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Abstract: The wave functions of the Calogero-Sutherland model are known to be
expressible in terms of Jack polynomials. A formula which allows to obtain the
wave functions of the excited states by acting with a string of creation operators
on the wave function of the ground state is presented and derived. The creation
operators that enter in this formula of Rodrigues-type for the Jack polynomials
involve Dunkl operators.

1. Introduction

Exactly solvable models are of great help in the understanding of quantum many-
body physics. The Calogero-Sutherland (CS) [1,2,3] model, which describes a
system of N particles on a circle interacting pairwise through long range potentials,
is generating a lot of attention in this connection, in particular because it provides
a fully solvable model in which the ideas of fractional statistics can be tested [4].
There is thus considerable interest in identifying the algebraic structure responsible
for the solvability of this model.

The spectrum of the CS Hamiltonian can be interpreted as the energy of a
collection of free quasi-particles obeying a generalized exclusion principle. Recent
computations [5,6,7] of some correlation functions have confirmed this point of
view and shown that the exclusion statistics of quasi-particles and quasi-holes is
consistent with the anyon statistics of the real particles. The calculation of these
quantities proved possible because of the following circumstance: the eigenfunctions
of the CS Hamiltonian are given in terms of Jack polynomials [8,9,10]. These
polynomials form a basis for the ring of symmetric functions and enjoy algebraic
properties that allow to carry out analytically the computation of various dynamical
functions of the CS model. These polynomials also appear in related areas like the
characterization of the Virasoro and WN algebras singular vectors [11,12] and in
the construction of Yangian modules [13,14].

We will show in this paper that the wave functions of the CS Hamiltonian
and hence the Jack polynomials can be obtained by applying a string of creation



426 L. Lapointe, L. Vinet

operators on the ground state wave function. After reviewing in Sect. 2, the spectrum
and the eigenstates of the CS Hamiltonian, we shall present and discuss this operator
solution of the CS model in Sect. 3. Proofs will be deferred mainly to Sect. 4.
Conclusion and outlook will form the content of Sect. 5.

2. Spectrum and Eigenstates of the Hamiltonian

The CS model describes a system of N particles on a circle. We shall denote by
L the perimeter of that circle and by x^i = 1,...,7V; 0 ^ */ ^ L, the positions of
the particles.

2.1. Hamiltonian and Ground State. The quantum Hamiltonian HCS is

Hcs = -Σ |r + W - 1) Σ ~ * . , (2-1)
7=1 vXj j<k a W ~~ xk)

where β is a constant and

L π
d(Xj - xk) = - sin -(Xj - xk) , (2.2)

71 Li

is the chord length between the positions of the particles j and k. Note the symmetry
under the exchange of β and 1 - β. For β real, that is β(β ~ 1) ^ —1/4, HCs is
known to be stable and to have no bound states. The momentum operator PCS

is P = —iΣj=\d/dχj' The operators P and HCS are self- adjoint with respect to

the inner product (/,#) = /0 dx\ J0 dx^ f(x)g(x). Moreover, since HCS can be
written in the form [12]

EQ9 (2.3)
7=1

where

4(/0 = -ί/- + 17)8 Σ cot Γ£ (*y - **)! , (2-4)
OXj L k^j LL J

we see that HCS is bounded from below with

l ) , (2.5)

the ground state energy. There are a priori two wavefunctions satisfying
HcsΨo — EoΨo, one being annihilated by the operators Aj(β) and the other by the
operators Aj(\ — β). Only the first is normalizable, however, for all values of β. It
is of Jastrow type and given explicitly by

Ψo(x) = Π sin γ(xj -χk)\ (2.6)
j<k L^ J

The coupling β controls the statistics of the real particles in the ground state.
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2.2. Excited States. The wave functions of the excited states are written in the
form ψ(x) = φ(x)\l/Q(x\ where φ(x) is required to be symmetric in order for ψ
to behave like I//Q under the exchange of particles. It proves convenient to use the
variables

Zj = e2πίxj'L . (2.7)

In these coordinates, the ground state wave function is (up to a constant) Δ$(z) =

Ylj<k(zj ~z^Ylkzk' anc* tne Schrόdinger equation Hcsψ = Eψ is trans-
formed into the following equation for φ:

( L\2

Hφ=( — ) (E-EQ)φ, (2.8)
, \ 2 π/where

/ L \ 2

H = — Δ-tHcsΔ* =Hl+ βH2 , (2.9)
\2πJ

The momentum operator becomes P = Δ~βPΔ$ = 2n/L^.Zjd/dzj and commutes
with H. We thus supplement (2.8) with

Pφ = κφ. (2.11)

Let (/>' = Gqφ with
G = Π*, , <7^ (2-12)

j

If 0 obeys (2.8) and (2.11), it is easy to see that φ' will also be an eigenfunction
of H and P with eigenvalues (L/2π)2(E - £0) + 2Nq(L/2π)κ + (Λfy)2 and K + Λ/ςr
respectively. Multiplication by G thus implements Galilei boosts. Finally, one readily
notices that H is SN -invariant. This implies that the space of symmetric functions
of degree n G IN is stable under the action of H. In fact, it is shown [5, 6, 7] that
apart from factors of the form (2.12), the eigenfunctions φ of H and P are given
in terms of a specific basis for these symmetric functions which is known as that
of the Jack polynomials Jχ(z\ l/β).

2.3. Jack Polynomials. These polynomials are labelled by partitions λ of their
degree n, that is sequences λ = (λ\,λ2,...) of non-negative integers in decreasing
order λ\ ^ λ2 ^ such that n = λ\ + λ2 H ---- . Let λ and μ be two partitions of
n. In the dominance ordering, we have λ ^ μ if λ\ + λi H ----- h λt ^ μi + μ2 +
• + μt, for all i. Two natural bases for the space of symmetric functions are
conventionally used to define the Jack polynomials:

(i) the power sum symmetric functions pχ which in terms of the power sums

A = Σ4> (2-13)
u k

are given by

Pλ = PλiPλz' * (2.14)
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(ii) the monomial symmetric functions mχ which are

distinct permutations

To the partition λ with m/ parts equal to /, we associate the number

zχ = Imιmι\2m2m2\ — . (2.16)

We then introduce the following scalar product on the space of symmetric functions:

~l(λ} , (2.17)

where l(λ) is the number of parts of λ. The Jack polynomials
are then uniquely defined [8,9,10] as the symmetric polynomials satisfying the
following two conditions:

(Jλ,Jμ)=0 ifλ*μ, (2.18a)

Jλ(z; l/β) = mλ + Σ vλμ(β)mμ . (2.18b)
μ<λ

While no explicit formula has yet been obtained for these polynomials, they have
been shown to obey a number of interesting properties. For instance, they are also
orthogonal under the norm [10]

= / ~ Π |(*,-**)|2/Vi(*)fc£), zj = ̂ , (2.19)2π 2π j<k

which is induced from the scalar product associated to the original quantum mechan-
ical problem (θz = 2πjr//Z). We can therefore replace (Jχ,Jμ} by (Jχ,Jμ) in (2.18a)
to define the Jack functions, these two scalar products being proportional. More-
over, when l(λ) ^ N, the Jack polynomials Jχ(z\,...,zN\ l/β) are shown [8,9, 10]
to obey a differential equation which coincides with (2.8)-(2.10).

