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Summary. We estimate the accuracy of the adiabatic approximation in predicting the
time evolution of local observables for an XY quantum magnet with a slowly variable
external magnetic field. The system evolves according to the natural Hamiltonian
dynamics and the spectral gap produced by the magnetic field is assumed to be large
with respect to the term inducing quantum fluctutions. The proof is based on a finite
order truncation of a time dependent cluster expansion in inverse powers of the time
scale r. In the analytic case, we show that the accuracy of this truncated expansion

i
is of order O ( e ~ α e r a) for any a > 1. If the time dependent perturbation is suddenly
switched on at time zero and switched off at time r, the accuracy of the adiabatic
approximation is proven to be of order O(τ~ι).

1. Introduction

The adiabatic approximation and linear response theory are basic tools of non-
equilibrium statistical mechanics which are useful for setting up the memory function
formalism and understanding the hydrodynamic description [F]. In this paper, we
study a quantum spin system at zero temperature for which the accuracy of these
approximations can be rigorously controlled. The model is described by a time de-
pendent Hamiltonian τM(t), where t G [0,1] is a rescaled time coordinate and r ^> 1
is the time scale. We assume that the time dependency is analytic because the study
of this case appears to be more instructive. However, weaker formulations of the
two results of this article hold also in case the degree of smoothness is finite. Each
operator M(t) at fixed time t has a gap of order 1 and a ground state with short range
correlations which can be computed in perturbation theory. If one chooses as initial
condition the instantaneous ground state at time zero, then at time t = 1 we prove that
the system is in the ground state of M(l) up to errors that, if measured by computing
the expectation of a local observable, are of order r " 1 . The subleading corrections
can be computed in terms of an asymptotic expansion in inverse powers of r. The
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method we follow is related to the one developed by Fock [F] and refined by Kato
[K] to prove the adiabatic theorem for one-body Schrodinger operators. The idea is
to pass to a moving frame in which the generator of the dynamics annihilates the
unperturbed ground state up to local corrections of order O((N\)aτ~N). Here a is

any constant > 1 and N is an integer > 1 . The optimal value for TV is « eτ«, which

corresponds to an error term of order O(e~ α e r Q : ) . In order to obtain bounds which
are uniform in the volume, we define the moving frame by means of unitary oper-
ators with good clustering properties. This allows one to decouple the local degrees
of freedom from each other. To estimate the accuracy of this truncated perturbation
expansion in powers of r " 1 , we study the generation and the propagation of distur-
bances in the rotating frame by means of a polymer expansion for a gas of worldlines
of quasiparticle excitations.

Although the method is quite general and can accomodate a large class of mod-
els, it is useful to concentrate on a specific example. The model we consider is an
anisotropic spin-^ antiferromagnet on the lattice 7Ld with a perpendicular exchange
coupling λ which is small in absolute value. This system evolves in the presence of
a variable magnetic field h(x, t). Here, h(x, t) G Md, x G Z d , t G M, is a function of
the rescaled time t such that | |h(x,t)| | = 1 for all x and t. We consider the time
interval t G [0,1] and assume that h(x,t) admits an analytic continuation to the strip
{Im t < δ}, for some δ > 0. The time scale τ on which the magnetic field varies is
assumed to be large, i.e. we consider the adiabatic limit. The Hamiltonian generating
the dynamics with respect to the rescaled time t is τH(ί), where

H(ί) = Σ λσ*'σy+ Σ

(xy)C%d xeid

If L is a local observable, then we have

(#(0)| 11(0,1)01(1,0) I φ(0)) = (#(1)| L |#(1)) + error(L), (1.3)

where Ψ(t) is the instantaneous ground state of W(t) and ϋ(£, 0) is the propagator

U(ί,0) = Pexp [IT I ds H(t) . (1.4)

V Jo )
Theorem. There is a constant XQ > 0 such that if\λ\ < λo then for all local observ-
ables L the error term in (1.3) has an asymptotic expansion of the form

error(L) « Σ αn(L) r~n. (1.5)
n=\

The coefficients αn(L) are such that for any a > 1, there is a constant co(α, L) G (0, oo)
independent of the volume \Λ\ for which we have

K ( L ) | < cι,(α,L) n (n!) α . (1.6)

In general, the coefficient a\(L) is nonzero because the time interval is restricted
to [0,1] and the time dependent perturbation is suddenly turned on and switched off.
In case the perturbation is adiabatically switched on as t —> — oo and turned off as
t —> oo, one would expect a much smaller error term of order e ~ c r . This delicate
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result was established by Joye and Pfister [JP] in the few body case and the extension
to the many-body case might require a combination of the methods in [JP] with those
in this article.

