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Abstract: For compact surfaces with one boundary component, and semisimple
gauge groups, we construct a closed gauge invariant 2-form on the space of flat
connections whose boundary holonomy lies in a fixed conjugacy class. This form
descends to the moduli space under the action of the full gauge group, and provides
an explicit description of a symplectic structure for this moduli space.

1. Introduction

We construct a natural gauge invariant 2-form on the space of all connections over
a compact surface with one boundary component, for semisimple gauge groups.
When restricted to the space of flat connections whose boundary holonomy lies in
a fixed conjugacy class, this 2-form is closed and descends to the moduli space
under the action of the full gauge group. We show that for a non-empty open set
of conjugacy classes, this gives a symplectic structure on the moduli space.

The moduli space of flat connections on a closed surface has been studied from
many viewpoints ([AB, BG, Go, Hi, Hu, HJ, J, JW1,2, Ka, KS1,2, Se2, We, Wil,2]). A
symplectic structure on the moduli space of flat connections with fixed boundary
holonomy conjugacy class has been discussed in [We] and is also mentioned in
[A]. Several works, including [A, BG, J, Wil], have investigated the closely related
issue of a symplectic structure on the moduli space of flat connections on a surface
with marked points.

The present paper uses results from [KS3], where a 2-form was constructed on
the moduli space of flat connections on a compact surface with boundary, under
the group of based gauge transformations. Ideas and techniques from [KS1] and
[KS2] are also used. An underlying theme is the study of certain naturally defined
differential forms on the moduli space of flat connections and their counterparts on
the infinite dimensional space of all connections.

The paper is organised as follows. In Sect. 2 the general setup is described and
the infinite dimensional space A of all connections is introduced, along with certain
(infinite dimensional) subsets A^1, A(Θ) and Afl(Θ), of interest. In general we
use Θ to denote a conjugacy class in the group G, and so we attach the symbol Θ
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to an object (a space or a form) which depends on a choice of conjugacy class for
the boundary holonomy. The various finite dimensional moduli spaces «M0, λΛ0(Θ\
M and M(Θ) are also defined here. The subscript "o" indicates that these moduli
spaces are obtained under the action of the based gauge group, consisting of gauge
transformations which are the identity at a fixed point o on the surface. We close
Sect. 2 by recalling the definition of the Atiyah-Bott symplectic form on A (which
we denote by Ω).

In Sect. 3 we establish smoothness of the moduli spaces for generic conjugacy
classes. We then introduce several modifications of the Atiyah-Bott symplectic form,
leading to a closed 2-form ΩΘ on the moduli space of interest, M(Θ) (where
appropriate we place a bar over a form on a quotient space to indicate that it
descends from the corresponding unbarred form on the covering space). In Sect.
4 we establish non-degeneracy of Ω@ for a non-empty open subset of conjugacy
classes in G. Finally, in Sect. 5 we identify a 2-form Ω@ on the infinite dimensional
space A which descends to the 2-form Q@ on the quotient AΊ(<9), and discuss its
properties.

2. Notation and Background

2.1. The surface Σ, and the loops A\,B\,...,Ag,Bg,C based at o e Σ. We will
work with a compact oriented two-dimensional manifold Σ, of genus g ^ 1,
which has connected boundary dΣ. We shall also use piecewise smooth loops
A\9B\,...,Ag,Bg,C : [0,1] —» Σ, all based at a point o G Σ, which generate the fun-

damental group πι(Σ, o), subject to the relation that CBgAgBgAg B\A\B\A\ is

homotopic to the constant loop at o, wherein we denote by X the reverse of any
path X. The loop C is of the form LC'L, where Cf is a simple loop around the
boundary dΣ and L is a path from o to the initial point of C'; the loops AI and
Bl are also of the form At = LA\L and Bt — LB\L. A detailed description of these
loops is given in [KS3: Sect. 2.1], but we shall not need such details here.

2.2. The group G, Lie algebra g, and metric ( , }. Let G be a compact connected
semisimple Lie group. The Lie algebra of G will be denoted g, and we will use an

Ad-invariant metric { , ) on g.

2.3. Conjugacy classes Θ. We shall denote by Θ a typical conjugacy class in G;
i.e. Θ — {xcx~l : x E G} for some c G G. Let Z(c) be the closed subgroup {x £
G : xcx~l = c}. The map G —> G : x \—> xcx~l induces an immersion G/Z(c) —» G :
x.Z(c) t-*xcx~l, which maps homeomorphicalΓy onto Θ. Thus Θ is a submanifold
of G, and the map G/Z(c) —> Θ : x Z(c) ι—» xcx~l is a diffeomorphism.