2.4. Diagonalίzation of H. This last result can be presented following Sutherland's
argument [3] on how to triangulate the CS Hamiltonian. Since the ground state
incorporates correlations, it is reasonable to expect when writing the wave functions
in the form ψ = φψo, that φ will look much like the wave functions of free particles

which are symmetric monomials mχ = Σperm Π z/ - ^ ^s easY to see that H —
HI + /?//2 is self-adjoint with respect to the scalar product (2.19). It thus has a
set of orthogonal eigenfunctions which form a basis for the symmetric functions.
Consider now the action of H on mχ. One readily finds, using (2.10) that

H2mχ = ε2mλ + Σ cλμmμ , (2.20)

where cχμ are some coefficients and
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We thus find that H is triangular in the symmetric monomial basis. Its eigenvalues
are thus

\ 2 N

^Λ (£ - £o) = Σ (tf + β(N + 1 - 2/μ, ). (2.22)

The corresponding eigenfunctions φχ will have an expansion of the form φχ =
mχ + Σμ<λυλμmμ an^ satisfy (φχ,φμ) = Q. Since these two conditions uniquely
define the Jack polynomials, we must have φχ(z) = Jχ(z\ l/β).

To sum up, allowing for the Galilean boosts, the eigenfunctions of the Calogero-
Sutherland Hamiltonian are

, N ^q-(N-\)β/2

( ΓU ) Π (*, - Zj)βJλ(zι l/β) , (2.23)
\i=l / i<j

where q is an arbitrary real number and λ ranges over all partitions of all non-
negative integers such that l(λ) ̂  N — 1. The number of parts in λ is restricted to
be strictly smaller than the number of particles in order to avoid double counting.

Indeed, it is immediate to convince oneself that the solution (Π/lιz*'Vλ(z; l/β) of
(2.18) is actually the solution JM(z; l/β), where λ+l =(λι + I,λ2 + I,...)- We
therefore set λN = 0 absorbing any value that this part might take in the arbitrary
Galilei transformation parametrized by q.

The eigenvalues Kχ and Eχ that P and HCS have when acting on the wave-
functions (2.23) can be nicely presented if one introduces the quantities

Ki = ^-[λt + β(N+\- 2ί) + q] . (2.24)

In terms of these

The spectrum of the CS model is that of free quasi-particles with quasi-momenta
KI. The neighboring quasi-momenta satisfy K/ — KI+\ ^ 2πβ/L which indicates that
the quantum excitations of the CS system obey a generalized exclusion statistics.

3. Operator Solution

We shall now present a formula that gives the eigenfunctions of the CS Hamiltonian
and hence the Jack polynomials, through the action of a string of creation operators
on the ground state wave functions. The proof of this formula will be given in the
next section.

3.1. Dunkl Operators. The creation operators that will provide this operator solution
of the CS model will be constructed in terms of the so-called Dunkl operators V/
[15]. These operators are defined as follows:

(3 1}



430 L. Lapointe, L. Vinet

where Ky = Kβ9K^ — 1, is the operator that permutes the variables z/ and zy:

Ktjzj = ZiKij . (3.2)

The Dunkl operators are easily found to have the following properties:

[V,,V;] = 0, (3.3a)

KM = VtKij , (3.3b)

[ V,, zj\ = δijl+βΣ Ku - βKij . (3.3c)
V 1=1 J

We now define
Di=ZiVi. (3.4)

In terms of these operators, the operator H given in (2.9) and (2.10) takes a
remarkably simple form:

(3.5)

where Res X means that the action of X is restricted to symmetric functions of
the variables z\, . . . ,ZN. Actually, H belongs to a set of mutually commuting opera-
tors. Being completely integrable, the CS system admits N functionally independent
constants of motion that are in involution [16]. Modulo conjugation by A$ (see
(2.9)), these are

[Lk,Lj] = 0, L2=H. (3.6)

3.2. Main Result. We need additional notation to present our main result. Let
J = {j\j2,» <>jι} be a set of cardinality \J\ — I made of integers such that

jκ G {1,2,. ..,7V}, jΊ <72 < ••• <7/ (3.7)

Introduce the operators D^j labelled by these sets J and by non-negative integers k

Dk,j = (Dh + kβ)(DJ2 + (k + 1 ))8) - - - (DJΊ + (k + / - 1 )β) . (3.8)

We now set

BU= Σ ZJ>DI,J>, ί < κ , (3-9)
J'CJ;\J'\=i

with

zj = ΓU (3.10)
ίe/'

The sum in (3.9) is over all subsets J' of J that are of cardinality /. When
J — {!,..., TV}, we shall write in short form:

Bΐ=Bΐ{l,...V}> ί<N (3-11)

We shall also take
zN. (3.12)

This last operator is identical to the Galilei boost operator of (2.12).
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We can now state the following result.

Theorem 3.1. The Jack polynomials Jχ(z; l/β) associated to partitions λ —
(λι,λ29...9λN-ι) are given by

Jλ(z; l/β) = c-λ\B^_l)
λ^ .. .(£2

+)^3(£+)Aι-A2 . l 9 (3 13)

with the constant cχ equal to

= 11 <*(Λι,..., A*+ 1;0), (3-14)

where λ^ = 0 and

(3.15)

In (3.15), (/?)„ stands for the Pochhammer symbol that is (/?)„ = β(β + 1) (β +

We can of course conjugate the creation operators with the ground state wave

function ψ0(z) = (Πti z/Γ(JV~1)/V2 ΓU fo ~ z/V and write

B+ = ψoB+ψ^1 (3-16)

In view of (2.23) and (3.13), we then have the following formula.

Corollary 3.2. The eigenfunctίons of the CS Hamiltonian are given by

. (3.17)

This shows how the wave functions \j/^q of the excited states can be obtained
by applying iteratively creation operators on the ground state wave function of the
system.

