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Abstract: Denote by Xq the reduced space of SL/2 monopoles of charge q in 1R3.
In this paper the cohomology of Xq, the cohomology with compact supports of
Xq, and the image of the latter in the former are all calculated as representations

of TL/qTί which acts on X^. This provides a non-trivial "lower bound" for the L2

cohomology of Xq which is compatible with some conjectures of Sen. It is also

shown that, granted some assumptions about the metric on Xg, its L2 cohomology
does not exceed this bound in the situation referred to in the paper as the "coprime
case".

1. Introduction

The moduli space Jtq of SUi -monopoles of magnetic charge q in 1R3 is a
Riemannian manifold of dimension 4q. It has remarkable geometric properties, of
which a comprehensive account can be found in [A-H]. Recently, to test hypothe-
ses concerning electric-magnetic duality in non-abelian gauge theories [Sen], there
has been interest in determining the square-summable harmonic forms on Jίq - or,
more precisely, on a (4q — 4)-dimensional "reduced" moduli space Xq contained in

it. To define the reduced space we first get rid of the free action of the group IR3

of translations by restricting to monopoles whose centre of mass is at the origin in
R3. There is still a free action of the circle group T which rotates the "phase" of
a monopole. We cannot normalize the phase away completely, but we can fix it up
to a qih root of unity. This gives us a simply connected manifold Xq, on which the

cyclic group ̂  of #th roots of unity still acts freely by rotating the phase.

Let tffq denote the space of square-summable harmonic /-forms on Xq. We can

decompose 3?l

q according to the induced action of /^

where «^>p is the part where the elements ζ G^ act by multiplication by ζp. Sen

* The work described here was carried out partly at the University of Texas at Austin.
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[Sen] has conjectured that

(i) If p and q are relatively prime then 3?l

q tp = 0 except in the middle dimension

i = 2q- 2, in which ^*~ 9* C, and
(ii) if q and p have a common factor then J^^p = 0 for all i.

In fact it is conjectured that there is a natural action of the group SL^TL on the
L2 harmonic forms on all of the Xq together, which transforms the (/?, g)-bigrading

according to the natural action of SL^TL on Έ2.
In this paper we shall provide some evidence in support of Sen's conjecture by

calculating the cohomology of the space Xq together with the action of /^ on it. In
particular we shall show that part (i) of the conjecture follows from some mild and
very plausible assumptions about the nature of the metric on Xq.

We begin by stating our results about the cohomology. We write H*(Xq) for the
cohomology with complex coefficients, and H*(Xq)p for the part where the group

Ity acts by ζ ̂  ζp.

Theorem 1.1.

= 0 otherwise .

Here (p,q) denotes the greatest common divisor of p and q.
This result is compatible with the existence of an SZ^-action on @pqH*(Xq)p

which does not preserve the dimension of the cohomology classes, but does preserve
the dimension relative to the middle dimension 2q — 2.

Because Xq is an orientable open manifold of dimension 4q — 4 we can deduce
its cohomology with compact supports from Theorem 1.1 by Poincare duality.

Corollary 1.2.

H>pt(Xq)p^<C i f i = 2q + 2(p9q)-49

= 0 otherwise .

The map Hl

cpt —> Hl is trivially zero except perhaps in the middle dimension
i = 2q — 2. We shall prove

Theorem 1.3.

In view of these topological results the following arguments show that the spaces
Jtfq p ofL2 harmonic forms are at least as large as Sen conjectures.

First, because Xq is a complete Riemannian manifold, we know ([deR] Sect. 35

Theorem 26) that any L2 harmonic form on it is closed and coclosed, and so there
is a map

3tfqίp ~^ Hl(Xq)p .

We also know ([deR] Sect. 32 Theorem 24) that the space Ω ' 2 of all L2 forms on

Xq has an orthogonal decomposition
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where Ωcpt denotes the smooth forms with compact support, and the bars denote

the closure in L2. So there is a map

Hcpt(Xq} ~* ^q

defined by orthogonal projection of smooth closed forms with compact support. We
have

Lemma 1.4. The composition

H'cpt(Xq) ~^ ̂  q ~^ H'(Xq)

is the obvious map.

Proof. The map takes a closed form α e Ωcpt to α - β, where β = liniί/y/ in L2,
with ji G Ω'cpt. But β represents zero in H'(Xq) because of Poincare duality, for

for any closed θ £ Ω'cpt.

Thus Theorem 1.3 tells us that dim(J^S~ ) = 1 when p and q are coprime.
We have not used any property of the metric of Xq except completeness. To prove

that dim(J^JΓ ) ^ 1, in the coprime case, we need some more precise properties
of the metric. This is explained in Sect. 3.

2. Calculation of the Cohomology

The proofs of Theorems 1.1 and 1.3 depend on two elementary observations. First,
the functor X ^ H*(X)P is a cohomology theory on the category of spaces with
^-action, in the sense that after taking the /^-component we still have a long exact
sequence associated to a space and a subspace, and we have a Mayer-Vietoris
sequence for the cohomology of a union. Secondly, if g is a generator of /^, and

gk is homotopic to the identity on X9 then H*(X)p — 0 unless the order of the root

of unity e2πιp/g divides k, i.e. unless kp is divisible by q.
We shall use different descriptions of Xq for the proofs of the two theorems.

For Theorem 1 we use Donaldson's identification of the moduli space Mq with the
space of rational functions of the form

φ aq-\zq~λ H ----- h a\z + 0o

ψ z* + bq^z*-1 + + b\z + Z?0 '

where φ and ψ are polynomials with complex coefficients and no common root.
The last condition can be expressed

where the resultant &(φ,ψ) is the polynomial in the α/ and bι defined by

where β\9...,βq are the roots of ψ. We notice that &(φ9ψ) is homogeneous of
degree q in a^...,aq-\. The group T acts on Jtq simply by multiplication. The
reduced moduli space Xq is the subspace of Jίq defined by the two conditions
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bq-ι =0 and £%(φ, ψ) = 1. It is a nonsingular algebraic hypersurface in <C2q~l.
(The hypersurfaces defined by £%(φ, ψ) = λ must be nonsingular for almost all λ\
but by the homogeneity of &(φ,ψ) they are all isomorphic when ΛΦO.)

Proof of Theorem 1.1. We first consider the part of H*(Xq) fixed under the
/^-action, i.e. the case p = 0. Then H*(Xq)Q ^ H*(Xq/^) = H*(Jΐq/<Cx). The

theorem asserts that Jίq/<L* has the rational homotopy type of a point. Now
π\(Jίq) = Z, and the map Jtq — > (Cx defined by φ/ψ >— » &(φ,ψ) induces an iso-
moφhism of rational homology. (This is a simple consequence of the results of
[S], where it is proved that H*(Jtq) - with arbitrary coefficients - is a summand
in H*(Ω2S3)', for, rationally, we have Ω2S3 ~Sl.) The multiplication action of
Cx on Jίq gives us maps Cx — » Jtq, and the composites Cx — > <Ĵ  — » Cx are
u\-+ cug. Homotopically, therefore, Jίq/(Cx is a bundle over the classifying space
#CX = CP°° with fibre ̂ , and so it is rationally a circle bundle over CP°° with
Chern class q e H2(<CP°°9Z) = TL. The Gysin sequence for this circle bundle shows
that JPg/(C* is rationally a point.

To treat the other cases of Theorem 1.1 we stratify Xq according to the multi-
plicities of the roots of ψ: if λ = (λ\ ^ λ^ ^ ^ λr) is a partition of q we write
Xχ for the part of Xq where the denominator ψ is of the form

with β\ , . . . , βr distinct.
If p is a non-zero residue class modulo q, let / > 1 divide the order of the

root of unity e2πίplq. Let Y be the part of Xq consisting of rational functions φ/ψ
such that ψ = χl for some polynomial χ of degree r — q/l. Equivalently, Y is the
union of the strata Xχ for all partitions λ, all of whose parts λι are divisible by /.
We shall prove

Proposition 2.1. Y is a closed ^-invariant submanifold of Xq, algebraically iso-

morphic to the disjoint union of I copies of Xr x (Cq~r. In terms of the ^-action

y ̂  x^ (jrr x d?-r) ,

where ̂  acts on Xr and on <Eq~r by multiplication.

