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Abstract: For SU{2) (or SO(3)) Donaldson theory on a 4-manifold X, we construct
a simple geometric representative for μ of a point. Let p be a generic point in
X. Then the set {[^4]|jFy(/?) is reducible}, with coefficient —1/4 and appropriate
orientation, is our desired geometric representative. The construction is an exercise
in real algebraic geometry in the style of Ehresmann and Pontryagin.

1. Background and Statement of Results

In the past decade, an industry has developed studying the homology of moduli
spaces, thereby shedding light on the topology or geometry of underlying mani-
folds. The best known example is Donaldson's work on gauge theory in 4 dimen-
sions [DK]. Donaldson's polynomial invariants measure the fundamental classes of
moduli spaces of anti-self-dual connections over an orientable 4-manifold, giving
information about the differentiable structure of that manifold.

Let X be an oriented 4-manifold, let G = SU(2) or SO(3) and let Bk be the space
of connections (up to gauge equivalence) on Pk, the principal G bundle of instanton
number k over X. Let B\ (resp. Bk) be the space of irreducible connections, (resp.

irreducible framed connections) on i\ , modulo gauge equivalence. Bk is a principal
SO(3) bundle over β*.

Donaldson [Dl, D2] defined a map μ : #Z(X,Q) -> / / 4 ~ Z ( ^ , Q ) , / = 1 , 2, 3,
whose image freely generates the rational cohomology of Bk. For Σ a 1, 2, or 3-
cycle in X, the class μ([Σ]) descends to a cohomology class on β£, which is then
denoted μ([Σ]). The classes μ([Σ]), together with an additional 4-dimensional class,
freely generate the cohomology of B\. The additional class can be viewed as μ of
the point class [x] e H0(X). In this view, μ maps Ht(X) to H4~ι(B%), where / now
ranges from 0 to 3, and the image of the μ map freely generates //*(#£, Q).

This gives a polynomial invariant on the homology of X, the action of μ of
the elements of H* on the "fundamental class" of Λ4k. Formally, for elements
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[ Σ α . . . , [ Σ Λ ] e #*(*), we write

q([Σι]9...,[Σn]) = μ([Σι])~...~μ([Σn])[Mk]. (1)

The "fundamental class of Mk" is usually not well defined, as Mk is typically
not compact. To make sense of (1) one must compactify Mk and show that the
classes μ([Σ]) extend properly to the compactification of Mk This is usually done
with geometric representatives. One finds finite-codimension varieties FΣ in B that
are, roughly speaking, Poincare dual to μ([Σ]). One then attempts to count points
in V^ Γ) Γ) Vγ,n Π Mk' To make a topological invariant one must show that the
intersection points can be bounded away from the ends of Mk This requires careful
analysis of the bubbling-oίf phenomena that make Mk noncompact.

The success of such a program can depend on good choices of geometric repre-
sentatives. For example, for 2-dimensional Yang-Mills theory, the generalized New-
stead conjecture resisted abstract analysis until Weitsman [We] found a set of simple
geometric representatives for the problem. Using these, it was fairly easy to char-
acterize the points in Π/FΣ, Γ\M9 compute the invariants, and prove the conjecture.

For Donaldson theory, fairly simple geometric representatives have been found
for the 1, 2, and 3-dimensional classes. In each case, the geometric representative
of μ([Σ]) is the set of connections that satisfy a simple condition when restricted
to Σ. Until now, however, there has not been any similar description of μ([/?]),
where p is a single point, in terms of data at that point. The purpose of this paper
is to provide such a description. For any point p G X, let vp = {[A] G B%\F^ is
reducible at p}. Here FJ — (FA — *FA)/2 is the anti-self-dual part of the curvature
FA, and by "reducible at p" we mean that the components F^J(p) are all colinear
as elements of the Lie algebra of G. The main theorem is

Theorem 1. vp is a geometric representative of —4μ( [/?]).

The proof proceeds in stages. In Sect. 2, we review some classical real alge-
braic geometry and construct a simple representative of the first Pontryagin class
p\ of canonical SO(3) bundles over Grassmannians of real oriented 3-planes. The
construction is essentially due to Pontryagin [P] and Ehresmann [E], but their tech-
niques seem to have been generally forgotten. In Sect. 3, we extend this analysis to
BSO(3) and construct an explicit isomorphism between a space of connections on a
neighborhood of the point p and ESO(3). Pulling the representative of p\(ESO{3))
back by this isomorphism gives vp, and fixes the orientation.

To be useful for Donaldson theory, vp must be transverse to the moduli spaces
Mk and extend to the compactification of Mk These issues are discussed in Sect.
4, where we also discuss a possible topological application of this representative.

2. Cohomology of Real Grassmannians

Let VN be the space of real, rank 3, 3 x N matrices. Equivalently, VN is the Stiefel
manifold of triples of linearly independent vectors in R7^. Let V$ be the triples
of orthonormal vectors in R^. The group SO(3) acts freely on both spaces by left
multiplication. Let B^ be the quotient of Fjy by SO(3) and let G^ be the quotient of
V® by SO(3). GN is the Grassmannian of oriented 3-planes in R^. We will denote
by π both natural projections, from V^ to B^ and from V$ to G#. The Gram-
Schmidt process gives a natural bundle map from VN to F$, which we denote p.
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p itself defines trivial IR6 bundles VN —> V^ and B^ —> Gjq. Inclusion of V$ in V^
defines a natural section. In short, we have the commutative diagram

vN -U

V
BN - ^ GN

BN and G# have the same topology.

Theorem 2. Let vN = {m e VN\ first 3 columns of m have rank < 1}. Then π(vN)
is Poincare dual to a generator of H4(Bχ). By choosing orientations correctly, this
generator may be taken to be the first Pontryagin class of the bundle VN —> BN.

Proof The proof is an application of some general computations of Pontryagin [P]
and Ehresmann [E]. (Indeed, Theorem 2 was almost certainly known to Pontryagin).
Within the 9 dimensional space of real 3 x 3 matrices, the rank < 1 matrices form
a closed codimension-4 set. π(v#) is thus a closed codimension-4 submanifold of
BN, and so is dual to some (possibly zero) element of H4. We construct a generator
of H^{B^) and show it intersects π(v#) exactly once, establishing that π(v#) is a
generator of//4. The sign, relative to p\, is determined separately.

We begin with a cell decomposition of GN Consider the set of 3 x N matrices
of the form

. . 0 0 0 ...

. . 0 0 0 ...

.. Zit-i 1 0 . . .

That is, a matrix with pivots Xi = y}> = zk = 1, i < j < k, yι = zι = zJ = 0, and
with no nonzero entries to the right of the pivots. Each oriented 3-plane corresponds
to a unique matrix of this form, or to minus such a matrix. For fixed i,j,k we denote
the set of matrices of this type as e+(ij\k), and the set of negatives of these
matrices as e-(i,j\k). The closures of the sets e±(i,j\k), called Schubert cycles,
give a cellular decomposition of GN-

The cell e+(ίj,k) has dimension i+j + k — 6. We give it the orientation
dxι " dxι~ιdyλ dyJ~ιdzι • dzk~\ where of course the variables y\z\zi are
skipped in this list. We orient e-(i,j,k) so the map —1 : e±(i,j9k) —» eτ(i,j,k) is
orientation-preserving. The boundary map is then

de±(i,j,k) = (-iye±(i - l,j,k) - M i - W.*)

(i,j-l,k) + (-iyeψ(i,j-l,k) (4)

X\

y\
z\

x2

y2

z2

. . . X/_i

••• yι-\
. . . Z/_i

1
0
0

0 .
yi+\ .
Zi+\

.. 0

. . yj-ι

. . Z/_ i

0
1
0

0
0

This formula is of course independent of N.
H4(GN) is then easily computed. It is Z, and is generated by SN = e+(l,4,5) +

e+(l,3,6) — £+(1,2,7). The cycle p(n(v^)) doesn't intersect e+(l,3,6) or e+(l,2,7),
and hits e+(l,4,5) at exactly one point, namely

1 0 0 0 0 0 ...
0 0 0 1 0 0 ... 0 ) , (5)
0 0 0 0 1 0 ...
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and the intersection is transverse. Thus p(π(vN)) is a generator of H4(GN). Pulling
back we get that %(VN) is a generator of H4(BN). All that remains is to fix the
orientation such that π(vN) represents p\.

To fix the orientation we consider the natural embedding i : GN —*• Gf^, where

Gfjj is the Grassmannian of complex 3-planes in C^. The Pontryagin classes on

GN are pullbacks of Chern classes on GfN. In particular, pλ = —i*C2 [MS]. We

therefore have only to compute the intersection number in Gf^ of Ϊ(SN) with a

cycle representing c2. If W is a complex codimension-2 subspace of <£N, then c2

is represented by Y c Gf^, the set of 3-planes in <£N whose intersections with W

have (complex) dimension 2 or greater [GH].
If W\,...WN are the natural coordinates on <CN, we choose W = {w\ + w 4 =

W2 + /W3 = 0 } . A 3-plane spanned by the rows of

(6)

is in Y if and only if the complex 3-vectors (x\ + 1x4, y\ + z>4, z\ + zz4) and (x2 +
1x3, yi + 2̂ 3j Z2 + ̂ 3) are (complex) colinear. This is never the case in the closures
of e+(l,3,6) or £+(1,2,7).

