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Abstract: In noncommutative probability theory independence can be based on free
products instead of tensor products. This yields a highly noncommutative theory:
free probability theory (for an introduction see [9]). The analogue of entropy in the
free context was introduced by the second named author in [8]. Here we show that
Shannon's entropy power inequality ([6,1]) has an analogue for the free entropy
χ(X) (Theorem 2.1).

The free entropy, consistent with Boltzmann's formula S = Hog W, was defined
via volumes of matricial microstates. Proving the free entropy power inequality
naturally becomes a geometric question.

Restricting the Minkowski sum of two sets means to specify the set of pairs of
points which will be added. The relevant inequality, which holds when the set of
addable points is sufficiently large, differs from the Brunn-Minkowski inequality by
having the exponent \/n replaced by 2/n. Its proof uses the rearrangement inequality
of Brascamp-Lieb-Lϋttinger ([2]). Besides the free entropy power inequality, note
that the inequality for restricted Minkowski sums may also underlie the classical
Shannon entropy power inequality (see 3.2 below).

1. The Inequality for Restricted Minkowski Sums

If A,B C 1R" (or any vector space), the Minkowski sum of A and B is defined by

A + B = {x + y : (x, y) G A x B} .

An important property of the Minkowski sum in R" is the Brunn-Minkowski
inequality ([4,5])

λ(A+B)ι/n ^ λ(A)ι/n + λ(B)ι/n ,

where λ denotes ^-dimensional Lebesgue measures. We introduce a modified con-
cept of a sum.
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1.1 Definition. Let A,B be subsets of a vector space and Θ C A x B. We will call

A + Θ B = {x + y : (x9 y) G Θ}

the restricted (to Θ) sum of A and B.

We then have the following inequality (in what follows, all sets and functions
are assumed to be measurable; λ denotes the Lebesgue measure in the appropriate
dimension that may vary from place to place).

1.2 Theorem. Let p e (0,1), n £ N and let A9B C R" be such that

Furthermore, let Θ C A x B c IR2w be such that

λ(Θ) ^ (1 - cmin{p^ \})λ(A)λ(B).

Then

λ(A + 0 B)2/n ^ λ(A)2/n + /l(£)2//2 . (1.1)

(c > 0 is a numerical constant, independent of ε, n, A, B and Θ).

The following simple but illuminating example shows that, in general, one can-
not expect a significantly stronger assertion: let Bn be the Euclidean ball in R",
A=Bn,B = pBn and Θ = {(x,y) eAxB: (x,y) ^ 0}. Then

(1) λ(Θ) =

(2)

and we have equality in (1.1). We now state a lemma which is an elaboration of
this example

1.3 Lemma. Let p,n be as in Theorem 1.2 and let

θ = {(x9y):x,yeRn,\x\ g 1, \y\ £ p, \x + y\ ^ ( 1 + p 2 ) ^ } .

Then
λ(Θ) g (1 - cmm{pλ/n', \})λ{Bn)λ(pBn) ,

where c > 0 is a universal constant.

We postpone the proof of the lemma (which depends on a careful, but com-
pletely elementary computation) and show how it implies the theorem. We observe
first that Lemma 1.3 yields the following special case of the theorem:

A = pχBn, B = p2B
n, Θ = {(x, y)eAxB:x + ye RBn] , (1 .2)

where p\,ρ2,R > 0 are arbitrary constants. The case p\ = l 5 p 2 = P < 1 follows
directly and the general one by symmetry and homogeneity.

The strategy for the rest of the proof is now as follows: if AO,BQ C IR" and
0 o C ^ o x Bo, we will show that there are A,B, Θ of the form (1.2) verifying

(i)
(ii) λ(Θ) ^ λ(θ0),

(iii)
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Now if the original Ao,Bo,Θo had yielded a counterexample to the theorem, the
corresponding A,B,Θ would have, a fortiori, worked as such, contrary to the re-
mark following Lemma 1.3. Accordingly it remains to realize (i)-(iii) for given
Ao,Bo, Θς>.