3.3. Remarks. Formulas (3.13) and (3.14) will be proved in the next section. Let
us here comment on some of their features.

3.3.1. It is not immediately obvious that the right-hand side of (3.13) yields sym-
metric polynomials of degree n = λ\ + + λ^-\ in the variables z\, . . . , z#. This
however is easily seen to follow from the properties of the Dunkl operators. We
shall often use the notation Res^'7'^'-^ or Res^Jf to indicate that X is taken to
act on functions that are symmetric in the variables z/,zy ,Z£,... or z7l,z72?... with
jκ E J, respectively. When the restriction will be taken over all the N variables of
the system, we shall simply use Res X. From the identities (3.3), it is checked that
the operators A satisfy the commutation relations

Di)KiJ. (3.18)

With m some integer, it is then straightforward to verify that

Res{/'Λ(A + mβKDj + (m + 1 )β) = Res{/J}φ7 + mβ)(Dt + (m + 1 )β) . (3.19)

It follows that ResyZ)y^ = Resy(/)7l +kβ) - (Djl +(* + /- I)/?) is invariant un-
der the permutations of the variables ZjKJK G J and that this operator therefore
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leaves invariant the space of symmetric functions in these variables. Recalling
how the B^ are constructed in (3.9) in terms of the operators D\tJ, it is clear
that φλ = (B%_l)

λN-ι •••(5+)A2-;ι3(£+y ι-*2 1 is a symmetric function of the
variables zι,...,z#. That it is a homogeneous polynomial of degree n is read-
ily seen by observing that the operators Djj have scaling dimension zero and
hence that Bf —» plB+ when z/ —> pz/,/ — 1, . . . ,7V. The degree of φχ is thus
λl - λ2 -h 2(A2 - λ3) + + (TV - 1)^-1 = n.

3.3.2. It might be useful to give an example. To this end, let us take the number
of particles N = 3 and consider a solution of degree n = 4. According to formulas
(3.13)-(3.15), the Jack polynomial associated to the partition λ = (3,1) is given
by

J ( 3 , i ) ( z l 9 z 2 9 z 3 ; 1/J8) = c-\}B+(B+f 1 , (3.20)
with

B+ = zι(A + β)+z2(D2 + β)+z3(D3 + j8),

2)5) + Z!Z3(A + JS)(D3 + 2j8)

+2β), (3.21)

and
c(3,i) = 2j9 2()8+l) 2 . (3.22)

3.3.3. We shall conclude this section by describing yet another way to obtain the
spectrum and to characterize the wave functions of the CS model with the help of
operators closely related to the operators A introduced in (3.4). Let

A =A + 0(/- l)- j8Σθ-*«/λ i=l,...,N. (3.23)
j<i

Remarkably, this defines a set of N commuting operators

[D,,Dj] = 0 . (3.24)

We also have
[Ka+l,Dt] = 0 i f * Φ i , i + l ,

Ka+lD, - Dί+lKM = β . (3.25)

In terms of these the Hamiltonian H of (2.9) reads

H = Res// , (3.26)
with

ff = E{&i-(N- 1)/*Λ } + 7^(N -l)(N- 2)β2 . (3.27)
/=! O

Clearly, [H,Dϊ\ = 0 for all /. We may thus obtain the eigenfunctions of H by
diagonalizing simultaneously all the Dj. The eigenvalues and eigenfunctions of these
operators are simply constructed by observing that they are triangular on the set of

monomials πiχ — zi

 Iz2

2 -z^ associated to the partitions λ — (λ\,..., λN) of n.
(Note that the monomials rhχ are not symmetrized.) The functions χχ such that

Diχλ=δΐχλ, (3.28)
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have the form

Xλ = rhλ + Σ uλμmμ, \λ\ = \μ\ = n , (3.29)
μ<λ

and from the action of Dt on rhχ, the eigenvalues δ^ are found to be

δλ

t = λi + β(N - ι) . (3.30)

The eigenvalues of H are then readily evaluated from (3.27) and one gets

Hχλ = Σ (% + β(N + 1 - 2yμy )χ, . (3.31)
7=1

Comparing with (2.22), we see that H and H have the same spectrum.
Using the relations (3.25), we show that

λ. (3.32)

Define now

Φλ = Σ J U - (3.33)
permutations

Since all permutations can be expressed as products of transpositions, owing to
(3.32), we see that

Hφλ = Σ Hχλ. (3.34)
permutations

We thus find that the symmetric function φχ which has triangular expansion on
the monomial basis {mχ\ \λ\ = n} is actually an eigenfunction of H, and also, of

H = Res// obviously, with eigenvalue equal to ΣyLι(^ + β(N + 1 - 2/M/) We

thus conclude that it must be proportional to the Jack polynomial

Jλ(zl9...,zN;l/β)~ Σ Xλ(zι, ,ZN;l/β) (3.35)
permutations

This provides an alternative to the method described in Sect. 2 for obtaining the
spectrum and eigenfunctions of the CS Hamiltonian.

4. Proofs

4.1. Outline. After preliminary remarks, we shall proceed to give the proof of
Theorem 3.1 which we stated in the last section. To this end, we shall require
additional definitions. Keeping with the notation of Sect. 3, we introduce

', /=!,...,#, (4.1)
J'CJ
\j'\=ι

and the shorthand notations:

(4.2)
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We remind the reader that the notation Res*7^ indicates that the operator is taken to
act on functions that are symmetric under the exchanges of the variables ZJK, jκ £ J.
At times, we shall need to vary the set of variables entering in the Dunkl operators
V/ from which the operators B^j and N^j are built. To specify this, if S is the set
of integers labelling the variables, we shall introduce a superscript S writing for
instance

-*«/), iεS. (4.3)

The same superscript will be added, when necessary, to the symbols of the op-

erators constructed from these V/^. When S consists of the first M integers,

S = {1,2, . . ., M} we shall write 7V/y = N^j . Generally, when this superscript
is omitted, it is understood that the operators depend on the original N variables
zι,Z2, . . . , zN. The only exception will occur in Subsect. 4.2 where we shall need to
use M ^ N variables and shall also drop the superscript at some point.