The second result concerns linear response theory. The memory function formal-
ism is usually set up in the interaction representation [F]. Let us consider the operator

L(t) = exp (iτffl(O)) L exp ( - iτffl(O)) (1.7)

and the density matrix p(t) ( a simple projector since we are at zero temperature)
which evolved from the time zero matrix \Ψφ))(Ψ{0)\. The time evolution is given
by the equation

^ Γ
 = τ
 Σ ^

(t)
' M(s,*)] .«h(M), (1.8)

X

where

M(x, t) = exp (ITS M(0)) σ
x
 exp ( - irs H(0)) (1.9)

and

δh(x,t) = h(x,t) - h(z,0). (1.10)

W e have

= Tr (L(ί) p{t))

(1.11)

ίs x-^ / \
= Tr (L(ί)p(O)) -iτ \ dt' \ Tr L(ί) [p(ί'), M(a;',ί')l <5h(a;',ί')

= Tr (L(ί)p(O)) - iτ J dt' Σ XLMQ> *>x"ϊ' m(-x'' *').

where χLM is the exact response function defined as

χLM{tJ\x') = Tr (p(t) [Uf),M(x',t')]\ (1.12)

Corollary. Under the hypothesis of the theorem above, we have

+ O(τ~ι

O(τι

χLM(t,t'-,x') = {Ψ(t')\ [L(t), M(x',t')] \Ψ(t')) + O(τ~ι)

~ι + sup|^/ι(xt7)|) ( L 1 3 )

where the error terms depend on L but are uniform in the volume \Λ\.

Linear response theory is the approximation in which the error in the third term of
(1.13) is neglected.

Acknowledgement. I am grateful to Tadeusz Balaban for having brought this problem to my attention.

2. Outline of the Proof

The classical argument to prove the adiabatic theorem due to Fock [1] and to Kato
[2] is based on a time dependent change of reference frame in the Hubert space. In
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the many body case, this idea must be implemented in a way which is consistent with
the locality of the Hamiltonian and the natural clustering properties of the low energy
wavefunctions. Dressing transformations [A] satisfy this requirement and are a natural
tool for this kind of problem. In this paper, this technique is extended to the problem
of finding approximate solutions to the time dependent Schroedinger equation for a
many-body system.

The rotating reference frame is defined in several steps. In the first, we pass to
the representation in which the propagator is given by the operator

(2.1)

where Iff (£2^1) is m e propagator corresponding to M(t) and M(t) is the rotation oper-

ator

= Y[ exp ( i(h(x, t) - h(x, 0)) σΛ. (2.2)

Let | — h)^ be the state of the spin in x in which the orientation is opposite to that
of the magnetic field h E I 3 so that we have

iΠ>\L>J ^χ^wd \"\^") ^J)/x — yyηr-fiψd |**v«^5 v)/χ. \Δ.D)

We also have

M(tyι -(h(x,t)-σx + l)l(t) = §, (2.4)

where

" sx = Y -(h(x,0) σ , + 1). (2.5)

In the new representation, the dynamics'generator is given by the operator

τHo(ί) = M(tyιΈL(t)M(t) + iτ~ιMf(t)M(tyι = § + XK(t) + r " 1 F(ί), (2.6)

where

K(t) = ^2B(tyισx σy l(ί) (2.7)

and
F(t) = V / x = IB'COMCί)"1. (2.8)

The goal is to solve the following equation in terms of formal power series in the
inverse time scale τ~ι:

i^eA(t)\0) = τeiφ(t)M(t)A(t)\0). (2.9)
at

Here, φ(t) is a phase factor with an asymptotic expansion of the form

n=— 1 m=0

A(t) is a unitary operator of the form
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A(t) = ( lim e l ( 1 ) ( t ) . . .e l ( υ ) ( t ) ) (2.11)

defining a unitary dressing transformation. The generators Wit) are such that

Xmτ-

•(ί), (2.13)

oo
\m —nm\(v)

n=0 m=\

J j σ^ + iS?{rmnΊ{t)} J ] σ<f>. (2.14)

