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Abstract: We give an explicit description of the vector bundle of WZW conformal
blocks on elliptic curves with marked points as a subbundle of a vector bundle of
Weyl group invariant vector valued theta functions on a Cartan subalgebra. We give
a partly conjectural characterization of this subbundle in terms of certain vanishing
conditions on affine hyperplanes. In some cases, explicit calculations are possible
and confirm the conjecture. The Friedan-Shenker flat connection is calculated, and
it is shown that horizontal sections are solutions of Bernard's generalization of the
Knizhnik-Zamolodchikov equation.

1. Introduction

The aim of this work is to give a description of conformal blocks of the Wess-
Zumino-Witten model on genus one curves as explicit as on the Riemann sphere.

Let us recall the well-known situation on the sphere. One fixes a simple finite
dimensional complex Lie algebra g, with invariant bilinear form (,) normalized
so that the longest roots have length squared 2, and a positive integer k called
level. One then considers the corresponding affine Kac-Moody Lie algebra, the one
dimensional central extension of the loop algebra g 0 (C((0) associated to the 2-
cocycle c(X 0 / , 7 0 g) = (X, 7) res dfg. Its irreducible highest weight integrable
representations of level ( = value of central generator) k are in one to one cor-
respondence with a certain finite set h of finite dimensional irreducible represen-
tations of g. These representations extend, by the Sugawara construction, to rep-
resentations of the affine algebra to which an element L-\ is adjoined, such that
[L-\,X 0 / ] = —X 0 J7/. Then to each w-ruple of distinct points z\,... ,zn on the
complex plane, and of representations V\,...,Vn in /̂  one associates the space of
conformal blocks E(zu... ,zn). It is the space of linear forms on the tensor product
0 i V^ of the corresponding level k representations of the affine algebra, which
are annihilated by the Lie algebra S£{z\,..., zΛ) of g-valued meromorphic functions
with poles in {zi,...,zn} and regular at infinity. The latter algebra acts on (g)^Λ by
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viewing «Sf(zi,...,zπ) as a Lie subalgebra of the direct sum of n copies of the loop
algebra via Laurent expansion at the poles. The central extension does not cause
problems as the corresponding cocycle vanishes on ££(z\,..., zn) by virtue of the
residue theorem.

It turns out that the spaces E(z\,..., zΛ) are finite dimensional and are fibers of
a holomorphic vector bundle over the configuration space <Cn -diagonals, carrying
the flat connection d — Σi dz{D_x (L_γ acts on the right of a linear form) given
in terms of the Sugawara construction. We use the notation X^ = 0 Id 0 X 0
Id to denote the action on the zth factor of a tensor product.

This part of the construction generalizes to surfaces of arbitrary genus (see [18]).
What is new is that one has to also specify local coordinates around the points z{

to give a meaning to the Laurent expansion, and that the connection is in general
only projectively flat (i.e., the curvature is a multiple of the identity).

To give a more explicit description of the vector bundle of conformal blocks
on the sphere, and in particular to compute the holonomy of the connection,
one observes that the map E(z\9...,zn) —* ((££); V})* given by restriction to V\ C V;A

is injective. Thus we can view E as a subbundle of a trivial vector bundle of
finite rank. This subbundle can be described by an explicit algebraic condition
[10]. After this identification the connection can be given in explicit terms and the
equation for horizontal sections reduces to the famous Knizhnik-Zamolodchikov
equations

(k + hw)dZiω(zu...,zn)= Σ Σ~—-

In this equation, hy is the dual Coxeter number of g and Γα, a = l,...,dim(g) is
any orthonormal basis of g. We view here the dual spaces V* as contragradient
representations.

Let us now consider the situation on genus one curves, which we view as
C/Z + τZ for τ in the upper half plane. Let us denote by E(z\9...9zn9τ) the
space of conformal blocks. Again, by [18], this is the finite dimensional fiber
of a holomorphic vector bundle with flat connection on the elliptic configuration
space C ^ of «-hl-tuples (zi,...,zw,τ) with Im(τ) > 0 and z/φzy mod Έ-\-τΈ
if z'Φy.

The trouble is that the restriction to (££)z V\ is no longer injective, the reason being
that there are no meromorphic functions on elliptic curves with one simple pole only.
The way out is the following construction which brings the moduli space of flat
G-bundles into the game. Consider the Lie algebras S£(z\9...9zn9τ9X)9 parametrized
by A in a Cartan subalgebra ί), of Z-periodic meromorphic functions X : C —> g
with poles at z\9... 9zn modulo Έ + τZ, such that X(t + τ) = exp(2πz adλ)X(t).

These algebras act on (££). V^ and we can define a space of (twisted) conformal
blocks E\){z9τ9X) as a space of invariant linear forms (see 2.3). The original space
of conformal blocks is recovered by setting λ — 0.

It turns out that E\^{z9 τ, λ) is again the fiber over (z, τ9λ) of a holomorphic vector
bundle E^ over C w x ί) with flat connection, whose restriction to C M x {0} is E.
Thus we can by parallel transport in the direction of ί) identify the space of sections
E(U) of E over an open set U C C w with the space of sections of E^ which are
horizontal in the direction of fy.
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The point is now that the restriction map

xί)fO Γ-> <g}Vi) ®Θ(Ux1))9
\ i )

to F w is injective (Proposition 3.6). Composing these two maps we may view
the vector bundle of conformal blocks as a subbundle of an explicitly given vec-
tor bundle on C M of finite rank. Indeed we show (Theorems 3.7,3.8) that the
image is contained in the space of functions on U x ί) which have definite transfor-
mation properties (of theta function type) under translations of λ by Qv + τ g v ,
where Qy denotes the coroot lattice. Moreover the theta functions in the im-
age are invariant under a natural action of the Weyl group, and obey a cer-
tain vanishing condition as the argument approaches affine root hyperplanes. We
conjecture that these conditions characterize completely the image. This conjec-
ture is confirmed in some cases, including a special case which arises [6] in
the theory of quantum integrable many body problems (see 4.1): we describe
explicitly the space of conformal blocks in the case of slN, n = 1, where the
representation is any symmetric power of the defining TV-dimensional representa-
tion.

The characterization of conformal blocks in terms of invariant theta functions
obeying vanishing conditions was first given (in the sh case) by Falceto and
Gawe/dzki [8], who define conformal blocks as Chern-Simons states in geometric
quantization.

After the identification of conformal blocks as subbundle of the "invariant theta
function" bundle, we describe the connection in explicit terms (Theorem 4.1), and
get a generalization of the Knizhnik-Zamolodchikov equations. These equations
were essentially written by Bernard [1,2] in a slightly different context, and were
recently reconsidered from a more geometrical point of view in [8]. They have the
form (see Sect. 4)

1:1 *j

4πiκdτώ = Σ S2

λvω + Σ # α / ) 0 v - zu τ, λ)ώ ,
jJ

for some tensors Ω, H E 9 0 9, given in terms of Jacobi theta functions. Here ώ is
related to ω by multiplication by the Weyl-Kac denominator. Thus, the right way to
look at these equations is to view u as a section of a subbundle of the vector bundle
over the elliptic configuration space of n + 1 tuples (z\,...,zn,τ), whose fiber is a
finite dimensional space of invariant theta functions.

In this paper we do not discuss an alternative approach to conformal blocks on
elliptic curves, which is in terms of traces of products of vertex operators. Bernard
[1] showed that such traces obey his differential equations. Using this formulation,
integral representation of solutions were given in the s72 case in [3]. To complete
the picture, one should show that those solutions are indeed theta functions with
vanishing condition.

Let us also point out the recent paper [7] that shows that the same space of
invariant theta functions with vanishing condition can be identified with a space of
equivariant functions on the corresponding Kac-Moody group.

Some of the results presented here were announced in [12].
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2. Conformal Blocks on Elliptic Curves

2.1. Elliptic Configuration Spaces. Let H+ = {τ G C|Imτ > 0} be the upper half
plane and for τ G H+ denote by L(τ) the lattice Έ + τZ C C. Let « be a positive
integer. We define the elliptic configuration space to be the subset of (Cw x H+
consisting of points (z\9...,zn,τ) so that ZjφZj mod L(τ) if iή=j.

The space of points (z, τ) G C ^ with fixed τ is a covering of the configuration
space of n ordered points on the elliptic curve (C/L(τ).

2.2. Meromorphic Lie Algebras. Let g be a complex simple Lie algebra with dual
Coxeter number hv and A: be a positive integer. Fix a Cartan subalgebra ί) of g
and let g = ί) Θ ( φ α G Z j 9α) be the corresponding root space decomposition. The
invariant bilinear form is normalized in such a way that ( α v , α v ) = 2 for long roots
α (see [14]). We choose an orthonormal basis (hv) of ί). The symmetric invariant
tensor C G g ® g dual to (,) admits then a decomposition C = J2aeAu{o\ C*> w ^
Co = Σhv ® λv e ί) ® ϊ) and Cα G gα ® g_α, if α G Zl.

We define a family of Lie algebras of meromorphic functions with values in g
parametrized by C M x ί).

Definition. For (z,τ) = (zu...,zn,τ) G C w αrcd /I G £), feί if(z,τ,/l) fe ίAe L/^
algebra of meromorphic functions 11—> X(ί) <9« ί/ze complex plane with values in
g such that

X(t+\)= X(t), X(t 4- τ) - exp(2πϊadλ)X(t),

and whose poles belong to [Jn

i=ι Zj + L(τ). More generally, for any open set
U C C M x ί) let JPfyiU) be the Lie algebra of meromorphic functions (t,z,τ,λ) ι->
X(t,z,τ,λ) on C x U with values in g, whose poles are on the hyperplanes
t —Zi^rr + sτ, 1 ^ / ^ n,r,s eΈ, and such that for all (z,τ,λ) G £/, the function
t —>X(t,z,τ,λ) belongs to j£?(z,τ,/l). Similarly, define ££(U) for an open subset
U of C ^ ίo 6e the Lie algebra of meromorphic functions (t9z9τ)t->X(t,z9τ) on
( C x ί / with values in g, whose poles are on the same hyperplanes, and such that
for all (z,τ) G U, the function t -* X{t,z,τ) belongs to jSf(z,τ,O).

An explicit description of these Lie algebras is given in Appendix A. An impor-

tant property is that they have a filtration by locally free finitely generated sheaves:

Let Θ(U) be the algebra of holomorphic functions on an open set U C C w x ί), and

for any non-negative integer j let J£^J(U) be the ^(L/Γ)-submodule of J£?ί,(£/) con-

sisting of functions whose poles have order at most j . Similarly we define ££ = j(U)

for open sets U G C [w]. The assignments U -> JSf-J(U), U -> &^j(U) are sheaves

of (^-modules.

Proposition 2.1. J ^ - 7 /.s1 α locally free, locally finitely generated sheaf of Θ-

modules. In other words, every point in C M x ί) has a neighborhood U such

that J£βJ'(U) ^ CV 0 ^(ί/) ^ «« Θ(U)-module, for some nj. Moreover for each

x G C M x ί), ei ery X G J^(x) extends to a function in J£^J(U) for some j and

U 3 x. The same results hold for ^=j.

The proof is contained in Appendix A (see Corollary A.3).
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2.3. Tensor Product of Affine Kac-Moody Algebra Modules. Let Lg = g 0 C((0)
be the loop algebra of g. Fix a positive integer k G N. Let ZgΛ = Lg Θ CAT be the
central extension of Zg associated with the 2-cocycle

c(X®f9Y®g) = (X9Y)res(f'gdt),

where the residue of a formal Laurent series is given by res(Σnant
ndt) = a-\.

Thus the Lie bracket in LgΛ has the form

[X ® / Θ ζK9 Y <8> # Θ ξK] = [X, 7] ® /0 0 c(X, 7) AT.

With every irreducible highest weight g-module V is associated an irreducible high-
est weight LgA-module VA of level k. Its construction goes as follows. The action
of g is first extended to the Lie subalgebra b + = g 0 <C[[f]] Θ <EK of LgΛ, by letting
g 0 ίC[[f]] act by zero and the central element K by k. Then a generalized Verma
module V = U(L§A)^)U(b+^ ^ *s Educed. It is freely generated by (any basis of)
V as a g 0 ί - 1 C[ί~ ^-module. The polynomial subalgebra L§P = g 0 C ^ ί " 1 ] θ C
of LgΛ is Z-graded with deg(X 0 *•>) = -y. Since V ~ tf(£gP)<8>c/(b+rug

Λ) K> t h e

generalized Verma module is naturally graded. By definition the irreducible module
VA is the quotient of the generalized Verma module by its maximal proper graded
submodule.

We will consider integrable modules, VA of fixed level k = 0,1,2,.... If we fix
a set of simple roots αi, . . . , α/ G A, and denote by 0 the corresponding highest root,
VA is integrable of level k if the irreducible g-module V has highest weight μ in
the subset

Ik = {μeP\(μ,ai) ^ 0, ί = l , . . . , / , (μ,0) ^ ^} , (1)

of the weight lattice P. Let i; be the highest weight vector of V and eo a generator
of 90. Then the maximal proper submodule is generated by (eg 0 t~ι)k~^Q^+ιυ.

The grading extends to VA^ by setting deg(t?i 0 0 υn) = Σdeg(ι;z ). With
our convention all homogeneous vectors have non-negative degree.

Fix n highest weight g-modules Vj, 1 ^ j ^ n such that the corresponding LQA-
modules VA are integrable of level k, and let τ G //+ and z\9...,zn complex numbers
with zι ̂ Zj mod L(τ) if i +7. We think of ^ Λ as an LgΛ-module which is attached
to the point zy .

In the following we will use the abbreviations V^ — V\ 0 0 Vn and VAW =
VX

A®--®VA.
We now construct an action of JSf(z,τ,A) on VA[n]. For XGif(z,τ,A) let

^•(X) =X(zj + 0 ^ 9 ^ ̂ ( ( 0 ) be the Laurent expansion of X at zy viewed as
a formal Laurent series in t. Then

δ(X) = δι(X)®...®δn(X)9 (2)

defines a Lie algebra embedding of S£(z9 τ, λ) into Lg θ θ L§. As a vector space
Z,g 0 θ £9 is embedded in LgΛ 0 0 LgΛ. The embedding is of course not a
Lie algebra homomorphism. Since LgΛ 0 0 ZgΛ acts on VA^ we obtain a map
from JSf(z,τ,λ) to Endc(FΛ [" ]). This map will also be denoted by δ. Thanks to the
residue theorem it turns out to be a Lie algebra homomorphism.
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Proposition 2.2. For X, Y e JS?(z, τ, λ\

Proof. In Endc(K Λ ^) we have the equation

]) = [δ(X)9 δ(Y)] + k± res^. {{X\t\ Y{t))dt).
7=1

But (Xf(t\Y(t)) is doubly periodic (by ad-invariance of (,)) so that the sum of
residues vanishes. D

2.4. Vector Fields. The Lie algebra VectOS1) = €((*))£ of formal vector fields
on the circle acts by derivations on Lg. Let us denote this action simply by
(ξ(t)j-rX(t)) ι-> ξ(t)j-tX(t). It extends to an action on LgΛ by letting vector fields
act trivially on the center. The Sugawara construction yields a projective represen-
tation of Vect(5'1) on F Λ , for any finite dimensional g-module V. The Sugawara
operators Ln e End(F Λ ) are defined by choosing any basis {B\9...9Bd} of g, with
dual basis {B\...,Bd} of g so that (Ba,Bb) = δab, and setting

These operators are independent of the choice of basis and obey the commutations
relations of the Virasoro algebra [Ln,Lm] = (n — m)Ln+m -f -^(n3 — n) with central
charge c — &dim(g)/(A: + hw). Then

Σ Un+X ^ ^ - Σ Un e End(FΛ),

defines a projective representation of Vect^ 1 ) on VA, with the intertwining prop-
erty [ξ(t)jj-rX(t)] = ξ{t)j-tX(t\ for any X[t) e LQA. Note that all infinite sums are
actually finite when acting on any vector in VA.

2.5. Conformal Blocks. For a Lie algebra module V we denote by V* the dual
vector space with natural (right) action of the Lie algebra. The notation (ω, υ) will
be used to denote the evaluation of a linear form ω on a vector υ.

Definition. The space of twisted conformal blocks associated to data g, k,
V\9...9Vn as above, is the space E§(z,τ,λ) of linear functionals on F Λ W anni-
hilated by J?(z\,...,zn9τ,λ). If λ = 0, then E(z,τ) = £fy(z,τ,0) is called the space
of conformal blocks at (z,τ).

Let us vary the parameters: let U be an open subset of C ^ x ί). Then the space
of holomorphic functions ω : U —> F Λ t " ] *, (i.e., of functions ω whose evaluation
(ω,w) on any fixed vector u G F Λ M is holomorphic on £/), is a right
module.

Definition. 7%e jp^ce E^(U) of holomorphic twisted conformal blocks on U C
Ĉ "̂  x ί) w ί//e 5/7flce of VrΛW* -valued holomorphic functions ω, ^o that for all open
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subsets U; of U, the restriction of ω to U1 is annihilated by ^^(U1). We also

define the space E(U) of holomorphic conformal blocks on U C C M by replacing

se^ by &.
With this definition, the assignments U ι-» E^U), U ι-> E{U) are sheaves of

^-modules.

Lemma 2.3. Let U be an open subset of C[n] x r) (resp. of C[n]). Then ω G E^(U)
(resp. E{U)) if and only if ω is holomorphic on U and ω(x) G E^(x) (resp. E(x))
for all xeϋ.

Proof It is obvious that if ω is holomorphic and if ω(x) G E^(x) for all x G U,
then ω G E^U). Let ω G E^(U), and x G U. To show that w(x) G E^(x), we have
to show that every element X of ££(x) is the restriction of an element of ^^{U')
for some neighborhood U' of x. But his follows from Prop. 2.1. The same applies
in the untwisted case. D

3. Flat Connections, Theta Functions

3.1. The Flat Connection. For each open subset U of C w x ί) we have defined a
Lie algebra J£?ί,(t/) acting on VA[n\U), the space of holomorphic functions on U
with values in VAW. It is convenient to extend this definition. Let G be the simply
connected complex Lie group whose Lie algebra is g, and for (z,τ,g) G C ^ x G,
let J£(z,τ,g) be the Lie algebra of meromorphic g-valued functions X(t), on the
complex plane whose poles modulo Lτ belong to {z\,...,zn}9 and with multipliers

X(t+l)=X(t),

X(t + τ) -

if U is an open subset of C M x G, define c%(ί/) to be the Lie algebra of mero-
morphic functions on U x C 3 (z,τ,g,t) whose poles are on the hyperplanes t =
zz + « + mr,n,m eZ, and restricting to functions in if(z,τ,gf) for fixed (z,τ,gf) G C/.
As above, we introduce the space Ec(z,τ,g) of if(z, τ, gf)-invariant linear forms on
F Λ ^ , and the sheaf U -* EG(U) of ^ G ( ^ ) invariant holomorphic FΛ^*-valued
functions.

Let η(z,τ,t) be a meromorphic function on C w x (C whose poles belong to the
hyperplanes f = z/ + « + jwτ and such that, as function of t G C,

ιy(z, τ, t + 1) = */(z, τ, 0, ^fe τ, ί + τ) = η(z, τ, 0 - 2πί . (3)

Although the construction does not depend on which η we choose, we will al-
ways set

η(z,τ,t) = p(t-zuτ),

for άefiniteness.
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Let Aγ(z,τ,g,t) to a meromorphic function on C M x G x ( C , depending linearly
on Y e g, whose poles as a function of t belong to {zi,...,zπ}, and such that

Aγ(z, τ, g, t + 1) = Λ7(z, τ, #, f) ,

Aγ(z9τ9g,t + τ) = Ad(0XΛy(z,τ,0,O - 7) . (4)

if ψ(A) = Σ 7 e z ^ π O + ^ ) 2 τ ( - ^ ) 7 ' w e m a y t a k e A Y t o b e

Note that for fixed z,τ,t and Y, Ay extends to a regular function of g £ G.
Denote by d y the derivative in the direction of the left invariant vector field

on G associated on Y e g : dγf(g) = limε_+0 J^/(#e χ P ε Ό> and by dZί, dτ, dt the
partial derivatives with respect to the coordinates zuτj of C w x C

The properties (3), (4) imply the

Proposition 3.1. Let U be an open subset of C M x G. The differential operators

DτX(x, t) = dτX{x, t) - ^-mη(x, t)dtX(x, t) ,
2nι

DYX(x, t) = dYX(x, t) + [Aγ(x, t),X(x, t)l x = (z,τ,g)eUx<C,

map £?G(U) to itself.

Therefore, we have a connection D : &G(U) -> Ωι (U) ® &G(U), defined by D =
Y^dzj <S> DZj + dτ <g> Dτ -h ̂ 2θa 0 Z)^, for any basis of left invariant vector fields θa

on G with dual basis θa.
We proceed to define a connection on EQ. Consider first the following differential

operators on the space VA^(U) of VA^-valued holomorphic functions on the open
set U C CM x G,

Vγυ(x) = dγv(x) + δ(Aγ(x))v(x), xeU.

In this formula the definition of the operator δ taking the Laurent expansion at the
points Zi (see (2)) is extended to general meromorphic g-valued functions and vector
fields considered as a function of the variable t € <C. For a meromorphic vector field
ξ = ξ(t)£t on the complex plane we set δ(ξ) = Σδi(ξ), with δt{ξ) = ξ{zt + t)ft G

)£. Let V : VAW(U) -> Ωι(U) 0 VA^(U) denote the connection

Proposition 3.2. TAe connections D, V oftej ί/ze compatibility condition

x e seG{u\ ve vA[n].
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Proof. This is verified by explicit calculation. D

This has the following consequence. Define V on holomorphic functions ω on
U with values in the dual F Λ M * (i.e., such that (ω(x)9υ) is holomorphic on U for
all υ G VA[n]) by the formula ( V φ ) , υ ( x ) ) = d{ω(x),v(x)) - (ω(x),Vι (x)).

Corollary 3.3. The connection V preserves twisted holomorphic conformal blocks,
i.e., it maps EG{U) to Ωλ(U)®EG(U).

Proposition 3.4. The connection V on EG(U) is flat.

Proof For X, Y <E g, the curvature F(X9Y) = [Vχ9Vγ] - ^[xj] is given by the
expression

F(X9 Y) = dxδ(Aγ) - Sr<S(4r) + [δ(Ax),δ(Aγ)] -

Note that the cocycle

vanishes: indeed, the integrand I(t) is Z-periodic and obeys I(t + τ) = I(t) + j-tg(f)
for some Z-periodic function g(t) and the integration cycle y can be decomposed
into a sum of contours bounding some fundamental domains. The contributions of
the four edges cancel by periodicity, except for a term f*+ g\t)dt = 0.

Thus we can write F as

F(X9 Y) = dχAγ - dYAx + [Ax, AY] ~ A[XJ].

Now, as a simple calculation shows, F(X9 7), viewed as a function of t G C with
values is g, is Z-periodic, and obeys F(X, Y)(t + τ) = Ad(g)F(X, 7)(0 ? as a con-
sequence of (4). Thus F(X, 7) is in the image of J£G(U), and vanishes on invariant
linear forms.

A similar reasoning applies to the commutators [V2l, Vx], [Vτ, Vχ],X G g.
These commutators are also in the image of J£?G((7) and thus vanish on invariant
forms. We are left with the commutator [Vτ,V2/], which vanishes except possibly
for i = 1. The proof that it vanishes also for i — 1 will be given later on (see
4.1). D

The group G acts on VA^-n\ since the cocycle vanishes on g c ZgΛ. Denote this
action simply G x VA[n] 3 (A,ι?) ι-> hv.

Proposition 3.5. For all h G G, X —> Aά(h)X is a Lie algebra isomorphism
from &(z9τ9g) to £?(z9τ9hgh~~ι). Thus the map X ι-> φhX with φhX(z,τ,g) = Ad
(h)X(zyτ,h~ιgh) is an isomorphism from J£G(U) to ^G{U') for any open U C
CM x G9 where Uf = {(z9τ9hgh-χ)\(z9τ9g) G £/}. Moreover Jor any X e SeGiV\
δ(Ad(h)X) = hδ(X)h~ι, and thus ph(θ(z,τ,g) — ω(z,τ,hgh~λ)h defines an isomor-
phism ph : EG(U') —> EG(U). This isomorphism maps horizontal sections to hor-
izontal sections.

Proof. The first statement follows immediately from the definitions. The fact that
δ(Aά(h)X) — hδ(X)h~~ι is also clear, once one notices that the 2-cocycle defining
the central extension vanishes if one of the arguments is a constant Lie algebra
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element. Finally h commutes with Vz. and Vτ, and we have VxPh = ph^Ad(h)x,
i G g . The latter identity follows from the equality (see (5))

Aά(h)Ax(z,τ,g,t) = AM{h)x(z,τ,hgh~\t).

Thus ph preserves horizontality. D

The existence of a connection implies, as in [18], that the sheaf U \-+ EG(U)
is (the sheaf of holomorphic sections of) a holomorphic vector bundle whose fiber
over x is EG(x). This follows once one notices that EG(U) is actually a subsheaf
of a locally free finitely generated sheaf carrying a connection whose restriction to
EG is V. Details on this point are in Appendix B.

To make connection with the previous sections, consider the pull back of EQ
by the map λ ι-> exp(2π//ί), from ί) to G. It is the vector bundle E^ on C w x ί).
Let us introduce coordinates λv on ί) with respect to some orthonormal basis (hv).
Then the pull-back connection on E^ is given by (3.1), (3.1), and, in the direction
of λ,

Vλv=dλv-δ(hvp( - z 1 ? τ ) ) .

Moreover, we can use the connection of identify by parallel translation the space of
conformal blocks E(U) with the space of twisted conformal blocks ω inEG(U x G)
(or in E^(U x ί))) such that \7χω = 0,X G g (or Vχvω = 0, respectively). Here we
use the fact that G and f) are simply connected.

The point of this construction is given by the following result. Let V^*(U)
be the space of holomorphic functions on an open set U with values in the finite
dimensional space V^*. We also set, for any open subset U of C ^ x G, or C ^ x
I), respectively,

EG(U)h0ΐ = {ωe EG(U)\Vxω = 0, VX G 9} ,

Eh(U)hoΐ = {ωe E^(U)\Vxω = 0, \/X e ί)} .

Proposition 3.6. The compositions

ιG : E(U) -^EG(U x G) h o r -> V[n]*(U x G),

ιh : £(£/) -^ Ej>(U x ί|)hor ^ FW*(C/ x ί)),

ίAe first map sends a holomorphic conformal block ω to the unique twisted
holomorphic conformal block horizontal in the G (resp. I)) direction, which coin-
cides with ω on U x {1} (resp. U x {0}), and the second map is the restriction
to V^n\ are infective.

Proof The first map is an isomorphism to the space of twisted holomorphic confor-
mal blocks horizontal in the G (resp. ί)) direction. The fact that the second map is
injective follows from the fact that using the invariance and the equation V^ω = 0
(resp. Vχvω = 0), one can express (ω,υ) for any v G VA^ linearly in terms of the
restriction of ω to V[n\ D

We may (and will) thus view the sheaf E of sections of the vector bundle on
C w of conformal blocks as a subsheaf of V^n\U x ϊ)). The next steps are a charac-
terization of this subsheaf and a formula for the connection after this identification.

3.2. Theta Functions. Let Qv = {q G f)|exp(2πzg) = 1 G G} be the coroot lattice
of g.
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Definition. Let ( z , τ ) £ C w , and V\,...,Vn be finite dimensional ^-modules, and
k a non-negative integer. The space Θk(z,λ) of theta functions of level k is the
space of holomorphic functions f : ί) —» V^* such that

0) Σ;
(ii) One has the following transformation properties under the lattice Qy

v

f(λ + q) = f(λ) ,

(f(λ 4- qτ) = /(/t)exp - πik(q,q)τ - 2πik(q,λ) -

V
The space of such theta functions is finite dimensional, as can be easily seen
by Fourier series theory. Denote by W the Weyl group of g, generated by re-
flection with respect to root hyperplanes. It is known that this group is isomor-
phic to N(H)/H, N(H) c G being the normalizer of H = exp(rj). For w eW, let
w G N(H) be any representative of the class of w in N(H)/H. The Weyl group
acts on the space of theta functions. Indeed, if / G f t ( z , τ ) , then (wf)(λ) =
f(w~ιλ)w~ι also in %(z,τ), (the coroot lattice and the invariant bilinear form
are preserved by the Weyl group), and is independent of the choice of representa-
tive w by (i). Let Θk{z, τ)w denote the space of ^f-invariant theta functions.

Theorem 3.7. Let §=A\,l ^ 2,Dι,l ^ A,E^,Eη,E^,F^, or G2. Then the image of
i\Ί is contained in the space of holomorphic functions w <G V^*(U x ϊ)) such that

for all (z,τ) G On\ω(z,τ, ) belongs to Θk(z,τ)w, and such that for all roots
a,X G 9α and nonnegative integers p,

as a(λ) —> 0.

In the remaining cases, we have

Theorem 3.8. Let q=A\,Bι or CjJ ^ 2. Then the image of zί} is contained in
the space of holomorphic functions ω e F M *( t/ x ί)) such that for all (z,τ) G
C w ,ω(z,τ, ) belongs to Θk(z,τ)w, and such that for all a G Δ,r,s G {0,1},X G
gα and nonnegative integers p,

ω(z,τ,Λ)exp {iπicr^zjλ^ ) Xp = O((a(λ) - r - sτ)p),

as a{λ) —>• r 4- sτ, with C}%Q = Q,cr\ — (r + τ ) " 1 .

The proof of these theorems will be completed in 3.7. We conjecture that the space
of functions described in Theorems 3.7, 3.8 actually coincides with the image of
iij. This conjecture is verified in a simple class of examples in 3.8 below.

The fact that the formulation of the result is simpler for certain Lie algebras is
due to the following property shared by the Lie algebras of Theorem 3.7: for each
root α and integer m there exist an element q in the coroot lattice with a(q) = m.
For the other simple Lie algebras this is true only if m is assumed to be even. More
on this in 3.6.
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3.3. Affine Weyl Group. Since H acts trivially on E^, the Weyl group acts (on the
right) on the values of E^: w acts as w, and this is independent of the choice of
representative.

Proposition 3.9. Let ω e E^(U x f))hor. Then, for all q e g v ,

For all w e W,
ω(z,τ,wλ) = ω(z,τ,λ)w~ι

Proof The value of ω at (z, τ, λ + q) is obtained from ω(z, τ,λ) by parallel transport
along some path from λ to λ + q. Recall that ω is the pull back of a section of
E(U x G)h 0 Γ to U x t). The image of the path in G is closed, and contractible (G
is simply connected), which proves the first claim.

From Prop. 3.5 and the fact that w λ = Ad(vί>)/1, we see that if ω is horizontal
then also p^ω is horizontal. But these horizontal sections coincide at λ = 0, and
thus everywhere. D

3.4. Modular Transformations. The group SL(2, Z) acts as follows on C ^ x ί): if

cτ + d.9 cτ + d9 cτ + d

Lemma 3.10. Introduce the linear functions £χ(t) = 2πiλt for λ e t). For all x e
M x f), A e SL(2,Z), ίAe m ^ X

= exp(-ad c^(0)Z((cτ + d)t),

is a Lie algebra isomorphism from S£(x) to

Proof. This follows directly from the definitions. •

We have defined an action £P(x) <g> VAW _> vA^n\ for all x e C[n] x ϊ). Let us
denote it as X (g) v ι—> δx(X)v (see (2)) to emphasize the x-dependence.

Lemma 3.11. Define a linear isomorphism v —> pA(x)v from VA^ viewed as JS?(JC)-
module to VA^ viewed as £f(Ax)-module: if x — (z, τ, A),

πick(λ, λy

This map has the intertwining property

pA{x)δx{X) = δAx(φA(x)X)pA(x),

for all X e ££{$).

Note that the choice of coefficient ηA is irrelevant for the validity of the lemma.
However, it is important for compatibility with the connection, see below.

We should also add a remark about the power of (cτ + d). The exponent ΣL^
is diagonalizable with finite dimensional eigenspaces. However the eigenvalues are
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fractional in general, and the power is defined for a choice of branch of the logarithm
for each A G SL(2, TL). This is made more systematic in the next subsection.

Proof. This is again straightforward. The only subtlety is that, a priori, there could
be a contribution from the central extension in the computation of the intertwining
property. However the central term appearing in this computation is proportional to
the sum of the residues of the component of dtX along λ, which is doubly periodic.
By the residue theorem, this sum vanishes. D

We can thus define linear maps ω ι-> pAω by pAω(x) = ω(Ax)pA(x). Lemma
3.11 implies then that pA is an isomorphism from E^(U) to Eι)(A~1(U)).

Lemma 3.12. Let A* be the pull back on one-forms of the map x i-> Ax defined
on some open U C C[n] x ί), and V : E^(U) -* ΩX{U)®E\)(U) be the connection
defined in 3.1. We have

This fact can be derived from a straightforward but unfortunately lengthy calculation.
The main identity one uses is

1 = (cτ + d)p(t, τ) + Iπict.
cτ -f- d' cτ -j- d

Lemma 3.12 ensures that pA maps horizontal sections to horizontal sections. More-
over, since A*dχv = (cτ -f d)~ιδχv does not have components in z or τ direction,
pA maps sections which are horizontal in the ί) direction to sections with the same
property:

x ί))hor -+ Ef>(A-ιU x t)) h o r .

Let us apply this in the special case A — I

Proposition 3.13. Let ω e V[n^(U) be in the image of ιh. Then for all q e β v ,

/ " \
ω(z, τ, λ + iq) — ω(z, τ, λ) exp ί — 2πi(q, λ)k — πi(q,q)kτ — 2πi J2 zj^ )

Proof We have />*ω G J E ^ " 1 ! / X ί))h o r. Thus,

z \ λ

for all coroots q, by Lemma 3.9, and (z,τ) G U. Explicitly,

αXz^Λ + gτ)/^ -, — , - + ^ = ω(z,τ,Λ)pΛ - , — , - .
\ τ τ τ ) \τ τ τ

Inserting the formula for p^ we obtain

ω(z, τ, Λ + qτ)τ J o = ω(z,τ,λ)τ j o £

with Λ: = (z/τ, — l/τ9λ/τ). Now we use the fact that, on V^n\δx(/q) acts as Σ7

2πi(zj/τ)q^\ and that Z ^ acts as a multiple of the identity, to conclude the
proof. D
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3.5. Monodromy (projective) Representations of SL(2, Z). In this subsection, we
assume that n = 1, set z\ = 0, and show that a central extension of SL(2,Z) acts
on the space of horizontal sections of the bundle of conformal blocks.

The fact that we have a central extension comes from the necessity to choose
a branch of the logarithm to define the expression (cτ + d)LQ. In fact LQ is diago-
nalizable with finite dimensional eigenspaces, and any two eigenvalues differ by an
integer. Moreover, Lo acts by a non-negative rational multiple (Cas(Ύ)/(A; + hv)) of
the identity on V c VA for any integrable VA of level k. Let L0\v = L

siάv,r,s e N.
We introduce a central extension

0 -> Z/sZ -> Γ, -> SL(2,Z) -* 1 ,

of SL(2,Z) by the cyclic group of order s. The group Γs consists of pairs of (A, φ)9

where A e SL(2,Z) has matrix elements a,b,c,d and φ is a holomorphic function
on the upper half plane such that φ(τ)s = cτ + d. The product is (A,φ)(B,\j/) =
(AB, φ o A φ). Then this group acts on V* valued functions on H+ x ί) as above,
but keeping track of the choice of branch:

(A,φΓιω(λ,τ) = ω(A . (lτ))ηA(lτ)φ(τ)~r.

This action preserves the connection. (The inversion here is to correct for the
"wrong" order ρAp% — p#A, up to ambiguity in the choice of branch). Thus we
conclude that Γs acts on the space of global horizontal sections on H+ x ί) of E^.
This monodromy representation restricts to the character [m] \-> Gxp(2πimr/s) of
Έ/sΈ.

In the case of V = trivial representation, this monodromy representation is just
the representation of SL(2,Z) on characters of affine Lie algebras (see [15]). It
would be interesting to calculate this monodromy representation explicitly for gen-
eral V. Some progress in the sh case was made in [5], where a connection with
the adjoint representation of the corresponding quantum group was established.

3.6. The Vanishing Condition. Let G be a simply connected complex Lie group
with Lie algebra g,fj a Cartan subalgebra, g = ί) Θ 0 α e z l g α a Cartan decomposition
and H = expf). Suppose that p : G —> End(F) is a finite dimensional representation
of G. Thus V is also a g-module. For K — G or H let I(K, V) be the space
of holomorphic functions on K with values in V such that Vg,/z G K,u(ghg~ι) =
p(g)u(h). The Weyl group fΓ acts on I(H, V): let w be a representative of w e W
in # ( # ) . Then (wf)(h) - ρ(w)f(w~ι A) is well defined for / e /(//, F), since
// acts trivially on the image of functions in /(//, F). We denote by /(//, F ) r the
space of Weyl-invariant functions in I(H, V).

Lemma 3.14. The restriction map I(G, V) —»/(//, V) is injectiυe. Its image is
the space Io(H, V)w of functions u in I(H, V)w such that for all positive roots
OL9X e Qzp e N, and m e Z,

Xpu(exp 2πίλ) = O((ot(λ) - m)p) , (6)
as cc(λ) —» m.

Proof The behavior of functions in /(G, V) under conjugation by N(H) implies
Weyl invariance

Let X G gα and A G ί). Then

Ad(exp(2π//l))X = β2πfα^>X . (7)
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If u £ /(G, F),w(exp(X)exp(2π//l)) is a holomorphic βv-periodic function of λ £ I),
(thus a holomorphic function on H). On the other hand, by (7),

( / X \ ( X

e X P i _ 2π»α(Λ) e x P ( 2 π ^ ) e x P ~ Ί _ 2 π ι g ( A )

= p(exp((l -

M 1

= Σ —(1 - e2πiθL{λ)ypXpu(exp(2πiλ)),

for some M. We see that the latter expression is holomorphic on the affine hyper-
planes a(λ) — rn, if and only if, for all p,Xpu vanishes there to order at least p.

To conclude the proof, we use some facts about conjugacy classes in algebraic
groups (see, e.g., [16], Chapter 3). Let, for each root α and integer m,H^m cH
be the set of elements of the form exp(2π//l) such that oc(λ) — m. The conjugacy
classes containing elements in Hss = H — U//α?m form the dense open subset Gss

of regular semisimple elements in G. Its complement contains the set H\ consisting
of conjugacy classes of elements of the form exp(X)exp(2πf/l), where λ lies on
precisely one of the distinct Ham. These elements are regular, as they are regular
in the identity component of the stabilizer of cxp(2πiλ), (see [16], 3.5), which
is the direct product of a torus of dimension rank-1 times the SL(2) subgroup
associated with α. By the above reasoning, a Weyl invariant function on H extends
uniquely to an equivariant holomorphic function on Gss, and the vanishing conditions
imply that it extends to a holomorphic function on Gss U H\. The complement of
Gss U H\ consists of higher codimension classes whose closure intersects H\, and
of classes whose closure do not intersect Hss U H\. Counting dimensions shows
that this complement is of codimension at least two, so by Hartogs' theorem, our
vanishing conditions are sufficient to have an extension to all of G. D

By Weyl invariance, we may replace the set of positive roots in the formulation
of the lemma to a subset of roots consisting of one root for each Weyl group orbit.
Also, we may restrict the values of m, by Qv periodicity of w(exp 2πiλ). Indeed, if
the vanishing condition holds at ot(λ) = m, it also holds at oc(λ) = m — oc(q) for all

We thus have the following result. The action of the affine Weyl group WA =
WxQy on A x Z is defined by

(w,q)(a,m) = (wa,m- oc(q)) .

Lemma 3.15. The subspace h{H, V)w C I(H, V)w is characterized by the vanishing
condition (6), for (α,m) in any fundamental domain for the action of WA on
A x Z.

From [4], we see that in the cases A\, I ^ 2,£>/, / ^ 4,E6,Ej,Es,F4, G2 a fundamen-
tal domain is {(α, 0), α £ F}, where a runs over a fundamental domain F (consisting
of one or two elements) of W. If 9 = A\, Bj9 Cι, then we have to add (α, 1), where
α is a long root.

As a corollary we obtain a more precise characterization of the image of i^.
Let us identify functions on H with Qv-periodic functions on ί) via the map λ J->
exp(2π/A), and view F w * as a representation of G by (p(g)u9v) — (u,g~ιv).
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Corollary 3.16. The image of E(U) by ι^ is contained in the space of functions

ω e V[n]*(U x f)) such that for all (z,τ) e Cw,ω(z,τ, ) belongs to I0(H, V[n]*)w.

Moreover, if ωeEh(U x ί))hor, then p\ω e Eh(A~ιU x ί))hor, implying further

vanishing conditions: let x = (z, τ, λ) and A = ί a ). On V^Lψ acts by a scalar

Δj. The restriction of p*Aω to F ^ is

(p>Xx) = ω(Ax)(cτ + ί / Γ ^ ^ W

It follows that, for all p,

ω(Ax)exp ( ί—^ZjχU)\χP = 0((<χ(λ) - m)?),
\ cτ -\- a j J

if oc(λ) —• m. Changing variables, this implies that

ω(z,τ,yl)exp ί -iπi-^—^zjλ^ J Xp = O(((x(λ) - m(a - cτ))p).
V a-cτ j J

Since any pair α, c of relatively prime integers appear in the first column of some
SL(2, Έ) matrix, we obtain the result.

Corollary 3.17. The image of E(U) by ι^ is contained in the space of functions

ω e yW* (jj x jj) such that for all (z,τ,λ) e C[n\r,s,pe I,p^ί, ( r , ί ) + (0,0),

ω(z,τ, A)exp (iπi-^—^Zjλ^λxP = O((a(λ) - r - sτY) , (8)
V r r sx J

as oc(λ) —> r + 5τ.

5.7. Proof of Theorems 3.7, 3.8. Theorems 3.7, 3.8 follow from Propositions 3.9,
3.13, and Corollaries 3.16, 3.17 together with the fact that twisted conformal blocks
are annihilated by ί) C S£\fJJ\

3.8. Examples. Here we give an explicit description of the space of conformal
blocks in some special cases. The discussion parallels the constructions in [8], where
Chern-Simons states in the case of sli are studied. First of all consider the case of
one point z\ with the trivial representation. Then the vanishing condition is vacuous,
and we are left to classify scalar Weyl invariant theta functions of level k. This
space coincides with the space spanned by characters of irreducible highest weight
LgΛ-modules, in accordance with the Verlinde formula.

Next, we consider the case of one point z\, with a symmetric tensor power of
the defining representation <£N of slN.

lί N ^ 3, the problem is reduced to describing the space of Weyl invariant
theta functions ω of level k, with the property that

eξu(*(λ)) = O(a(λY), α(A) -* 0 ,

for all p = 1,2,... and root vectors eα 6 gα. Actually it is sufficient to consider one
root α, since the Weyl group acts transitively on the set of roots of SIN>

The symmetric power SJ<CN has a non-zero weight space if and only if j is a
multiple of TV. Let us set j = IN, and denote by εΣ the elements of the standard basis



Conformal Blocks on Elliptic Curves 149

of <CN. Then the weight zero subspace of SlN<CN = (<£N)®ι/SN is one-dimensional
and is spanned by the class of v — εfι 0 <S> ε®1'. The following considerations
apply also to the case / = 0, if we agree that S°<CN is the trivial representation.

The Weyl group of slN is the symmetric group SN and is generated by adjacent
transpositions SjJ— \,...,N — 1. If we identify the Weyl group with N(H)/H,
then a representative in N(H) of Sj is given by SjSr = εr, if rΦj,y + 19SJSJ = βy +i,
SjSj+\ = —£j. It follows that SN acts on the weight zero space by the /th power of
the alternating representation: wv = ε(w)ιv.

The next remark is that el

Qflv = 0 but eι

avή=0. We thus see that ω(ct(λ)) —
O{a{λ)1) as λ approaches the hyperplane oc(λ) = 0. If ω is a Weyl-invariant theta
function, it then also vanishes to order / on all hyperplanes oc(λ) — n -\-mτ9n9m G
Z. Therefore the quotient of ω by the /th power of the Weyl-Kac denominator
Π(λ9τ) (see 4.1) is an entire function, as Π has simple zeroes on those hyperplanes.
Moreover, Π is a (scalar) theta function of level N (the dual Coxeter number of
slN), and Π(wλ,τ) = ε(w)Π(λ,τ).

We conclude that the space of conformal blocks at fixed τ is contained in the
space of functions of the form

ω(λ) = Π(λ,τ)ιu(λ)v, (9)

where u is an entire Qw-periodic scalar function on I), such that u(wλ) = u(λ), for
all w G SN and

) - πi(q9q)τ)9 q G β v . (10)

We have assumed here that TV ^ 3. In the 2 case, where the vanishing condition
must be satisfied also at 3 other points on ί), one can proceed in the same way,
noticing that the Weyl denominator vanishes there too.

A basis of Qy-periodic functions with multipliers (10) is easily given using
Fourier series. The basis elements θμ are labeled by μ G P/(k — Nl)Qy, where the
weight lattice P is dual to Qy (if k < N there are no non-zero conformal blocks).
The Weyl group acts as θμ(w~ιλ) = θwμ(λ).

Therefore the dimension of our space is the number of orbits of the Weyl group
in P/(k — Nl)Qy. This number is well-known: a fundamental domain in P for the
action of the semidirect product of the Weyl group by the group of translations by
(k — Nl)Qy is the set of weights in the (dilated) Weyl alcove h-Nh see (1).

More explicitly, if α, are simple roots, wz fundamental weights with (wz , αy) =
δjj, and μ = Σιniwi, then μ G h-Ni if and only if the integers rit satisfy the inequal-
ities

1=1

The number of N — 1-tuples of integers with these properties is calculated to be

k-N(l- 1)- 1

N - 1

This is the formula for the dimension of the space of Weyl-invariant theta func-
tions of level k extending to holomorphic functions on SL/y, with values in the



150 G. Felder, C. Wieczerkowski

(/ N)th symmetric power of the defining representation of slN. We now show1

that this coincides with the Verlinde formula [19], which according to [18,9] give
the dimension of the space of conformal blocks.

Let Ik be the set of integrable highest weights of level k. It consists of dominant
integral weights μ with (μ, θ) ^ k. The dimension of the space of conformal blocks
with one point, to which an irreducible representation of highest weight μ G h is
attached, is given by the formula

μ K
veik

in terms of the structure constants N£c of Verlinde's fusion ring. A convenient
formula for these constants in terms of the classical fusion coefficients ma

hc (= the
multiplicity of a in the decomposition of the tensor product of b with c) was given
in [13, and 15], Exercise 13.35.

Let W£ ~ WA be the group of affine transformations of ί)* generated by the
Weyl group W and the reflection s0 at the hyperplane {λ e ί)*|(β,λ) = k + hv} (θ
is the highest root and hv the dual Coxeter number). Let p be half the sum of the
positive roots of cj and define another action of W£ on f)* by w * λ = w(λ + p) — p.
Let ε : W£ —> {1,-1} be the homomorphism taking reflections to —1.

Then, for all a,b,c e h,

Na

bc= Σ < r . ( i i )

Actually, in Verlinde's formula the coefficients N£c are given in terms of modu-
lar transformation properties of characters. They are uniquely determined by the
equation

where, according to [15], (13.8.9),

Sab
= χb exp -2πij—

Here, χa is the character of the representation of G with highest weight a.
Let us check that the two formulas agree (this is essentially the solution to

Exercise 13.35 of [15]). Let w e W and q e (k + hy)Qy and suppose that both a
and w * a + q are dominant integral weights. Then it is easy to see from the Weyl
character formula (see [14]) that if λ £ (k + hv)~ιP,

λ)) = ε(w)χα(exp(2π//l)).

There is a unique element in each affine Weyl group orbit in the shifted Weyl alcove
h + P Using these facts and the formula for the multiplicities in the decomposition
of tensor products χtχc = Σna

hcχa, we deduce (11).

Let us apply this to our example. Identify I)* with <£N/<E(l, 1,..., 1). Then in-
tegral weights are classes a = [a\,...9an] of ^-tuples of integers defined modulo
Z( l , . . . , 1). The Weyl group SN acts in the obvious way, and a weight is dominant
if ay ^ βy+i The affine reflection so is

so[au...,aN] = [aN + k + N,a2,...,aN-Uaι - k - N] , (12)

We learned how to do this computation from H. Wenzl.
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and p = [N - l,N - 2,...,0]. Let c = [r,0,...,0] be the highest weight of Sr<CN.
Then the decomposition rules of tensor products say that ma

bc = 1 if aj = bj +
lj (1 ^ j ^ N) for some integers lj such that 0 ^ lj ^ αy _i — aj,2 ^ j ^ N
and I)// = r. Otherwise, ma

bc = 0. As θ = [1,0,0,...,0,-1], a dominant weight a
belongs to Ik if and only if a\ — a^ ^ k.

We need two properties (see [13]) of the coefficients Nζc, valid for any

a,b,celk: (i) 0 S N& £ rn«c, for all a9b,c,elk9 and (ii) N$lc = N&, where
σ([a\,...,aN]) = [k + 0w,αi,...,α#-i]. We will also use: (iii) Each orbit of Wk,

acting via * on ί)*, contains at most one point in Ik.

Let us now fix c = [Nl,0,...,0], and do the classical calculation first.

Lemma 3.18. Let c = [M,0,...,0]. Then ma

ac = 1 iff aj - aj+λ ^ 1 for all j e

{1,...,Λ^-1}.

Proof. The coefficient m ĉ is non-zero if and only if there exist non-negative
integers l\,...,lN, summing up to Nl, such that lj ^ a,j-\ — aj if j ^ 2 and
[αi + l\,...,aN + /JV] = β. It follows that /7 = / for all j , and this solution obeys
the inequality iff αy _i - α7 ^ / for all y ^ 2. D

Lemma 3.19. Lei c = [M, 0,..., 0], with Nl ^ k and suppose a e Ik. Then N£c = 0
if a\ — aN > k — I.

Proof In this case σ(α) = [k + a^,a\,...], and since (k + α^) — «i < /,

0, by Lemma 3.18. Therefore N%c = 0, by properties (i), (ii). D

Lemma 3.20. Let c = [M, 0,..., 0], with Nl ^ A. 77z^ N«c = 1 // αwrf only if
aj — aJ+\ ^ /, 1 S j ^ N — 1, α«(i a\ — aN ^ k — I.

Proof We need to prove only the " i f part. We do this by showing that only the
first term in the sum (11) is non-zero. Let us suppose that a obeys the hypothesis of
the lemma, and that ma

ac — mζ*a = 1, with w φ l and derive a contradiction. Since
b = w * a is dominant, and is not in Ik by (iii), we have b\ — bN ^ k + 1. Let us
choose the representative in a with a^ = 0, and identify a\,...,a^-\ with the row
lengths of a Young diagram. Then b is obtained by adding Nl boxes to this Young
diagram, in such a way that αz ^ bt ^ #/-i Then w~ι with wΓ — 1 * b = a is the
unique element mapping b to Ik. This element is constructed as follows: (i) Add,
for all j,N — j boxes to the / h row of b (this adds p). (ii) Draw a vertical line at
distance k + N from the end of the Nth row to the right of it; the only boxes to
the right of this line are in the first row, and their number is at most Nl ^ k. (iii)
Take these boxes and add them to the Nth row (i.e., act by so, see (12)); permute
the rows to get a Young diagram (i.e. act by an element of W). (iv) Subtract N — j
boxes from the / h row, j — 1,..., n.

We obtain in this way a diagram which has Nl boxes more than the original
diagram with row lengths at and whose first row has bN + k + I ^ £ + 1 boxes.
The two diagrams are equivalent, meaning that the latter is obtained from the former
by adding the same number of boxes to each row. This number is at least k + 1 — a\
which by hypothesis is strictly larger than /. We need thus more than Nl boxes,
and this is a contradiction. •

The dimension of the space of conformal blocks can be now computed: note that
a i—» a — Ip (i.e. aj ι—> aj — 1{N — j)) maps bijectively the set of weights obeying the
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conditions of Lemma 3.20 onto Ik-IN whose cardinality coincides with the dimen-
sion of the space of invariant theta functions with vanishing condition.

We conclude that the space of invariant theta functions satisfying our vanishing
condition coincides with the space of conformal blocks, in accordance with our
conjecture.

4. The Knizhnik-Zamolodchikov-Bernard Equations, and Generalized
Classical Yang-Baxter Equation

4.1. The KZB Equations. The Knizhnik-Zamolodchikov-Bernard (KZB) equations,
first written in [2], for a holomorphic conformal block ω e E(U) are the horizon-
tality conditions Vω = 0, where ω is identified with its image by ι^. To write these
equations explicitly, let us compute the expression of the connection V on E(U)
viewed as a subsheaf of V^n\U x ί)) via ι^.

It is convenient to introduce functions p, σw, w G C expressed in terms of the
function θ\\

See Appendix A for details on these functions. We use the notation

K = * + hv ,

and the abbreviation Xm for X 0 tm. We also identify g as a Lie subalgebra of LgΛ:
χ0 —X e g. Let Cα = ea 0 β_α (see (2.2)). Then we can write L-\ as

1 oo /

K «=0 \ot£A

Now let U C C^n\ and ω G E(U\ which we identify via ι^ with a function on U

with values in F [ w J. We then have, for fixed u G V^n\

κ{VZjω,u) = κ—(ω,u) - (ω, (
^ Z 7 \ \

Recall that vectors in V are annihilated by Xn, with X G g, w > 0. We now use
the invariance of ω under the action of S£. The functions t H-» eaσa(χ)(t — Zj) are
elements of JSf(z,τ,λ). They have simple poles at t = zj with residue ea. As a
consequence of the invariance of ω, we have

for all u G (££) Vj. We can use this identity to compute the value of ω on vectors

e_\u. The flatness condition Vχyω = 0 translates to
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To compute further we need the commutation relation [eα,e_α] = Σv<x(hv)hv, that
follows from ([eα,e_α],/*v) = (eα, [e_α,/zv]). We therefore obtain the formula

κ(\7ZJω,u) =κ—(Πω,u) - Y,jj-{Π

- Σ (Πω, ΩfM\zk - zj, τ, λ)u) , (13)

where 77 = 77(2, τ) is (essentially) the "Weyl-Kac denominator" (for any choice of
positive roots A+)

+ n=\

(q = e2πιτ), and with the abbreviation

β(ί,τ,λ) = p(ί)Co + Σ*«α)(OC« . (14)

We also use the standard notation Ω{iJ) to denote Σ ^ ( ° ^ ω > if Ω = Σ , ^ ® ^
This notation will be used below also in the case / = j . The λ independent factors
in Π do not play a role here, but will provide some simplifications later. In deriving
(13), we have used that, by the classical product formula for Jacobi theta functions,
Π is, up to a λ independent fact, the product Y[aeA θ\(<x(λ)). Before continuing,
we can use the formula (13) to complete the proof of Prop. 3.4.

End of the proof of Prop. 3.4. What is left to prove is that [Vτ, V2,] on E(U).
But from the above formula for VZj it follows that ΣJVZJ vanishes. Indeed we have

ωΣjh^ = 0 by ί)-invariance, and the other terms cancel by antisymmetry. As Vτ

preserves conformal blocks, we have [Vτ,ΣjVZj] = 0, and claim follows from the
fact that Vτ commutes with VZj with j Φ 1. •

A more involved but similar calculation gives a formula for Vτ, also essentially due
to Bernard, which will be given here without full derivation,

One of the ingredients is Macdonald's (or denominator) identity (see [15])

Π(λ,τ) = Σ e

iπτ2
qeQv wew

implying (one form of) Fegan's heat kernel identity

Here, p is half the sum of all positive roots of g, W is the Weyl group, and ε(w)
is the sign of w £ W. The (complex) dimension of g enters the game through the
Freudenthal-de Vries strange formula (p,ρ)/2hv — dimg/24.

Let us summarize the results. We switch to the more familiar left action notation,
by setting {Xω,v) — —(ω,Xv) if X is in a Lie algebra and ω is in the dual space
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to g-module. We also need the following special functions of t G C, expressed in
terms of σw(t), ρ(t) and Weierstrass' elliptic function p with periods l,τ:

I(t) = \(p(t)2 - p(t)),

Jw(t) = dtσw{t) + {pit) + p(w))σw(O .

These functions are regular at t = 0. Introduce the tensor

(15)

Theorem 4.1. 77ιe image ω by ι^ of a horizontal section of E{U) obeys the KZB
equations

^ 0'°(*/ - */,τ,λ)ώ ,

4π/ιc3τcS = Σ ^v ώ + Σ ^ α ° ( ^ ~ zu τ, λ)ώ ,

where ώ(z, τ, A) = 77(τ, /l)ω(z, τ, A), α«J £2,// are ίλe tensors (14), (15), respec-
tively.

Remark. For w = 1, these equations reduce to δZ lώ = 1, thus ώ is a K*-valued
function of τ and A only, and

d d2

4πiκ—ώ = Σ ^To^ " »?i(τ)Cas(F)ώ - Σ p(α(^)K^-αώ ,
ί7τ v ΰλv a e Δ

where p(z) = z~ι — r\\z + O(z2), and Cas(F) is the value of the quadratic Casimir
element C^1'1^ in the representation V. This equation was considered recently by
Etingof and Kirillov [6], who noticed that if g = slN and F* is the symmetric tensor
product SίN(CN, eae-a — 1(1 -f 1) Id on the one dimensional weight zero space of
V*, and the equation reduces to the heat equation associated to the elliptic Calogero-
Moser-Sutherland-Olshanetsky-Perelomov integrable TV-body system:

^ ίL \)N(N - l)ώ - /(/ + 1 ) Σ Λ - λj)ώ .

See also 3.8 for a description of the space of conformal blocks in this case.

4.2. The Classical Yang-Baxter Equation. The tensor Ω(ι>2) = Ω^2\zx - z2,τ,λ) e
g (8) g obeys the "unitarity" condition

Let us remark that the fact that the connection is flat is then equivalent to the
identity

VΩ ( 1 2)/>(V3) + Σ hA2^ + Σ δλM
χi)h?]

V

in g 0 9 <S> 9 This identity may be thought of as the genus one generalization of
the classical Yang-Baxter equation. It admits an interesting "quantization" [11].
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Appendix A. Lie Algebras of Meromorphic Functions

We have the following explicit description of i?(zi,...5zw,τ,λ). Let p9σw,(w G (C)
be meromorphic Z-periodic functions on the complex plane, whose poles are simple
and belong to £(τ), and such that

pit + τ) = p{t) - 2πί,

1

t9

Such functions exist (for w G C — £(τ)) and are unique, if we require that pi~t)
—pit). They can be expressed in terms of the Jacobi theta function θ\\

Pit) = j f

ft,

σw(0 =
- w\τ)θ\(0\τ)

Z—/
« = — oo

Here a prime denotes a derivative with respect to the first argument.

Proposition A.I. For α G A U {0}, A G ί), #«J (Λ τ) G C ^ , ί/ẑ  meromorphic func-
tions of t idefined as limits at the removable singularities α(A) G 7L)

Xiσ*{λ)it - zι) - σa{λ)it - zi)), 2 ^ / g w ,

^ ^ σ α α ) ( ί - z / ) , y ^ 1, 2 ^ / ̂ / i ,

-^ G gα o r ^ z/ α = 0, are we// defined provided | Ima(λ) | < Imτ a^J belong to
J£(z\,...9zn9λ,τ). If a rw/is1 oi er zl U {0} and X runs over a basis of ga (ϊ) if (x —
0), ί/zerc these functions form a basis of J£(z9τ,λ).

Proof It is easy to check that these functions belong to j£?(z,τ,Λ,). Let j£f-y(z, τ, A)
be given by the functions in jSf(z,τ, A) whose pole orders do not exceed j . By the
Riemann-Roch theorem,

d(J) := d i m ( ^ ^ ( z , τ , A)) = dim(g)7n ,

if j ^ 1. Indeed J£=Jiz,τ,λ) is the space of holomorphic sections of the tensor
product of a flat vector bundle on the elliptic curve by the line bundle associated
to JD, where D is the positive divisor Σzz .

The functions given here are linear independent, as can be easily checked by
looking at their poles, and have the property that for j ' ^ 1, the first d(J) functions
belong to ^=J\z,τ,λ). D

To obtain a basis outside the strip | Imα(2)| < Imτ we can transport our basis
using the following isomorphisms.
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Proposition A.2. Let (z,τ) G C[n\ and q,q' € P v . Γλ<?« the map sending Xe
J*f (z, τ,λ) to the function

t h-* exp(2πίί ad q')X{t) ,

is a Lie algebra isomorphism from £f(z, τ, A) to S£(z9 τ,λ + q + g ' τ ) .

For any open subset £/ of C^, C w x ί) or C^ x G define &^(U\&ξj(U\

iff7' (U) to be the space of functions in Se{JJ\Se^ϋ\SeG{U\ respectively,
whose pole orders do not exceed j .

Corollary A.3. The sheaves if--7, S£ζ3 are locally free, finitely generated for all

7 ^ 1 . Moreover for each x G C ^ x f), βferj; X G iff>(.x) extends to a function in

fJ for some j and U 3 x.

The proof in the case of ££=J is obtained by setting simply λ = 0.
We wish to extend this result to 5£ G. Let us first notice that the function σw(t)

is actually a meromorphic function of e2πιw. Thus if g = exp(2πiλ), the functions
in Prop. A.I can be written as f(Aά(g\t,z,τ)X, where the meromorphic function
/ is regular as a function of the first argument in the range corresponding to
|Imα(Λ,)| < Im(τ). Therefore we may extend the definition of the basis to give a
basis of <£G(z,τ,g) for g in some neighborhood of g = exp(2πU)w, with Aά(u)
unipotent commuting with Ad(#). (It is clear that the multipliers are correct if g is
on some Cartan subalgebra, but such #'s form a dense set in G.) The pole structure
does not change if the neighborhood is sufficiently small. In this way by choosing
properly the Cartan subalgebra, we find local bases of S£G in the neighborhood of
all points in G whose semisimple parts are of the form exp(2π/A) with λ in some
Cartan subalgebra and |Imα(Λ,)| < Im(τ), for all α G A.

Proposition A.4. Let (z,τ) e C^n\ and q,qf G P v . Then the map sending Xe
J£G(z,τ,g) to the function

is a Lie algebra isomorphism from &G(z,τ9g) to J£G(z,τ,exp(2πi(q + τq'))g).

With the Jordan decomposition theorem, we get a local basis around all points of
G, and we obtain:

Proposition A.5. The sheaf J£§J\ is locally free, finitely generated for all j ^ 1.

Moreover for each x G C ^ x G, every X G 5£(x) extends to a function in
for some j and U 3 x.

Appendix B. Connections on Filtered Sheaves

Let S be a complex manifold, and denote by Θ the sheaf of germs of holomorphic
sections on S. A sheaf of Lie algebras over S is a sheaf of 0-modules 5£ with Lie
bracket 5£ ®Θ i f —• jSf a homomorphism of sheaves of 0-modules, obeying anti-
symmetry and Jacobi axioms. A sheaf of Lie algebras if over S is said to be locally
free if it is locally free as an (^-module, i.e., if every x G S has a neighborhood
U such that, as an 0(t/)-module, J£(U) ~ W ® Θ(U) for some complex vector
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space W. In this case, £?(U) is freely generated over Θ(U) by a basis e\,e2,...

with Lie brackets [e^ej] = Σf^e^ (with finitely many non-zero summands) for

some holomoφhic functions /fj on U.
We will consider the case in which the sheaf i f of Lie algebra is filtered

by locally free sheaves of ^-modules of finite type. In other words, i f admits a
filtration,

oo

i f=° c c ^=J c i f =y + 1 c c J£? = U ^-j,
j=0

with if-7 locally isomorphic to some (CnJ ® Θ, inclusions induced from inclusions
<CnJ c <CnJ+ι

9 and such that [^-J,^=ι] C &=J+ι. In particular i f is locally free.
A sheaf of if-modules is a sheaf V of ^-modules with an action 5£®@V —> F

which is assumed to be a homomorphism of ^-modules. The image sheaf of this
homomorphism is denoted by S£V. In the filtered situation it is assumed further
that V is filtered by locally free, finitely generated (^-modules:

oo

F=° C C V=J C V=J+ι C C V = U V=j ,
7=0

and that the action is compatible with the filtration, i.e., 5£=jV = ι C V=J+ι. In
particular V is locally free, and we can define a dual sheaf V* locally as V*(U) —
Rom&{U)(V(U\Θ(U)). If V(U) is of the form V ® G(U) for some vector space
F, then V*(U) is the space of functions u on U with values in the dual F* such
that (M5 W) is holomorphic for all w e V. The dual sheaf F* has a natural structure
of a sheaf of right if-modules and we have a natural pairing (, ) : V* x V —> &.

We can define the associated graded objects

oo

7=0

oo

GrF = φF^'/F^"1 ,
7=0

with the understanding that V=~ι = 0 = i f = - 1 .
Then Gr if is a graded sheaf of Lie algebras acting on the graded sheaf Gr V

of ^-modules, and homogeneous components are locally free and finitely generated.
The sheaf of coinvariants is Vj5£V\ and the sheaf of invariant forms E is locally

given by
U »-> E(U) = {ωe V\U)\ωX = OVX G JS?(C/)} .

In the filtered situation, ^V is filtered, with ( ^ F ) = 7 = Σ r + J = y JSfrFs and we
have induced homomorphisms

(F/if F)=° -> > (F/if F)= 7

Locally, (F/if F)= 7 (t/) is the quotient V=J(U) by the submodule of linear com-
binations of elements of the form Xv, X G ££-r, v £ V=s with r + s ^ j .

2 i.e., every point of S has a neighborhood such that the statement holds for the restriction of
the sheaf to this neighborhood.
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A connection V on a sheaf of ^-modules V is a (C linear map V —> Ωι 0 ^ F,
where Ω1 is the sheaf of holomorphic (l,O)-differential forms on S, such that for
all open sets U C S,

- fVv + df®v,

for any f E Θ(U), v £ V(U). The notation V^ is used to denote the covariant
derivative in the direction of a local holomorphic vector field ξ : if Vv — Σ^ 0 vu

S7ξV = ΣcCi(ξ)Vi. A connection D on a sheaf of Lie algebras is furthermore assumed
to have covariant derivatives being derivations for all local vector field ζ:

Dξ[X9Y] = [DξX9Y] + [X9DξY]9 X9Y£&(U)9

and a connection V on a sheaf of if-modules with connection D is assumed to be
compatible with the action, i.e.,

Vξ(Xv) = (DξX)v+XVξv, X G &(U)9 v G V(U).

Such a connection induces a unique connection, also called V on V* such that for
all open U c S, ue V*(U\ v G V(U),

d(u,v) = (V«,ϋ) + (w,Vι;>.

Let V be a connection on a sheaf V of (^-modules. If V is filtered by free,
finitely generated ^-modules V-J, we say that V is of finite depth if there exists
an integer d such that W=J: C Ωι 0 V-J+d. The smallest non-negative such integer
will be called depth of the connection.

Theorem B.I. Let ££ be a sheaf of Lie algebras and V a sheaf of ££-modules over
a complex manifold S. Suppose that 5£ and V have a filtration by locally free
finitely generated Θ-modules, and compatible connections D and V of finite depth.
If Gr V/Gv i f Gr V has only finitely many non-zero homogeneous summands, then
the sheaf of invariant forms E is locally free and finitely generated.

Proof Let zo G S and U be a neighborhood of ZQ, such that the restriction of V to

U is free. Thus there exist vector spaces V=J, V, such that

V=J(U) - V~j 0 Θ(U) V(U) - V 0 Θ(U).

The assumption that Gr F/Gr i f Gr V has vanishing components of degree ^ N
means that if j ^ N and v G V-\U) we have a decomposition (not necessarily
unique)

υ = v'+Xv"9 (16)

for some vf G V-J~ι and X G J£(U). By iterating this we see that we can take
v' G V^N.

The first consequence of this is that the restriction map E(U).-> V=ι*(U) is
injective for all sufficiently large /.

The second consequence is that we can replace the connection by a connection
which preserves V-ι*(U) for some large /, and coincides with the given one on
the image of invariant forms. The construction goes as follows.

Let us choose a basis e\9β29... of V with the property that, for all j , a basis of

V=J is obtained by taking the first d im(F = J ) elements of this sequence. View V as
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the subspace of constant functions in V(U), and choose a decomposition (16) for
all ec

with e\ e V-N(U). Define a new connection V by

Vet = Ve[.

This formula uniquely determines a connection V on the restriction of E to U.
The dual connection on V*(U), also denoted V is defined as usual by (Vα,ez ) =
d(a,ei) — (α,Vβ/). By construction, this dual connection coincides with V on in-
variant forms, and, if d denotes the depth of the connection V, it maps V-N+d*(U)
to itself.

If we introduce local coordinates t\,...,tn around ZQ, with ZQ at the origin, we
see that we have to solve the following problem: given a subsheaf E of a finitely
generated free sheaf F on an open neighborhood U of the origin in C 2, with con-
nection V on F preserving £, show that there exists an open set U' C U containing
zo, such that E(U') is a free Θ(U')-module. Write F as Fo ® (9, for a vector space
Fo. We may assume that U is a ball centered at the origin.

Lemma B.2. Let ξ be the vector field Σ( tidt. on <CW, and V be a connection on
a free, finitely generated sheaf of Θ-modules F = FQ 0 Θ on a ball U centered at
the origin of(£n. For each φ G Fo there is a unique φ G F(U) such that φ(0) — φ,
and Vξφ = 0.

The proof is more or less standard: the F o -valued holomorphic function φ on U is
a solution of the system of linear differential equations

for some holomorphic matrix-valued functions Aj, with initial condition φ(0) — φ.
It is convenient to rewrite this equation in the form

γχk*t) = B(x, t)φ(xt\ B(x91) = ΣUΛiixt),

In this form we can apply the standard existence and uniqueness theorem: the unique
solution with initial condition φ is given by the absolutely convergent Dyson series

Φ+ Σ jB(xι9t)- B(xm,t)φdxι- -dxm.

The domain Δm of integration is the simplex 0 < x\ < < xm < 1. It is clear
from this formula that φ is holomorphic on U. This concludes the proof of the
lemma.

Let Eo be the subspace of F o consisting of all values at 0 of sections of E(Uf),
where U' runs over all open balls contained in U and centered at the origin.
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Let e\,...,er be a basis of Fo such that the first sβj build a basis of EQ. The
homomorphism of #(£/'^modules

h i—> φh ,

is injective since φ vanishes if and only if φ vanishes. We claim that the image of
τ is precisely E(U'), if U' is small enough. Let φ e E(Uf). Then, we can write φ
as

for some holomoφhic functions αy ( 0 By assumption, α/(0) = 0 if y > 5. Since

Vξβi = 0, we have

But V<* preserves E and, therefore, Σ ^ δ^ aj(t) = 0 if j > s. It follows that #/(/) =
αy(0) = 0 if j > s. We have shown that E(U') is contained in the image of the
homomorphism τ. Now let, for j = l,...,s,φj(t) be sections of E(Uf) such that
φj(O) = e/. Such sections exist, by definition of JSQ, for some neighborhood U'.
Then, the construction above gives

φj(t)=±aβ(t)eι(t).
/=i

The holomorphic matrix-valued function (%(0) is the unit matrix at t — 0 and
is thus invertible for t £ Uf, if the ball £/' is small enough. We conclude that
ij G E(U'), which completes the proof. D

Let us see how this applies to our situation, following [18]. For us S is either
of C[n\ C[n] x f), C[n] x G, and $£ is the corresponding sheaf of Lie algebras, which
we denoted S£^S£^S£Q^ respectively. The module V is the free graded 0-module
Ĵ ΛDΪ] ^ ^ χ h e key observation is that Gr (J£)j consists of the degree j part of (g 0
Cfί" 1 ])" 0 & for all sufficiently large j . Moreover Gr(F) = F canonically since V
is graded, and the action of elements of sufficiently high degrees in Gr(=Sf) on
Gr(Ύ) comes from the action of g 0 C [ ί - 1 ] on the factors V ".

The fact that Gr F/Gr ££ Gr V has only finitely many non-trivial homogeneous
components follows then from the fact that VA/t~Ng 0 C ^ " 1 ] is finite dimensional
for all positive integers N9 which is proved in [18] using Gabber's theorem.

Note Added in Proof. We recently realized that in fact the conjecture we stated in the Introduction
follows from the work of Etingof, Frenkel and Kirillov [7], and the Tsuchyia-Ueno-Yamada
factorization theorem [18]. Indeed, the authors of [7] show that the space of Weyl invariant theta
functions obeying the vanishing condition of Theorems 3.7,3.8 can be mapped isomorphically
to a suitable direct sum of spaces of conformal blocks on the sphere, which by [18] has the
dimension of the space of conformal blocks on elliptic curves. It thus follows that our inclusion
ih of conformal blocks into Weyl-invariant theta functions with vanishing condition is actually an
isomorphism, as conjectured.
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