By the reasoning of 3.3.1, it is clear that the operators ResJB^j and ResJ7V/5>/ are
invariant under the permutations of the variables Zjκ9 jκ £ J. We may also remark
that

[Resy7Vα,ResJ7V] =0. (4.4)

This is seen as follows. The operators ResJN^j are completely symmetric un-

der the permutations of the indices of the operators D\ . They must there-

fore be combinations of the invariants L(^ = ΣkeJ(D(^)\[L(?\L(f}} = 0 and as

a result, must also commute among themselves, [ResJN^j\ Res JN^Jj] = 0. Since

[Res'Λ/i, j, ResyΛ^,y] = ResJ[7VzV, NI^J] and [ResyJV£?, ResyA/^] = RεsJ[N$,

Nfcj] have the same form in terms of Dunkl operators and since the commuta-

tion relations between these operators are not affected by the number of variables,
(4.4) must then be true.

Let

Φα^ΛA..-) = (Bΐ}λί ' ' ' W'-^o , (4.5)

with φo = 1. We shall show that J(λlt..., ;w_1)(^/; 1//0 = c^lφ(λ\9. . . , λN-\ ) by prov-
ing that functions φ(λλ,...,,λN_λ) thus constructed are simultaneous eigenfunctions
of the Hamiltonian H given in (2.8)-(2.10) and of the momentum operator
P — T Σjzjd/dzj- This is in essence the content of Theorem 3.1. There will remain
to prove that the constant Cχ is indeed given by (3.14) and (3.15). This will be done
in Subsect. 4.4. We have already observed in Subsect. 3.3.1 that φχ = φ(λl,...,λN_l)

is SN -invariant and that it is a homogeneous polynomial of degree \λ\ = n in the
variables z\, . . . , ZN : Pφχ = ^φχ. Since φχ is symmetric, this last property can be
expressed as follows:

^} (4.6)

Theorem 3.1 will be proved by establishing the following proposition.
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Proposition 4.1.

V i e {!,... ,#-!}. (4.7)

If we assume that this proposition is true, it is then readily seen that the succes-
sive applications of the operators B^,k — 1,.. .,7V — 1, on φ0 build the eigenfunc-
tions <P(A1 (A2,...) of H. Let ε^ ,̂...) be their eigenvalues. Since

#/>(/!,..., ^,o,...) = φ^+u.Λ+iA...) > (4 8)

by definition, (4.7) is equivalent to

2 Σ

Iterating with this formula, starting from the function φo — 1 for which Hφo = 0,
one recursively finds that

(4.10)

which is the desired result.
Instead of proving Proposition 4.1 directly, we observe that it follows from

Propositions 4.2 and 4.3 given below.

Proposition 4.2.

Ni+ι,j Φα!,.,̂ ,.) - 0, 1 ̂  i g N - 1 . (4.11)

Proposition 4.3.

1 ^ z ^ j V - 1 , (4.12)

where Gj are certain unspecified expressions.

It is indeed seen with the help of (4.6), that Proposition 4.3 is equivalent to
Proposition 4.1 if Proposition 4.2 is true. The next two subsections are devoted to the
proofs of these Propositions (4.2 and 4.3) which imply Proposition 4.1. We proceed
by induction mostly; the symmetry properties of our constructs are extensively used
and formula (3.19) is for instance called upon repeatedly. The constants cχ which
relate the functions φχ to the monic Jack polynomials Jχ are determined in the last
subsection to complete the proof of Theorem 3.1.
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4.2. Proof of Proposition 4.2. Owing to the fact that (p^,...,h,o,...) is a symmetric
function of the variables z\9...9zN9 it suffices to show that

.^M = 09 (4.13)

in order to prove (4.11). Equation (4.13) in turn, is seen to follow from the relation

Res [Ni+ι,BΪ] ~ ResΛ^+i, V* < ί + 1 , (4.14)

where by ~ we mean that the term on the right-hand side can be multiplied on the
left by some non-singular operator. In fact, using (4.14) iteratively, one finds that

Λ^ +iΦμ!,..,;^,...) ~ Nj+\(pQ with j the smallest integer such that λj — λj+\ φO. Since
Nj+\φQ = 0,Vy, (4.13) is thus implied by (4.14).

With the help of (3.19), it is easy to show that

(4.15)
;=2 /

and hence that

(4.16)

Equation (4.14) will therefore be true if

(4.17)

holds. We shall actually prove a stronger result, namely:

Proposition 4.4.

VM ^ N . (4.18)

As already mentioned, the superscript {M} indicates that we are using Dunkl
operators that not only depend on the variables z\9 . . . , ZN but also on the variables

z#+ι, . . . , Z Λ / . (It should be noted that ̂  is symmetric under SN but not under
SM ) Clearly, proving Proposition 4.4 is tantamount to proving Proposition 4.2.

For the remainder of Subsect. 4.2, the Dunkl operators entering our various
expressions will always be taken to depend on the variables z\9 ...,ZM- With this
understood, we shall omit the superscript {M} in the following.

It is possible to isolate the parts of B^ involving the indices {!,...,&+!}.
From the definition of B%9 one has the result:

Lemma 4.5.

B+

k=ί Σ ^+_/>{I) ._,t+1}0t-/+u , (4.19)
/=0 JC{k+2,...,N} L J

\J\=l

with B^j = 1 and when \J\ = 0, z/ = 1 and Dk+\j = 1.

We shall also make use of the following formulas.
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Lemma 4.6.

(i) [Di9zj] = -βZi Σ zj\{j}Kij, i $ J , (4.20a)

ij \ , ieJ, (4.20b)

t, / φ { l , . . . , £ + ! } . (4.20c)

Equations (4.20a) and (4.20b) are immediately obtained from the definition of
the operators A. Result (i) expresses the fact that the commutator of A with
products of the form ZjλZj2 -zjl that exclude zz , yields expressions which have as
factors on the left, similar products with z/ replacing one of the initial variables.
Formula (ii) shows that the commutator of A with products of the form z^z^ z;/

involving z/, gives expressions having as a factor on the left the same products
ZjλZj2 •Zjl of the variables.

Property (iii) is easily derived by induction. It shows that on symmetric functions
of z i , . . . ,Z£+ι, commuting Λ^+i with a variable z/ not belonging to this set, has
the effect of giving an operator having Nk as a factor on the right.

In the following, we shall need to identify in various expressions, the terms
that do not have z\ appearing as an explicit factor on the left. If X represents
one such quantity of interest, the terms in question will be denoted by X\ZI~Q. A
result that will soon be useful is:

Lemma 4.7.

