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Abstract: We use a path integral formulation of the Chern-Simons quantum field
theory in order to give a simple "semi-rigorous" proof of a recently conjectured
limitation on the l/K expansion of the Jones polynomial of a knot and its relation
to the Alexander polynomial. A combination of this limitation with the finite version
of the Poisson resummation allows us to derive a surgery formula for the contri-
bution of the trivial connection to Witten's invariant of rational homology spheres.
The 2-loop part of this formula coincides with Walker's surgery formula for the
Casson-Walker invariant. This proves a conjecture that the Casson-Walker invari-
ant is proportional to the 2-loop correction to the trivial connection contribution.
A contribution of the trivial connection to Witten's invariant of a manifold with
nontrivial rational homology is calculated for the case of Seifert manifolds.

1. Introduction

In his paper [1], Witten defined a topological invariant of a 3d manifold M with an
^-component link S£ inside it as a partition funciton of a quantum Chern-Simons
theory. Let us attach representations Vai, 1 ^ i'^ n of a simple Lie group G to the
components of S£ (in our notations αz are the highest weights shifted by p =
iΣ;,eΛ ^>^+ *s a s e t of positive roots of G). Then Witten's invariant is equal to
the path integral over all guage equivalence classes of G connection on M:

Zy. Λn(M,&\k) = f[@>Aμ]Qxp τScs Π T r α Pexp $Aμdxμ , (1.1)

V̂  ) ι=\ ' \L, J

here Aμ is a connection, Scs is its Chern-Simons action,

Scs = \ Tvεμvpfdx [AμdyAp + ^AyAp) , (1.2)
1 M \ $ J

1 Work supported in part by the National Science Foundation under Grants No. PHY-92 09978
and 9009850 and by the R. A. Welch Foundation.
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Tr is a trace in the fundamental representation (so that Ύrλ2 = 2 for long roots of
G), h is a Planck's constant:

ft=y. * e z . (1.3)

Trα/Pexp(^L Aμdxμ) are the traces of holonomies along the link components L;

taken in the representations Fα/. Witten showed that for a link in S3 his invariant
was proportional to the Jones polynomial of that link. In what follows we will refer
to Eq. (1.1) as the definition of the Jones polynomial and its normalization.

Witten derived a surgery algorithm for an exact calculation of the path integral
(1.1). We review it briefly in order to set our notations. Consider a manifold M with
a knot Jf inside it. Let us choose a basis of cycles on the boundary of its tubular
neighborhood Tub(JΓ). C\ is a cycle contractible through the tubular neighborhood
(i.e. C\ is the meridian of J f) . C2 is a cycle which has a unit intersection number
with C\ (C2 is defined only modulo C\). Cut out the tubular neighborhood Tub(JΓ)
and glue it back in such a way that the cycles pC\ + qC2 and rC\ + sC2 on the
boundary of the complement of X are identified with the cycles C\ and C2 on the
boundary of Tub(JΓ). As a result of this surgery, a new manifold M' is constructed.

The integer numbers p, q, r, s form a unimodular matrix

), ps-qr=\. (1.4)

The group SL(2,Έ) has a unitary representation in the space of aίrlne charac-
ters of G which is in fact a Hubert space of the Chern-Simons theory cor-
responding to T2 = <3Tub(JΓ). The basis vectors of this space |α, l)(α G AQ —
AWI(W x KΛR)\ walls, K = k + cv, cv is a dual Coxeter number of G,cv =N
for SU(N)) are the eigenstates of the holonomy operator along the cycle C\\

Pexp α, 1) = exp ( — α ) |α, 1) , (1.5)

here Aμ is an operator corresponding to the classical field Aμ. The matrix elements
of U(-P'g) represented in this basis are (for a simply laced group)

ϋ[p,;q) [i sign iπ
—-ά\mGΦ{U^ q ))

Vo\ΛR

[pa2 - 2α (Xw + + s(Kn + w(j?))2 (1.6)

here \A+\ is a number of positive roots in G, W is the Weyl group and
is the Rademacher function defined as follows:

Φ P r
q s

- I2s(s,q), (1.7)
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s(s,q) is a Dedekind sum:

The formula (1.6) was derived by L. Jeffrey [3] for G = SU(2):

x [ p a 2 - 2<x(2Kn + μ β ) + s ( 2 K n + μ β f ] , Λ S U { 2 ) : 1 £ a , β £ K - l .