The function φ(t) s chosen so that Moi = 0. The complex valued functions r m n 7 ( ί )
are uniquelly determined by recurrence relations given in Sect. 3. J ^ and S? denote
the real and imaginary parts, respectively. 7 denotes maps : 4̂ —> {0,1} describing
excitations as well as the support of such functions. The volume of 7 is |7|, while
d(η) denotes the number of bonds of the smallest connected cluster containing 7 as
a subset. We also introduce the following distance function between two excitations
71 and 72:

d(η\, 72) = min < \Γ\ for Γ C A such that for all x e 71 \ 72

(respectively 72 \ 71) there is a path in Γ joining it to 72 (respectively 71) >.

(2.15)
Finally, the phase factor φ(t) is fixed by the condition (2.21) below.

To generate the asymptotic expansion in powers of r " 1 , we pass to the reference
frame in which the propagator is given by the operator

Vι(h\tx) = JMW-KW A(t2Γ
ιΈo(t2\tι)A(tι). (2.16)

In this moving coordinate system, the time dependent Schroedinger equation has the
form

i~^oit2\U) = -τϋ o(ί2;ίi)Ho(ίi), (2.17)
at

MD(t) = A(tyιUo(t)A(t) + ίτ^Aity^'it) + iτ-χφ'(t). (2.18)
where

The first N terms of the formal ^ expansion is generated by requiring that

MD{t)\0) = ZN(Φ), (2.19)

where TLxif) is a local operator whose off diagonal part is of order O(τ~N) while the
coefficients in the expansion (2.10) for the phase factor φ(t) are fixed by the condition

0. (2.21)

Definition. If a, b G l , let aUb = max(α, b) and aΠb = min(α, 6).

In the next section we prove the following result:



532 Claudio Albanese

Lemma. For all N > 1 there is a transformation Δ vOO of the form (2.11) such that
if L is a local operator and

OO CO

" Γ Σ ijvnm(*,7) (2-22)

is α decomposition of the dressed operator LJV(Q into operators Zjvnm(£; l) of support
7, we have that

Σ ll^n(ί;7)l|i < | |L | | i c m c(α) n (n ! r (c .λ) ( d o- n ) u l (2.23)
d(<y)>d0

for all constants a > 1 and some constant c, c(a) > 0 which do not depend on n.
Moreover, the dressed Hamiltonian has the form

UN(t) = § + V(t) + ZN(f), (2.24)

where
N oo

W) = Σ Σ Σ r " n r <w(t;7), (2.25)
n=0 m=\

and the operators vnrn(tm, 7) have support 7 and are such that

Σ (2.27)

and
vnm(t; 7)|0) = 0.

Finally, the operator TL^qif) admits a decomposition into local operators

2 ^ ^ ( ί ; 7 ) (2-28)

with supp ZN(t\η) C 7, such

^ ,^iv(t;7)||i < W τ ( c λ ) . (2.29)

Since the expansion in inverse powers of r does not converge in the limit N —> 00,
it is worth computing only a number of terms ~ eτ«, after which the addition of
higher order terms worsens, rather than improves, the accuracy of the approximation.
We thus need a separate argument to estimate the accuracy of our time dependent
cluster expansion, truncated at finite order in £. To this end, we make use of the
linked cluster theorem [GJ].

Let Aoo(ί) denote the unitary operator in (2.11) in the limit r = 00. The error
term in (1.5) is given by

error(L) = (OlΔooίOΓ^oίO; l)LU0(l;0)Aoo(0)|0> -

ooίlΓ^AooίΌlO).
(2.30)
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Here, we make use of the fact that, thanks to the initial condition at t = 0, the vector
Aoo(0)|0) is the ground state of M0(0). Let Zn(λ,7) and /oon(A,7) be the families of
operators of support 7 such that

N

A(1)~!LA(1) = y ^ τ~n y ^ Zn(λ, 7) (2.31)
n=0 7

and
N

n=0 7

respectively, and let

ΪΛ\Ί) = in(λ,7) " (0|/oo,n(λ,7)|0). (2.33)

Equation (2.30) can be written as follows:

N

error(L) = ̂  τ~n ^ ( 0 | ϋ i ( 0 ; l)ίn(λ,7)ϋi(l;0)|0). (2.34)

n=0 7

Thanks to the lemma above, we have that

|(0|ίn(λ,7)|0)| < (nlΓφfίc λ P - ^ T-". (2.35)

We also know the relative boundedness estimate

(Φ\(J(λ,Ύ) ~ <0|ί(λ,7)|0»|?P) <

where sx is the operator in (2.5). Hence, it suffices to prove that in the rotating
reference frame we have:

N

sup (O|ϋo(O; 1) sx U0(l;0)[0) = V an(\sx) τ~n, (2.37)

where the coefficients an(sx) satisfy the following estimate:

an(sx)<c(a)n.(n\r. (2.38)

To this end, we can use a polymer expansion of the type in [GJ].
We call a (simple) polymer a map 7(t) defined for t £ [0,1]. We assume that

the range of values of a polymer 7 consists of a finite number 77,(7) °f different
subsets of A. We also assume that j(t) is upper semicontinuous so that if to, ...ίn(7)
are the points of discontinuity of the function 7, then η(t) is constant on the intervals
[ti, £i+i), i = 0, ...72(7) — 1. Finally, we assume that the graph of the function 7, i.e.
the set {(ί,7(t)), t e [0,1]} C I x Λ, is connected. The support of 7 is the set

supp 7 = U^(7} Ϊ(U) and the range is Ran 7 = {7(^1), 7(^(7))} Following [GJ],
let us denote by £P\ the set of (simple) polymers and by ̂  the set of /c-polymers,
i.e. the /c-fold product ^ = ^ x . . . x ^ .

Two polymers 71 and 72 are said to intersect if
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supp 7i Π supp 72 φ 0. (2.39)

In this case, we write 71 (Ί 72 φ 0. Otherwise, we say that 71 and 72 do not intersect
and we write 71 Π 72 = 0. Let ^ and W^ denote the sets of the disjoint and of the
connected /c-polymers in ^ , respectively.

The wavefunction HJi(l;O)|O) admits a polymer expansion of the following form:

I u L 7iO)>, (2-40)

where the functional integral is defined in such a way that

[dη/ι] • • • [dηij] φir/ϊ) • φ{%)

fl ft

/ dΐi • /

(supp 7 i , . . . supp 7^)

3

•T

Here, T is the time ordering operator and N = X^= 1 n(jk) We also set

> (2Λ2)

where tn+\ = 1 and the factors in the product are arranged in such a way to show
decreasing values of j as one goes from the left to the right.

To show how to estimate functional integrals of this type, let us prove the following
upper bound:

I ί
sup / \dη\
xeΛ I J

< (N\)a c(a)N τ~N (c λ)d°, (2.43)

where ^ ( 7 , do) is the set of all simple polymers 7 such that 7(̂ 1) = 7 and

d0 = d(7,supp7). (2.44)

Integrating by parts, we find that

/ e-* τ ( t i-*2 ) 8^(ίi;7i) = -^Wife;7i), (2.45)

Jo r §

where

Wi(ί2;7i) = a - e 2 r ί 2 S) zN(t2',-n) - Γ dtxe
τ^1^ z'N{tVnx). (2.46)

Jo

Similarly, if j = 2, ...n, we find that
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±\ ί J+l dtje-^

where

535

), (2.47)

dt3

Finally, we have that

J&

zN(tj+ύΊj))

y,d0)

(2.48)

<7n|Wn_i(l;7i,...7n-i)|0). (2.49)

7 G ^ ( 7 ,

Let W^0)(tj+i;7i, .. 7j), j = l , n, be the operators corresponding to polymers
with only one insertion of an operator zn at time t = t\, i.e. the operators such that

f } 7 i ) = W ^ f e ^ i ) and such that if j > 2 then

— / r// p M ^ + l-ί j
/ aij e J

Jo
If

and

we have

sup

(ί; 7i, 72)

N

n=0

wf\t; 7 l , 7 2 ; 7 o ) r7 o |

70

(2.50)

(2.51)

(2.52)

Σ< Σ χ m

m = 1
 7O

< (Nl)a c(a)Nr~N

Λ Σ Σ
°

71

(2.53)

Here, the key remark is that the operators Vm(t;jo) annihilate the states in the Ising
basis for which the set 72 does not contain excitations. The volume factor arising
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from the sum over the base point y G 7Q is canceled by the factor coming from the
operator S"1.