2.4. The spaces A and A?l\ the bundle P. Let π : P —» Σ be a principal G—bundle
over Σ, and A the affine space of all connections on P. A connection ω £ A is
flat if dω + ^[co, ω] = 0. We denote by A^1 the space of all flat connections in A.
The bundle P is trivial, and, by fixing a smooth section σ : Σ —»P, and identifying
ω £ A with the g-valued 1-form σ*ω on Σ, we can identify A with the space of
all 0-valued 1-forms on Σ. With this identification, A is actually a vector space,
and thus a tangent vector to A is simply an element of A; but we shall often use
the phrase 'tangent vector to A9 instead of 'element of A* to keep the conceptual
distinction clear.
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2.5. Holonomy A(κ ω); the spaces A(Θ) and A0(Θ\ We shall denote by A(κ ω)
the holonomy of a connection ω around a loop K on Σ based at o, taking σ(o) as
the initial point. That is, A(κ; ω) = A ( l ) if K : [0, 1] -» Σ and [0, 1] -> G : 1 1-» A(f)
solves the equation A'(f) h(ΐ)~l +ω(V(/)) =0 subject to the initial condition
A(0) = e (and, in this differential equation we are viewing ω as a 1-form on Σ as
explained in Sect. 2.4). The path t •-> A(f ) describes parallel transport by ω along
K. Among the main objects of interest to us will be the space A(Θ) = {ω £ A :
A(C ω) G <9}, where Θ is any conjugacy class in G. In particular we shall be
concerned with the subset Afl(Θ) = Afl Π A(Θ).

2.6. The groups Q and Q0 of gauge transformations. Let Q be the set of all gauge
transformations, i.e. G-equivariant diffeomorphisms φ : P —> P for which π o φ = π.
This is a group under composition. We shall also use the subgroup Q0 = {φ G Q :
φ(u) = u}, where u is any point on π~l(o). Identifying φ G Q with the function
φ : Σ — > G specified by 0(σ(jc)) = σ(x)0(z) for every * G Σ, the group Q may be
identified with the group (under pointwise multiplication) of all smooth functions
Σ — > G; then C/0 consists of those functions which take the value e (identity in G)
at o.

2.7. Action of Q on A; the moduli spaces M0, M0(Θ\ and M, M(Θ). The group
Q acts on A by pulling back connections: Q x A — > A : (φ, ω) t— > φ*ω; equiva-
lently, (φ, ω) ι— >• Ad((/>-1)co + φ~ldφ, in terms of functions and 1— forms on Σ. It
is readily verified that for any conjugacy class Θ, the action of Q carries A(Θ)
into itself, and also A^1 into itself. Thus we obtain the moduli spaces A^/G,
Afl(Θ)/Q0, and Afl(Θ)/G. Holonomies around the loops Aι9Bι9...,Ag9Bg,C form
the map

Afl -> G2g x G :ω

which induces identifications

AflIG0 - Mo = {(aι9bι9...,ag,bg,c)

G G2g x G .cb-la-lbgaQ...b\λa~λblal = e} , (2.1a)

Λfl(θ)/go ~ M0(θ) - {(flι,Aι,...,^,^,c) e >ίo : c e Θ) , (2.1b)

M = M0/G9 and ^/;(6))/^ ~ M(Θ) = M0(Θ)/G , (2.1c)

where, in (2.1c), the quotients by G are obtained from the conjugation action of G
on G29 x G.

2.8. The symplectic structure Ω on A. The infinite dimensional space A has a
natural symplectic structure, which we now describe (from [AB]). A tangent vector
to A may be identified with a ^-valued 1-form on Σ. Using the inner product on
g, we obtain from two 0-valued 1 -forms ζ and η on Σ an ordinary 2-form (ζ Λ η)
on Σ as follows:

( ζ A η } ( X , Y ) = ( ζ ( X ) , η ( Y ) ) - (ζ(Y),η(X)) .
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The 2-form Ω is specified as follows. If A and B are g-valued 1-forms on Σ
representing tangent vectors in A then

Ω(A,B) = f ( A / \ B ) . (2.2)
Σ

It is clear that Ω is invariant under the group Q of gauge transformations, and
that, being constant (independent of ω £ A\ it is closed. In fact Ω is a symplectic
form on A.