(1.9)

According to Witten [1], the invariant of the manifold M' constructed by a
U(p,q) surgery on a knot Jf in a manifold M can be expressed throug the Jones
polynomial of that knot and the representation (1.8) of the surgery matrix:

Z(M';k) = eιΦ* Σ Zχ(M,Jf;k)ϋ[P;q) (1.10)

(recall that p is a shifted highest weight of the trivial representation). The phase φfτ

is a framing correction. If both invariants are reduced to canonical framing, then

here v is a self-linking number of Jf* defined as a linking number between C^ and

For a more general case when a surgery is performed on a link if in M Witten
concluded that

Z(Af';*) = *** Σ Z β l ^ ( M , ^ ; t ) ^ f f l ) . . L Γ ( ^ ^ . (1.12)

Reshetikhin and Turaev showed in [2] that Eq. (1.12) is invariant under Kirby
moves. Therefore they proved that Z(M k) is a topological invariant of the manifold
without invoking the path integral representation (1.1) which still lacks mathematical
rigor. They also established a general set of conditions on the components of the
r.h.s. of Eq. (1.12) which guarantee its topolocial invariance.

The disadvantage of Eqs. (1.10) and (1.12) is that they do not make the relation
between Witten's invariant and classical topological invariants of 3d manifolds quite
transparent (The Alexander polynomial was the only quantum invariant which had
a clear topological nature since it was originally constructed from the fundamental
group of the knot complement). A possible way to deal with this problem is to
consider a large k asymptotics of the path integral (1.1) by applying a stationary
phase approximation. The stationary phase points are flat connections. Therefore the
invariant is presented as a sum over connected pieces Jίc of the moduli space Jί
of flat connections on M:

Jfc

ί ί °° \
e xP I [Scs + ΣS^h"J , (1.13)cs
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here Scs is a Chern-Simons action of flat connections of Mc and S^ are the
quantum rc-loop corrections to the contribution of Jίc. The 1-loop correction is
a determinant of the quadratic form describing the small fluctuations of Scs(Λμ)
around a stationary phase point. Its major features were determined by Witten [1],
Freed and Gompf [4], and Jeffrey [3] (some further details were added in [5]):

(P-dim//c

1dim//(P-dim//

iS(c) (2πft)

(1.14)

here Hc is an isotropy group of Jίc (i.e. a subgroup of G which commutes with

the holonomies of connections Aμ

c) of Jίc), N^ is expressed [4] as

Nph=2Jc+ dim//c°+ dim//,1 + (1 + bι

M)άimG , (1.15)

Ic is a spectral flow of the operator L_ = *Z) + D * acting on 1- and 3-forms, D
being a covariant derivative, H® and H] are cohomologies of Z), and bι

M is the first
Betti number of M. ZR is a Reidemeister-Ray-Singer torsion. It was observed in
[3] that S/ZR defines a ratio of volume forms on J(c and Hc.

The higher loop corrections Si are calculated by Feynman rules. They are ex-
pressed as multiple integrals of the products of propagators taken over the manifolds
M and the link S£. Such representation might make the nature of invariants sic)

more transparent. Bar-Natan [6] and Kontsevich [7] studied the Feynman diagrams
related to the link. These diagrams produce Vassiliev invariants. In particular, Bar-
Natan observed that the 2-loop correction to the SU{2) invariant of the knot in S3

is proportional to the second derivative of its Alexander polynomial.

In their recent paper [8] Melvin and Morton conjectured2 a rather strict limitation
on the possible powers of α in the K~ι expansion of the SU(2) Jones polynomial
Zα(£3, Jf; k) as well as a relation between the dominant part of this expansion and
the Alexander polynomial which generalizes the result of [6].

The properties of Feynman diagrams related to the manifold were studied in
early papers [10,11] and then by Axelrod and Singer [12] and Kontsevich [13]. A
convergence of those diagrams was proven, however no multiloop diagrams were
explicitly calculated. An "experimental" approach to their study was initiated in
[4] and [3]. Freed and Gompf checked the 1-loop formula (1.14) by comparing it
numerically to the surgery formula (1.12) applied to some lens spaces and Seifert
homology spheres. L. Jeffrey transformed the surgery formula for lens spaces and
some mapping tori into the asymptotic form (1.13) thus obtaining all the loop
corrections for those manifolds. This program was further extended to Seifert man-
ifolds in [5]. It was observed there among other things that the 2-loop correction
to the contribution of the trivial connection was proportional to the Casson-Walker
invariant as calculated by C. Lescop [14].

In this paper we study the trivial connection contribution to Witten's invariant of
a knot, a link and a manifold. In Sect. 2 we prove the relation between the Jones and
Alexander polynomials of a knot (Proposition 2.1) conjectured in [8] by relating the

2 This conjecture was proven recently by D. Bar-Natan and S. Garoufalidis [9] at the level of
weight systems.
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former to the Reidemeister-Ray-Singer torsion of the knot complement. We also
generalize this result to the case of an arbitrary rational homology sphere (RHS).
In Sect. 3 we derive a knot surgery formula for the trivial connection contribution
to Witten's invariant of a RHS (Proposition 3.1). We show that at the 2-loop level
this formula coincides with Walker's formula [15] for Casson-Walker invariant. This
proves the relation between the 2-loop correction to the contribution of the trivial
connection and the Casson-Walker invariant (Proposition 3.2) conjectured in [5]. In
Sect. 4 we try to go beyond RHS by considering a Seifert manifold with nontrivial
rational homology. We derive a formula for the trivial connection contribution to
its Witten's invariant (Proposition 4.3) and compare its properties to the partition
function of a 2d gauge theory studied by Witten [16]. The results of Sect. 2 are
illustrated in the Appendix, where a large k asymptotics of the Jones polynomial of
a torus knot is calculated. The contributions of reducible and irreducible connections
in the knot complement are identified. Similarly to the results of [5], the contribution
of the irreducible connections appears to be 2-loop exact.

It should be emphasized that the derivation of the results of Sects. 2 and 3
involves the use of path integral. Therefore these results lack mathematical rigor.
The propositions which state them should be understood as "physical propositions."
At the same time, the calculations of Sect. 4 and the Appendix are perfectly rigorous.

2. The Jones Polynomial and the Reidemeister-Ray-Singer Torsion

We are going to study the Jones polynomial of a knot Jf in a rational homology
sphere M (i.e. bι

M = 0). We start with the case of M = S3. Then the SU(2) Jones
polynomial (in Witten's normalization (1.1)) can be expanded in K~ι:

Za{S3,JT;k)= Σ Cm,na
mK-n. (2.1)

Melvin and Morton [8] suggested3 the following.

Proposition 2.1. If the knot Cff is canonically framed {i.e. the linking number v
between the cycle C2 which determines the framing and Jf is zero), then

Cm,n = 0 if m > n. (2.2)

Moreover,

J l Λ (

)

n O S α g l , (2.3)
γ K AA(S3, JΓ; exp(2π/β))

here AA(S3,Jf;exp(2πίa)) is the Alexander polynomial of Jf normalized in such
a way that A(S3, unknot;exp(2πzα)) = \,AA{M, Jf exp(2πzα)) is real.

It was established by Milnor [17] and Turaev [18] that in this normalization AA is
related to the Reidemeister torsion of the knot complement:

AA(M, j f exp(2πw)) = r — 2 s m ( π α ) . (2.4)
y P V n τΛ(M\Tub(X);exp(2πzα)) ;

I am thankful to D. Bar-Natan and S. Garoufalidis for drawing my attention to the paper [8].
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Some simple quantum field theory arguments were used in [19] to show that the
Alexander polynomial was related by Eq. (2.4) to the Ray-Singer torsion of the
knot complement. Here we will apply the same arguments to the Jones polynomial
Z«(S\X k).

Consider the values of α of order K. We introduce a new variable

a = £ , 0 ̂  a ̂  1 . (2.5)

Let us split the path integral (1.1) for a knot Jf into an integral over the con-
nection Aμ inside the tubular neighborhood Tub(JΓ) and inside its complement
S3\ Tub(Jf) with certain boundary conditions on the boundary T2 = <9Tub(JΓ), as
well as an integral over these boundary conditions. According to [20], one pos-
sible set of boundary conditions requires that the guage fields A\ί2 on T2 should
belong to the Cartan subalgebra, the curvature F\2 should be zero and the integral
/j = <fc Aμdxμ should be fixed. In fact, it was established in [20] that in accor-
dance with Eq. (1.5), the path integral over connections on Tub(Jf) is proportional
to δ(I\ —2πia). Therefore the Jones polynomial Zα(S3, Jf k) is equal to the path
integral over connections on S3\Ύub(J^)

Za(S\ Jf; *) = f \βAμ\ exp (U'cλ (2-6)
[S3\Tub(Jf)j \ n /

taken with the boundary condition

Pexp ί §Aμdxμ J = exp(2π/α). (2.7)

The Chern-Simons action is modified [20] by the boundary term

h 2 , (2.8)
z τ2

which is necessary for the choice (2.7) of boundary conditions.
Let us calculate the path integral (2.6) by the stationary phase approximation

method (1.13). First of all, we look for stationary phase points, i.e. flat connections
satisfying the boundary condition (2.7). There is only one such connection for a <
ao (flo > 0 being a critical value depending on Jf) . This connection is reducible:
all the holonomies belong to the maximal torus U(l) C SU{2). For this connection
Scs — 0. Since the linking number v of C2 and Ctf is zero, the homology class of
C2 in S 3\Tub(Jf) is trivial. Therefore A2 = 0 and the boundary term in Eq. (2.8)
is also zero. Thus the whole classical Chern-Simons action S'cs is zero.

We will estimate the 1-loop correction (1.14) up to a phase factor exp (—jΛ/"ph).
The flat U(l) connection on S 3\Tub(Jf) satisfying Eq. (2.7) has no moduli, so
dimH* = 0. The isotropy group is Hc = C/(l), so Wo\Hc = 2y/lπ (recall that the
radius of C/(l) is Λ/2), while dim//c° = 1. The determinants in the 577(2) Ray-
Singer torsion %R split into three factors for three Lie algebra components of Aμ

which have the definite U{\) charge. The chargeless Cartan subalgebra (i.e. diago-
nal) component of Aμ contributes 1, while each of the two off-diagonal components
contribute the square root of the £/(l) torsion τR(S3\Ίub(Jf );exp(2πzα)). As a
result of all this and Eq. (2.4) we conclude that
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Proposition 2.2. The loop formula (1.13) for the Jones polynomial of a knot in
S3 can be presented in the form

rc3 ^ ^ ^ e xP ίz'Σ (τ) Sn+i(a)] , (2.9)A ( O , X e x p ( z π z α ) ) | _ n = 1 \ v A / J

are the higher loop corrections for the path integral (2.6), they depend
on the boundary holonomy exp(2π/α).

We will show later that e~ιN?h = 1.
The substitution (2.5) turns the r.h.s. of this equation into the expansion (2.1)

with limitations (2.2) and property (2.3). We also learn that the sum of the terms

comes from the rc-loop Feynman diagrams (including disconnected ones) in the knot
complement S 3 \Tub(Jf) .

Consider now a general RHS M with a knot J f inside it. This time there may
be many flat connections (both reducible and irreducible) with a given holonomy
(2.7) even if a is very small. Each of them will contribute to the stationary phase
approximation of the path integral (2.6) turning it into the sum (1.13). We will
concentrate on the reducible U{\) connections because their 1-loop contributions
can again be related to the Alexander polynomial of Jf.

Some changes have to be made to Eq. (2.9). Let b define the holonomy along
Cι for a reducible flat connection on M\Tub(jΓ):

Pexp ί §Λμdxμ J = exp(2π/Z?). (2.11)

The holonomies (2.7) and (2.11) are related by the fact that the homomorphism

i/i(STub(Jθ,:Z) -> //i(M\Tub(Jf ),Z) (2.12)

has a kernel. Let the cycle

Co = d{πi\C\ + w 2 C 2 ), d,m\,m2 £%, m^m-i - coprime (2.13)

be its generator. Then

Pexp ( §Aμdxμ ) = Qxp[2πid(mλa -h m2b)] = 1 , (2.14)

so that

b (mxa +-)\, neΈ, 0 < n < d . (2.15)
m2 V d) ~

If we smoothly reduce a to zero, then the flat connection on M\Tub(JΓ) will
transform into a flat connection on M. Let Scs,o be its Chern-Simons invariant.
Then according to [21] and Eq. (2.8), the Chern-Simons action of the original
connection is

) c s , 0 (2.16)
m2 m2bj
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In particular, if the flat connection on M at a = 0 is trivial, then Scs — 0 and n — 0,
so that

<^ = _ π 2 U V . (2.17)
m2

The Reidemeister-Ray-Singer torsion for the Cartan subalgebra part of Aμ is known
to be equal to oΐάH\(M,Έ). As for the off-diagonal Lie algebra componens of Aμ,
we can use again Eq. (2.4). However the argument of the torsion is related to the
holonomy along the generator of the TL part of H\(M\Tub(Jf),Έ). The holonomy
along the cycle C$ which has the unit intersection number with Co, is

Pexp I §Aμdxμ I = exp ( 2πi— ) . (2.18)

This cycle generates the dZ subgroup of Z, so the holonomy along the generator

of Z is exp [iπi-^y Combining all pieces together we get the following

Proposition 2.3. If' M is a RHS and Jf is a knot inside it, then the contribution
of the trivial connection to the Jones polynomial of 3f is given by the formula

mΊd

iπ ni\
( 2 l 9 )

We dropped the factor e~*NPh

9 we will show later that it is equal to 1.

Assuming that OL<^K (that is, α « l ) , we can present Zαtr)(M, jf k) in a
slightly different form by applying the stationary phase approximation directly to
the path integral (1.1) taken over connections on the whole manifold M\

, JΓ; *) = Z(tr)(M; k) exp in

2Kλ
(2.20)

In this formula Z ( t r )(M;£) is a contribution of the trivial connection to Witten's
invariant of M itself; it contains Feynman diagrams which are not connected to
the knot Jf. The function J(a,K) is a contribution of Feynman diagrams attached
to the knot, except for two factors that we separated out explicitly: the framing
factor exp [~ v(α2 — 1)] and the dimension of the representation dim Kα = α, which
appears when the trace of the holonomy is taken in Eq. (1.1). Note the relation
between the self-linking number of the knot v and the numbers m\,m2:

v = - ^ - . (2.21)

m2

The function J(oc,K) can be expanded in K~ι,

J(a,K)= £ Dm,na
mK~n. (2.22)
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The numbers Dmn are type n Vassiliev invariants. By comparing Eqs. (2.19) and
(2.20) we conclude that

Dmtn = 0 for m > n. (2.23)

Moreover, according to [6] Z)Q,O — 1? A),i — ̂ 1,1 — A,2 = 0? ^2,2 = ~^2,o? so
that

2 Λ

^ ^ . (2.24)

The value of 1)2,2 can be deduced by comparing Eqs. (2.19) and (2.20):

D2.2 = (2-25)

This relation was first obtained by Bar-Natan in [6].
The trivial connection contribution Z^r\M\k) can be expanded in asymptotic

series in K~ι. The leading 1-loop term is given by Eq. (1.14):

(2.26)

Comparing Eqs. (2.26), (2.20) and (2.19) we see that iVph = 0 and the term

g-f^ph c a n indeed be dropped from Eqs. (2.19) and (2.9).
All the formulas of this section can be easily generalized to the case of a general

simple Lie group G. Equation (2.19) transforms into

exp f - ^

π

The generalization of Eqs. (2.20) and (2.24) is

/, Jf Jfc) = Z ( t r )(M;£)exp - v ( α 2 - p 2)m (α J ( α , ^ ) , (2.28)

(2.29)

3. A Trivial Connection Contribution to Witten's Invariant

Suppose that a manifold M' is constructed by a f/(M) surgery on a knot X in
a manifold M. Then Witten's invariant of M' can be calculated by the surgery
formula (1.10). The large k limit of the r.h.s of this formula contains implicitly the
contributions of all flat connections on Mf. We will try to separate the contribution
of the trivial connection in the case when both M and M1 are rational homology
spheres.
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We start with the case of G = SU(2). Our main tool is the finite version of the
Poisson resummation formula. The Poisson resummation formula states that for any
function /(α) .

/ . (3.1)

Therefore we would like to extend the sum in Eq. (1.10) from \ -^ a ^ K — 1 to

Έ. First of all, since Ua{ is equal to zero at α = 0,^, we can add these points
to the range of summation. We can also double this range:

K 1 K

Σ - ~ Σ (3-2)
α=0 z α= -K+\

because the summand is even. Finally, we use a "regularization" formula,

/(α) = 2AΓ hmε2 Γ e π ε α / ( α ) , i f/(α + 2fiΓ) = / ( α ) . (3.3)

Thus we obtain a sum Σαez t o w m c n w e aPP^Y Eq. (3.1):

Z(M'\ k) = e/0fr^ lim ε2 ^ J^Jα e " ^ 2 exp(2πz7α)Zα(M, JΓ; A : ) ^ ' ^ . (3.4)
ε~*0 /6Z -oo

At this point we make the following assumption: the large k limit of the integral
over α in Eq. (3.4) is equal to the sum of the contributions of the special points α*
of the integrand, e.g. stationary phase points, breaks, poles, etc. Their contribution
depends on the local properties of the integrand. Apart from the regularization factor

e-πm ^ t n e s e t o f critical points for all I e Έ and their respective contributions
exhibit the same symmetries as the original summand of Eq. (l.lO), i.e. they are
even and have a period of 2K. The role of the factor e~πεoί to the leading power
in ε is to suppress the contribution of each critical point α* by a factor e~επ(χ*.

I 2

Therefore we can play Eq. (3.3) backwards: we drop K l im^oε 5 and e~πm while
limiting ourselves to the contribution of only those critical points which belong to
the fundamental domain

0 S α* S K. (3.5)

In other words,

Z(M :k) — eψfr) dae ZJM,C/f,k)U^ , (3.6)

here the symbol Γ °?oo means that we take only the contributions of the special

points (3.5). If α* = 0,iC, then its contribution to the integral of Eq. (3.6) carries
an extra boundary factor \.

We assume that each of the special points in the domain (3.5) corresponds to
one or several connected pieces M'c of the moduli space M' of flat connections on
M'. Consider a cycle in M' which corresponds to the cycle C2 on the boundary of
a tubular neighborhood of the knot JΓ in M. We will also call it C2. According to
Eq. (1.5), the holonomy of a flat connection related to a special point α* along C2
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is equal to exp(^α*), so the contribution of the trivial connection on M' should
come from the point α* = 0.

We now concentrate on the point α* = 0, so we are interested only in the values
α <C K. Therefore we can use a 1-loop approximation given by the formulas (1.13)
and (1.14) for the partition function Zα(M, JΓ;£). Some of the terms Z(//c\M,JΓ;k)
may have a special point α* = 0. We have to determine which of them do contribute
to Z&XM' k).

We are going to present some arguments why the contribution to Z^Xτ\M'\k)
may actually come only from Z%X\M,Jf;k). Suppose that a contribution of the
special point α* = 0 of a particular term Z^# r )(M, JΓ;&) to the r.h.s. of Eq. (3.6)
corresponds to the contribution Z^Xr\M'\k) of the trivial connection to the r.h.s of
that equation. Let us multiply the integrand of the path integral for Z(Mf;k) by an
"observable" factor

Θ(C,β) = TΓ/(Pexp (§AμdΛ (3.7)

for j?<Cl, thus turning it into Zβ(M',C;k). According to Eq. (1.14) in the 1-loop
approximation,

zf\M', C; k) = βZ&Xλf'; k). (3.8)

A surgery formula (3.6) can also work for Zβ(M\C;k) if we add the factor (3.7)
to Zα(M,Jf,£) transforming it into the Zxβ(M,(yf,C);k). According to Eq. (1.14),

the effect of the factor Θ(C,β) on Z\,MC\M, j f k) is (if we forget for a moment
about an integral over Jίc) to multiply it by a factor Ίxβ?exφ(§cA^ dxμ). This
factor turns into β if JMC is a trivial connection. This is not only a sufficient but
also a necessary condition if Jίc is a point.

If Jίc has a nonzero dimension and there is a nontrivial integral in Eq. (1.14),
then we may use the following reasoning. Characters form a basis in the space of
functions on the maximal torus of the Lie group (in our case it is U(l) C 51/(2)).
Therefore we can take a linear combination of observables with different values of
β so that they form a smooth slowly varying function on the space of conjugation
classes of holonomies Jyexp(§cAμdxμ), which is equal to 1 at identity. This new
observable is equal to 1 on Z^\M'\k) (that is, if we multiply the integrand of the
path integral for Z^γXM'\k) by that observable, then the value of the path integral
does not change at 1-loop). However different choices of the smooth function will
affect the value of the integral over Jic in Eq. (1.14). Therefore we conclude that
the contribution of the trivial connection on M' to Z(M'\k) comes only from the
contribution Z^r\M, JΓ k) of the trivial connection on M to Zα(M,JΓ;&).

According to Eq. (2.20), if M is a RHS, then α = 0 is not a singular point of
Z^XM, jf k). Therefore its only chance to contribute to the integral (3.6) is to be
a stationary phase point. According to Eqs. (1.9), (2.19) and (2.20), the relevant
part of the phase is

We see that α = 0 can indeed be a stationary phase point if we put n = 0 in
Eq. (1.9) and / = 0 in Eq. (3.6). Now it remains to substitute Eqs. (1.9) and (2.20)
into the r.h.s. of Eq. (3.6) and add an extra boundary factor | . Then we come to
the following
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Proposition 3.1. If M and M' are rational homology spheres and M' is constructed
by a rational surgery U^p'q) on a knot X in M, which has a self-linking number
v, then the trivial connection contribution to Witteή's invariants of M and M' are
related by the formula

fe (^ + v) a2] (3.10)

here the function J(ot,K) comes from Eq. (2.20), it is a Feynman diagram con-
tribution of the trivial connection to the Jones polynomial of Jf and satisfies the
properties (2.22)-(2.25).

The integral f -°S> in Eq. (3.5) should be calculated in the following way.
[**=0]

the preexponential factor ύn(ψ)(xJ(a,K) should be expanded in K~ι series with
the help of Eq. (2.22), then each term should be integrated separately with the
gaussian factor exp[^(— + v)α2].

According to this prescription a term Dmyna
mK~n in the expansion (2.22) con-

tributes up to the (n - y) t h order in the loop expansion of Z(tr)(M';&). Therefore
the limitation (2.23) leads to the following

Corollary 3.1. Only a finite number of Vassiliev's invariants participate in a
surgery formula for Z^r\Mf;k) at a given loop order.

In particular, we present explicit surgery formulas for the first two loop corrections.
In the notations of Eq. (1.13),

1 (p \ 1

1 ί D ^ X 1 > (3.12)

The first formula is consistent with Eq. (1.14) which predicts that for a RHS,

M9ΊL)γl . (3.13)

As for Eq. (3.12), it transforms into Walker's surgery formula [15] for Casson's
invariant of a RHS4 if we substitute

f = 3λcw(M) (3.14)

I am thankful to K. Walker for checking this.
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and recall the relation (2.25) between D2^ and the second derivative of the
Alexander polynomial. Thus we conclude that the conjecture of [5] can indeed
be extended to all RHS:

Proposition 3.2. If M is a rational homology sphere, then the 2-loop correction
to the contribution of the trivial connection to its Witten's invariant {defined by
Eq. (1.13)) is related to the Casson-Walker invariant according to Eq. (3.14).

In the case of a general simply laced Lie group G the surgery formula (3.10) takes
the form

^[2sign(g)]lJ+l 1 -f dimGsign(^

\w\e

x exp — pι \2s{p, q) - - + v + 3sign - + v
1 A \ \ q J \q

/ dOL π (α λt) . ( π
rί-l^ *)

[a*=0]

xJ(α,iS:)exp|^{f+ v K | , (3.15)

here | W \ is the number of elements in the Weyl group and the integral goes over
the Cartan subalgebra. The first two loop corrections are

A simple formula

2π 1

VolG [K oτdHι(M,Έ)

= 6p2λcw(M).

sign(<7)lM+l

J

xK
rankG

- +V e x P l - Ί
iπ

[Kq
(« k)

(3.16)

(3.17)

(3.18)

allows an easy check of an obvious generalization of relations (3.11) and (3.12).

4. Beyond the Rational Homology Spheres

If a manifold M(M') is not a RHS then the trivial connection is a point on
a connected piece Ji^Jί'^) of the moduli space of flat connections. Equations
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(2.20), (2.22) and (2.24) are no longer valid, since the 1-loop contribution of
to the partition function Zα(M, Jf A;) includes an integral

§Aμdxμ (4.1)

which may have singularities (e.g. poles or breaks) at α = 0.
We will determine the contribution of Jί'§ to Witten's invariant Z(M'\k) when

M' is a Seifert manifold Xg ί y-,... 5 ^ j . Xg can be produced by n surgeries

jj(Pι^ι) o n fibers of Sι x Σg;Σg is a g-handle Riemann surface. We will sketch the
calculation leaving the details for [22].

The Seifert manifold Xg(-^-,...,~-) can be constructed by an S surgery5 on a
special knot Jf belonging to the manifold M which is a connected sum of n lens
spaces L-Pnqι and 2g manifolds Sι x T2. The Jones polynomial of the knot Jf (in
Witten's normalization) is

(4.2)

We put n = 0 in Eq. (1.9) in order to extract the contribution of Jί$ to Za(M, C/f\ k):

'\Pj\ sm
n+2g-\ ( π_fa)

here

P-UPJ, τ = Σ^

, (4.3)

(4.4)
7=1 7=1-

The expression in the r.h.s. of Eq. (4.3) has a pole at α = 0 of order 2g — 1.
After substituting Eq. (4.3) into the surgery formula (1.10) and taking into ac-

count that U{p<q) = S and

πK-2
K 7=1

(4.5)

we get the following expression:

K

""*-> / in H Λ sign(P)e ί π ?V

sin

7=1

(4.6)
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We should be careful in converting it to the integral (3.6), because the points
α = 0,K are singular. We shift the argument of the singular factor:

sin
-n-2g+2 (^ (4.7)

Now we can add the points α = 0,K to the sum (4.6). The factor Π;=i s m ( f —)
makes the contribution to α = 0 equal to zero, while the contribution of α = K
does not affect the local behavior at α = 0. Thus the contribution of the piece
Jt'§ containing the trivial connection to Witten's invariant Z(Xg;k) is equal to the
contribution of the special point α* = 0 to the integral in the following expression:

X 6XP W ( f ~ 3sigΠ ( ? ' " 1 2 Σ S ^ > Λ )

x lim Σ I dot
sinn+ 9 (|:(α - is))

in H 2xexP(---α (4.8)

For / = 0, a = 0 is a stationary phase point. Similar to the previous section we
conclude that

Proposition 4.1. The contribution of the 1 = 0 term to the expression (4.8) for

Z{J^\Xg;K) is equal to

1 / 2

+00

x / Jαsin-"-2^2

sjgn(P) | s i g π ( f } in

π / π

Π s m ( IF'
7 = 1

H

/π //
(4.9)

Γo calculate the integral we have to expand the preexponential factor in Laurent
series in K~ι:

K Pj J 1 /π
(f (α - iε)) = P \K

1 (%: γo-^ 1 /π

* 1
(4.10)
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and then integrate each term separately with the help of the formula

which works for both positive and negative m.

Thus the contribution of / = 0 is expressed as an asymptotic series in K~ι:

(4.11)

iπ

2K H

x—> 1
x < 1 +

H

The stationary phase points of the integral in Eq. (4.8) for /φO are

The integration contour of steepest descent for these points is

ί H\Imα = sign ί — I (af — Reα).

(4.12)

(4.13)

(4.14)

The original integration contour Imα = 0 should be rotated into the coutour (4.14).
During this rotation it crosses the pole α = iε of the integrand of (4.8) if sign( j)

x α(

z

st) > 0. Therefore the pole contributes its residue to the integral (4.8) if

^ 1. (4.15)

The total contribution of /φO to Z{Jf^\Xg\k) is equal to

x 2πi lim

7 = 1

exP(~fkl>

(4.16)

The ε —-> 0 limit in this expression is nonsingular, so after changing the variable to
x = j |α, we conclude that
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Proposition 4.2. The contribution of /=f=0 terms to the expression (4.8) for

<χg;K) is equal to

x e x p W \ T ~3sign (~p

π e " - 1 sin"+2ί;~2 (x) '

residue is a polynomial P2g-2(K) in K of order 2g — 2 :

(4.18)

B2g_4

π p ( 2 g _ 2 ) Γ 2 π 2 p 2 ( 2 0 _ 4 ) ! + ' ( 4 1 9 )

2?Π are Bernoulli numbers.

The following statement summarizes our calculations:

Proposition 4.3. 77ze contribution of the connected piece JM'Q of the moduli space

of flat connections on a Seifert manifold Xg ί—,..., — J , which contains the

trivial connection, is given by a sum of two terms,

Z«\Xg k) = ήifiX,; k) + ή<\xg; k), (4.20)

which are expressed by Eqs. (4.17) and (4.9). The first term is a finite polynomial
in K, while the second one in an asymptotic series in K~\

There is an obvious similarity between these results and the calculations of
[16]. Technically it comes from the similarity between the sum (4.6) and the for-
mula for a partition function of the 2d gauge theory. The asymptotic expansion of
both expressions can be calculated with the help of the same technical tricks. The

connected piece M^ of the moduli space of flat connections on Xy (— , . . . ,^- j

which contains the trivial connection is isomorphic to the moduli space of trivial
connections on Σg. Therefore the polynomial P2g-2(K) may also be related to some
intersection numbers on Jί'§. Note however that the degree of this polynomial is
bigger than that of its counterpart in [16].

Similar to [16], the / = 0 contribution (4.10) should be related to the singularity
of Jί'Q at the trivial connection. It carries the fractional power of K, but it is an
asymptotic series rather than one term as in [16].



292 L. Rozansky

It remains to be determined if either of the second terms in Eqs. (4.12) or (4.14)
might be related to Casson-Walker invariant of Xg. According to C. Lescop [23]

this invariant should be zero for g ^ 2. Note that when g ^ 2, Z/φ0° (Xg;k) starts

dominating Zι=0° (Xg;k) in the large k limit.

5. Discussion

Even apart from invoking the path integral representation of Witten's invariant,
some arguments of Sects. 2 and 3 were not quite rigorous. A more careful study
of boundary conditions for Witten's invariant of manifolds with boundary and their
relation to the boundary conditions used in [24] to define the analytic torsion, is
needed. The formula (3.5) might also require a more rigorous proof. We take how-
ever some encouragement from the fact that it contains Walker's surgery formula
[15] for Casson-Walker invariant, whose correctness has been checked.

The further study of the loop expansion for Witten's invariant of manifolds with
boundaries may be a useful tool in understanding Vassiliev invariants. According
to formulas of Sect. 2, Vassiliev invariants are rearranged and related to Feynman
diagrams on a knot complement. In this approach the emphasis would be on cubic
vertices rather than on chords of the knot diagrams.

The appearance of the Casson-Walker invariant as a 2-loop correction to the
contribution of the trivial connection looks strange. After all, the Casson-Walker
invariant is rather a "number" of flat SU{2) connections than a local property of
Chern-Simons action near the trivial connection. However this fact has its precedent.
The 1-loop correction to the contribution of the trivial connection (as well as other con-
nections) to the U(\) Witten's invariant of a RHS M is proportional to the square
root of the Reidemeister-Ray-Singer torsion of M, which is known to be equal
to ord H\(M,Έ). On the other hand, the order of homology is equal to the number
of flat U(\) connections on M and may be called a [ / ( l ) Casson-Walker invariant.
Going further along this way we can expect to find the surgery formulas for Casson-
Walker invariants of other groups among the higher loop pieces of Eq. (3.15).
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L. Jeffrey, L. Kauffman, E. Klassen, H. Saleur, C. Taubes, O. Viro, K. Walker, and E. Witten for
discussing the various subjects of this work. I am especially thankful to D. