and perform the inversion
of the theta function to the first two orders in τ to find the generating function for
the correlators. The lowest order term gives the contribution -^ in (3.10) and also

a part that cancels with a — I. The next order gives the contribution ^ along with
the generating function which we read off as:

t~ c in~^ v — v fcin"" 1 vŶ  _ V2 f^ffs

(4.29)

This has a simple square root singularity at the point x — 1. The series expansions
for s i n " 1 x and ( s i n ^ ^ x ) ) 2 then give us the dominant contribution to the correlators
in the large area limit:

h

τ

sin ~ιx

2x2

— x (sin

2πx 2

— x 2

with x —
Gt2

2τ

- Tr [ ( M 4 4 Γ ] ) ^ ^ ^ ^ with { ^ T I 7 ; ; (4.30)

where we have introduced the parameter μ defined by q—\— μ i.e. μ = πτ +
(P(τ2). The number of surfaces of fixed area A for a correlator (^ Tr [(M^) 2 "])
is thus seen to be of the order of An, with entropy coming from modular twists
analogous to those for the free energy. The rather curious structure of the considered
surfaces is thus evident - they consist of cylindrical "fingers" growing out from the

7 In principle, it is possible to study boundaries of arbitrary length by taking correlators of
(]7 Tr [(MAl)2n]J, which correspond to a boundary in the form of the end of a cylinder. Tech-
nically, however, we do not at present have the means to calculate such quantities.
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negative curvature defect (see Fig. 2(b)). The square root singularity at x = 1 means
that there is a tree-like growth of the number of ways to attach the fingers to their
base at the negative defect. As in the case of the free energy, modular integrations
cause a filamentary structure of very long cylinders to dominate in the large area
limit.

5. The Onset of Quantum Gravity: Adding Negative Curvature Defects

The introduction of arbitrary numbers of negative defects, specifically t6, alongside
the components t4, t\ and positive curvature defects, t2, gives us a model in which
we can tune away the curvature fluctuations of two-dimensional quantum gravity.
The large N limit of the character in Sect. 3 allows us to understand the analytic
structure of the solution and thus reduce the model to a well defined Riemann-
Hilbert problem. The function G(h) now consists of two sheets below the physical
sheet (see Fig. 4). An extra sheet which we label G^{h) is now attached to the sheet
G2Q1) of the previous section by a square root cut. We thus have the following two
equations:

2F(A)+#(A) = - l n A ,

Fγ(h)+ F2(h)+F3(h) + 2H(h) = ~ In (^ . (5.1)

The first is the saddle point equation (2.11). The second comes from the logarithm
of Eq. (3.13), where we define, as before, F, (A) by In G/(A) = H(h) + F, (A). Along
with the boundary conditions provided by the coefficients of the negative powers
of G in (3.10), the system of equations (5.1) completely determines the solution to
this problem.

6. Conclusions and Outlook

In the present work we have demonstrated that our technique of character expansions
for large N matrix models may be successfully applied to the study of a novel, up to
now inaccessible phase of almost regular planar diagrams. This required determining
- quite generally - the large N limit of Weyl characters through the functional
equation (3.13). Specializing to almost flat graphs, we have then found the exact
generating function (3.10), (4.15) of planar square lattices endowed with a single
negative curvature insertion balanced by a number of positive defects.

We feel that our observations could trigger the investigation of many new phe-
nomena in two-dimensional physics and the combinatorial theory of planar graphs.
However, most urgent is the understanding of the crossover phenomenon from the
phase of almost flat two-dimensional space to the phase of two-dimensional quantum
gravity. It requires the careful analysis of the well-posed Riemann-Hilbert problem
of the last section. This investigation is pending. Aside from its obvious mathe-
matical interest, the solution of this problem could help to solve the hitherto inac-
cessible problem of R2 quantum gravity in two dimensions.

In addition to the even lattices considered in this paper, our methods allow
the study of the "melting" of more general regular, or almost regular, lattices; e.g.
triangular lattices.
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It is well known that there are many intriguing relations between integrable two-
dimensional models on regular lattices and dynamical planar random lattices. It is
tempting to try to unify the two classes of models, a project one might term GUT2.
Our work should be considered a first attempt into this direction, even though it must
be noted that further methods will have to be developed in order to successfully
treat matter coupled to dually weighted graphs.

Some of the results presented above could be interpreted as insights into the
structure of the group SU(oo) (see Sect. 3 on the large N limit of Weyl characters).
Further insights into this direction might prove very useful for the treatment of
higher dimensional matrix models, e.g. the principal chiral field, discrete string
theories in physical dimensions and, one hopes, QCD.

Acknowledgements. We would like to thank E. Brezin and I. Kostov for useful discussions.

