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Abstract: The rigorous treatment of period-doubling cascades, developed by Lanford
for analytic families, is extended to cover C2+α families for any α > 0. This
requires spectral analysis of the linearised doubling operator on spaces of differ-
entiable mappings, and a version of stable manifold theory which takes account of
the non-differentiability of the doubling operator on these spaces.

1. Introduction

The theory of cascades of period-doubling bifurcations for one-parameter families of
one-dimensional mappings has been developed by Feigenbaum [1,2] and rigorously
justified by Lanford [4] for analytic families. The purpose of the present paper is
to extend this theory to cover C2+α families for any α > 0.

The Feigenbaum-Lanford theory is based on the study of a non-linear "doubling
operator" T on a suitable space of analytic functions (see Sect. 2 for more de-
tails). The main ingredients of the theory are the existence of a fixed point g
of Γ, analysis of the spectrum of the Frechet derivative of T at g, and the
use of stable manifold theory to deduce information about the behaviour of T
near g. We study the behaviour of T on a larger function space consisting of
Cy functions, where y — 2 + α. The two main problems are to extend the spec-
tral theory of the derivative DT(g) to this larger space, and to extend the stable
manifold theory.

The analysis of the spectrum of DT(g) on the larger space, given the ana-
lytic theory, can be reduced to the determination of its essential spectrum (i.e. the
spectrum modulo compact operators). In some ways this is the most natural ap-
proach. However we have chosen a different method, involving the introduction of
localised norms, which, although not any simpler, is somewhat more elementary in
that it avoids the theory of compact perturbations, and may be more suitable for
extending the results to other renormalisation problems. The details are given in
Sects. 3 and 4.

The study of the nonlinear map T and the existence of the stable mani-
fold are complicated by the fact that T is not differentiable on the larger
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space - even the derivative DT(g) at the fixed point is not a Frechet derivative
(although it is a Gateau derivative). The resulting technical problems are dealt with
in Sects. 5 and 6.

It seems reasonable to expect that the C2+α theory could be developed directly,
rather than via the analytic theory as in the present work. Indeed, recent develop-
ments due to Sullivan (of which an account can be found in [5]; see also [3]) may
well achieve this. However, the methods developed here are fairly general and it is
hoped that they may be applicable to other renormalisation problems for which a
direct approach might not be available.

While this work was being written up, the author became aware work on
the same problem by Lanford, who also considered period ft-tupling. The author
is grateful to Prof. Lanford for providing details of his work and for valuable
discussions.

2. Analytic Theory

Lanford [4] established the following result: consider the Banach space AQ of
functions of the form

/(*) = *2 Σ («* + /Wί*2 - 1Λ ΣK + \βn\ < oo ,

and let A\ be the set of functions of the form 1 + /, / e AQ. Then there is an even
function g G A\ such that g is monotone on [0,1], #"(0) < 0 and

g(x) = λ-lg(g(fo))9 (1)

where λ is a constant (λ = —0.3995...). The operator T given by Tf(x) =
/(I)"1 /(/(/( l)jc)) is defined and infinitely differentiable (in the Frechet sense)
in a neighbourhood U of g in A\, and T maps U into A\. By (1), 0(1) = λ and g
is a fixed point of Γ.

If / G U then the Frechet derivative DT(f) is a bounded linear operator on AQ,
given by

/w

The Frechet derivative at the fixed point DT(g) has a simple eigenvalue
δ = 4.669 . . . , with corresponding eigenvector h, and the rest of its spectrum is
contained in the unit disc {λ: \λ\ < 1}. The spectral projection P corresponding to
the eigenvalue λ can be written Pφ — σ(φ)h, where σ is a bounded linear functional
on AQ.