MM ^ n ^ / + ! . (4.21)

The proof is done by induction. That (4.21) is true when / = 1 is easily seen
from

/ M \

= z2 . . . zn 1 + βKl2 + β Σ K2i A - A - (4.22)
V ι=3 /

Now in general one has,

•Zn] +Z2 ZW[A>A,{2,...,/+1}]) z ^o

+ Z2 Z,,[A,A,{2,...,/}](A+1 + lβ)

+Z2 ZΠA,{2,...,/}[A,A+l]) |ZlM> - (4-23)
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ZΛ]=Z2 "Znffι

+ [Nhz2 - zn] 1 + ̂ ι/+ι 4- β Σ *ι
/=»+!

I=Λ+1

M

Σ ι̂
ι=π+l

[A, A,{2,,/
M

i=n+\
, (4.24)

and that

-Nι(βKll+l) (4.25)

Substituting (4.24) and (4.25) in (4.23) and dropping terms which have D\ already
on the right, we get

, Z2 ZΠ] +Z2 Zn[A, A,{2,...,

= {[Nl,Z2 ZΠ] +Z2 -

Iβ
i=n+1

(4.26)

By hypothesis, the term in curly brackets has D\ occurring on the right and
since

A(A+ι + βKιM) = (A+i + βKλM)Dλ , (4.27)

Lemma 4.7 is thus shown to hold.
As a step toward establishing Proposition 4.4, we shall prove the following

result.

Proposition 4.8.

Note that (4.28) is a special case of (4.18) with N = k + 1.
Let,

k+\
zι ..zr zk+ι = Uzι.

(4.28)

(4.29)

From the identities (i) and (ii) of Lemma 4.6, it is immediate to see that

(430)
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with S'j quantities involving the operators DI and Kιm, 1 ^ /,m ^ k + 1. It thus
follows, given the definition of 5^ ^+1}' ^a^ a^ me ^erms in ^he expression of

the commutator [Nk+\,B+,λ k+lΛ will have on the left a factor consisting in the

product of k distinct variables taken among the set {zι,Z2,...,Z£+ι}. Since Nk+ι
and B^c} k+l, are invariant under permutations of these variables, in order to

prove Proposition 4.8, it will suffice to show that the term in the expression of
this commutator which is multiplied on the left by z2 zk+\ has on the right, the

operator Res^^Λ^+i In other words, proving that

}] |ZlM) ~ Res + 1 7V, + 1 , (4.31)

will establish Proposition 4.8. We proceed by induction. When k = 1 we have,

(4.32)

We now suppose that (4.31) is true for all k smaller than / hoping that it is
satisfied for k = / as a consequence. Let us cast B^r{ /+1, in a form where the

part involving z\ explicitly is isolated:

(4.33)

With the help of (4.33) and since D\ Ά,{2,..,/+i} =•$"/+!> we can write:

+ {[Nι+ι,Z2 ' Z/+ι] +Z2

(4.34)

From Lemma 4.7, we see that the term in curly brackets has the operator D\ as the
last factor on the right. It thus remains to show that

|Zl~o - Res{/+1>7Ϋ/+1 , (4.35)

to complete the proof of Proposition 4.8. A result analogous to (4.20c) which is
again straightforwardly proved by induction is now helpful:

= ResV>"'!+lϊ(-β)(z2K23 . K,MKu+ι +

(4.36)

Since β+_, ,2 /+1ι(A + lβ) is invariant under the permutations of the indices

{2, . . . , / + Ί }, we find with the help of (4.36) that

Zl~o (4-37)
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where in obtaining (4.37), we have used the identity

= Res{2'-'m>(z2A:23 - Kιι+ιKιι+ι + +zl+lKll+l)DMDl{2_l}\z^0 ,

(4.38)

which follows from the fact that Res{/+1}Res{2-'/+1} = Res{/+1} and that every
term with which D\ is commuted contains the operator K\ι+\.

From the induction hypothesis we have

Since (£>ι -h lβ) is invariant under the permutations of the indices {2, . . . , / + 1} we
finally obtain

1 , (4.40)

which through (4.37) proves (4.35) and, as a consequence, Proposition 4.8.
A few more results will be required to prove Proposition 4.4. They can be stated

as follows.

Lemma 4.9. For sets J = {j\, 9jι} of cardinality I such that J Π {1, . . . , k +
1 } = 0? we have

(i) Res+ 1[^+ι,zy] - Res + 1 7^ + 1 _/, (4.41a)

(ii) ResW(Res^+1>^+1_/D,+1_u) - ResW^+i, (4.41b)

(iii) ResW[#*+i, A+i-/,/] - ResW^+i. (4.41c)

Property (i) is readily obtained by applying (4.20c) / times. Property (ii) is also
easily derived. Since D^i-i^j is invariant under the permutations of {!,...,& +
1}, the restriction Res^+1^ is redundant and can be dropped. By definition,
Nk+ι-ιDk+\-ιtj = Nk+ιt{it^k+\-i}\jj. When restricting this operator to symmet-
ric functions of zι,...,z#, we can relabel appropriately the variables to find

i The last property is obtained as follows. Using the identity

..,*+!}, (4.42)

which is easy to prove, one sees that

. (4.43)

Iterating (4.43), one thus arrives at (4.4 Ic).
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We are now ready to give the proof of Proposition 4.4. We proceed again by
induction. The proposition is easily seen to hold when k = 1. Indeed,

s W [N2, *, (A + /f )I (4.44)
/=3

From Proposition 4.8 we know that Res{ΛΓ}[7V2,^{12}] ~ Resw7V2. Using

(4.20c), we find

ResW[#2,*, ](A + )8) ~ Res w A (A + β) ~ ReswN2 , (4.45)

and, with the help of (4.41c), we observe that

2, A] ~ Res{ΛΓ>^2 . (4.46)

All terms are therefore seen to have the required factor N2 on the right.
Now, upon supposing that Resw[A^+ι,^j ~ ReswA^+ι is true for all

k < m, we wish to prove that this relation holds also for k = m. In view of for-
mula (4.19) for £+, it is clear that Proposition 4.4 would be established if assuming
(4.18), one could show for all / e {0,..., m} that

/?{1? ?m+1}A,-/+ι,j] ~ ResW#w+ι > (4-47)

where / are subsets of {m + 2, . . . , TV} with cardinality /. In fact, property (4.4 Ic)
shows that it is sufficient to prove

αι? ...fW+1}]Dm_/+1,y - ResWΛ^+1 , (4.48)

in order to establish (4.47).
The case / = 0 is the content of Proposition 4.8 and has thus already been

proved. Remarkably, the cases of lower degree follow from the induction hypothesis
which allows one to assume that

^_,;{1> >m+1}] ~ Resίm+1>7Vm_/+I , (4.49)

for / = 1,2,..., m.
Owing to the invariance of B^^ m+1^Aw-/+ι,y and of An-m,/ under the

permutations of the indices {!,..., m-\- 1}, we may write

!̂, j . (4.50)

We then use (4.41a), (4.49) and (4.41b) to conclude that (4.48) is true and thus to
finally complete the proof of Proposition 4.4.

