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Abstract: Let Mn be a compact ^-dimensional manifold and ω be a symplectic or
volume form on Mn. Let φ be a C1 diffeomorphism on Mn that preserves ω and let
p be a hyperbolic periodic point of φ. We show that generically p has a homoclinic
point, and moreover, the homoclinic points of p is dense on both stable manifold
and unstable manifold of p. Takens [11] obtained the same result for n = 2.

1. Introduction and Statement of Main Results

Let Mn be an ^-dimensional compact manifold with a symplectic or volume struc-
ture. Recall that a volume structure is a non-degenerate differential n-ϊoτm ω
on Mn and a symplectic structure is a closed differential two-form ω such that
ω A Λ ω (n/2 times) is a non-degenerate volume form. A symplectic manifold is
always even dimensional. We consider diffeomorphisms of Mn that preserve the dif-
ferential form ω. A diffeomorphism that preserves symplectic (resp. volume) form ω
is called a symplectic (resp. volume-preserving) diffeomorphism. Symplectic diffeo-
morphism arises naturally as a time-one map and the Poincare map of Hamiltonian
systems.

Let Diff^(M") denote the set of Cr diffeomorphisms that preserve ω, with uni-
form Cr topology. Let φ G Diff^(M"), then φ*(ω) = ω. Let p be a point in Mn, p
is said to be a periodic point of φ with period k if φk(p) = p. Periodic points
with period one are called fixed points. A periodic point p with period k is said
to be hyperbolic if d(φk)\T ( A f Π ) : Tp(Mn) —> Tp{Mn) has no eigenvalue on the unit
circle. For any hyperbolic periodic point /?, there exist a stable manifold, denoted
by Wψ(p) and an unstable manifold, denoted by W£(p). A homoclinic point of p
with respect to φ is an intersection of W%(p) and Ws,(p), which differs from p,
i.e., q is a homoclinic point of p if q G Wφ{p) Π WSφ(p)\{p}. q is a transversal
homoclinic point of p with respect to φ if Tq(M) = Tq(Ws

φ(p)) θ Tq(W%(p)).

We state our main results.

1 Research supported in part by National Science Foundation.
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Theorem 1. Let Mn be a compact n-dimensίonal manifold with a symplectic or
volume form ω. Let φ : Mn —> Mn be a diffeomorphism of class C1 that preserves
ω. In other words, φ G Diffω(Mn). Let p G Mn be a hyperbolic periodic point of
φ. Then for any given q G Wφ(p) {or Wφ(p)) and neighborhoods U of q in Mn

and V of φ in DirT^M"), there is a φ' G V such that'.

1. p is a hyperbolic periodic point of φ\
2. p has a homoclinic point with respect to φ' in U.

Recall that a subset M C Diff^(M") is residual if it contains a countable inter-
section of open dense sets. Residual sets are dense and a countable intersection of
residual sets is again residual. Properties which are true for a residual set are called
generic.

According to Robinson's theorems [9], the homoclinic point we obtained above
can be assumed to be transversal. Since transversal homoclinic points persist under
small perturbations, a standard argument yields the following results:

Theorem 2. Let Mn be a compact n-dίmensional manifold with a symplectic or
volume form ω. Then there is a residual subset & C Diff λ

ω{Mn) such that if φ G $
and p G Mn are such that p is a hyperbolic periodic point of φ, then Wφ(p) Π

is dense in both Ws

φ(p) and W%(p).

The homoclinic point has played an important role in dynamical system and
Hamiltonian dynamics and it goes back to the last century. Poincare discov-
ered the homoclinic phenomenon and its associated chaotic dynamics in his study
of the restricted three body problem in celestial mechanics [5]. Poincare suspected
that transverse homoclinic points occurred generically in the Hamiltonian systems
and conjectured that they would be everywhere dense in both stable and unstable
manifolds. Our result positively answers Poincare's question in C1 topology on any
compact manifold.

Our results above are generalizations of Takens's results for compact surfaces
[11]. Takens showed that if Mn is a compact surface (n = 2), then generically
transverse homoclinic points are dense in both stable and unstable manifolds, in
C1 topology. For manifolds with dimension larger than two, Takens's method gives
the generic existence of a transverse homoclinic point for any hyperbolic periodic
point. However, his proof fails to produce the density result.

Unlike Takens's proof for the compact surfaces, the proof of our main theorems
uses the volume-preserving property very little and thus can be applied to more
general cases. In fact, our proof is very much similar in flavor to a connecting
lemma recently announced by Hayashi [1]. In fact, we borrowed Hayashi's idea of
cutting pieces of an orbit so that the resulting connecting orbit can bypass the bad
portions of the orbit. Since the details of Hayashi's work is not available to us,
here we present a different and easier construction and we apply it to symplectic
and volume preserving diffeomorphisms.

The basic idea is to improve the closing lemma (Pugh [6], Pugh & Robinson
[8]) so that one can connect the stable manifold and the unstable manifold to obtain
homoclinic or heteroclinic points. The basic difficulty in connecting or closing orbits
for a C1 diffeomorphism is the intervention of intermediate points in the orbits.
Here we adopt a selection process that successively eliminates all the interventions.
Combining our selection process with Pugh's closing lemma (especially the part on
sequence of linear isomorphisms of IR"), one can obtain various types of the C1
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connecting lemma. In particular, it positively answers almost all questions raised
by Pugh [7] on compact manifolds. As a simple example, we state the following
simple connecting lemma.

Theorem 3. Let Mn be an n-dίmensίonal manifold {not necessarily compact). Let
φ : Mn —* Mn be a C1 diffeomorphism of Mn. Let p G Mn be a hyperbolic periodic
point of φ. If

q e closure{Ws

φ{p)) ΓΊ Wu

φ(p)\{p)
or

q e closure{Wu

φ{p)) Π Ws

φ(p)\{p} ,

then for any C1 neighborhood U of φ in Diff^M") and a neighborhood V of q
in M", there exists φ G U such that the orbit of p under φ is not in the support
of (φ - φ) {thus p is a hyperbolic periodic point for φ)9 and p has a homoclinic
point in V.

This is one of the basic results announced by Hayashi [1].
To end this section, we would like to mention two related results on generic

existence of homoclinic points in Cr topology. Using an idea from Robinson [10],
Pixton [4] showed that Cr generically for any r ^ 1, any hyperbolic periodic point
on S2 has a homoclinic point. Oliveira [3] extended Pixton's result to the two-torus
Γ2, again for Cr topology. So far there are no density results in Cr topology.

2. A Perturbation Lemma and Recurrent Points

In this section, we prove a known perturbation lemma (cf. [2,9,11]).
Let d be a metric on Mn induced from some Riemann structure and let B${x)

denote the set of y G Mn with d{x, y) < δ. We also let B${x) denote the closure
ofBδ(x).

Lemma 1 (Perturbation Lemma). Let Mn be an n-dimensional compact manifold.
Fix φ G Diff^(Mw), r ^ 1. There exist constants βo > 0 and c > 0, depending on
φ, such that for any x G Mn, and any φ G Diff^(M") such that \\φ — φ\\σ < εo,
and any positive numbers O < < 5 ^ ε o ? O < ε ^ Ξ ε o , the following facts hold:

if d{y,x) < cδrε, then there is a φ\ G Diff£(AfΛ), \\φ\ - φ\\σ < ε such that

φxφ~x{x) = y, φλ{z) - φ{z) for all z ^φ~ι{Bδ{x)\ and φ~\z) = φx~\z) for all

Proof. We first introduce the generating functions. A generating function provides
a very convenient tool in the study of symplectic diffeomorphisms.

Let {u,v) = (u\,...,Uk,v\,...,Vk) be coordinates on IR2 A :,ω = Σ ^ = 1 dux Ί\ dvt.

Let /(w, v) = {ξ{u,v),η{u,v)) be a Cr diffeomorphism, preserving ω, defined
on a simply connected neighborhood V of the origin. Thus Σ/U dut Λ dυi —

Σk

ί=ι dξi Λ dr\i. Let {ξ°,η°) = /(0,0), we may assume that ^{u,v) is non-singular
at each point of V. This implies that we can solve from η = η{u,v) to obtain
v = v{u,η) and thus (u\,...,Uk,η\,...,ηk) defines new Cr coordinates on a small
neighborhood of {0,η°). Since / is symplectic, the 1-form α = J2i=ι{ζidηi + Vidui)
is closed, so there is a Cr+X real valued function S = S{u,η), unique up to a con-
stant, defined for {u,η) near (0,^°) such that dS = a = Σi=\(ζidiΊi + Vjdu,). S is
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called a generating function and it satisfies ψ; = ζu W- ~ Vi a n c^ Έϋί~ *s n o n "

singular for each (u,η) near (0,η°) in the domain of S.

Conversely, let S(u,η) be a Cr+ι function, defined for (u,η) in a small neigh-

borhood of (0, η°), such that J^p is non-singular for each (u,η), then setting

&(w,*/) = $f.(u9η) and t>, (κ,f/) = J|(κ,*?), we may solve for 77 in terms of (u,υ)

and obtain a symplectic diffeomorphism (u9v) —• (ξ(u9v)9η(u9v)).
We proceed to prove the perturbation lemma. Since all the perturbations we do

are local, we will use local coordinates.
Let λ : R -> [0, 1] be a C°° real function so that λ(z) = 1 for z ^ 1/2 and

A(z) = 0 for z ^ 1, and let β = supz G R{l, \λ'(z)\,..., μ ( r + 1 ) (z) | } . The function
S\(u9η) = (u\ + μ)η\+Σk

i=2Uiηi is a generating function for the translation
(uu...9uk9vu...9vk) -• O i + μ,u1,...,uk,υx,...,vkχ while the function S0(u,η) =

Σ?=i uiΆi is a generating function for the identity map id.
For δ > 0 small, let

Then 5(w,^) is a C°° function and S(u9η) = S\(u9η) for |(M,J/)| ^ <5/2, and 5(«,f/)
= So(u9η) for | (M,^) | ^ <5. A direct computation shows that \\S — *SΌ||r+1 ^ βcμδ~r,
where c is a constant depending only on k and r.

Let h*(u9η) be a diffeomorphism of R2 / : defined by h*(u9η) = (|f(w,?/),

ψ(u,η)), then we have ||/z* — id | | c r ^ βcμδ~r. For μ small, one can solve for

77 from Vi = J^(w,f/) to obtain η = η(u9v). Let h(u,v) be the symplectic diffeomor-

phism of R2 / : defined by /z(w, t;) = /z*(w, ̂ /(w, 1;)). Then there exists a constant c such

that | |A- id | | c r ^ βccμδ~r. Note that if μ < ε(βcc)-ιδr for any ε > 0, then

| |A- id | | c r < ε.
To summarize, we have proved the following fact: For any compact manifold,

there are δ0 > 0 and c0 > 0 such that for any point x e Mn, any 0 < δ ^ δo
and any 3; G Mw with ί/(x, 3;) ^ co^rε, then there is a symplectic diffeomorphism
A G Diff^(M") with support(Λ) C Bδ(x) and \\h - iά\\σ < s such that h(x) = ^.

To finish the proof of the lemma, we just need to compose a given map φ with
h to obtain φ\ = /zi/f. To obtain \\φ — φ\ \\σ < ε for all φ9 we need \\φ - ψ | | c r ^ εo
for some ε0 > 0. Since h is also volume preserving, the proof works for volume-
preserving diffeomorphisms when the dimension Mn is even. When n is odd, we
take the identity map in one direction perpendicular to y — x (in local coordinates)
and use h in the remaining directions.

This proves the lemma. D

Now we use the perturbation lemma to prove the following result:

Lemma 2. Let φ G Diff^(Mw) and let p G Mn be a hyperbolic periodic point of
period k, with respect to φ. For any ε > 0, any q G W£(p) and any neighborhood
U of q, there exist a φ' e Diff^(Mw), \\φ - φ'\\σ < ε such that

1. Support(φ — φf) C U and hence, p is a hyperbolic periodic point of period
k for (/>',

2 q E Wμp),

3. q is a recurrent point under φ'.
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Recall that a point q G Mn is a recurrent point under φ' if there exists a se-
quence of positive integers {Λ/}2I, «/ —> oo as / —> oo such that (φf)ni(q) —> q as
/ —> (X).

Let ε > 0 be given. For any q G Wφ{p) and £/ C M", a small neigh-
borhood of q, choose δ\ small so that Bδχ{q) c U. Consider the small ball
Bλ = Bcδrεχ(q), where c is given by the perturbation lemma and 0 < ε\ ^ ε/2.
Since φ preserves the volume and Mn is compact, there exists a positive integer j \
such that φJι(Bι)nBδι(q)*Φ and φi(Bι)ΠBδι(q) = Φ for all z = l,2,...,yΊ - 1.
This implies that there exists a point q\ G Bδχ(q) such that φJι(q\) G Bδχ{q) and
φι(q\) $Bδι(q), for all z = 1,2,...,yΊ — 1. Now we apply the perturbation lemma
to obtain φx G Όiffr

ω(Mn) with H^ - φ\\σ < ελ ^ ε/2 and Support(0 - 0 0 C
Bδι{q) such that ^ f a ) = φ(qx). Thus (φι)J'(q) G jfyfa).

Now, since (φ\)Jι(q)^=q, we may choose 0 < <52 < δ\/2 so that (φ\)j(q) φ
Bs2(q). Let Z?2 =Bcsrε2(q), where 0 < ε2 ^ ε/4. We choose 52 and ε2 so small

such that for all φf G Diff^(M"), with | |0 ' - φ||Cr ^ ε2, and any point JC G 5 2 , we
have (φ'yHx) G Bδχ{q)\Bδl(q) and (^y(x) φ ^ ( ? ) for all Ϊ = 1,2,...Jλ - 1.

With the same argument, we see that there is a point q2 G B2 and an
integer j 2 > j \ such that (φ\)J2(qi) e Bh(q) and (φiy(q2) $Bh(q\ for all
/ = 1,2,...,72 — 1. Again we apply the perturbation lemma to obtain φ2 G
Diff^TkΓ) with ||(/>i - φ2\\σ < ε2 ^ ε/4 and Support((/)2 - φλ) G 5^2(^) such that
02(?) = 0i(?2). Observe that (φ2)

Jι(q) G 5 5 l (^) and (φ2)
j2(q) e Bh{q).

Continue the above process, we obtain a sequence of real positive numbers
δ\,δ2,..., a sequence of integers 0 < j \ < j 2 < ..., and a sequence of functions
0i, φ 2 , . . . , G Diff^(Mw) such that (0f) Λ G % ( ^ ) for all £ = 1,2,...,L

Let φ1 — lim^oo φt G Diff^(M"), then | |φ ' — φ\\σ < ε and ^ is a recurrent
point of φ'.

This proves the lemma. D

3. Boxes and Sequence of Perturbations

In this section, we are concerned with linear maps and their perturbations on R". Let
ω be the standard symplectic form or volume form on R" and let / G Diff^(Rw)
be a linear map of the form

f(X\,X2,. . .,Xn) — (λ\X\,λ2X2,. ..,λnXn)

with all λ/'s real, |λ/| φ 1, / = 1,2, . . . ,« .

F o r any set of posit ive n u m b e r s a\ > 0, a2 > 0 , . . . 9 a n > 0, let x = (xi ,

x 2 , . . . , x w ) G R " , w e define the fol lowing rectangular b o x wi th size (a\,a2,...,an):

Dx(aι,a29...,an) = {(yuy2,...,yn) G R" | \xt - yt\ ^ at} ,

and for any α > 0, we define

ocDx(aua2,...,an) = {(yuy2,...9yn) e RΛ

We have the following lemma.
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Lemma 3. Let ε > 0, R > 0, τ ^ 1 am/ 0 < a < 1 be given (ε owd (1 - a)
will be in general very small). Then there exist an integer N and an n-tuple
(a\,a2i ...,an) of positive numbers, depending only on λ\,λ2,..., λn, ε, τ and a, such
that for any rectangular box Dx*(ξ\,ξ2,...,ξn) with

for all ίj = 1,2,...,«;

N{Jf'(Dx*(ξuξ2,...,ξn))cBR(O)
i=0

and
Dx*(ξuξ2,--.,ξn)nf(Dx*(ξl,ξ2,...,ξn)) = ®,

and any two points xx ,x2 £ aDx*(ξι,ξ2,...,ξn), there is a g £ Diff^R") such that

1. ||/-flf||c. <ε,

2. support^/ -g)C ( J t o ' f'Φx^ξuξi,•••,ξ«)%
2 N

Proof Without loss of generality, we assume that

μ , | > μ 2 | > ••• > \λn\.

We need some estimates on the distance from fι(aDx*(ξ\, ξ2,..., ζn)) to the bound-
ary of fι(Dx*(ξ\,ξ2,...,ξn)). It is easy to see that

If iλjΠj S \λι\iξι for all / = l,2,...,w, then

d(x,f(Dx*(ξuξ2,...,ξn)) ^ {\-a)\XjUj

Let x1 = ( J C } , ^ , . . . , * ^ ) and x2 = (x\,x\,...,x^). We divide our perturbation
process into n steps. In the first step, which takes 7VΊ iterates of / , we do the
perturbations that push x2 towards xι in x\ direction (i.e., in the direction of
ex — (1,0,...,0)). In the second step, we perturb / to push x2 towards c1 in
JC2 direction. The second step takes N2 — Λ̂ i iterates of / . Then the third step
takes Â3 — N2 and we push x2 in x3 direction and so on. The total number of
steps we need is N = Nn, which, as we shall see later, depends only on ε, α, τ and
λ\,λ2,... ,/w.

However, due to the distorsion of the rectangular Dx*(ξ\,ξ2,...,ξn) from the
standard Dx*(a\,a2,...,an), in between any two steps, we also need some transi-
tional iterates Nt without doing any pushes. The transition is needed to correct the
distorsion.

We now begin to choose the «-tuple (a\,a2,...,an). In order to reach optimal
effect for each perturbation, the choice of (a\,a2,... ,an) is so that when we do per-
turbations in the xz direction, under the j t h iterate of / , we require that the shortest
distance between the set fJ(aD) and the boundary of fJ'(D) is reached in the
Xi direction, where D = Dx*(ξ\,ξ2,...,ξn). In other words, we need the following
*-condition:

* \ λ i \ j ξ i ^ \ λ ι \ j ξ t f o r a l l N ^ x + N t S j < fy a n d / = 1 , 2 , . . . , Λ .



Homoclinic Points in Symplectic and Volume-Preserving Diffeomorphisms 441

First, we calculate the number of pushes we need in each direction. For a moment,
let's assume that the *-condition is satisfied. Then the number of perturbations
needed to push a point from one side of the inner box to the opposite side along
the Xi direction, by ε small C\ perturbations, is (1_

α

αw, where c is given by the
perturbation lemma. We point out that the perturbation lemma can be applied to
the compact subset the closure of BR(O) C 1RΛ

We fix a positive integer

Now choose a\ > 0 small so that \^)i=ofι(D) C BM(O). AS the first step, we need

to find fι e diff^R") such that /f1 (*?,*§,...,JCJ) = fNλ{x\^...,x2

n). For this, it
suffices to have at ^ \λ\/λi\Nχa\ for all 2 ^ / ^ n. This implies the *-condition for
the first N\ iterates of / .

Let Nt be a positive integer such that

\λilλi+x \
Nt > τ for all / = 1,...,«- 1 .

We now choose a2 such that

\λλβ2\
N^N'-λax Sa2ύ \M/12\

N'+N'ai .

Now, starting from the N\ + Nt

th iterate of f\, we do another JVi pushes and this

time in the x2 direction. We find an f2 G diff^(R") such that /f2(jcf,jc^,...,x^) =

fN2(x\9x\9x\9...,xl), where N2=Nι+Nt+Nι. In this step, we need at ^
\λ2/λi\N2a2 for all 3 g i ^ « .

We repeat the above process. Suppose that a\,a2,...,aί9 ί < n, are chosen. Let
Ni = Â  - i +Nt+N\, we then choose ai+\ to be a positive real number such that

1^- ύ ai+ι g Iλi/

For ft-tuple positive real numbers (a\,a2,...,an) thus chosen, we see that

λ- Nt

i1
ύ \λι\j

aι

for all Ni-\ + Nt S j < fy and for all /=f=/. This implies that the *-condition is sat-
isfied for the ft-tuple (a\,a2,...,an) and we can carry out the perturbation procedure.
The lemma is proved for the boxes Dx*(a\,a2,...,an).

To complete the proof of our lemma, we only need to note that for any
(ξι,ξ2,' .,ξn), w i th (ai/ξi)/(aj/ξj) S τ, b y the selection of (aua2,...,an) and the

choice of Nt, the *-condition is satisfied.
This proves the lemma. D

We remark that in the proof of the above lemma, one can relax the *-condition
a little and replace it by

\λi\Jξi S τ\λι\jξι for all N^ + Nt g j < Nt and / = 1,2,...,« .

In this way, one needs to increase Ni by making smaller pushes in each step. The
advantage is that one does not need the intermediate steps Nt. This is useful when
one has multiple or complex eigenvalues for a linear map / .
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The above lemma can be generalized to non-linear maps in a small neighborhood
of hyperbolic fixed points. According to Robinson [9], for a generic diffeomorphism,
all fixed points have simple eigenvalues.

Lemma 4. Let f : IR" —» W1 be a symplectίc or volume-preserving diffeomor-
phίsm of class C1. Suppose that the origin O is a hyperbolic fixed point of
f with all eigenvalues simple. Further assume that f is of the form / (x) =
4̂x + o(| |x| |), where the matrix A is in Jordan canonical form. Then for any

ε > 0, τ > 0 and 0 < α < 1, there exists δ > 0 such that if restricted to the domain
U = {xeW\ \\x\\ < δ}9 i.e., z / U f ^ / ' Φ x * ^ ! , ^ , . . . , ^ ) ) C U, then the conclu-
sions of Lemma 3 remain true.

Proof The proof of this lemma basically follows from the proof of Lemma 3.
Since N is a pre-determined number, the effect of the higher order term o(| |x| |),
within N iterates of / , can be safely neglected. The only modification we need
is to consider the case with complex eigenvalues. It turns out that one just needs
to consider each of the complex pairs simultaneously in the perturbation sequence.
The proof is similar to the case with all eigenvalues real. We omit the details. D

Another way to obtain a lemma similar to Lemma 4 is to do a small perturbation
so that / is a linear function in a small neighborhood Bs(O) of the origin and /
remains the same outside of B2δ(O). In order for the perturbation to be symplectic,
one may use the generating functions in the perturbation. The volume preserving
case can be dealt in a similar way.

4. A Selection Procedure

In this section, we introduce a selection process that chooses appropriate points
for the final perturbation. The idea is to successively eliminate all the intermediate
interventions so that one can join two end points of a finite segment of an orbit,
by a small C1 perturbation.

Let xo,x1,...,xm be a finite sequence of points on Mn, for some positive
integer m. Since our discussions of this section will be restricted to a small
neighborhood of x°, without loss of generality, we may assume that our man-
ifold is IRW. Let d be the standard Euclidean metric on IRW, we assume that
d(x\x°) > d(xι,x°), for all i > 1. In other words, x1 is the closest point to x° in
the sequence.

Let αi, 1/2 < αi < 1, be a positive number depending only on the dimension
of Mn such that

αi will be fixed throughout the paper.

Let x° = (JCJ,JC!?,...,JC°) and xx = (*},*£,...,*J). Let /*, 1 ^ /* ^ n be an inte-

ger such that \x% -x}*\ ^ \xf -x}\ for all / = 1,2,...,Λ. Obviously |xf* -x}*\ ^

Let x° = (x o +x 1 )/2 and let

- o =
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where e, * is the z*th unit coordinate vector. A simple calculation shows that
d(x°,x°_) < M O 0 , * 1 ) and d{x\x%) < axd{x\xι). Moreover, the two balls
centered at x± with radius oc\d(x°9x

l)/2 cover a rectangular region (with all
sides parallel to coordinate planes) containing x° and xι. This fact will be used
later.

We have the following lemma.

Lemma 5 (Selection Lemma). Let {x'}Jl0 be a finite sequence such that d(x\x°) >

d(x\x°) for all i > 1. Then there exists a finite subsequence {xΛ/}f£0

+1, for some
positive integer j * such that

1. no = 0 and n\ — 1, i.e., x° and x1 are the first two points in subsequence.

2. d(x°,xnι) ^ d(*j* \ where oc\ is the constant defined above.

3. For each pair xny,xn2J+ι, define x\xι

+ and xL in the same way as x°, x+

and x°_ are defined above. If ri2j+\ < i < «2/+2 for some j — 0, l,...,y*, then

X1 4 I I (B n n (χJ

; = 0 α i

Proof. For a given finite sequence {xι}?=0, choose the first pair of points of the
subsequence to be x° and x1.

We proceed to choose the next pair of points. Consider the closed ball

Baιd(x°,χι)/2 (•*+)> w e choose H2 > 0 to be the smallest integer such that x"2 £

xiy2(*+) and we choose «3 > 0 to be the largest integer such that x"3 £

JC1)/2( ^ + ) n2 and «3 are the same if B^^o xi)/2(*+) contains only one

point of the original sequence besides x1. If this happens, we stop the selection

process. If Baιd^xo j i ^ ί * ^ ) contains no points other than x1, we also end the selec-

tion process.
This finishes the first step in the selection process. At this point, we drop all the

points in between x"2 and x"3 from the original sequence. The reason for doing this
is that in the final perturbation we will push the point x"3 towards x"2, any points
in between will not present any interference.

For the points x"2 and x"3 thus chosen, we can similarly define x1 = (x"2 +
x"3)/2 and we can define xL and xι

+ similar to x°_ and x+ defined before. Our
selection process bifurcates into two parts: one with x"2 and the one with x"3. We
take x"2 first, x"3 will be dealt in a similar way.

Now we consider the closed ball B^^^^i^1-)- Let i\ and 12 be the
smallest and respectively largest integer such that x^,x'2 £ B^^^^^x^). As

χ« 2+i χ«2+ 2

? ##?x«3-i a r e dropped from consideration, we have three different situa-
tions: (1) i\ ^ z'2 < n2\ (2) i\ < Ά2 < «3 < i2\ and (3) n^ < ί\ ^ z'2. In all three
cases, we choose n4 = i\ and n5 = 12 and drop all points in between «4 and n5 from
future considerations. We point out that, for the second case, n2 and «3 are dropped
from the previously chosen pairs.

We consider the second part of the selection process. If it is case (2) above, since
x"3 has already been eliminated, we will not do anything further with respect to x"3.
In all other cases, we consider the closed ball α̂iί/(x"2,jc"3)/2( ^+) Again, let i\ and z'2
be the smallest and respectively largest integer such that x^,xί2 £ #αiφr"2,x/ί3)/2( *:+)
This time, we have more cases for the position of i\ and z'2. In general, if no
previously chosen points fall in between i\ and z'2, we let n^ = ί\ and nη = 12.
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However, if any previously chosen pairs fall in between i\ and i2, we still let
nβ = i\ and nη = z'2. By eliminating all points in between x"6 and xnη, we have
eliminated those previously chosen pairs.

To end the second step of the selection process, we rename these selected pairs
so that they appear in ascending order.

We proceed by induction. In each of the following steps, we choose these
pairs newly created in the previous step. Let xn2J and xnv+x be one of such
pairs. We define xJ, xj_ and xJ

+. Then we first find a new pair in the closed ball
Ba d,n2j /ij+x^ni.*1-)- We then eliminate all the points in the sequence between this
new pair. If χnv+ι is not eliminated, we then go to choose a new pair in the closed
ball 2?α d,n2j x

n2j+\\/2(x\.) a n d a g a m drop all points between this pair in the se-
quence. Then we go on to the other pairs newly created in the previous step, if
they are not eliminated yet. In the process, some of the closed balls may contain
no or just one point of the sequence, we then end the selection process for these
pairs. After each step, we rename all the remaining pairs in ascending order.

Since there are only a finite number of points in the sequence, the selection
process ends in a finite number of steps.

This proves the lemma. D

We have the following simple lemma.

Lemma 6. Let αi, Λ / ^ P < OCI < \>be the number chosen previously. There exist

positive numbers 0 < α2 < 1 and τ ^ 1 depending only on a\ and the dimension
of RΛ such that for any two distinct points xQ,xx G IR/*, there is a closed rect-
angle Dx*(ξ\, £2,- Λn\ for some x* G Rw and n-tuple of positive real numbers
(£1,6,•..,£«) such that

1. Dx*(ξu ξ2,...,ξn) C BΛιd{xoiXιV2(x°_)UBΛιd(jfliXιy2(x°+)9 where x\ andx°_ are

the points defined as before',

3. ξi/ξj g τ,for all i,j= 1,2,...,n.

Proof The proof is easy. First observe that the choice of the rectangles and α2

is independent of d(x°,x2), hence we may assume that d(x°,xι) — 1. For any two
points x0,*1 G JR.n, let D\ be the smallest rectangle (with sides parallel to coordinate
planes) that covers both x° and xι. By the definition of x°_, Jc+ and αi, the union
of the balls

contains D\ in its interior. The rectangle D\ may be degenerate with the lengths of
one or more sides equal to zero, if some of the components of x° — xι are zero.
If this happens, we enlarge the rectangle D\ a little bit to make it non-degenerate
and still contained in the interior of the union of the two balls. Finally, we choose
Dx*(ξ\,ξ2,...,ξn) to be the largest rectangle contained in the union of the two
closed balls that has D\ in its interior. This way, for each pair x°,xι, we find α 2 ? τ
and a rectangle Dx*(ξ\,ξ2,...,ξn) that satisfy the lemma. To get a uniform α2 and
τ, we just take the suprema of all the τ and oc2. By the compactness of the choices
of*0,*1 and local continuity of τ and α2, such suprema exist and τ < 00, α2 < 1.

This proves the lemma. D
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Lemma 7. There exist real numbers 0 < 0C3 < l , τ ^ 1 and a positive integer
N* such that for any n-tuple (a\9a29...,an) of positive numbers, any sequence
{χi}?=o in ^n with d(x\x°) ^ d(x\x°) for all i > 1, there exists a finite subse-
quence {xni}%0

+l

9 ri2i ύ «2i+i for ί = 0,1,... ,7* and n{ < nj for j > i + 1, with
x° and xι being the first two points, such that there exist j * number of rectangles
D\,D2,...,Dj* satisfying the following properties, where for simplicity, we denote
Di = Dχi(ξ\, ζ-2,..., ξ^) for some xl e W1 and some n-tuple of positive numbers

1. (ξj/flyVίξj/fl/) ύ τjor all i = 1,2,...J* andjj = 1,2,...,/ι.

2. xn^,xn^ e azDi, for z = 0,1,2,... ,j\

3. If nlj+\ < i < n2j+2 for some j = 0,1,... ,f, then xι φ \Jj=0Dj.

4. Let £f be a subset of {0, l,...,y*} with size N*. Then for any such £f,

Π A = 0

its?

Or roughly, any point in W1 is at most covered by N* number of' Dfs.

Proof We first prove the lemma for the case where the ft-tuple of positive real num-
bers (<2i, #2, ••-,#«) are all equal to one. Let {xι}JL0 in Rw be a sequence of points
with d(xι,x°) ^ d(xι,x°) for all i > 1. By Lemma 5, there exists a subsequence

{xni}iLo*~ satisfying the list of properties in Lemma 5.
We apply Lemma 6 to each pair in the selected subsequence. Let xn2i,xnv+i for

i = 0,1,...,7* be a pair of points in the subsequence. By Lemma 6, there exist
a positive integer 0 < 0C2 < 1 independent of these points, and a closed rectangle
Di=D,i{ξ\,ξί2,...,ξ

i

n) such that

and Λ ^ I , JC^H-I G α 2A, where ξ}/^ ^ τ, for all z = 0,1,2,... J* and 7, / = 1,2,...,«.
τ is given in Lemma 6.

Let DQ,D\,. .. ,Z)y* be the closed rectangles thus chosen. We point out that some
of these rectangles may be degenerate and contain just one point (for some pairs
with just one distinct point). For these single point rectangles, we may choose
any value we like for the ratio Ψ> In this way we have a sequence of rectangles

D\,U2,.. ,Dj* satisfying the first three properties in the conclusion of the lemma,
with (X3 = αi and τ given in Lemma 6.

To get property 4 of Lemma 7, we first observe that in each step of our con-
struction, the radii of all the closed balls are shrunk by at least a factor of αi < 1.
This implies that in the following steps, the radii of the closed balls decrease faster
than a geometric series. We consider a rectangle Dt. If we shrink D/'s by a small
factor of (1 + αi)/2 to obtain D- = (1 + <x\)/2Dh then we have J C ^ / ^ I + I G α'£K?

with of! = 2αi/(l + αi) < 1. Moreover, there exists a positive constant c\ > 0,
independent of Du such that if ξ) ^ cλξ], then DjΠD = 0. This implies that £>•

can only have intersections with Dj = D^j(ξ{,ξ{,...,ξl) with ξ{ > c\ξ\. However,
with the condition of ξJ

ι/ξ{ ^ τ for all 7 = 0,1,... ,7* and /, k = 1,2,..., n and the
way all boxes are defined, we have that the number of points in each box is uni-
formly bounded, therefore there exists a positive integer TV*,TV* depending only on
θί\,τ and n, such that D\ has intersections with at most N* number of other boxes.
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Let 0C3 = a1 — (2αi)/(l + αi) and replace Dt with D\\ we obtain property 4 in the
lemma.

This proves Lemma 7 for the case where ax• — 1 for all i = 1,...,«. The gen-
eral case reduces to the above case with a rescaling of each coordinate axis by
a\,a2i...,an respectively.

This completes the proof of Lemma 7. D

5. Proof of Theorem 1

In this section, we prove Theorem 1.
Let Mn be a compact ^-dimensional manifold with a symplectic or volume

structure ω. Let φ be a diffeomorphism that preserves ω. Let p be a hyperbolic
periodic point of period k for φ and let ^ be a point in the unstable manifold of
p. By a small perturbation, we may assume that all eigenvalues of

d(Φk)\τpM- : TpM
n - 7>MW

are simple and away from unit circle.
First, we prove Theorem 1 for the case where p is a fixed point of φ.
By Lemma 2, we may assume that q is recurrent. Therefore there exists a point

x° G Wφ(p) such that x° is in the ω-limit set of q, i.e., there exists a sequence of

positive integer {«/}£?] such that </>Λ/(#) —> x°. Fix a small neighborhood of x°, JF.

For any η > 0 small, there exists a / such that d(x°, φJ (q)) < η. We may assume

that for 0 ^ i < j'9d(xo

9φ%q)) > d(x°,φj'(q)). Let {φ^'^q)}^ b e a segment
of the orbit of q in reverse order. For the fixed neighborhood W of q, starting with

φJ (q), we obtain a subsequence of intersections of the sequence {φJ ~l(q)}J

i=0 with

W. We rename the subsequence {xι}f=λ for some integer m. Note that x1 = </>J (q).
In what follows, we are only concerned with a small neighborhood of p G Mn.

We use local coordinates. We choose a coordinate chart φ : R" -» #r(/?) C Mw

for some small r such that ι/̂ (O) = p and / = φ~ιφφ takes the following form:
/(x) = φ~ιφφ(χ) = ^ x + o(| |x| |), where A is in Jordan canonical form and has
only simple eigenvalues.

Fix a given ε > 0 small. Our goal is to do a C1 ε small perturbation with
support in DO,DU...,Dj* and their images so that fN(xn2J+ι) is pushed to fN(xn2J)
for some N and for all 7 = 0,1,...,/*. Since D0,Z)i,...,Dy* contains no points
xι with ri2j < i < n2j+\, this perturbation process eliminates all the intermediate
intersections between xniJ and xn2J+ι, and connects the orbit of q with the orbit of
x°, creating homoclinic points. Since we may still have interventions between the
selected pairs, the perturbation has to be done in a careful way. In particular, we
have to shrink D/'s further to leave room for interventions.

Let 0 < α3 < 1 and N* be given by Lemma 7. Let c be the positive number
given by the perturbation lemma. Let α = (0C3 + (1 — α3)cεΛΓ*)/α3. By Lemmas 3
and 4, there exist an integer N and an «-tuple (a\, <22,...,an) of positive numbers
and δ > 0, depending only on eigenvalues of A,s and α (δ also depends on / ) ,
such that the conclusions of Lemmas 3 and 4 hold in the domain Bs(O).

By replacing x° above with one of its iterations, we may assume that x° G Bs(O).
(Here for simplicity of notation, we identify points on Mn with points on W1).
For an η > 0, let {xz}JL0 C RΛ be the sequence selected above. For the «-tuple
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(a\, a2,...,an) chosen above by Lemmas 3 and 4, by Lemma 7, we find a sub-
sequence {xnι}J

i=0 together with a sequence of boxes D\, D2,...,Dj* satisfying the
properties listed in Lemma 7.

By making η small, we may assume that each box Z), has size (ξ\, ξι

2,...,^n),
and the sequence of rectangular boxes and their iterates under / up to Nth are all
in B$(O) and the origin O ^ Dt.

First assume that p is a fixed point, periodic points with period larger than one
will be dealt with later. We are now ready to do a sequence of perturbations to prove
Theorem 1 for this case. We consider all the boxes (α3/α)A), (0C3/00A, .., (α3/α)Z)7 *
and we do the perturbation simultaneously in each box. In each step, we try to push
xn2j+\ towards xn2J.

As in the proof of Lemma 3, in the first N\ iterates of / , we do the perturbations
in the first coordinate direction. In each iterate, we push the amount (1 — oc)cεξ\/oc
and the support needed for each push is (1 — oc)ξ\/ot. We remark that, by our choice
of α, (1 — α) is an extremely small number (~ ε^ ). The support required in each
push is very small and is far away from the boundary of A . In this way, if inter-
ventions between different pairs occur (i.e., when their supports intersect), we have
enough room left for larger perturbation. If there are no interventions between pairs,
we go onto the next coordinate and continue the perturbation.

The problem arises when interventions between pairs arise. However, by
Lemma 7, on a given Di9 at most N* number of other boxes may present in-
terventions at any given iterate.

Let's suppose at some step the perturbation in D\ interferes with the perturbation
in Dj, i < j . This implies that the supports of two different pushes have common
points. In this case, we will push X"2J+1 towards xnii. This requires a larger support
and this support is provided in either Dt or Dj, whichever is larger, because of our
choice of α. After this step, we drop all the boxes Dί+\,Di+2, -,Dj and continue the
perturbation process as before. In the end, we have eliminated all the intermediate
intersections between xni1 and xn2J+ι.

There are other forms of intervention between different pairs. One is simulta-
neous interventions between many different boxes. In this case, we push the point
with largest index towards the point with smallest index and eliminate all the in-
termediate points. In this case, the support is in the largest box. Another form of
intervention is when we have interventions between two boxes, Dt and Dj. How-
ever, if we try to push xn2J+ι towards xniί, intervention with D^ occurs because a
larger support is needed. This and similar cases can be all dealt in the same way:
find all possible interventions (at most N*) and do the perturbation to push the point
with largest index towards the point with smallest index. This is possible because
we have chosen the support of each push extremely small. The number of iterates
needed for the perturbation is very large.

This finishes the proof of Theorem 1 in the case where p is a fixed point of φ.
The case where p is a hyperbolic periodic point of period k,k > 1, is very much
similar. Instead of considering φ, we consider φk and apply the series of perturba-
tions to φk. We obtain a diffeomorphism G e άifiι

ω(Mn), with \\G - φk\\cι < N*ε
and Support(G — φk) C B$(p), such that q is a homoclinic point for G. We may
assume that φ\Bδ{p))fλBδ{p) = 0 for i = 1, 2,...,£ - 1. Let g = Gφ~kφ, then
Wo — 011c1 < N*£ and gk = G. We conclude that g is the required perturbation
of φ.

This proves Theorem 1. D
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6. Proof of Theorem 2 and Theorem 3

In this section, we first give a proof of Theorem 2.
Let k ^ 1 be some positive integer. From Robinson's theorems [9], there is

an open and dense set @lk C άiSx

ω(Mn) such that for each φ G ̂ ? all the periodic
points of φ with period less than or equal to k are nondegenerate and thus there are
only finitely many of these periodic points. Let p\, / = 1, 2,..., nik be the hyperbolic
periodic points with respect to φ. In a connected component of ^ containing
φ, p\ varies continuously with respect to ψ G ^ . For each p\, let W^Xo^p\~) and

Wφ {oc(pki) be a local stable manifold and a local unstable manifold of p\ with
respect to φ. Let

Es

φ(jή) =

and

ESφ(pki) and Eφ(p^) are called the fundamental domains of the stable manifold and

unstable manifold of p\.
For any positive integer j > 0, let {[/,} be a finite open cover of Mn with

diameter less than l/j. Let &k,\/j C ^ C άiffι

ω(Mn) be a subset with the following
property: for each map φ £ $k,\/j a n (^ e a c n hyperbolic periodic point p\ with period
less than or equal to k, with respect to φ, if

for any /, then there exists a transversal homoclinic point in

Eφίp1-)), i.e., the transversal homoclinic points in fundamental domains of the sta-

ble and unstable manifolds are at most separated by a distance of l/j for maps in

&k,\ij It is obvious that the set ^,i/y is open. Theorem 1 shows that &k,\/j is also

dense. Thus 3$k,ι/j is an open and dense set in difi°^(Mw). Take

oo oo

« = n n^kΛ/jcdisUM").
k=\ y=l

Then for any φ G ̂ , all periodic points of φ are nondegenerate and for each hy-
perbolic periodic point of φ9 the transversal homoclinic points are dense in some
fundamental domains of its stable and unstable manifolds. Since & is a countable
intersection of open and dense sets, it is a residual set.

This proves Theorem 2. D

Since all lemmas except Lemma 2 work for general diffeomorphisms, the proof
of Theorem 3 follows from the proof of Theorem 1 with some small modifications.
Let

qeclosure(Ws

φ(p))nW$(p)\{p}.

There exists a point qr G Wί(p) such that for any δ > 0, there is a point x and in-
teger m > 0 such that d{x,q) < δ and d(fm(x\qf) < δ. Now the theorem follows
with applying the connecting procedure at both q and q'. D

We end this paper by remarking that if the condition in Theorem 3 is replaced by

q € c l o s u r e ^ / ? ) ) Π
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and assume that q is not a periodic point, then the theorem is still true. However,
we have to rely on these properties on arbitrary sequences of linear isomorphisms
obtained by Pugh in his closing lemma.
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