From stable manifold theory there is a local one-dimensional unstable manifold
at g for Γ, which can be parametrised by a real-analytic mapping t —> ht G A9

defined for t G R, \t\ small, such that A0 — g and Tht = h&t for \t\ small. The fam-
ily ht undergoes a cascade of period-doubling bifurcations. We can suppose the
parametrisation is chosen so that the first period-doubling occurs at t = 1; then the
nih bifurcation occurs at t = δ~n.
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3. Holder Spaces

Let 7 = [a,b] be a closed interval in R. We denote by C°(7) the Banach space of
real-valued continuous functions on 7 with the supremum norm ||/||0 = sup7 |/0c)|.
If 0 < α < 1, then we denote by Cα(7) the space of real-valued continuous func-
tions on 7 satisfying a Holder condition with exponent α; Cα(7) is a Banach space
with norm

11/11. = ̂ {||/||0, sup l̂ M}
L x^y \χ — y\ )

for α > 0, where ||/||o denotes the supremum norm. We also define, for δ > 0, an
associated semi-norm

I/W-/OOI
\\f\kd = sup

0<\x-y\<δ x-y\«

Now suppose 0 < α < β < 1 and let φt G Cβ(I) and ι//i G C^/) for / = l , . . . ,/ ι
and suppose ι/^(7) C 7. Define a bounded linear operator 5 on Cα(/) by

Sf(x) = Σ ΦiWfWiW) (2)
/=!

Let

Then we have:

Lemma 1. (i) Let ε > 0. TTzew we cα« ^«ί/ δ > 0 swc/z

for all f G Cα(7).

(ii) Lei ε > 0. Γ/ze« we can find η > 0 swc/2 fλβf // ̂  G Cβ(I) and ψi G

C](7) w/ίA | | ι A / - ^ / l | ι <^JIΦ/-^ ||^ <^7 and j£, (7) C 7 /or / = !,...,«
?/ze corresponding operator S on Cα(7) satisfies \\S-S\\ < 2(M + ε).

If jc, 3̂  G 7 with |jc - y \ < δ, then

sf(χ) - sf(y) = E ΦiWlfWM) - f(Ψi(yV\ + Σ [Φ>W - Φi
z=l ^ /=!

The second term is bounded by

\\f \\o\χ -y\βΣ\\Φi\\β ^ \\f \\otf-" *-y\"Ί:\\Φι\\β
and, using the mean-value theorem, the first term is bounded by

where x ^ xl ^ y for /=! , . . . ,« . Hence it suffices to choose δ so that

β < ε/2 and so that k - -^1 < δ implies Σ IΦ/Wll^i)! < M + ε/2"α Σ \

(ii) From the last sentence of the proof of (i) it follows that if η is small enough
then the conclusion (i) applies to S with the same choice of δ. Hence

W -
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Moreover, if η is small enough we have \ \ S f - S f \ \ o ^ <5ε||/||α and applying the
inequality

with g = Sf — S f , the desired result follows. D

If A: is a positive integer and 0 < α < 1, we let Ck+a denote the Banach space
of real functions on / having kih derivative in Cα, with norm

11*+. = max{||/||o,||/(i)||J.

Lemma 2. Let γ = k -f α, where k and α are as above. Suppose </>/ G C7l(7) and
ψi G C72(7) for ί = !,...,«, w/zere 71,72 > 7 β«^ 72 ̂  l Let

for any ε > 0 0«e cα/7 find δ > 0 swc/z

Proof We can write

where Rf involves derivatives of / of order less than k. The result then follows
readily from Lemma l(i). D

Lemma 3. Let S be as in Lemma 2. Define an operator Sy on C(7) by

Suppose p > 0 and that the spectral radius of Sy is less than p. Then for any
ε > 0 we can find a positive integer m and δ > 0 so that

Proof Choose m so that the norm of S™ as an operator on C(7) (with the
supremum norm) is less than εpm/3. We can write Sm in the form Smf(x) =
Σ/=ι θi(x)f(σi(x))9 where r = nm, ft,σ, G C^(7) for some β > 7 and σ/(/) C 7.
Applying Lemma 2 to 5"" and noting that

gives the desired result. D

The following lemma relates the Cy norm to the associated semi-norm.