Proposition 2.2.
H*(Xq - Y)p = 0 .

Before proving Propositions 2.1 and 2.2 let us show that they imply Theorem
1.1. The submanifold Y ofXq has complex codimension (2q — 2) — (2r — 2) — (q —
r) = q — r. Let U be a /^-invariant tubular neighborhood of 7 in Xq. We have

H^Xqϊp ^ H\Xq,Xq - Y)p from Proposition 2.2

^ H\ U,U -Y}p by excision

= Hl~2q+2r(Y)p by the Thorn isomoφhism theorem.

Proposition 2.1 implies that H*(Y) is the representation of /^ induced from

the representation H*(Xr) of ψ,. It follows that H^X^p^tf-^+^X^p. This
completes the proof of Theorem 1.1, for we can assume by induction that the
theorem is true when q is replaced by r.
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Proof of Proposition 2.1. If φ/ψ = φ/χl belongs to 7, then 3$(φ,ψ) — $(φ,χ)1, so
&(φ,χ) is an /th root of unity, and Y breaks up into / components, YU9 according
to the value of u — &(φ,χ). We can write

Ψ = ΨoX + φ\

uniquely, where φ\ has degree less than r, and φo has degree less than q — r. Then
^(φ,χ) — &(φι,χ), so the correspondence

φ/xl <->(<PI/& <PO)
is an isomoφhism between Y\ and Xr x <Cq~r. Finally, multiplication by ζ e/^ is
an isomoφhism Y\ — » Yζr.

Proof of Proposition 2.2. We begin with

Lemma 2.3. Suppose that q = q\ -f #2? #w^ that U is the open ^-invariant subset
of Xq consisting of all rational functions φ/ψ with ψ e W, where W is an open
subset of the space of monic polynomials such that all ψ £ W can be factorίzed
ψ = ψifa into ordered coprίme factors \l/\9ifa depending continuously on ψ G W,
with deg(0i ) — q\. Suppose also that q\ and q^ are not divisible by the order of
e2πip/q^ Then H*(U)p = 0.

Proof of the Lemma. If φ/ψ G U we have a unique decomposition

<p _ ψ]_ (ft

Ψ 1̂ Ψ2 '

We can define an action of the group

G = {(Cι ,C 2 )eTxT:ζ? 1 ζ | 2 = l} (2.4)

on U by
(ίι,f2)

For

and so the action of (Cι,ζ2) £ G multiplies &(φ,\l/) by CfCf 2 = l The action of G
extends the action of the cyclic group ψq9 for^ can be identified with the diagonal
subgroup

Now G is isomorphic to T x/ft/, where J is the greatest common divisor of q\
and #2- This means that if g is a generator of /^ then the action of 0rf on C7 is

homotopic to the identity, and hence that H*(U)P = 0 unless the order of e2Ίliplq

divides d.
Returning to the proof of Proposition 2.2, we now see, by using the Mayer-

Vietoris sequence and induction on «, that H*(U)P — 0 if U is the union of n
open subsets U\9...9Un of Xq which each satisfy the hypotheses of Lemma 2.3.
(Notice that UnΓ\(U\ U U Un-\) is a union of n — 1 sets which satisfy the
hypotheses.) This essentially completes the proof of Proposition 2.2, as the open
subset U — Xq — Y of Xq is a union of such sets Uj. For if ψ is a monic polynomial
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with a root β of multiplicity q\ not divisible by / then any polynomial near ψ can
be factorized canonically as ψiifo, where ψ\ has q\ roots near β, and ifa has no
roots near β. This argument leads to a covering of U by a countable number of
subsets {Ui}i£s of the desired type. At first sight the Mayer-Vietoris method works
only for a finite covering. But there is a well-known device for dealing with this
situation. We choose a partition of unity {/I/} subordinate to the covering {£/,-} of
U. We can assume that at most N + 1 of the numbers Λ,, (JC) are non-zero at any
point x of £/, where N = dim(C7). Then for each finite subset σ of S we define

λt(x)

The sets C/^ cover U. Finally, for each k G {0, 1,...,7V} we define Vk as the union
of the U'σ when σ runs through the subsets of S with k + 1 elements. The sets
FO, FI,..., FΛΓ cover £/, and each F/ satisfies the hypotheses of Lemma 2.3, as it is
a disjoint union of subsets each contained in one of the t//.

0/ Theorem 1.3. The simplest proof uses the same argument once again,
but applies it to the alternative, more "physical", description of Jtq as a space
of clusters of monopoles in R3. Unfortunately, this description does not seem to
have been worked out with sufficient precision for our purpose, so the following
proof must be regarded as heuristic rather than complete. We have therefore given a
complete proof in the Appendix, using the description of Jiq by rational functions.
It avoids the questionable use of clusters, but is much more complicated.

The cluster description depends on the fact that a g-monopole Φ G Jίq centered
at c G R3 has an energy distribution in R3, and can sometimes be interpreted as
the superposition of #, -monopoles Φt centered at jc/ G 1R3 for / = 1,2, . . .,&, where
Σqi — q, ΣqtXi = qx, and the points x\,...,Xk are far apart in R3. In that case the
assignment

Φ\-+(T-XlΦι9...9T-XkΦk 9 x ι 9 x 2 9 . . . 9 X k ) ,

where Ty is the operation of translating a monopole by y G R3, extends to a local
diffeomorphism

/ : U -> M\λ x M\ι x - - - x M\k x R3*

defined in a neighborhood U of Φ in Jίq, where Ji®q. denotes the space of centered
^/-monopoles. We can suppose that the image of U is invariant under the action
of Έk on Jβqι x x JίQ

qk which rotates the phases of the monopoles, and / is
automatically ΊΓ-equivariant for the diagonal action of T which rotates the overall
phase. This enables us to extend the ΊΓ-action on U to a ΊΓ^-action.

In the new picture the space Xq obtained from Ji^q by normalizing the overall

phase must not be thought of as a subspace of Jί^q. It is properly defined as the

simply-connected covering space of -^/T, whose fundamental group is cyclic of
order q: we can identify it with the rational functions φ/\l/ with ^(φ, ψ) = 1 only
after choosing a direction in R3 . Nevertheless, a T-invariant open subset U of Jί^q

defines an open subset U1 of Xq which is the restriction of the g-fold covering to
ί//ΊΓ. Taking k = 2 in the preceding discussion, the T x T action on U induces an
action on U1 of the group G which was introduced in 2.4, but which now appears
as the group of transformations of U1 which cover the action of (T x TΓ)/ΊΓ on
t//ΊΓ. Just as in the proof of Lemma 2.3, we can conclude that H*(U')P = 0 if p
is prime to q, which is the only relevant case.
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Now let V be the open subset of Xq consisting of all monopoles which can be
regarded as superpositions of two widely separated configurations. A basic property
of Xq is that the complement of V in Xq is compact. The argument of the proof of
Proposition 2.2 shows that H*(V)P = 0 if (p,q) — 1, and hence that all elements
of H*(Xq)p come from H*(Xq, V)p, and so have compact support.

To conclude this section, let us explain more precisely the mild caution we
expressed about the preceding argument. If in an open subset U of Jtq the
monopoles split into clusters of charge q\ and q^ with q\ -\- qi = q, there seems no
real problem in defining a T2-action on U which rotates the phases of the clusters
independently. What needs to be checked carefully is that if U' is another region
with a similar splitting q = q( + qL then in U Π Uf, where the monopoles break
up into, say, three clusters, the T -action coming from U and U' form parts of
a T3-action on U Π U' which rotates the phases of the three clusters. This was
used, implicitly, in the Mayer-Vietoris argument: essentially it is equivalent to the
assertion that superposition of widely separated clusters is an associative operation.
(The corresponding assertion in the rational function description is obvious, for there
superposition is simply addition of the rational functions.)