Matrices in β+(l,4,5) take the form

1 0 0 0 0 0 ...
0 y2 y3 1 0 0 ... 0 | , (7)
0 z2 z3 0 1 0 ...

Y intersects e+( 1,4,5) at the single point y2 = y3 = z2 = z3 = 0, and the intersection
number is easily computed to be -hi.

Thus for a cycle on GN (or BN) to represent p\, it must be oriented to intersect
SN (or its image under the natural section) negatively. This completes the proof of
Theorem 2.

3. Evaluation of μ(p)

The finite-dimensional results of Sect. 2 cannot be directly applied to gauge theory.
We need to extend them to appropriate infinite-dimensional spaces. Let H be an
infinite-dimensional Banach space. Pick an infinite sequence of linearly independent
vectors in H. Then there are natural inclusions

^NJ^^N+I^ . . . c l ^ o o ^ ( 8 )

where R°° is the direct limit of the spaces R7^. This induces a sequence of inclu-
sions

VN±VN+A...±V00^VH (9)

and corresponding inclusions for V°, B and G. For N large, these inclusions induce
isomorphisms in H4 (see e.g. [MS]), sending SN to SV+i to ... to SΌo to SH- 7Γ(VOO)
is closed and intersects 5Όo once, and n(vH) is closed and intersects SH once. By
the same argument as before, we have
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Theorem 3. π(Voo), oriented so as to intersect Soo negatively, represents p\ of
the bundle VOQ -> BOO, and π(v#), oriented to intersect SH negatively, represents
P\ of VH -> BH.

An equivalent description of p\ is as follows. Let W be a codimension-3 sub-
space in H. Let Yψ be the set of 3-frames whose span, intersected with W, is at
least 2-dimensional. When W = {JCI = X2 = *3 = 0}, Yψ is the same as vH. But,
since GH* is connected, the choice of W cannot affect the topology of Yψ. Thus
Yψ, oriented to intersect SH negatively, represents p\ for any choice of W.

We are now able to construct μ of a point. Let p be a point on the manifold
X, let D be a geodesic ball around p, let AD be the SU(2) (or SO(3)) connections
on D within the Sobolev space L\ (the choice of q and k is not important), let Q°
be the gauge transformations in Lq

k+ι that leave the fiber at p fixed, and let Q be
all gauge transformations in Lq

k+ι. Define μo{p) to be —\p\ of the SO(3) bundle
AD/G° —• AD/G μ(p) is the pullback of μ£>(/>) to B(X) via the map that restricts
connections on a bundle over X to a bundle over Zλ

The space AD/G° is isomorphic to the set of connections in radial gauge with
respect to the point p. In such a gauge the connection form A vanishes in the radial
direction but is otherwise unconstrained. In particular, A(p) = 0, so the curvature
at p, FA(p) = dA(p) +A(p) ΛA(p) = dA(p), is a linear function of A.

Let H be the space of (scalar valued) 1-forms with no radial component. A
connection in radial gauge is defined by a triple of elements of H, one for each
direction in the Lie Algebra. Deleting the infinite-codimension set for which these
elements are linearly dependent we get F#. Thus μo(p) is —l/4p\ of VΉ —> BH9

which we have already computed. Let W = {α E H\d~a(p) = 0}. Thus Yψ is the
set of connections over Z), in radial gauge, for which the three components of
FJ{p) span a 1 (or 0) dimensional subspace of the Lie algebra. In other words, for
which FJ(p) is reducible. Pulling μo(p) back by the restriction map we get the
connections on X for which F^(p) is reducible, i.e. vp. This completes the proof
of Theorem 1.