Lemma 4. Let 7 > 0. Then for all f G C7 we have

2k\
^ 4max H^, —'
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Proof. Suppose the R.H.S. ^ 4. Then we claim that \\f(k% ^ 2η". To prove this,
suppose the contrary. Let J be any subinterval of length η. Then since \\f\\y,η ^ 1,

we see that |/(A:)| > η* on J. Then we have supj |/| > ηy/(2k\), which contradicts
the assumed bound on ||/||o It then follows that \\f\\y ^ 4 as required. D

We conclude this section with an elementary interpolation result which will be
needed later.

Lemma 5. Let / = [-!, 1] and let f e C1+α(7) where 0 < α < 1. Then

Proof. Let M= ||/||ι+α and define η > 0 by ηl+y = 2||/||0/M. Then η > 2.
Suppose there is c e / such that |/'(Λ;)| > 2Mηa. Then we can find an interval J C /
containing x and with length 77. By the definition of M we must then have |/;(>0l >
Mτ/α for 3; G J and so Jy /'| > Mηl+«. This implies that ||/||0 > Mηl+«/2, con-
tradicting the definition of η. Hence ||/'||o ^ 2M/α, and the result follows using
the definitions of M and η. D

4. Spectral Estimates for the Linearised Doubling Operator

We now extend to C2+α, where 0 < α < 1, the Feigenbaum-Lanford results on the
spectrum of the derivative at the fixed point g of the doubling operator T. This
is done by using Lemma 3 to reduce the problem to the analytic case considered
in Sect. 1.

Let / = [-!, 1]. For y ^ 2, let C7

0 be the set of functions / in CΎ(I) satisfying
/(O) = /'(O) = 0, and let C\ be the set of functions of the form 1 + /, where
/ e CQ. Then if / is close to g in C\, it follows that / maps / into itself and we

can define Tf G C\ by Tf(x) = /(I)"1 /(/(/(!>))• Let S be the formal derivative
of T at g:

Sφ(x) = λ~l[φ(g(λx)) + gf(g(λx))φ(λx) + </>(!){-#(*) + V(*)}1 -

Then S is a bounded linear operator on CQ. We also define, for y > 0, a bounded
linear operator Sy on C(7) by

Syφ(x) - μi^^l^ί^)!^^!^)) + \g'(g(λx))\φ(λx)-\ .

To apply Lemma 3 we require an estimate for the spectral radius of Sy, which is
given by the following lemma.

Lemma 6. If y > 1 then p(Sy) ^ Iψ"2.

Proof. We use the following facts about g which follow, for example, from
Lanford's polynomial approximation: g"(x) < 0 for x G / and g'(g(λ)) < — 1. Then
differentiating the functional equation (1) and letting x — » 0 gives ^'(1) = λ~l . Since
g' is monotone we deduce that 1 ^ \g'(g(λx))\ ^ l^-l" 1 -

Now choose η > 0 so that 2 -f */ < μi"1 and let M(x) = η + \g'(x)\y. We shall
show that

\φ(x)\ g M(αc), x e / => \Sγφ(x)\ ί \λΓ2M(x), x e / . (3)
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Assuming (3) we have, for any φ G C(7), \φ(x)\ ^ f/^H^HoA/Xjt) which by (3)
implies

so US™ Ho ^ const Am(y~2) for any positive integer m, whence p(Sy) ^ λy~2.

It remains to prove (3). Suppose \φ(x)\ ^ M(x\ x e I. Then

\Syφ(x)\ ^ SyM(x) = \λ

as required; the second last inequality used the estimate 1 g \g'(g(λx))\ ^ \λ\ l. D

An alternative proof of Lemma 6, which applies more generally to «-tupling
operators, has been found by O. Lanford (personal communication).

The next lemma gives the spectral estimates which we require. The proof is
based on Lemmas 3 and 6.