3. The 2-Form ΩΘ on M(Θ)

In this section we shall construct a 2-form ΩΘ on the moduli space Λί(Θ) by
modifying Ω. The 2-form Ω itself does not descend to the quotient Afl/G. In
[KS3], a term was added to Ω to obtain_a 2-form Ω\ (in [KS3] it was called Ωnew).
This 2-form Ω\ descends as a 2-form Ω\ on Afl/Q0 but not to A^/G, and is not
closed. We shall here introduce a modification of ΩI which is closed and which
descends to the moduli space A ̂ l(Θ)/G

3.1. The 2-forms Ωex and Ω\. We use from [KS3. Def. 3.1] the 2-form Ωex on
A defined in the following way. Recall, from Sect. 2.1, the loop C, part of which
goes around dΣ. Let A be a tangent vector to A (i.e. A is a g-valued 1-form on
Γ), and define

α : [0,1] -> g : t ̂  α(ί) = -fAd(h-l)A(Cf(s)) ds , (3.1)
o

where s »—> λy describes parallel transport along C. Thus α(ί) is the variation in ht

corresponding to the variation A in the connection ω (see Eq. (5.2) in this context).
Define β : [0,1] —> G similarly with respect to a tangent vector B to A. Then :

Ωac(A,B)=~ffεsl(Λ'(s),β'(t))dsdt, (3.2)
Z 0 0

where
1 if s ^ t

-l i f j > f .

The 2-form
Ω! = Ω + Ωec

was introduced in [KS3, Def. 3.2] (denoted there_by Ωnew), and it was shown ([KS3,
Proposition 3.3]) that it descends to a 2-form Ω\ on M.0 — A^1 /Q0

3.2. Smoothness of M0(Θ), and M(Θ}. Consider the map

Π : G2g+l -> G : (aι,bι,...,ag9bg,c) >-> cK , (3.3a)

where
K = b-]a-lbgag...b^a^b]al . (3.3b)

We will often view K as a mapping G2cJ —* G. Thus
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and
M0(Θ) = M0Γ] (G2g x 0) = (Π\G2g x Θ)~l(e) .

Let ( a \ A } 9 . . . , b c j B g 9 c C ) be tangent, at α = (h,c) = (a\,b\,.. .,ag,bg,c) G M0(Θ\
to a smooth path in G2ί7+1 lying on Π~l(e). It will be convenient to work with

(θLι,..., <^g+ι) = (aι,bι,aϊ\bϊ\...9ag,by,a-\bgl,c)e G4g x G;

then

«= (Oy)/e/,c) ,

where
•/ = {!, 2,5,6,. ..,4g-3,4g-2}. (3.4)

With this notation, we can compute:

Π(^ΓldΠy(alA^...,bgBy,cC) = Aά(K-l}C + K-ldKh(alA^...,bgBCJ). (3.5)

The derivative of K is easily computed as:

K-ldKh(aιA},...,bβBβ) = Σ Γ/7-Ί - /7+'2l #/ » (3-6)
j e j L J

where

and the vectors /// are specified by

^/ = //4i_3 and £/ — //4/-2 ,

and, for use in Sect. 3.3 below, we also set ///+2 = — Ad(α7)//7 for j G /.
We shall now show that for (9 through a generic c, A10(<9) is a smooth man-

ifold. By Sard's theorem, the regular values of K form an open dense subset D
of G. Since c ι— » c"1 and cι— ̂ Λ cjc"1, for any fixed Λ:, are diffeomorphisms of
G, it follows that D = D~l and that the conjugation action of G maps D onto
itself. The map K is surjective (this uses semisimplicity of G; see [Sel, Propo-
sition 3.6], for instance) and thus each K~l(c) C G2g is non-empty. View Π as
a map G2g x (9 -» G, where 0 is the conjugacy class of c. Then Eq. (3.5) im-
plies that, for any α = (h,c) e G2g x G, ker</(77|G26ί x 6>)* c kerdKj*. Here, and
always, we are taking (dK)* and (dΠ)* to be maps between ^ and ^2ί7, by means

of appropriate left-translations. Choosing c G D and any α = (Λ,c) G Π~l(e), it fol-
lows that Π\(G2g x Θ) is not critical at α. Thus Π\(G2g x Θ) is a submersion in
a neighborhood of (Π\G29 x Θ)~l(e), when (9 is the conjugacy class through any
point in the dense open set D C G. Consequently, for such (9, the level surface
(Π\G2g x Θ)~l(e) is a smooth submanifold of G2g x Θ. More generally, for any
Θ, if the genus g of the surface Σ is at least 2 then it may be shown (as in
Proposition IΠ.B of [KS1]) that M.0(Θ) has a non-empty open subset, its 'smooth
part,' consisting of points where Π\(G2g x (9) is a submersion. Henceforth we shall
assume that M0(Θ) is smooth, or that the results stated apply to the smooth part
ofM0(Θ).