3. L2 Harmonic Forms in the Coprime Case

If we are prepared to make some further, rather plausible, assumptions about the
metric of the space Xq we can use the preceding methods to prove Sen's conjecture
completely in the case when p and q are coprime.

Assumptions. The space M^q of centered monopoles can be covered by a finite
number of T-invariant open subsets V^...,Vm with the following properties:

(i) The closure of VQ is compact.
(ii) If z'ΦO then Vt consists of configurations which can be broken into two

ordered widely-separated parts with charges a\ and bj such that α/ + bj = q.
(iii) The action of T on V\ extends to an action of the group T2 which rotates

the phases of the parts independently. This action is by near-isometries, in the sense
that if / G T2 then

A~lg £ Γg ^ Ag

for some A ^. I, where g is the metric of Vj. Furthermore, the orbits of the action
of T2 on Vι are of bounded size.

(iv) There is a smooth partition of unity {λι\ subordinate to the covering {Vϊ}
of Jt^q such that each dλj is bounded.

The assumption (iv) follows from a stronger statement, with three parts.

(iv) (a) We can take VQ to be the interior of a compact smooth manifold F0

with boundary 7, and Jί^q — VQ is diffeomorphic to Y x [0, oo).

(iv)(b) The projection π : Jf*q — VQ —> Y is length-decreasing for the Riemannian
metric.

(iv)(c) The sets Vt for / Φ O are of the form n~l(Wt) for some Wt C Y.

We hope to return to the justification of these assumptions in another paper.
Meanwhile, let us show that they imply Sen's conjecture when p and q are coprime.
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It is enough to show that

Hcpt(Xq)p ~* ^q,p

is surjective.
For any Riemannian manifold M, let A*(M) denote the cohomology of the

subcomplex of the de Rham complex of M consisting of smooth forms α such that
both α and doc belong to L2. If ̂  acts on M by near-isometries, we can calculate
the component h*(M)p from the subcomplex of forms α such that gjα = ζpu.

For the complete manifold Xq it follows from the discussion at the end of Sect. 1
that there is an injective map

so to prove the conjecture it is enough to show that h*(V{ U U V^)p = 0, where
V/ is the q-fold covering space of F//T described in Sect. 2.

If M = MI UM2, where M\ and M2 are open submanifolds of M, there is a
Mayer- Vietoris sequence

---- > A*(Af)-> A*(Mι)ΘA*(M 2 )^A*(MιnA/ 2 )-^

providing there is a partition of unity λ\ -f /12 = 1 for M = M\ U M2 for which
dλ\ = —dλ2 is bounded. There is also a generalised Mayer-Vietoris argument ap-
plying to coverings by more than two sets which implies that if there is a partition of
unity, {λf}, for M = MI U U Mm, with each dλt bounded and if A*( f}ieA M ) = 0
for all nonempty Λί C {!,..., m}, then A*(M) = 0 (this follows by considering the
double complex). Consequently we have that h*(V{ U U V^)p = 0, in view of
the following variant of Lemma 2.3, where G/ denotes the group defined by (2.4),
but with (q\>qi) replaced by (a^bi).

Lemma 3.1. IfM is a Grstable open submanifold of V[, and p and q are coprime,
then h*(M)p = 0.

Proof. Let α be a smooth L2 form representing an element of h*(M)p. We have

gf*α = ζ^α, where ζ is a primitive gth root of unity. The element φ = gd^, where
d — GCD(al9bi), belongs to the identity component of G/, so we have an explicit
homotopy φ ~ (identity) generated by a bounded vector field. This shows that
φ*a-a = dβ for some L2 form β. But φ*α = C^α, and ζ*** Φ 1. So α =
I)"1/?), as we want.

4. Appendix

Here we calculate the map H^2(Xq) — » H2q~2(Xq). In what follows, /? and q are

coprime, C — e2πι/q

9 and ^ is the generator of ψ^ corresponding to multiplication of
rational functions by ζ. It will be convenient to work in homology - there are
natural isomorphisms:

= = **~ =

where the last of these spaces, Hc, the closed chain homology, is introduced only
to define a normalisation for Theorem A.I. In this language there is an intersection
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pairing between Hιq-ι(Xq) and Hξq_2(X(J), which is perfect by Poincare duality, and
another between Hιq-ι(Xq) and itself, which we should like to prove is perfect.