4. Transversality and Extension to the Boundary

We have shown that for any point p in our manifold, the cycle vp is Poincare dual
to p\ of the base point fibration, as a class in B*(X). However, to do Donaldson
theory we need more than this. Ideally, we want vp to intersect the moduli space
Λ4k transversely and to extend in a well-behaved way to the compactification of
moduli space. Had we chosen vp to depend on F% rather than FJ, it would still
have been dual to p\, but would have been useless as a geometric representative of
—4μ(p), insofar as Fj[ is identically zero on Mk-

Even with our definition of vp, it is unrealistic to expect vp to intersect Mk
transversely for all points p. For example, if ΛΛk has dimension d < 4, then
transversality would imply that vp Π Mk = 0. However, there is a d + 4 dimen-
sional set of pairs (A,p) for which FJ(p) might be reducible. Since reducibility
is a codimension-4 condition, we should expect reducibility at a ^/-dimensional set
of pairs. Thus for p in a J-dimensional subset of X, vp would not intersect Mk
transversely. There is no reason to suppose that this ^/-dimensional set is always
empty.
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The most we can reasonably expect is the following:

Conjecture. Pick k > 0 and a generic metric on X, and let M'k be either Mk
cut down by standard Donaldson varieties, or Mk itself. Then, for generic points
p, the intersection of vp with M'k is transverse.

Should this conjecture prove true, then non-transverse intersection points (for
generic metrics) can always be resolved by moving p. If the conjecture is not
true, then we will require more subtle means of perturbing vp, Mk, or the other
Donaldson varieties. For many purposes, one wishes to perturb Mk anyway (e.g.
modeling connections near the ends of Mk as m concentrated charges glued by a
particular formula to connections in Mk-m)- For such purposes, the utility of the
representative vp does not depend on the conjecture.

Next we consider the extension of vp to the compactification of Mk- The bound-
ary of Mk consists of strata where m instantons have pinched off, leaving a solution
of charge k — m behind. These take the form Mk-m χ Sm(X), where m > 0. These
boundary strata have lower dimension than Mk, so they should not contribute to
Donaldson invariants. To ensure that they do not contribute, vp must remain a
codimension-4 set on the boundary.

Theorem 4. The intersection of the closure of vp with the m-th stratum of
is contained in the union of (yp Π Mk-m) x Sm(X) and Mk-m x {p} x Sm~ι(X).

Proof. Consider a sequence of connections [A^ G Mk Π vp converging to [Af] x
{xi,...,xm}, where [A1] e Mk-m- If P & {χi}> m e n FA^P) converges, after suitable
gauge transformations, to FJ,(p). Since the set of rank < 1 matrices is closed and
invariant under left multiplication by SO(3) (i.e. gauge transformations), FJ, has
rank at most 1, and we have the first set. If p e {xi} we are in the second set.
QED.

The first set is manifestly codimension-4. If the conjecture holds, then, for m < k
and generic p, the second set is codimension-4 as well. What remains is to consider
the first set for m = k. This poses two difficulties. First, Mo contains the trivial
connection (and other reducible connections if H\(X) φ 0), and so is not contained
in BQ. This complication is independent of the choice of representative of μ(x) and
is not discussed here.

(The existence of the trivial connection is also the reason that, for SU(2) theory,
Donaldson invariants are only well defined for k sufficiently large, in the "stable
range." For SO(3) theory with nontrivial W2, Mo is empty, and this complication
disappears.)

The second complication is that every flat connection is in vp, so that vp cannot
possibly intersect Mo transversely. To resolve this we must perturb Mo- If πi =
0, so that Mo is just the trivial connection, this is easy. We just add a small
connection that is zero outside a small neighborhood of p. One can always find
a connection for which F^(p) will be irreducible, so vp will miss the perturbed
Mo entirely. If π\ Φ 0 and Mo contains a representation variety of dimension 4
or greater, it may happen that one cannot lift Mo entirely off vp. In that case we
must interpret "Mo Π vp" as the intersection points that remain after a fixed (but
generic) infinitesimal perturbation of Mo

Finally, we consider what must be done if the conjecture fails. In that case we
would need to construct perturbations M'k of the moduli spaces Mk such that each
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λΛ'k intersects vp transversely, and such that the boundary of AΛ'k consists of strata
•M'k-m x Sm(X)- An analog of Theorem 4, for Λ4f, would then follow, and the
discussion following Theorem 4 would also apply.

We close with a sketch of a topological application of this geometric representa-
tive. The Donaldson invariants of all known orientable 4-manifolds with b+ > 1 sat-
isfy a recursion relation called "simple type." This relation roughly says that, given
two points p and q, λΛk (^vpΠvq has the same fundamental class as 64 A4k-\. For
p and q close and A in λΛk-\, one can count the ways to glue in a concentrated
instanton near p and q so as to make the curvature at p and q reducible. This
number is well short of 64, indicating that simple type is not just a property of the
ends of Mk, but involves the topology of the interior as well. The results of this
investigation will appear elsewhere [GS].
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