Step 1. Set C = Ao +Θo Bo and

Θx = {(x,y) eAoxBo:x + yeC},

then Ao -h0 o BQ = Ao +Θι Bo, while clearly λ(Θx) ^ λ(Θ0).

Step 2. Define p\,pi,R > 0 via

λ(A0) = λ(PλB
n), λ(B0) = λ(P2B

n), λ(C) = λ(RBn).

We then have

= λ({{x9 y)£AoxBo:x + y£C})

= I I XA0(x)XB0(y)Xc(x + y)dxdy

^ / f XpiB»(x)XP2B>>(y)XRBn(x + y)dxdy

9y) e pxB
n x P2B

n :x + ye RBn}), (1.3)

as required for (i)-(iii) (and concluding the derivation of Theorem 1.2 from
Lemma 1.3). The inequality in (1.3) is a special case of [2, Theorem 3.4], which,
in a much more general setting, estimates an integral of a product of nonnega-
tive functions by that of their spherical (or Schwartz) symmetrizations; we thank
Alain Pajor for pointing out the paper [2] to us. D

Proof of Lemma 1.3 (Sketch). We will show that, for an appropriate choice of
c\ > 0 and with τ = ^ minlpy^, 1}, one has

1 ^ |*oI ^ l-τ/n^λ({y:\y\ ^ p, |JC0 + y\ > ( l + p 2 ) 5 » ^ cxλ(pBn) . (1.4)

It then follows that

λ(Bn x pBn\Θ) ^ (1 - τ/n)ncxλ(Bn) λ(pBn)

and that clearly implies the lemma. To show (1.4), we denote r0 = |xo| and assume,
as we may, that xo = (ro,O,...,0) and n ^ 2. Then (the reader is advised to draw
a picture)

- \Bn~λ I ( J (p2 - a 2 ) ^ + / (1 + p2 - (r0 + u j

where s = (1 - r^)/2r0 and f = (1 + p2)3 - r0. Since s g ( φ ) (1 + ^ ) ^

(p/λ/«)(l -\-O(n~1)), the contribution of the first integral constitutes a proportion
of λ(pBn) that is strictly smaller than 1 (uniformly in n) and asymptotically, as
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n —> oo, is of order Φ(l) λ(pBn), where Φ is the c.d.f. of a standard
Gaussian random variable. Similarly, the contribution of the second integral is shown
to be o(l) λ(pBn) as n —• oo (or, more exactly, less than (p/y/ή) λ(pBn) for all
n ^ 2); we omit the rather routine details. Combining the two estimates yields
(1.4), hence Lemma 1.3.

1.4 Remark. Theorem 1.2 is optimal in the following sense: there exist constants
a,A > 0 such that, for any « G N (resp. for any « G N , p e (0,1)), there exist
A9B e RΛ (resp. with p ^ (ACB)/A04))1/w gj p " 1 ) and Θ cAxB with 1(0) >

(xλ(A)λ(B) (resp. λ(Θ) > (1 -Aρni)λ(a)λ(B)) such that the assertion of the the-
orem does not hold.

1.5 Corollary. There exist c,C > 0 such that, for any δ e [0,c], / I G N , any A,B
C R Λ am/ any Θ CAxB with λ(Θ) ^ (1 - <5)Λ.O4)λ(£) awe has

/w ^ ίl - £p) (λ(A)2/n
λ(A + Θ £) 2 / w ^ ίl - £p) (λ(A)2/n + ̂ (5)2/w). (1.5)

We may assume that λ(A) = 1 ^ /ί(5) = pn. Let c > 0 be one given by
Theorem 1.2; we may clearly assume that c ^ 1/2. If p ^ δ/(cy/n), we may apply
Theorem 1.2 and get the assertion, in fact without the factor (1 — ^ ) . On the other
hand, regardless of the size of p one has (just by Fubini's theorem),

λ ( A + Θ B ) ^ ( 1 - δ ) λ ( A ) = l - δ ,

hence

and it is easy to check that, for an appropriate choice of C, the right-hand side of
(1.5) does not exceed the latter quantity if p < δ//