To obtain (2.43), the estimates above can be iterated over j up to j = n — 1. It
is not difficult to convince oneselves that the qualitative form of these estimates is
preserved if one allows multiple insertions of operators zN.

To find a polymer expansion for the expectation value of a local observable L,
we have to slightly modify the notion of intersection between two polymers. We say
that 7i intersects 72 modulo L and write 71 Πx 72 Φ 0, if either 71 Π 72 φ 0 or if
supp 71 and supp 72 both intersect the support of L. Given this notion of intersection,
the sets «^ (L) and ^ ( L ) are defined as usual. We have that

00

= <0|L|0) + V -

(2.54)
where

^ _ ί Mϊ)\l i f 7(D n supp L = 0 2 5 5
V " I |^(7)|2(7(1)W7(D) otherwise. {Z'^}

Also in this case, a bound similar to (2.53) holds, i.e.

w(L;7) < c(L, a)N (N\)2a

T-
2N (c λ) 2 d ( 7 ) . (2.56)

Thanks to the linked cluster theorem, we have that

(0|ϋi(0; l)LUi(l;0)|0> = - 1 + (0|L|0)

/ °° 1 ί \
+ exp ( V" — / [dηfi] [d%] n(ηx, 7 )̂1^1(71) wτiϊj) J, (2.57)

where n(7i, 7j) G §j(L) is the index of the connected polymer (71,...7j), see
[GJ]. Thanks to the exponential decay estimate (2.56), the expansion converges [GJ].
Since Uo(O; 1) is unitary, we also find

ij) = 0, (2.58)
3=1 "' IC"

where I is the identity operator. Hence

(0|ϋi(0;l)Lϋi(l;0)|0) = - 1 + (0|L|0)

ί^ 1 (
+ exp I 2_. ~ [ [^7i] * * [djj] n(7i,

- ί [dηfι]''Λdifj]n(η[lr''ϊfj)wι(ηfι)'''rvι(ηfj) (2.59)

If X G ί̂ (-A) doesn't intersect the support of L, we have that w(h)x = w(l)x so
that the summation in (2.59) can be restricted to the connected polymers intersecting
supp (L). Specializing to L = sx and using the bound (2.41) and the methods in
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[GJ], one obtains the bound in (2.38). To complete the proof, in the next section we
construct the operators A(t) in (2.11) and prove the lemma above.

3. The Time Dependent Dressing Transformation

In this section, we generate a formal cluster expansion in powers of λ and τ - 1 for a
unitary operator A(t) of the form (2.11) which solves the following time dependent
equation:

r 1
A(tyιU0(t)A(t) + iτ-ιA(tΓιA'(t) + ίτ-ιφ'(t)\ |0) = 0. (3.1)

The expansion has the form of a double power series that converges in λ and is
asymptotic in τ~ι. The operators M^m satisfying (3.1) at least in the sense of formal
power series are uniquely determined by the following recurrence relations:

Σ f f i«-i 0 >

V

=-{ΣΣ Σ Σ
777,1 + . ,

[. . . [5a;,rm i n i 7 l(ί)J , . . rmknkΎk(t)\

+ y^ v^ y^ y^ — §•
/ J / J / J / J Ti(\ry\\ I'Ύir l)
(xy) k>0 |7ll< <l7fcl Π\ + . . . + Πk = Π

TΠi + . . . +77ifc = 7 7 1 — 1

+ΣΣ

[... [k{xy)(t),fmιnιΊι(t)] ,. ..fmknkΊk(t)\

ΣΣ Σ ΣΣ
7fcl m + . . . + n f e = n

777-1 + . . . + rrιk =

+Σ Σ Σ
+ . . . + rife = n — 1

noToW'^i 'ni «)]'•• f™*n fc7fc(ί)]|0> I , (3.2)

where § is defined in (2.5), ψ± = I - |0)(0| and we set

n(|7i |, l7fcl) =

v=0
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Equation (3.2) generates a cluster expansion. In fact, at the (n + m ) t h order of
perturbation theory, only clusters of at most (n + m + 1) sites are present.