The reason why we needed to prove the stronger result (4.18) instead of the
weaker one (4.17) should now have become clear. Indeed, the relations (4.49) with
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precisely the restriction Res^m+1\ are required for the induction proof of Proposi-

tion 4.4 to work. These relations obviously follow from assuming that Res^[TV£+1 ,
5tθl},Λf}] ~ ReswTV^}, V£ < m and VM ^ TV. One simply takes N = m+\
and k = m — /, / = 1,2,..., m. They would not have been legitimate assumptions

however, had the induction been performed on the relation Res^^[7V^+1 >^/ι #1]^

, since in this case, the restriction is tied to the number of variables TV.

4.3. Proof of Proposition 4.3. The proof of Proposition 4.3 will be done in two
steps. We shall first show that (4.11) holds when i — TV — 1 and the number of
variables zι,z2 ?... is equal to TV. We shall then establish Proposition 4.3 in full
generality by demonstrating that it is also true when the number of variables is
taken to be arbitrarily larger than TV — 1 . We shall need the following results to
proceed.

Lemma 4.10. Let z\ - •£/ ZN = Π^=ι. z/ The following relations are satisfied:

= zi'"Zi'"ZN {(I + βKij)2 + (1 + βKij)Dj+Dj(l + βKij)} i*j ,
(4.51a)

(ii) \_D\,zλ •• fI z#]|z1~o

= -βz2 - . - zN(DiKλi + KuDi + βKu : + 1 ) . (4.5 Ib)

Both identities are obtained straightforwardly from (4.20a) and (4.20b). Let us
introduce the notation

M

(4.52)

The Hamiltonian in TV dimension #W (or H) is H^ = R e s / / . The following
result is an immediate consequence of Lemma 4. 1 0.

Corollary 4.11. For all i strictly smaller than TV, the operators [H^_l9z\ - - •£/

• 'Zjvl lz i^o and z^[H^_^ ,z\ •••£/•• -^ΛΓ-I] |zι~o have the same symbol structure,
that is, they have the same form in terms of the coordinates and the operators
A-

Lemma 4.12.

(i) ResW HΣ Dl,DN] = ResWjS ((N - \)D1

N - ̂  D\] , (4.53a)
L / = l J V ι=l /

(ii)

" VTV ^ 2 . (4.53b)
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Formula (4.53a) is readily obtained from observing that

D'i)KiJ. (4.54)

The proof of (4.53b) is more involved and proceeds by induction. With the help of
(4.54), (4.53b) is easily seen to hold in the first non-trivial case:

(£>, + β)(D2 + 2β)] = Resβ(D{ - D2)(D, + 2β)

= Res{2})S(A + β)(D( - D<2) . (4.55)

We show that (4.53b) follows from assuming that

(4.56)

is valid \/N > 3.
Simple manipulations give

-ι + Nβ)]

f _ 1 - DN)(D1

N - D1

N^) . (4.57)

One then easily finds that

^ +Nβ)

D! -(N- 2)D!

N]
ι /

(N-l)β)(Dl

lf_l-Dl

N)\ .

Nβ)

(4.58)

The induction hypothesis (4.56) has been used in (4.58) to obtain the last equality.
From (4.53a) we also get

Res ("ED1, - (N - 2)D1

N] (£>„_, +Nβ)
\ i=\ )

= Res (D^_! + (TV - 1 )/?) ΣD' - (N - 2)D . (4.59)
ι=l



444 L. Lapointe, L. Vinet

Inserting this last relation in (4.58) and reorganizing the terms yields

-ι +Nβ)]

Σ̂ D\ - (N - \)D1

N]
ί=ι /

- D1

N)

- ̂ ) . (4.60)

Using this result (4.57), one establishes that (4.53b) is an identity.
We are now ready to prove Proposition 4.3 in the case where / = N — 1.

Proposition 4.13. In N dimensions,

Res [H^B*^] = Res (̂  ( 2 £ A + (#-!)(!+ jB)) + <W j , (4.61)
I V i=l / J

where GN are some unspecified expressions.

Proof. Recall that HN = Σί=1 D\. Since each term of B~^_l has a product of N — 1
distinct variables as a factor on the left, it follows from Lemma 4.10 that the
commutator of HN and B~_ is of the form

(4.62)

with &j expressions involving the A and Kmn. Since HN and B^_{ are invariant
under the action of the symmetric group SN, an argument similar to the one given
in the proof of Proposition 4.8 shows that to compute the commutator [HN,Bχ_l],
one only needs to determine the terms with z2 - - ZN as factor on the left and to
symmetrize the result. This is the approach that we shall take.

We initiate the induction by proving (4.61) when N = 2. In this special case
we can write

H = Res (D\ + D2

2) = Res{(A + D2)(A + A + β) - 2N2} . (4.63)

It is then easy to see with the help say, of Proposition 4.8 and using Res .̂ A —
that

Res [H2,B+] = Res{B+(2(D{ +D2)+l+β) + G2N2} (4.64)

We shall now show that (4.61) is satisfied in Λf dimensions if it is obeyed in
dimensions lower than N. To this end, we shall need the following expression for

^ • zN-ιDίΛιιmιN_ι} (4.65)

in which the dependence on ZN is isolated. In the notation (4.52), we shall also
write

HN = HN-I +D2

N, H = RCS//Λ, . (4.66)
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With the help of Lemma 4.10, this leads to

+ z2

445

z#_ι]Dlϊ{ι,...^_1}}|ZlM> (4.67)

We now invoke Corollary 4.11 and the definition of B^_2 to assert that [//#-! >
z*BN-2,{\,.. ., N- i}] h~o and z^[/ζj^71}»^ίί~1}]k-o have the same symbol struc-
ture. This observation and the fact that (DN + (N — I)/?) is invariant under SN-I
allow one to compute the first terms in the right-hand side (4.67) from the induction
hypothesis. Indeed we have

ZN <Z2-

A - 2)β , (4.68)

where it is understood that the Dunkl operators depend on the variables Z\,...,ZN.
The other terms on the right-hand side of (4.67) are computed with the help of

Lemma 4.12 (with / = 2) and Lemma 4.10. Putting everything together and using
the fact that NN-ι(DN + (N - l)β) = NN, one sees that (4.67) reduces to

= z2 . A + (N - 2)(1 4- β) (DN + (TV -

(2DN

(4.69)

where G^ is another unspecified quantity.
The first two terms between the curly brackets on the right-hand side of (4.69)

can be rewritten in the form

β)

-j8) -2)5(1 - (4.70)
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Using formulas (4.53a) and (4.53b) with / = 1 in (4.70), one can recast (4.69) as
follows:

5+_,] |Z,M) = Resz2 ZN (A,{2,...,w} (l Σ A + (N - 1)(1 + β)
I V /=!