Lemma 7. Suppose γ > 0 and p(Sy) < p, where 1 ̂  p < δ. Then the linear
functional σ on AQ extends continuously to CQ. Moreover, given ε > 0, one can
find a positive integer m such that, for all f G CQ,

||s"/-^/)*ll, ^β/H/V

Proof. By Lemma 3 we can find a positive integer r and η > 0 so that ||*Sfr/||y^ <
pr||/||y/16 for all / G CQ. We may also suppose that Qr has spectral radius ^ 1/2,
regarded as an operator on AQ. Now, using the compactness of the unit ball of CQ
in C(7) and the density of AQ in CQ, we can find a finite set f\,...,fy of functions
in AQ, with \\fi\\y < 1, such that, for any / G CQ with ||/||y ^ 1, there is an /
such that ||/ — y/ | |o < ηy/(l6Mk\), where M is the norm of Sr as an operator on
C(/). It then follows, using Lemma 4, that \\Sr(f - / } ) l ly ^ //2 In otner words,
given / G Cy

0 with ||/||y ^ 1 we can write Srf = Srft + ρrψ/2, where ψ G Cy

0 with
H ^ l l y ^ 1. We can then apply Sr again and treat Srιj/ in the same way. After finitely
many steps we obtain

where ||^t||y = l We can rewrite this as

^/ =^ σ(// + (//2^)σ(/;) -f- -

Now Hjβ^y/l ly ^ C2~*, ϊ = 1,...,7V, since /• G AQ. Then we see that, as k -> oo,
fi-krS^f tends to a limit which we can write as σ(f)h, thereby defining σ as
a bounded linear functional on CQ. The required estimate then follows by taking
m = kr for k large enough. D

The conclusion of Lemma 7 implies that, apart from the simple eigenvalue δ,
the spectrum of S as an operator on CQ lies strictly inside the disc with centre 0
and radius p. Lemma 6 shows that, if γ > 2, we can take p = 1.
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5. Behaviour of T Near g

We now apply the preceding linearised theory to study the non-linear mapping T
on C[, where y = 2 + α, 0 < α < l .

Lemma 8. We can find a positive integer m and η > 0 so that if t G R and
φ G CQ with \t\ < η and \\φ\\γ < η, then

\\τm(ht + φ)-hs\\y

where s = δm(t + σ(φ)).

Proof. Using Lemmas 6 and 7 we can choose m so that Qm has norm < 1/8 as
an operator on CQ and S™ has norm < 1/16 as an operator on C°. Then for /

near g in C\ we can define a bounded linear operator A ( f ) on Cα by

n' /

where r = 2m. If also / 6 C^7 and φ G C^ we have

where #(/) and D(/) are linear operators of the form (2) (with coefficients
depending nonlinearly on / and its first 3 derivatives). We then find, taking / = ht,
that

(Tm(ht + </>)- Tmht)" = A(ht + φ)φ" + B(ht)φ' + D(ht)φ + E(ht9 φ) ,

where the last term E(ht,φ) is of second order in φ, and for t and \\φ\\y small has
Cα norm bounded by C||</>||^. Moreover, provided \t is small enough, \\(B(ht)—

B(g))φ'\\0ί and \\(D(ht) - D(g))φ\\Λ will both be less than |||φ||r Next, we apply
Lemma l(ii) to A(g)\ the corresponding M is \\S™\\ < 1/16. We conclude that
if \t\ and \\φ\\7 are small enough then A(ht + φ) — A(g) has norm less than 1/8 as
an operator on Cα.

Putting everything together, and noting that

/om ±\ff AS \ J L ^(o φ) — A(g)φ

we see that
m m 1

4

provided |ί| and \\φ\\7 are small enough. Since also

\\Smφ - δ"

we deduce that

\\Tm(ht + φ)- Tmh, - δmσ(φ)h\\y < l\\φ\\y.
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Now let τ = δmt and with s = δm(t + σ(φ)) as in the statement of the theorem we
see that, for \t\ and \\φ\\y small enough,

||A, _ hτ - δmσ(φ)h\\y < Cσ(φ)2 < l-\\φ\\γ,
O

and since Tmht = hτ, the desired inequality follows. D

Lemma 8 implies that the action of Tm moves points in C[ closer to the unstable
manifold, as long as they are close enough to the fixed point g.