Let us introduce the following functions:

<t) S U P V) S U P Ikmn 7 (θ | | l (3.4)
x \^t\<6

Here, a > 1 and <5m is the decreasing sequence of positive numbers such that

δm = δπι-i -δom-ac(a). (3.5)

<50 is a positive small constant we fix below and

c(a) = V m-a) . (3.6)

In the following, we show that if |λ| and τ~ι are small enough, we have

r*(ί;λ,τ) = J ] C n λm τ~m < ex). (3.7)

The lemma in the previous section is a straightforward consequence of this estimate.
The first three terms in (3.2) are also present in the static, i.e. r = oo, case and

can be estimated as in [A] or in [AF]. The fourth term is of a different nature because
of the presence of a time derivative in the function ^monO7O(Q To estimate its size,
one can use Cauchy's theorem according to which if m > m0 we have

S U P \\rfmonoΊo(t)\U < (δrn0 ~ δmΓl SUp | | r m o n o 7 o ( ί ) | | i
m | Ims|<<5 m { )

l ) a sup | | r ( ί ) | |

Hence, the k = 0 contribution to r ^ n coming from the fourth term in (3.2) is bounded
from above by r*m_x n . If k > 1, we have to estimate also the commutators. Let us
call /c-polymer a family of clusters p = {70, ...7/c} such that 70 Π 71 ̂  0, 7^ Π (70 U
... U 7/c-i) 7̂  0 and |7o| < ... < |7/c|. Let us introduce also the equivalence class
[p] = {3^p\x G A}, where x e Λ and ̂  is the operator of translation by x. There
is a state |7(p)) such that

»[eχ. C i n i 7 1 ( ί ) ] » - ^ ^ 7 * ^ ( 0 ] |0) = /(roχn)(p,ί)|7(p,ί)>, (3-9)

for some coefficient f(m)(n)(p,t), where (m) = (πi\...mk), (ή) = (n\...rik). Let f(p)
be the translation invariant function such that

f(m)(n)(p) = SUp |/(m)(7i)0£M)| (3-10)

t e [0, l]

The contribution to r^ coming from all connected /c-polymers p G [p] is bounded
from above by
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sup
e A

S""1 |7(P»Hl =

Hence, the contribution to r* coming from the fourth sum in (3.2) is

l/(mXn)(p(7Γ))|<ΣΣ Σ
[p] /c>o n i + . . . + nk... + nk = n - i

+ + 777^ = 771

Σ
Σ

= 7 τ ι — l

/(mXn)(70, 7fc)|

(3.12)
We have that

17/cl =

•SUp Σ fcfc

\lk\ =Vk

The first term originates from the k centers of noncommutativity of 70 U 71... U 7^-1,

while the second is due to the center of noncommutativity in τlk. The factor υk

ι =

\jk\~ι is inherited from (2.14). Since the volumes are ordered, we have

( | 7 l | + .. + |7 / c _ 1 | -/c + l ) ι ; - 1 < k.

Iterating this bound, we find

Σ b
πi\ +

(3.14)

Σ
= m

\lk\ =vk

Σ
k>° ri\ + + nk = n — 1 j=i,

πi\ + — rrik = m

Π ( 3 1 5 )

= 7 7 1 — 1

where
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C,-n,«, = SUP Σ K ^ l (3 16>
J 3 3 £—' 3 3 <3

η3b

Similarly, we find that the first three terms in (3.2) give a contribution to r^ which is

<( Σ +4 Σ +/ Σ
& > 2 & > 0 £; > 0

πi\ + ... + rrik = m πi\ + ... + ra& = m — "

Λ-^ 22/cA;! Π r m i W (3.Π)

where / = J ^ ||/^|| Using the binomial formula to compute the sum over the vol-
umes, one can express these bounds in terms of the formal power series in (3.7) and
find

r*(t',\,τ) < λ + fr~ι + [(1 -Ar\t\\τ))-χ - 1 -4r*(ί;λ,τ)]
1 r 1 (3.18)

+ (4λ + (l + /)r- 1 )[( l-4r*(t ;λ,τ)Γ 1 - l].

The analyticity of the function r*(t;λ,r) is a consequence of the implicit function
theorem and the lemma in Sect. 2 follows.
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