1.6 Remark. Redoing the argument of Theorem 2.1 in the context of Corollary 1.5
(rather than formally applying the assertion of the theorem) does not produce a
sharper result. However, it is possible to obtain an assertion similar to that of
Corollary 1.5 under much weaker assumptions, namely, in the notation of Theo-
rem 1.2, if y e (0,1) then the condition λ(Θ) ^ yλ(A)λ(B) implies a version of

(1.5) with (1 - Cδ/n) replaced by (1 - Cp(log(l + i

2. The Free Entropy Power Inequality

The free entropy χ(X\,...,Xn) for an «-tuple of selfadjoint elements Xj eM, M
a von Neumann alegbra with a normal faithful trace state τ, was defined in [8]
part II. The definition involves sets of matricial microstates ΓR{X\,...,Xn\m,k,ε)
(see Sect. 2 in [8] part II). The microstates are points in (Jif)n, where Mf de-
notes the selfadjoint k x k matrices, λ will denote the Lebesgue measure on (Jίψ)n

corresponding to the euclidean norm
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For one random variable we have (Prop. 4.5 in [8] part II) that:

χ(X) = / / log \s - t\dμ{s)dμ{t) + - + - Iog2π , (2.1)

where μ is the distribution of X (see 2.3 in [9]) or equivalently the measure on R
obtained by applying the trace τ to the spectral measure of X.

2.1 Theorem. Let X, 7 e M, X = X*, Y = Y* and assume X, 7 are free. Then

exp(2χ(X)) + exp(2χ(7)) ^ exp(2χ(X + 7 ) ) . (2.2)

Using the explicit formula for χ(X) and the fact that the distribution of the sum
of two free random variables is obtained via the free convolution g] (see 3.1 in
[9]) there is an equivalent form of the preceding theorem.

2.1' Theorem. Let a,β be compactly supported probability measures on R. Then

exp (2/ / log \s - t\dφ)da{t)) + exp (2/ / log \s - t\dβ(s)dβ(t))

S exp(2// log I* - t\d(oc^β)(s)d(a^β)(t). (2.3)

Proof of Theorem 2.1. The proof will be technically similar to Sects. 4 and 5
of [8] part II. Let Z E M, Z = Z* distributed according to Lebesgue measure on
[0,1] and let U\,U2 be unitaries with Haar distributions in (M,τ) and assume
Z, Uu U2 are *-free. Let further huh2 : [0,1] -• R be C1-functions with h[(t) > 0,
h'2(t) > 0 for all t E [0,1]. Remark that it suffices to prove the theorem in the case
X = U\h\(Z)Uf, 7 = U2h2(Z)U2* (i.e., the distributions of X and 7 are the push-
forwards by h\ and h2 of Lebesgue measure on [0,1]). Indeed see 2° in the proof
of Proposition 4.5 in [8] part II) there are sequences h^n of functions as above,
such that

lim χ{Uxhhn{Z)UΪ) = χ(X), lim χ(U2h2,n(Z)U2*) = χ(Y),

h\in(Z),h2,n(Z) converging in distribution to X, 7 and ||/i/,w||oo < R for some fixed
constant R. Then

'ΐ + U2h2,Λ(Z)U;\\ U2R,

and U\h\tn{Z)Uγ + U2h2<n(Z)U2 converges in distribution to X + Y because of our
freeness assumptions. By 2.6 in [8] part II we have

limsupxiUφUZW + U2h2,n{Z)UΪ) ^ χ(X + Y),

and hence it suffices to prove Theorem 2.1, in caseX= U\h\(Z)U*, Y =U2h
Like in 5.3 of [8] part II, let

Ω(hj k) = {Ae Jϊf I hj(2s/2k) ^ λs+ι(A) g hj((2s + l)/2Jfc),0 ^ s ^ k + 1} ,

where λ\(A) S m- ^ h(A) are the eigenvalues of A. The last part of the proof of
Proposition 4.5 in [8] part II shows that

lim (k~2 log λ(Ω(hj;k)) + 2" 1 logk) = χ(hj(Z)), (2.4)
k—>oo

where λ is the Lebesgue measure on Jίf.
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Let further iVeN and ε > 0 be given and

Θ(k) = {(AUA2) e Π Ω(hj;k)\(AuA2)eΓ(Uιhι(Z)U^U2h2(Z)U^;KKε)}.