G'NNN

(4.71)

With the help of (4.53b) with / = 1 again, we find

β(\ -Kw)Dlt{2_N}) , (4.72)

so that (4.71) becomes

= Res{z2 zjvA,{2 TV} (2£Z>? + (# - l)( l+0)
' *

(4.73)

Upon symmetrizing the right-hand side of (4.73), we finally obtain

ΪN\ , (4-74)
ι=l / J

thereby proving Proposition 4.13.
Given the Proposition 4.3 is true when i = TV — 1, we shall fix / to be equal to

TV — 1 and extend the number of variables from TV to an arbitrary larger number TV7.
With the symmetry of HN/ and B~^_λ under the exchange of the variables z\9..., zNt

allowing to insert Res (meaning Res^ }) in front of every operator, Proposition
4.3 will follow from the next proposition.

Proposition 4.14. In TV' dimensions,

(TV - 1) + )S(TV - 1)(TV; - TV + 1) }
J

(4.75)

\J\=N-l

with GN/^j an unspecified expression.

In order to prove (4.75), we shall need the next three lemmas.
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Lemma 4.15. In N' dimensions, one has

k = 0,1,2,... (4.76)

for all subsets J C {1, . . . , Nr} of cardinality \J\ = I such that, jκ < jκ+\ if jκ G J
and 1 ^ K < I

Proof. This lemma follows from the definition of D^j and the fact that K^Di —
DiKij if /φ/,y . It expresses the fact that ResD^y only depends upon the variables
z, , i G /.

Corollary 4.16. For all sets J defined in Lemma 4.15, Res$^_ιy only depends
upon the variables z/, ί G /.

Let pi — Zfd/dzi and A^ = ^ zi-j^. — Zj-j^ , and recall that the Hamiltonian

reads

Σ^ + / ? Σ ^ y > (4.77)
/G7

in terms of the variables z/, / G /. This expression appears in the following decom-
position of the commutator [//,

Lemma 4.17. For any Nf > TV,

[H, Res^_J = Σ(-r + 1 Σ t^(J)

? ResS+.j J , (4.78)
τw=l JC{l,...,N'}

\J\=N'-m

with B+_ltJ = zjD^j if \J\ - N - 1.

Proof The proof is combinatorial. We need to show that the right-hand side of
(4.78) contains each summand of Res 5^^ commuted once and only once with

all the parts of H = H{I>->N } given in (4.77). In view of the SV -symmetry, it is
sufficient to show that this is true for one summand say, Reszi •zw-iZ^i,...^-!}.
From Lemma 4.15, this operator depends only on the variable z\9 . ..,z#_ι and it
thus suffices to look for the number of times Reszi zτv-ιDι,{i,...,^-i} is com-
muted with pf, Aij and Aik (ij e {I, ...,N - I}, k ${!,.. .9N - 1}). Since the
sets J of (4.78) must in this case contain {1, . . . , N — 1}, we see that the terms of
the right-hand side of this equation that involve Reszi zτv-ι£>ι,{i,...,Λf-i} are

IM-)M+1 Σ [HV ~ ' N - , Zl -^_, ResA.ίi,,^-!}] (4-79)
m=\
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Each //{i,-.tf-i}u /' contains exactly one p} and one Aψ Thus, for \J'\ = N' + 1 -
A Γ τ_ *ι 2 j Λ * / N'+I-N \ /N'+\-N\ .N — m, both /?f and Ay are seen to appear ί , I = ί J times in the

commutators of (4.79), for a total of Σm=ιl~N (~T+l (N/+l~N] = 1 occurrence,
\ m J

as required. In the case of the A^ since k must be present in J' , it shows up

ί , ) = ( ) times in (4.79) if m < N' + 1 — TV, and does not appear

otherwise. Performing the sum over m, we also find Σw=ϊ (~)w+1( ) = 1>

which proves the lemma. We see from the last summation that (4.78) does not hold
for N1 — TV, since, in this case, AW never appears.

Let us finally prove.

Lemma 4.18. For all sets J defined in Lemma 4.15,

[H(J\ Resz/A,y] = zjDltJ (2 Res Σ A + l] , (4.80)
\ i€J J

with I = \J\.

Proof. We have from (4.4) and Lemma 4.15 that

[H(J\ ResA,y] = KesJ[lήJ\D(β] = 0 , (4.81)

and from Lemma 4.10 that

[H(J\zj] = ResJ[fflJ\Zj] = Zj(2ResJ ^ D™ + /) = zχ2Res Σ A + /)
/e/ i€J

(4.82)

Using (4.4) and Lemma 4.15 again to commute Res^/GJ£>z and ResDι?j, (4.80)
is seen to hold. We are now ready to prove Proposition 4.14. From Lemma 4.18 and
Proposition 4.3, Proposition 4.14 is seen to be true for the cases Nf = N — 1 and TV.

Remarkably, when TV7 > TV, Lemma 4.17 shows that [//, Res^^J can be de-
composed in commutators involving less than TV7 variables. The induction process
is thus greatly simplified. We use Corollary 4.16 to set RQSJ

and let

[H, Res5+_! j ] = Res^_! j 2Res £ A f + (N - 1)
' I ieJ

+ β(N - 1)(TV7 + l-m- TV) j + Res GNι.m9jNN^tJ , (4.83)

for m = 1, . . . , Nf + 1 - TV, with |J| = N' - m, in (4.78). There thus remains to be
shown that (4.75) is obtained upon performing the sum in (4.78).