Appendix A. Derivation of the Inversion Formula

We start by proving that the constant coefficient in (3.6) is equal to 1 (the normal-
ization of the density). To correctly normalize the density, p(h), we have to ensure
that

1 -b = fdhp(h). (A.I)
b

Using the fact that In G(h) = H(h) + F(Λ), we replace the integral by the contour
integral

^ (A.2)
cH

 2 π ι

with the contour Q encircling the [b,a] part of the cut of H(h), as shown in Fig. 7.
The zig-zag line corresponds to the logarithmic cut starting at h = b. Note that this
is not a closed contour since at b there is a discontinuity across the cut of ±iπ.
Evaluating G(h) around this contour we see that its argument goes from +iπ at
h = b (below the cut) all the way around to —iπaXh = b (above the cut). We now
change integration variables from h to G, with (in light of the comment above) the
contour CQ in the complex G plane encircling the origin (see Fig. 7),

G(bl

Co

Co

Fig. 7. Definition of contours CΆ in the complex h plane and CQ and CQ in the complex G plane
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where h(G) is defined through (3.6). The contour starts and finishes on either side of
the cut generated by In G illustrated in Fig. 7 by a zig-zag line. The total derivative
term picks up the discontinuity across the cut giving —b. The final term, which
picks up the constant coefficient of h(G), is thus equal to 1.

We now complete the derivation of (3.13). As discussed in Sect. 3, we start by
generating H(h) (related to the full resolvent by H(h) = H(h) + In ^ ) from the
contour integral

ψψψ. (A.4,
Q 2πι h — h\

Changing integration variables from h to G, as above, this can be written as

where h(G) is defined through (3.6) and h'(G) is the derivative with respect to G.
We now simplify this contour integral by evaluating it for large h. Knowing the

solution in any neighbourhood of h means that, by analytic continuation, we know
it everywhere. For large enough h, we see from (3.6) that the contour in (A.5) will
encircle precisely Q zeros of h(G), the zeros corresponding to the inverse powers
of G. If we shrink the contour in (A.5) so that the contour hugs either side of the
cut (see Fig. 7, contour Co) we pick up these Q poles:

(A.6)

The remaining contour integral is relatively easy to evaluate provided careful atten-
tion is paid to the contribution coming from encircling the origin. The net result
is that the contour Q contributes ln((—1)^~1Ϊ2Q) from encircling the origin and
ln(/z — b) from the discontinuity across the end points of the contour. Putting these
results together and making use of the relationship between H(h) and H(h) we
arrive at (3.13).

As a final comment we note that shrinking the contour in the complex G plane
corresponds to expanding the contour in the complex h plane, and winding it down
through all the sheets connected to the physical expanding sheet by the cut of F
The poles picked up in (A.6) correspond to these different sheets.

Appendix B. Analytic Structure of G{h)

As is discussed in Appendix A, the sheets Gq(h) in the product of (3.13) are the
physical sheet and all the sheets attached to the physical sheet by the cut of eF^h\
To clarify this we provide some simple examples.

B.I. Example 1. VB(MA) = 0. In this simplest case it is immediate from Eq. (3.10)
(since B = 0 and thus φ(G) = 0) that
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This is a polynomial equation of degree Q. G(h) will thus be a multivalued analytic
function with Q sheets. The different sheets are connected by square root cuts,
represented in Fig. 8 below by the vertical walls.
Note that cube roots and higher order roots are just special cases of the above
structure. For example, a cube root in the diagram above is generated when the two
square root cut points touch.

The Gq(h) that enter the product in (3.13) are precisely all the solutions, i.e.
all the sheets. It then follows that

eH{h) =

h- 1
(B.2)

which corresponds to a completely flat density p(h) — 1 with support [0,1].
It is seen from Eq. (B.I) that at h — 1, G(h) becomes infinite on one of its

sheets, so there is a pole at h = 1 on what we call the physical sheet. For ψ(G)
non-zero, the positive powers of G "soften" this pole and stretch it into a cut. The
cut corresponds to exciting boxes in the Young tableau. The next example illustrates
this.

pole at ft = 1

physical sheet

Fig.8. Analytic structure of G(h) for VB(MA) = 0

sheet of h

cutoff

physical sheet

Fig.9. Analytic structure of G(h) for VB(MA) = MA
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B.2. Example 2. VB(MA) = MA. Here B=Aχ. It follows from Eq. (3.10) and a
simple diagrammatic inspection that

: >
q=\ V

(B.3)

This increases the degree of the polynomial by one from the previous example,
introducing an extra sheet. The pole that was at h = 1 has now opened into a cut
(the cut of eH^) connected to this extra sheet (see Fig. 9).

The Gq(h) that go into the product of Eq. (3.13) are the physical sheet and all
the sheets below. We thus obtain

eH(h) =

G~{h) '
(B.4)

where G (h) is the topmost sheet.

B.3. Example 3. VB(MA) = (MA)2. By inspecting the moments of the dual model,
we obtain

(B.5)

The sheet structure is still polynomial, but now, due to the symmetry G —> G~ι of
Eq. (B.5), the top sheets are the mirror image inverses of the bottom sheets.

Again, what was a pole at h = 1 has opened into a cut connecting the physical
sheet to the mirror image inverses of the bottom sheets.

The above three examples clarify the meaning of Eqs. (3.10) and (3.13). A

simple functional inversion developed in [4] allows us to relate H(h) to the resol-

vent, (Tr P-M
, of the matrix model. To verify the methods of Sect. 3, we have

directly calculated the matrix resolvent of these models using loop equations and
simple diagrammatic arguments.

G - 1

Gk

cut of e"<*>

physical sheet

Fig. 10. Analytic structure of G(h) for VB(MA) = (MA)2
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