Consider any α = (A,c) G (Π\G2g x Θ)'l(e\ Equations (3.5) and (3.6) imply
that X G ker(ί/77α|G

2^ x 6>)* if and only if fj+2X = fj-\X, for every j G J, and

Ad(^)^ G (c~lTcΘ)^. The relations fj+2X = fj-\X imply (see [KS1, Proposition
IV.C] or [Go]) that Aά(^)X =X for each /, and that therefore (since c - K~l)
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Aά(c)X =X. Observing that (c~lTcΘ)^ = ker[Ad(c) - 1] (see Remark 3.5(i) be-
low), we see that

ker(J/7α|G2^ x <9)* = kerdKj; .

Now let
yα : G -> G2g x G : x \ JCOOC

-1

and pr\ : G2g x G -» G2g the projection on the first factor. Then, as we have already
remarked (by [KS1: Proposition IV.C] and [Go]):

ker(/?rι o yα)' = kQτdK£ ,

wherein both derivatives are being viewed, by appropriate left-translations, to be
maps between 0 and g29. Suppose that Θ is chosen to be a conjugacy class through
a regular value of K. Combining the observations made above we see that then
ker y'x = {0}. Thus the isotropy groups of the action of G on M.0(Θ) are all discrete.
By the theory of transformation groups there is a non-empty open subset M0(Θ)f of
the manifold M.0(Θ) consisting of points of minimal isotropy, and the corresponding
subset M(Θ)f of M(Θ) is a smooth manifold of dimension

dim M(Θ) = dim (M0(Θ)) - dim G = (20) dim G + dim Θ - dim G - dim G

= (20 - 2) dim G + dim Θ .

If Θ is a generic conjugacy class then dim(<9) = dim G — dim Γ for any maximal
torus T in G.

The results we shall prove concerning 2-forms apply to A4(Θ)f, which we shall
refer to as the 'smooth part' of M.(Θ). The results may also be meaningful when
restricted to the subsets of Λ4(Θ) corresponding to other isotropy groups, but we
shall not investigate such issues in the present work.

3.3. The 2-forms Ω\ and A. The 2-form A on G2g is defined as follows (A was
obtained in [KS1] in describing the symplectic structure of the moduli space of
flat connections over compact oriented surfaces without boundary). Consider α =

(a\9b\9...9ag9bg) £ G2g, and vectors H^ — (A\ , . . . 9 B g ) G 02^, for / = 1,2. Then:

where the fl9 H\ are defined as in Sect. 3.2, and

( I ifi<k

ε,* = \ -1 if / > λ

I 0 if ί = k .

The map Π being a submersion, Π~l(e) = M>0 is a smooth submanifold_of
G2g+l. Using the projection pr\\ Π~l(e) -» G2g, we pull back A to a 2-form Ω\
on Π~l(e): _

Ω! - ^ηM . (3.8)

The 2-form Ω\ was introduced and studied in [KS3], where it was denoted Ωnew. It
is shown in [KS3, Proposition 3.3] that Ω\ corresponds to the 2-form Ω + Ωex on
A. In the present work we are interested mainly in the restriction of Ω\ to ΛΊ0(<9).
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3.4. The 2-form Ώ,0@ on M0(Θ). Recall that M0(Θ) C G2g x (9; a tangent vector
to M.0(Θ) at a point (a\,b\,...,ag,bg,c) — (h,c) is of the form (hH, cC), for some
Heg29anάCeg(H and C are restricted by dΠ(hH,cC) = 0 and by cC <Ξ TCΘ).
It will often be convenient to write this tangent vector simply as (H,C\ it being
understood from the context that this is a vector in T(h^M0(Θ\ We define the

2-form Ώσ?<9 on M0(Θ) by:

Ωo,0 - Ωi - \pr*θvθ , (3.9)

where />rΘ : ΛΊ0(<9) — » 0 is the projection on the second factor (recall that
M0(Θ) C G2g x Θ} and v# is the 2-form on Θ given by

(vθ)c(cX,cY) = (Xc, [Ad(c-') - Ad(c)]fc) (3.10)

with

Λf = [Ad(c~!)- l]lc, (3.10a)

7- [Ado?'1)- l]Ϋc. (3.1Gb)

Thus, for any c G 0, considering the map Φc : G — > (9 : jc ι— > xcx~l, we have

(Φc*vΘ)e(Jf,7) = (X, [Ad(c-')- Ad(c)] 7) . (3.10c)

It should be noted that Eq. (3.9) can be taken to specify ΩO^Q as a 2-form on
G2g x 0 (this will be used in the proof of Theorem 4.1).

3.5. Remarks, (i) Since G >-» 0 : c ι-» xcx"1 is a submersion (see Sect. 2.3), every
vector in TCΘ has the form c.[Ad(c~]) — \\X for some X ζ g. The right side of

Eq. (3.10) is independent of the specific choices of Xc, Yc satisfying (3.10a,b).
(ii) The 2-form v@ is not left-invariant, but, as shown in Lemma 3.7, it is

invariant under the conjugation action of G on Θ.
The following result explains the significance of the 2-form ΏO,Θ, and describes

the 2-form Ω@ on M(Θ) which is our principal object of interest.

3.6. Theorem. The 2-form Q0,@ is closed, gauge-invariant (i.e. invariant under the

conjugation action of G on M.0(Θ)\ and Ω0^(X, 7) vanishes when X or Y is
tangent to the orbit of the G— action on M0(Θ). Thus it induces a closed 2 -form,
which we denote ΩΘ, on the smooth part of M(Θ} — M0(Θ)/G.

The proof of Theorem 3.6 will appear at the end of this section.
We shall now present some results describing the significant features of the

2-form v0.

3.7. Lemma. Let c G Θ and consider the map Φc : G — >• Θ : x ι— > xcx~*. Then

(Φ*vθ)x(xX,XY) = (X, [Ad(c-1}- Ad(c)} Y) . (3.11)

Thus for any point c1 — xcx~l G Θ and for any Xcr, Yct G c'~ TcfΘ:

(vθ)c,(c'Xc,,c'Yc,) = (X', [Ad(c-1)- Ad(c)]Y'} , (3.11')
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whereX' — \Ad(c~l) — l] Ad(x~l)Xc/, and Y' is related to Yc/ similarly, the not-

ation [Ad(c~1) — l] Y signifying any element Z for which [Ad(c~1) — l]Z = Y.

Remark. Note that the expression on the right side of (3.117) is actually independent
of the choice of x satisfying c' = xcx~l.

Proof. By Remark 3.5(i) we can write

Xcι = [Ad(c~1)- \}XC, = Ad 00 [Ad (c"1)-

Ύc, = [Ad(c/-1)- 1]7C, - Ad(jc)[Ad(c- ])-

Then the right side of Eq. (3.11') equals

= (Xc,,[Ad(c'~l)-Ad(c')]Ϋc,)

= (vθ)c,(c'Xc,9cΎct).

This proves Eq. (3. II 7). Equation (3.11) is equivalent to Eq. (3. II 7 ). D

3.8. Lemma. The 2-form VQ is invariant under the conjugation action of G, and
thus pr^VQ is gauge invariant, where pr@: G2g x Θ — » Θ is the projection on the
second factor.

Proof. The map Φc : G — -» Θ : x »— > xcx~l commutes with the G-actions (by left
translation on G, and by conjugation on Θ). Thus, since Φ*VΘ is left-invariant, and
since Φc is a surjective submersion, it follows that v@ is invariant under conjugation.
The argument may be formulated more explicitly as follows. Conjugation by x
carries c G Θ to c' — xcx~l G (9, and any vector cXc G TCΘ to c'Ad(x)Xc G TcrΘ.
From Lemma 3.7, we then obtain

(vΘ)c,(cΆd(x)Xc,c'Ad(X)Yc) = (PcXc, [Ad(c-')- Ad(c)]pc7c)

where pc = [Ad(c-1) — l] , thus showing that v@ is conjugation-invariant. D

3.9. Proposition. The 2-form VΘ is smooth and

dvΘ = - λ θ , (3.12)

where λ is the left-invariant 3 -form on G specified on TeG by.

λ(A,B,C) = ([A,B],C) . (3.13)

Proof. Fix c G Θ. Consider the map:

Φc : G -* Θ : x ι-> xcx~} .

Recall Eq. (3.11):

(Φ*vθ)p(pX9pY) = (X, [Ad(c~l) - Ad(c)]7) , (3.14)
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where X, Y G g. Since Φ*v# is a smooth left-invariant 2-form on G, its derivative
is calculated as follows:

Furthermore, by computing dΦc and from the definition of / in Eq. (3.13), we
have:

•^-^Z). (3.15)

It is readily verified by computation (using Ad-invariance of the inner-product
( - , - )) that Eqs. (3.14a), (3.14) and (3.15) imply

d(Φ*cvΘ) = -Φ*λ . (3.16)

It follows from Eq. (3.14) that Φ*vΘ is : (i) smooth, (ii) invariant under right
translations by elements of Z(c), and (iii) vanishes on (pX,pY) if pX or pY is
in Tp(p.Z(c)]. Since the quotient map pc : G —» G/Z(c) is a submersion, there is
a 2-form VC

Θ on G/Z(c) such that

Φ*v<9 = p*v€
Θ .

Being a submersion, pc has smooth local sections. Applying s*, where s is one
such smooth local section, to the preceding equation we obtain VC

Θ = S*(Φ*VΘ).

Thus Vg, is smooth. The map Φc induces a diffeomorphism Φc : G/Z(c) —» Θ, i.e.

Φc ° PC = Φc Then:

p*vc

θ = Φ*VΘ = (Φc o PC)*VΘ = p*Φ*v0 .

Since /?c is a submersion, we conclude that VC

Θ = Φf%<9, and therefore v# =
1

(Φc )*V0 is smooth.
From Eq. (3.16) it now follows that

Φ*(dv<9 + λ) = 0 . (3.17)

Since Φc is a submersion onto <9, we conclude that ί/v© + λ\@ = 0. D

3.10. Lemma. IfX9Y G TOCM0(Θ\ forborne a G .M0(Θ)5 αnrf z/ Γ w tangent to
the G-orbit in M0(Θ) through α, then Ω0,Θ(X,Y) = 0.

Proof. From Eq. (3.9) we have:

Ω0^Ac)((/2//(1\cC°^ -(v0)c(cC(1),cC(2)),

(3.18)
Fix a point α = (A,c) = (a\9b\9...9ag9bg9c) G Λί0(Θ), and let

K = b^a^b(JafJ''' b^la^lbιaλ ,

viewed also as a map G2g -* G. The conjugation action of G is described by the map

Let pr\ : G2g x Θ —> G2g be the projection on G2y. Then calculation using
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Eq. (3.7) shows that ( for a detailed argument see Lemma IV.A in [KSI]):

, (3.19)

where C(1) is related to //(1) by the equation (see Eq. (3.5)):

(3.20)

(For Eq. (3.19) see Lemma IVA in [KSI]; note that, in comparison with the calcu-
lations in [KSI], we now must retain the term f^g in the calculation at every stage
- this factor was replaced by 1 in the proof in [KSI] since in that context K was
the identity element.)

Furthermore, if we write

C< 1)=[Ad(c- 1)-l]C 0 ),

then a simple calculation based on equation (3.19), and using cK = e, shows that:

Λ(hHtl\(pnoγΛyX) = l-(C(l\ [Ad(c~l) - Aά(c)]X) , (3.21)

Observing that the last component of y'^X is (y^X^g+i = [Ad(c-1) - l ] X , we
calculate from Eq. (3.10) and Eq. (3.21) that

A(hH(l\(pnoyo,yX) - l-(vΘ)c(cC(l\c(y',X}2g+λ) = 0 . D

Proof of Theorem 3.6. Recall M0(Θ) C G2g x Θ. Let prλ : M0(Θ) -> G2g and
pr0 : M0(Θ) — > Θ be the projections on the two components. As proven in [KS3],
the 2-form Λ, and hence the 2-fortn pr\A on M0(Θ\ is gauge invariant. Combined
with the gauge invariance of pr@v@ (Lemma 3.8), this proves that ΩO^Θ is gauge
invariant. Furthermore, as was proved in [KS3, Proposition 4.6],

d(prϊΛ) = ~pr*θλ9 (3.22)

Combined with the result of Proposition 3.9, this implies

dΩ0tθ = d(pr*Λ - -pr0VΘ) = --pr@λ - -(-pr@λ} = 0 .

Combining these results with Lemma 3.10, we deduce that Ω0^ induces a closed
2-form on Λ^ί(Θ). D

3.11. An alternative description of M(Θ) and ΩΘ. The moduli space ΛΊ(Θ) ~
A/l(Θ)/Q can be identified with a quotient of a subset of G29 in the following way.
Fix c G Θ, and recall the product-commutator K : G2g —> G : (aι,bι,...,ag,bg)*-+

b-la-lbQag b\la\λbλaλ. Then the map f : K~l(c~l) -^ G2g x Θ : h ^(h,c)
induces a bijection

f:K-l(c-l)/Z(c)*-+M(θ),
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where Z(c) = {x E G : xcx~l = x}. Since / is continuous, so is /; thus / is a
homeomorphism, being a continuous bίjection between compact Hausdorff spaces.
Moreover, since / is a smooth immersion, the map / is a diffeomorphism on
appropriate smooth subsets. Pulling back Ω@ to K~l(c~l)/Z(c), we obtain the 2-

form ΩΘ = f*Ω@. From Eq. (3.18) we see that ΩΘ is simply the 2-form induced
on K-l(c~l)/Z(c) by the 2-form A on A:"1^-1)-

4. Non-Degeneracy of Ω0

We approach the question of non-degeneracy of ΩQ using some of the ideas and
results from [KS2]. We prove that Ω@ is non-degenerate for all generic conjugacy
classes sufficiently close to, but distinct from, the identity in G (the degenerate case
Θ — {e} is essentially covered by the results in [KS2]).

4.1. Theorem. There is a non-empty open set U C G \ {e} such that the 2-form

Ω0 on the smooth part of Λ4(Θ) is non-degenerate for every conjugacy class Θ
containing a point of U.

Proof Consider the 2-form Ω0ί& at a point α E Π~l(e) C G2g x Θ, where Π :

G2g x Θ —> G : (a\,b\,.. .,ag,bgίc) i—» cb~la~lbgag . . .b^ λ a^ l b\a\. We assume that
Θ is such that ΛΊ0(<9) is smooth (as in Sect. 3.2).

Consider the orbit map of the G action on G2g : yα : G —> G2g : x H-» xctx~l.
Since Π o yα(G) = {e}, we have dUy_ o yf

y = 0, and so dΠ*(g) _L y'Λ(g). Here dΠΛ

and y'y, are being taken as maps between g and g2g, by means of appropriate left

translations. We write the tangent space T%(G2g x Θ) as an orthogonal sum:

T,(G2g x 0) = dΠl(g) 0 γ'Λ(g) Θ TΈM(θ) . (4.1)

Here we have written Π for Π\(G2g x Θ), and the third factor is the orthogonal
complement of dΠ*(g) Θ yά(0)> anί^ can ^e identified with the tangent space to
M(Θ) at α, where α^ M(Θ) corresponds to α e M0(Θ).

Recall from the note at the end of Sect. 3.4 that Ω0^ is meaningful as a 2-form

on G2g x Θ. This 2-form Ω0^ may be viewed as a linear map on α-1Γα (G19 x Θ)

by writing {yζΩ0}07) for Ω0^Θ(X, 7). Then Lemma 3.10 implies that Ω0;(9 maps

yfy(g) into dΠ*(g). Thus, we may write a matrix of Q0^ relative to an orthonormal
basis, consisting of orthonormal bases in the subspaces of the decomposition in
(4.1), in the 3 x 3 block form:

= \-Q*e 0 0 . (4.2)

Here Q@ is the restriction of Ω0,Θ to a map from y'x(g) to dΠ*(g). Hence,

)2 det(ΩΘ ) , (4.3 )

where the determinants (significant only up to multiplication by ±1) are calculated
using appropriate orthonormal bases. Therefore the non-degeneracy of ΩΘ will be
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implied by the non- vanishing of det(Ω0>0). This determinant can alternatively be
evaluated using the decomposition T^(G2g x (9) = T^G2g θ TCΘ, where α = (/z,c),
as follows; from Eqs. (3.8) and (3.9):

_ β (4.4)

Hence

det£>0?β - detΛΛdet(--vΘ) c . (4.5)

It has been shown in [KS2] that | det Λ Λ | = 1 when h G K~l(e). Since (det/L/O2

depends continuously on h, there is an open neighborhood U of e in G, such that
I detΛA | > 0 whenever heK~l(U).

As we have noted before (Remark 3.5(i)), c~lTcΘ = [Ad(c~ !)- l](0). By
"diagonalizing" Ad(c) on g, we obtain a block diagonal matrix for Ad(c), with
2 x 2 rotation matrices on the diagonal as follows:

7 0

0 Rφl

0 0

0 0

0

0

RΦ2

0

.. 0 \

... 0

.. 0

-. Ron,/

A d ( c ) = l :• n . (4.6)

Here R is the 2 x 2 rotation matrix

φ cos φ

Recall from Eqs. (3.10) and (3.10a,b) that:

= (PcX9 [Ad(c-!) - Ad(c)j PcY) , (4.8)

where pc = [Ad(c * ) — 1] ], these being inverses on the appropriate spaces.
In terms of the representation in Eq. (4.7), the matrix for v@ is thus again block

diagonal, consisting only of the m lower 2 x 2 blocks. From (4.8) and (4.6) it
follows that each 2 x 2 block for VQ has the form

/ D 1 \ — 1 / D — I D \f Ό—1 1 \ — 1 ( Ό I 1 \ί Ό 1 \ — ^
(Kφ—L) (Kφ —Kφ)(Kφ —l) = (Kφ + L )(Kφ — I )

Hence
h i ) w 1 +cos0, f . _ λ-ΓT = Π i——^ - (4 9)

When Θ is not a trivial conjugacy class {z}, with z in the center of G (this
center is discrete by semisimplicity), the number m is ^ 1. Furthermore, when
Θ is close enough to the identity, none of the cos φl is equal to — 1. Therefore,
det(— |v0) ΦO in this case.

Combining this result with the existence of U (see the discussion following Eq.
(4.5)), we deduce the existence of an open set U C G \ {e} for which d
whenever Θ contains a point in U. D
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5. The infinite dimensional setting

In this section, we will identify a 2-form ΩΘ on A(Θ) which induces the 2-form
Ω0 on the finite dimensional moduli space ΛΊ((9).