Inserting (4.83) in (4.78) gives

[H, Res£+_J = N Σ~7V(-Γ+1 £ JRes^! /2Res Σ A
m=\ JC{l,...,N' I \ ieJ

(4.84)

\J\=N'-m

' +i-m-N)\
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In order to compute the right-hand side, as in the proof of Lemma 4.17, we look
at the part of Res^_! involving z\ - - z#_ι ResD^^jy-i} in (4.84). Considering
the terms that appear on the left of this particular term in (4.84), we get

N'+\-N ί
Σ (-Γ+1 Σ 2 Res Σ A

m=\ JfC{N,...,Nf} \ i£{l,...,
\j'\=N' + \-N-m

(N - 1) + β(N - l)(Nf + l-m-N)

_N'+l^N + ι SN'+ι_N\S N-l

m=l \ m J \ i=l

^w 1 V Λ Γ Ό . 1 ΛnV^\ vn+ι(N'-N\^ ^n+ β(N — l)(N + 1 — m — N) 1 + }̂  (~~) 1 I^Res^A
/ m=l \ m J i=N

Nf

= 2ResX)A + (^~ l) + β(N- l)(N' + 1 -TV), (4.85)

where we used

^IM-l)m+1 (N' + l~N)moc NΣ(~T (N'~N} =0. (4.86)
m= i V m / mto V m /

Since the result is the same for every part of Bχ_l9 setting Σm-V~^(~)m+1 x

f-mtj = ResGV?t/, we get the desired result, namely that

[H, Res^+_J = Res^+.j { 2 Res Σ A + (# - 1) + ̂ (̂  - 1)(N' - N + 1) ^
I <=1 J

+ Res Σ GNfίJNNtj9 (4.87)

thereby proving Proposition 4.14 and, as a consequence, Proposition 4.3.

Coefficient cχ. This last subsection is devoted to the proof of the expres-
sion (3.14)-(3.15) of the coefficient cχ of Theorem 3.1.

Proposition 4.19. For any partition λ = (λ\, . . . , A/),

B+mλ = aλmλ+ι + £) dλ^ mλ> (4.88)
λ' <λ+\

with aλ = (λι + β) - (λι + Iβ), λ + 1 = (Λ-i + 1, . . ., λj - f l )
/« coefficients.

By the triangularity of the Jack polynomials on the monomial basis {mp}, this
proposition implies that Bfjλ = aχJχ+\ = (λι + β) - - (λ\ + lβ}Jχ+\, which, by suc-
cessive applications of the creation operators, gives the form (3.14) of cχ.
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The proof of Proposition 4.19 is done by looking for the coefficient appearing

in (4.88) in front of the term zf/ + 1 - - z^1+1 of mM. We shall see that this term
can be generated through simple operations only.

Since zλ

l z/

1 + involves only the variables z\9..., z/, it can only be gener-
ated in (4.88) from the part z\ z/Z)1?{1?^ of B^. Moreover,

* A = Σ ^(1)

distinct

λp(i) + terms involving at least one other variable (4.89)

and ResZ>ι,{i,...,/}5 fr°m Lemma 4.15, depends only on the variables z ι , . . . ,z/ .

Thus, only the action of z\ z/ResA,{i,...,/} on

•• z//?(/) can generate

z
We now establish the following lemma.

Lemma 4.20. For any i < j and P £ S/, ίAe expansion of

-z/

contain any term in z\

: vi < 7,

^ nf Π '

l - -z/, w/zere AI ^ ^2 ^

1 (\ K \~ V A ~ A/7 /

(4.90)

£=0

λp(i)-λp(j}-2

+ Σ °̂

, i f .

ίf A <

(4.91)

Hence, the term associated to the partition (λ\,...,λι) in the right-hand side of
(4.91) is

Λ/*i) λp(i}

- - AP(1)

i f .

if λ

fj) > λp(iP ( ί )

P(J) < λp(ί7*0
(4.92)

0,

from which we see that the exponent of zy is always less than the one of z, and

that, consequently, the term zl

 l - zl

 l cannot appear.
From Lemma (4.20), Lemma (4.15) in the case J = {1,...,/}, and the

triangularity of the action of ^^(l — Kij) on z^ ...z^(/), we finally find

that Zj / + •• z /

I + can only appear in the following way through the action of
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zi -z/Res^Di^i^/} on mχ\

J8) (A! + /0) zl - - - z 1 = α λ z / . . .z 1 + . (4.93)

This proves Proposition 4.19.
We may remark that the coefficient cχ appears in (3.13) only because we use

Jack polynomials that are monic. Stanley uses instead in [8] the normalization which
is defined by taking ιu,(in) = n\ if \λ\ = « in the expansion (2.18) of the Jack poly-
nomials Jχ in terms of the symmetric monomials. We note that in this normalization
cχ — βnυ^λ therefore, had we used the normalization of Stanley and redefined the
creation operators according to B+ — » \lβlB+, we would have found [18] that

Jλ(z l/β) = (B+^-i - - (B+)λι-λ*(B+)λι-λ* 1

without any proportionality constant.

5. Conclusion

Our general objective is to develop a completely algebraic treatment of the Calogero-
Sutherland model. We would thus hope to identify the abstract structure of its full
dynamical algebra and to work out its relevant representations. This should in prin-
ciple allow one to obtain algebraically all physically interesting quantities.

We believe that the results presented in this paper provide important clues to-
ward the resolution of these questions. In fact, they have already allowed us to
make progress and to formulate in this connection remarkable conjectures. Clearly,
the creation operators B f , i — 1,..., N, should be among the generators of the dy-
namical algebra. One would thus want to know their action on the wave functions
of the CS model, that is on the Jack polynomials. However, since these operators
do not commute among themselves and enter in a definite order in formula (3.13)
(or (3.17)) for the excited wave functions, it is not straightforward to obtain these
actions. We have nevertheless a conjecture for this. We also have expressions for
annihilation operators B~, ί — 1,..., N and a similar conjecture giving their action
on the wave functions. These developments allow us to evaluate in particular the
norm of the Jack polynomials in an algebraic fashion. We shall report on these
results in a forthcoming publication [17]. A major problem that remains however is
to determine the structure relations that the creation and annihilation operators obey.

The results of this paper also have mathematical applications. Various conjec-
tures involving the Jack polynomials have been made. It turns out [18] that formula
(3.13) readily implies a weak form of a famous conjecture due to Macdonald and
Stanley, namely that in the normalization of Stanley the υχμ in (2.18b) are poly-

nomials in β~l with integer coefficients (see the remark at the end of Sect. 4.3).
We believe that this Rodrigues formula that we have obtained will provide a use-
ful tool to further advance the proofs of the outstanding conjectures on the Jack
polynomials.

Finally, it is expected that the results presented here extend to the relativistic
generalization of the Calogero-Sutherland model [19]. This requires a ^-deformation
of our constructs and should yield a Rodrigues-type formula for the Macdonald
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polynomials. It is also of interest to consider in the same vein models and special
functions associated to root lattices other than AN-\. We are currently studying
these questions and hope to report on them in the near future.
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