(2.5)

By Lemma 5.3 in [8] part II we have:

k^L λ(Ω(hύk)xΩ(h2;k)) " l ' ^"^

\ΪR> HAylloo then

Θ(k) c ΓR{Uxhλ{Z)U*x,U2h2{Z)U2*; N,k,ε).

Further, given N\ G N, εi > 0 we may choose N G N, ε > 0 so that

(AUA2) G ΓR(Uι

implies

^; N,k,ε).

In particular,

Nuhεx). (2.7)

Using Theorem 1.2 for k ^ ko with &o sufficiently large, taking into account (2.6),
we have

U2h2(Z)UΪ; Nuk,

Given 5 > 0 we may choose A:o,A/̂ i large and εi small, so that

;) + δ

for all £ ^ ŷo
We infer that for k ^ k0,

exp (2£-2(log λ(β(Ai *)) + 2" 1 log t ) + exp (2£-2(log λ(Ω(h2; k)) + 2~ι\ogk)

£ exp(2(χ(C/iA1(Z)C/1 + C/2A2(Z)ί/2*) + c*)).

Letting & —> oo and taking into account that ^ > 0 was arbitrary, we get the desired
inequality. D
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3. Concluding Remarks and Open Problems

3.1. The Free Entropy Power Inequality for n-Tuples. To extend Theorem 2.1 to
^-tuples of non-commutative random variables means to prove

exp βχ{Xu...,Xn)\+vφ βχ(Yu...9Yn)\ g exp βχ(Xι + Yu.. .,Xn + Yn)

(3.1)

under the assumption that {X\,...9Xn} and {Y\,...,Yn} are free. The missing
ingredient at this time is the generalization of Sect. 5 in [8] part II to ^-tuples.
The rest of the argument, i.e. the use of Theorem 1.2, would then be along
the same lines as for n = 1. At present, partial generalizations of Theorem 2.1
can be obtained. The route to be followed is: first replace X and Y by n-
tuples (Xu...,Xn)9 (Yu...9Yn) such that the In variables Xu...9Xn9 Yu...,Yn

are free and note that in this situation the necessary facts about sets of matri-
cial microstates can be obtained from Sect. 5 of [8] part II. Then the general-
ization of Theorem 2.1 will hold for ^-tuples (F\(X\,...,Xn),...,Fn(X\,...,!„))
and (Hι(Yu...9Yn)9...9Hn(Yl9...9Yn))9 where Xu...,Xn, Yi9../9Yn are free and
(F\,.. .,Fw),(//i,. ..,Hn) are non-commutative functions satisfying suitable condi-
tions, like the existence of an inverse of the same kind and extending to the
matricial microstates. These kind of extensions have statements containing many
technical conditions, the proof, except for some technicalities, being along the
same lines as for n — \. We don't pursue this here, hoping that better tech-
niques will yield a proof of the free entropy power inequality in full
generality.

3.2. Shannon's Classical Entropy Power Inequality and Restricted Minkowski
Sums. We would like to signal that the inequality in Theorem 1.2 has the po-
tential to provide a proof also of Shannon's classical entropy power inequality.
The reason is that the classical entropy of an «-tuple of commutative random
variables can be defined via microstates (using the diagonal subalgebra of the
n x n matrix algebra instead of the full algebra) and the entropy power inequal-
ity would then correspond to the same kind of geometric problem at the level of
microstates as in the free case. We are thinking of exploring this possibility in
future work.

3.3. The Free Analogue of the Stam Inequality. It seems natural to look also for a
free analogue of the Stam inequality ([7], see also [1,3]), of which the free entropy
power inequality would be a consequence. With Φ denoting the free analogue of
Fisher's information measure (see [8] part I) this problem amounts to proving that:

(Φ(X + Y))-{ S (Φ(X))~l + (Φ(Y)Γ1

ifX9Y are free.
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