We observe that the proof of Lemma 8, applied with m — 1, will show that
there is a positive constant B such that whenever \t\ < η and \\φ\\y < η we have

\\Tk(ht + φ)-hS\\y<B\\φ\\y, t = 0, !,...,/», (4)

where s = δk(t + σ(φ)).
We also note that since σ(ht) = t + O(t2) we can suppose η chosen so that

KΛ/)-' | | < IIΊI/4 for ||*|| <η. (5)

6. Stable Manifold

We next apply Lemma 8 to define the local stable manifold for T in C[. Choose
positive numbers ε and εf so that ε' max(#, δm + 1) < η and εmax(l, ||σ||y) < ε'.
Suppose φ G CQ with \\φ\\7 < ε. We then define recursively sequences {tk} and
{φk} for k = 0,1,2,... by the relations Γm*(# + φ) = htk + <fo and ft+1 = <5m(^ +
σ(φk)\ starting with t$ = 0 and (/>o = 0. We continue as long as \tk < η. Then
by Lemma 8 we have \\φk\\γ < 2~kε. Moreover, if \tk\ ^ ε' then tk+\ < η. Hence
there are 3 mutually exclusive possibilities:

(A) for some k, ε' < tk < η and \tj\ ^ εf for j < k,

(B) for some k, ε' < —tk < η and \tj\ ^ ε' for j < k,

(C) \tj\ g ε' for all * = 0,1,2,....

Let W = {g + φ: φ G Cβ, ||^||y < ε}, and let FF+, JF_ and JF0 denote the sub-
sets of W9 where respectively (A), (B) and (C) hold. The map φ —> tk is continuous
on W9 so W+ and W- are open, and hence WQ is a relatively closed subset of W.

If / = g + 0 G ίFo, then H^Hy < 2'^ε and so \tk+\ - δmtk\ < 2~kε for all k,

which implies \tk\ < 2~kε and so \\Tkmf - g\\y < C2~k for all k, where C is a
constant. This justifies the inteφretation of WQ as the local stable manifold for Γ;
that it is indeed a C1 manifold will follow from subsequent estimates.

We note that if ε' < tk < η then, using (5), we have

σ(Tm (g H- 0)) = σ(hfk -h φk) > β(htk) — \\G\\γ\\φk\\y

We wish now to study the behaviour under the action of Tr of elements of W
close to WQ. As preparation for this, the next lemma describes the behaviour of the
derivative of Tr at points of WQ. Note first that, by Lemmas l(ii) and 6, we may
suppose that m in Lemma 8 and ε are chosen so that the norm of Sm — DTm(f) as
an operator on C1 is less than δm/8.
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Lemma 9. There is a continuous mapping f — » θf from WQ to (C^)*, such that

\\DΓ(f)φ-δrθf(φ)h\\ι ^ cro-'/ΊMi!

for all f G WQ and φ G CQ , r = 1 , 2, . . . , where C is a constant.

Proof. Fix / G fPb. Let Rk = δ~mkDTmk(f); Rk acts as a bounded linear oper-
ator on C(j. Let φ G QJ with ||φ||ι ^ 1. Then ^+ι</> = δ-mDTm(fk)Rkφ, where
y*£ = ΓmA: y. We write Rkφ = %kh + fa, where o^ G R and ife G CQ are defined
recursively as follows: α0 = 0, 0b — φ and if α^ and fa have been defined then

δ~m(DTm(fk) -

where α/t+i = o^ + σ(^) and

&+ι - *kδ-m(DTm(fk) - Sm)h + δ~m(DTm(fk) - Sm)fa

Since ||/yt — ̂ ||y — O(2~k) and the mapping from Cj to Cj given by /
DTm(f)h is differentiable at 0, we have ||(DΓm(/*) - Sm)h\\λ = O(2~k) as A: -> oo.
Since also the norms of the two operators DTm(fk) — Sm and βw on CQ are each
less than δm/8 we deduce that

Hence \\fa\\\ = O(2~k) and |a^ - a^+i| = O(2-A:). Thus a^ converges to a limit
θ/(0) and