As was described in Sect. 2.4, the tangent space to A at a point ω G A may be
taken to be the space TωA of all smooth g-valued 1-forms on Σ. If ω G A? (Θ\

we take TωAfl(Θ) to be the set of all A G TωA for which A(m) = ^^|F=OJ for

every m G Σ, where ε ^—> ωε G *A^7(<9), with ε in a neighborhood of 0, is such that
(ε,m) —> ωε(w) is smooth.

Recall from Sect. 2.7 that the action of Q on A is given by (φ,ω)^->
Ad(φ~l)co + φ~ldφ, it follows by differentiation that the tangent space to the Q-
orbit through ω may be taken to be

Tω(G - ω) - {dH + [ω,//] : smooth H:Σ-*g}. (5.1)

Let us also note that if 11—> /Zf(ω) describes parallel transport (as described in
Sect. 2.5) by ω along a curve K : [0,1] —> Σ, and if ^ G TωA, then the variation
δAht(ω) in /^(ω) corresponding to the variation A in ω, is given by:

ht(ωΓlδAht(ω)ά= ht(ωΓl4~ ht(ω + εA) = - / Ad(h~l)A(κ'(s)) ds . (5.2)
dε ε=o o

When K is the loop C described in Sect. 2.1, Eq. (5.2) becomes (3.1) discussed
earlier.

Recall, from Eqs. (2.2) and (3.2), the 2-forms Ω and Ωex on A. Using the 2-
form -|v<9, as specified through Eqs. (3.10) and (3.10a,b), as a guide, we introduce
the 2-form Ωγ on A(Θ) by:

Ωv ω(A,B)= —(α(l), (Ad(c)- l)~*β(l)) + - ( β ( l ) , ( A d ( c ) - IΓVl)) , (5.3)

where c — /z(C co), C being the loop described in Sect. 2.1, and α, β are defined

as in Sect. 3.1. The terms involving (Ad(c)— l) are meaningful because α(l)
and β ( l ) represent variations of the holonomy h(C ω) when ω is varied in A(Θ)
(see Remark 3.5 and remarks in Sect. 3.1 in this context). More generally, by

setting (Ad(c) - I)"1 to be 0 on ker[Ad(c) - 1] = [(Ad(c) - l ) ( g ) ] ~ L , we con-
sider Ωv as a 2-form on A. In view of Eqs. (3.9) and the remarks in Sect. 3.3, we
set:

ΩΘ = Ω 4- Ωex + Ωv (5.4)

as a 2-form on A(Θ) : more precisely, the right side of Eq. (5.4) is a 2-form on
A, whose restriction to A(Θ) is ΩQ.

5.1. Proposition. Let A,B G T0)A
fl(Θ), where ω G Afl(Θ), and suppose that A G

Tω(G ω); then

Proof, Since A G Tω(Q - ω), Eq. (5.1) shows that A = dH + [ω,H] for some
smooth H : Σ — * g. A calculation carried out in [KS3, proof of Proposition 3.3]
shows that

(Ω + Ωex)(dH + [ω,H],B) = - {(l + Adc^l)H(0)9 )8(l)> , (5.5a)
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It is also shown in [KS3, Eq. (3.6)] that

α(l)= (1 -

Using this in Eq. (5.3) we have:

Ωv(dH 4- [ω,H],B) = ~ ̂ (l - Adc~l)H(0)9 (Adc -

1 {/?(!), (Adc - I)'1 (1 - Adc-l)H(0))

= - (H(Q)9 β ( l ) ) + - (β(\\

(5.5b)

Then from Eqs. (5.5a,b) and the definition of ΩQ in Eq. (5.4), we obtain:

D

One would like to verify the informal relation dΩ@ = 0, at least on
However, unlike the situation on A, we cannot work with constant vector fields on
A fl(Θ). This would necessitate computation of the Lie bracket of two non-constant
vector fields on A. The appropriate notion of Lie bracket here appears to be

[A,B]ω = (δAB)ω - (δBA)ω ,

where the δ's are directional derivatives. This observation is corroborated by a
calculation showing that

δ[A,B]hs = δAδBhs — δBδAhs ,

where s «— > hs describes parallel transport along any curve on Σ.
The 2-forms ΩQ and ΩQ : The 2-forms Ώ, Ωex, and Ωv are readily verified to

be gauge invariant, and so Ω@ is gauge invariant. Combining this with Proposition
5.1, we see that Ω@ corresponds to a 2-form on A ̂ l(Θ)/G ~M(Θ\ The definition
of ΩQ shows that_the corresponding 2-form on M.(Θ) is Ω@. This provides an
understanding of ΩΘ at the level of the infinite-dimensional space A ̂ l(Θ).
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