We observe that the argument of Proposition 2. 1 with / = q implies that

τP = - Σ ΓkpYζ* = - Σ ΓkpgkYι
%k<q qk<q

is a generator of H2q_2(Xq)p (The submanifold Yp being complex has a standard
orientation.)

Theorem A.I. If σp G H2q-2(Xq)P is the dual basis to τ_p (i.e., σpτpt = δp-pι\

then σpσpf = (-l)q~λδp_p>.

Corollary. The map H^t~
2(Xq) — > H2q~2(Xq) is an isomorphism.

Remark. Transforming {σp} to a real basis we can calculate the signature of the
pairing, with the result that it is positive definite if q is odd and negative definite
if q is even.

Proof of Theorem A.I. A typical rational function in Xq is denoted by φ(z)/ψ(z)9

the roots of ψ being {z\9...9zq}. Recall that ^zz = 0 and Π φ(z/) = 1. Let ε be a
fixed positive number, taken sufficiently small in what follows.

Define the (closed) subset F C C^ x Έq by

Define the map β : F -^ Xq by prescribing φ(zi) = w/ and ψfa) = 0 if zz are
distinct (i.e., the map of Lagrange interpolation). This extends smoothly to the
whole of F because of the wz φ wy ==> |z/ — zy | ^ ε condition.

The objective will be to describe explicitly the generating cycles of H2q-2(Xq)
and then calculate their intersections by using a convenient diffeomorphism ofXq to
perturb σp. The idea is that the proof of Theorem 1.1 implies that β* : H2q-2(F) — >
H2q-2(Xq) is surjectΐve, so that we may work mainly in F. In fact, rather than
describing the complete cycles, it will prove simpler to use relative cycles (see
below).

Recall that the proof of Lemma 2.3 made use of homotopies which were only
defined when the roots of ψ were separated into two sets. This means that it is
necessary to split Xq into subsets in which the z/ are separated in a controlled
manner. To do this we introduce the permutahedron, Pq in RΛ

Choose q distinct real numbers r\ < r2 < - < rq such that ̂  rz = 0. (The rt

will have to be chosen sufficiently small to make a later part of this argument work.)
Define P(a\ 9...9an) to be the convex hull in IR/7 of the n ! points (aπι 9...9aπn)9 where
π e Sn is a permutation. Let Pq = P(r\9...9rq)9 a polyhedron of dimension q—l.

If A = {aι9...9ak} C {1,2,...,^} with aι < < ak, then define πA : IR? -> R^
by nA(xi,...,xq) — (jcβl,...,^). If A\9...9Ar is an ordered partition of {I929...9q}
into non-empty subsets then let Si = Σy<z My I anc^ Define

(^ι| - - - \Ar) = {x e R^ : πΛ.(x) G P(rSl+ι,...,rs.+l)} .

It is a fact that (A\\ - \Ar) is a face of Pq and that all faces arise in this way.
So faces of Pq correspond to ordered partitions and are isomorphic to products of
lower dimensional permutahedra.
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The property of these faces we shall need is that if ( ci, . . . ,xq) G (A\ \ - \Ar) and
iήrj then \xa — x^ ^ ε whenever a G AI and b G Aj. This is ensured by choosing
ε smaller than ΓΊ — r\9 r3 — r2 — ,rq — rq-\.

We wish to think of the faces of Pq as singular chains, so we need to give them
an orientation. This will be done by giving a section of the top exterior power of
the tangent bundle. If A C {!,...,#} then define

Λ - • Λ

where A = {a\9...9ak} and a\ <
of (Aι\- \Ar) to be

< a^. It is convenient to define the orientation

where sgn(^ι^2 Ar) denotes the sign of the permutation in Sq obtained by listing
the elements of A\ in ascending order followed by those of A2, and so on. This
strange choice makes the formula for the boundary simple:

Σ (A.2)

We shall also need to define the homotopy as used in Lemma 2.3. If R C
...,#}, let ni = q- \R\ if ί G R and n, = -\R\ otherwise. Then

is a partially defined map from [0, 2π/q] x F to F. If σ is a r-chain in F, such
that TR is everywhere defined on [092π/q] x |σ (|σ| being the carrier of σ), then
Γ^(σ) defines in an obvious way an r + 1-chain whose orientation we shall take to
be OτR(σ) = -JQ A Oσ. The basic property of TR is

Now, there is a map

defined by

P x P vJt Λ /\ J Λ X\

α(Λ:ι, . . .9xq, y\9...,yq,k) = (x\ + iy\9. ..,xq + ίyq, ζ
k,..., ζk) .

The desired cycle in F will be built up from linear combinations of the chains

It follows from the above definitions that the above chain is defined when each Rt

is a union of a subcollection of the sets A\9...9Ar. This is because being in the
face (A\\ -\Ar) guarantees us that if a G Ai9 b G AJ9 zφy then xa and x^ hence
*a + iya an^ Xb + W> are separated, which allows us to move wa apart from w/>.

Note that we only use the top dimensional face of Pq to restrict the imaginary
parts of the zz. This will result in a cycle relative to the subset F° of F defined by

F° = {(zl9...,zq9wl9...9wq) : G dPq}
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and on applying β, a cycle relative to the subset X° of Xq defined by

X° = {φ/ψ : \φ(Zi)\ = l,(Im(zι),...,Im(zq)) 6 dPq} .

(This definition makes sense because Pq is invariant under permutation of coordi-
nates.)

Define
[ A \ \ ' ' ' \Ar]p — Σ ζ~pk u((Aι\ - - \Ar\(\2 - -q\k) ,

k<q

so [Aι - \Ar]p is a "/?-type" chain, that is g\A\\ - - - \Ar]p = ζp[Aι - - Ar]p. Let
UR = (ζ~p\R\ - 1)~1TR, so that

dUR + URd=l (A.3)

on /7-type chains. Here it is used that p and q are coprime.
We are now in a position to construct the cycle we are interested in. Let

Σ / 1 Λ V 2 / ^ r 7 r j j r A I , ,

\~ i ) UA{ UAιUA2 ' ' ' UAι\J (JAr_\ \A\ '''\Ar\f
j.' \ΛI )

(A.4)

the sum being over all ordered partitions of {!,...,#}. Note that gTR = TRg, so all
terms are of p-typQ. It follows from (A.2) that, modulo chains in F°,

Σ ^..- \At-t\B\Ai \B\AM\ . \Ar]p.

Some checking using the relation (A. 3) then shows that σp is a relative cycle in
the pair (Xq,X

G).
To calculate the intersection number σpσpr we proceed as follows. A map

m:Xq -* Xq is exhibited such that the following properties hold:

(i) w is a diffeomorphism.
(ii) /H(jr°) Π β(F) = m(X°) ΠX° - 0.

(iii) Suppose A i C i and λici are component chains in m(σp) and σy respec-
tively. That is, λt G C and, for / = 1,2, c/ is a map from some polyhedron, £/, in
R2^"~2 together with an orientation of St. Suppose also that CI(Λ:I) = cife) — y.
Then Xf^dSi, ct is smooth in a neighbourhood of ;cz and ci Π c^ is transverse at

It follows from these conditions that we can calculate σpσp/ by summing λ\λ2

over pairs (^1,^2) as in (iii) with the usual sign. To see this we use the general
theory of [de R], Sect. 20 together with the following observation. The proof of
Lemma 2.3 implies that H2q-2(XQ)p = 0. Therefore there is a cycle σp + ap of Xq

with \oίp\ C XQ. Condition (ii) above now assures us that ap does not enter into the
intersection calculation.

Exactly similar reasoning allows us to calculate the intersection numbers σpτpι
by moving τpι. This is easier, so let us deal with it first. Move Yω from {φ/zq :
φ(0) = ω} to Y'ω — {φ/ψ : |φ(0) — ω| < δ} for some small δ > 0 and some fixed
choice of ψ(z) whose roots are small and distinct. It is clear that the only term
in (A.4) which intersects this is the "top" term, i.e., the one with r — 1. Taking
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the orientations into consideration we have σpτp> — β(Λ[12 q\p)~ Σs ζ~P s^is =

S^y Σr,5 ζ~pr+p/sδrsq\ = Sδp-pf, where S = ±1 is a overall sign (depending only

on q) which is unimportant since Theorem A.I is asserting something about σpσpr.
Returning to σpσp/, define m as the composition of two maps, m\ and w2.

(i) The map m\ takes φ/ψ to

φ(z)elz mod ι//(z)

(Here φ(z)eιz mod \l/(z) means the unique polynomial of degree less than q con-
gruent to φ(z)eιz modulo ψ(z).)

(ii) To define the map m2 we fix a real number λ with 0 < λ < 1, and map

<P/Ψ to

Both maps are analytic diffeomorphisms (since ψ is always monic) which pre-
serve the resultant, so we may define m to be mi o m\.

If m(φ/ψ) = φm/ψm, where the roots of ψm are z\ and φm(zf

i) = w'i9 then

vt/ = ei2lWi and zz' = λzj . (A.5)

This establishes property (ii) of m, since the condition |wz | = 1 implies that
Im(zz ) = 0. Furthermore, since /LP^ Π dPq — 0, we are reduced to finding intersec-

tions of m(σp) with the top term, β(^[l2 - q]pr)9 of σpι. This implies that φm is

a constant polynomial.
Consider now the term in (A.4) corresponding to the partition A\9...9AΓ9 and

suppose that φ/ψ is a point of \σp\ such that m(φ/ψ) = φm/\l/m is in |σp/|. We

have that w{ = w^ = = ζs for some s. If 0,6 E ^4, then wα = w/,, so βZZα = elZb,
and since the rz were chosen sufficiently small, we have zα = z^,. (This means that
intersections can only occur at points arising from the barycentres of faces of Pq.)
There is one more restriction on the intersection points we need to determine, namely
that r — q, in other words \Ai\ = 1 for all /. To see this, let Vj = zai for some (all)

di G Aί9 and let ψi(z) = (z — VI)\AI\. Decompose ζs/ψ into partial fractions:

Ψ i=\ Ψi

Then it follows from (A. 5) and the nature of the map β that

φ r e~iυiφί

Ψ ι=l Ψi

and so
φ\ ^ e^-^ψj mod ^

But this must have constant numerator when put over the common denominator, so
it is a constant multiple of Σ φ/M Consequently ei(z~Vϊ)φi = Cφt mod i/^ . Mul-

tiplying by Π y φ ί Ά y te^s us tnat el(z~v*) = C mod(z — t;z )^Ί which is impossible

unless y4/ = 1.
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This completes the identification of the intersection points w(|σp|) Π \σpr\ which,

to summarize, arise from the r = q terms in (A.4) with w/ = ζse~lZi for some s. At
such points of σp\, the zz are all distinct (being equal to a permutation of r\9 . . . , rq)9

and the w, are not equal to qth roots of unity. This shows that property (iii) of m
holds, with the possible exception of the transversality condition.

We now have to work out the intersection of

mβ(UBl UB2 UBq_l0ι((aι\. - \aq),(12 -q),r))

with

<7), (12 •••?),*), (A.6)

where (βz ) is a permutation of 1,2, ...,q and Bt = {«!,...,«/}. This amounts to
counting solutions of the equations

Σ [(qliϊj ~ J)θj] + n = —(s - r) mod 2π ,

where z ranges from 1 to q (one of these equations being redundant), 0 ^ Θ7 ^
and //^7 — 1 if / ^ 7 and = 0 otherwise. These equations have a solution only when
s = r, namely θj = (rj+l - rj)/q.

It remains to calculate the sign associated to this intersection (and in doing so
check that it is transverse). We omit the linear algebra, but the outcome is that

the intersection number from (A.6) is δrs(—l)^)q\2/q (making use of the fact that

- ^~/?r = τhis means that

= Σ
r,s<q T
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