\\Rkφ-θf(φ)h\\λ ^^^ll^ll!

for any φ G CQ, from which the desired estimate follows.
To show that θ is continuous, note first that, since σ is a bounded lin-

ear functional on CQ for some y < 1, the mapping / — > Vf^ G(CQ)*, where
Vf^kφ = σ(Rkφ) is continuous on WQ for any k. Now for any φ G CQ we have

\\βf(φ)-Vf,kφ\\λ = \\σ(θf(φ)h -

so that Vf,k —* θf uniformly on WQ, whence θ is continuous. D

In applying Lemma 9 we meet the usual difficulty that DT(f) is not a Frechet
derivative. The following lemma is an adequate substitute for our purposes.

Lemma 10. There is a constant CQ > 0 such that if f,f\£W then

m -Tf-onfMh
where φ = f\ — f and p = 1 + α/(l + α) > 1.
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Proof. If we write out (T(f + φ) - Tf - DT(f)φ)' explicitly and use the fact that
the hypothesis f,f\eW gives bounds for

-Tf- DT(f)φ\\ι ^

and we find that

\}) .

Now Lemma 5 applied to φ1 gives

result follows. Π
2

1+α) and the desired

The next lemma gives the main technical estimate of the paper; the proof is
based on Lemmas 8,9 and 10.

Note first that θg = σ and so by the continuity of θ we can find SQ with 0 < εo <
β such that if / G WQ and ||/-0||y < ε0, then \θf(h) > 1/2 and \\θf\\ι ^ 2\\σ\\{.
Let KQ be the set of / G WQ such that \\f - g\\y < ε0

Lemma 11. We can find positive numbers β,τ and c such that if r is a sufficiently
large positive integer and f E FQ, f\ G W with \\f\ — f \ \ \ ^ βδ~r then

Proof. By Lemma 9 there is a constant c\ such that if / E W$ then the norm of
DTk(f) as an operator on CQ is bounded by c\δk for any positive integer k. Choose
v > 0 so that v^-1 = (1 - δl-f))/(c0(2c}γ) and let c2 = v(l - δλ~p\ where p and
CQ are as in Lemma 10. Let β = min(v, η).

Fix / and f\ satisfying the hypotheses above and let ψ = f\ — f. Let A:0 be
the first positive integer value of k such that either k > r or \\Tk f\ — g\\ ̂  η. We
now define a sequence χ# inductively by

Γ*/ι = Ί*f + DTk(f)φ

and by Lemma 10 we have

ll + i i

for k < kQ. We now show by induction that | |χy| | ι
ing this holds for j = !,...,& we deduce that

for 7 ^ &o. Suppos-

as required. It now follows that, if & ^

||Γ*/ι - Ί*f-DTk(f)ψ\\l ί

We also have, by Lemma 9,

- δkθf(ψ)h\\l ^
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and, since / G WQ,

\\Tkf-g\\ gC32-*/".

We deduce that, for k ^ £Q, we have

||Γ*/ι - g - a*θ/W)A||ι ^ (c2 + c3)2-i/m + dvδ**-" . (7)

Equation (7) implies in particular that, for k :g ko,

l-g)\ϊc4(δk-r + 2-k'm). (8)

Now let μ = p\ogδ/(m~l log 2 + plog<5) and let / be the nearest integer to
μr/m, so that 2~l is comparable to δp^lm~r\ It follows from (8) that if r is large
enough then σ(Tk f\ — g)\ < ε'/4 for k ^ min(w/,£o) We now assert that Im ^
&o. To prove this, suppose on the contrary that Im > ko and let j ^ / be the smallest
positive integer such that jm > k0. Then by (6) we have \\Timf\ — g\\y < εf for

/ < j, and hence by (4), \\Tk f\ - g\\y < Bεf for k ^ mj, contradicting the definition
of &o So Im ^ ko as asserted.

We then deduce from (7) that

\\Tmlfι - g - δmlθf(^h\\λ g Csδ-«r-m» , (9)

and by Lemma 8 we have, for some t,

\\Tlmf\ - A,| |y ^ const 2-' ^ c6δ-p< r~ml) . (10)

Writing s = δmlθf(φ) we deduce from (9) and (10) that

| |A,-0-.ϊA| | ι ^ (c, + c6)δ-^-m>\

and so

|ί - s| g crOr*1-1"0 +S2) g cgό-^-"10 ,

where the last inequality uses |s| ^ const δlm~r. Using (10) we then conclude that

\\r"'fι-h,\\y£C9δ-«'-l"». ( i i )

Now let p be the integer part of ^ — /. Using Lemma 8 we can write, for j =

0, 1, ...,/?, Γ^Vi = **, + Φ;? where ^o - 5 - δmlθf(ψl sj+l = δm(Sj + σ(0y ) and

We have then sp = δmps 4- Σj=o δm(p~~j~l}σ(φj) from which we deduce that

|̂  _ δm(l+P)θf(\l/)\ < cio^1-^1-^. The desired result now follows from (4). Π

We can now prove the main results.

Theorem 1. FO is a Cl submanifold of C\.

Proof. We note first that if / G KO, then 0/(λ) > 0, so that by Lemma 1 1 we see that
for t small and positive / + th G fF +, while for t small and negative / + th G JF~.
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Hence if we fix /o £ FO, then in a small neighbourhood of /o there can be at
most one member of KQ on a line {/ + th: t G R}. Let E = {φ £ C%: θfQ(φ) = 0}.
Then for </> E E with | |</>| | y sufficiently small, we have that fo + φ + th is in W±
for ί = ±||σ||y, by Lemma 11. Hence -for each such φ there is a unique small real
number χ(φ) such that /0 + φ + #(</>)/* € F0.

Now let φi and 02 belong to E with small norms, and let // = /o + φt +
χ(</>z ) for / = 1,2, so that /ι,/2 G F0. Then by Lemma 11 we have θfλ(fι — /i) =
0(11/2 -/in;, so
|βΛ(φ2 - Φι)| + flΛWkOfc) - χ(Φι)||y = O (||φ2 - φ,\\y + ||χ(φ2) - χ(φι)||}+τ)

and on letting 02 — > φ\ we conclude that χ is differentiable at φ\ and that

From the continuity of θ we then deduce the continuity of Dχ on a neighbourhood
of 0 in E, and hence that KO is a C1 manifold in a neighbourhood of /. Π

Now consider a one-parameter family {fμ} such that /o E FO and Fμ e W for μ
near 0. We suppose also that the mapping μ — > /μ is differentiable at 0 as a mapping

into C1. The latter statement would be true, for example, if the function /(μ,*) =
fμ(x) was C2 as a function of two real variables. Then we have the following:

Theorem 2. Suppose that Θf0(φ) = αφO, where φ = [d/dμfμ]μ=Q. Let ε > 0. Then
for n sufficiently large, fμ has an attracting orbit of period 2n for

δ~n~l(l + ε) < aμ < δn(\ - ε) .

Proof. The hypotheses imply that θ/0(/μ — /o) — <zμ + 0(|μ|). It then follows from
Lemma 11 that there exists k > 0 such that \\Trfδ-rμ — haμ\\y — » 0 as r — » oo,

uniformly in μ ^ A:. Now let / be a positive integer such that δ~l < ak and suppose
δ~l~l(l +ε) ^ βμ ^ ^~7(1 — ε). Then Aαμ has a uniformly (w.r.t. μ) attracting

orbit of period 27, and hence, if r is large enough, so also does Tr fμδ-r for each μ

in this range. This implies that f$-rμ has an attracting orbit of period 2/+r, which
completes the proof. Π

We remark that, since we do not require fμ to be C3, we cannot expect "clean"
period-doubling bifurcations at single parameter values μΛ; rather, the transition from
an attracting orbit of period 2n to one of period 2n+l can take place over a μ-interval
whose length is o(δ~n) as n — > oo.
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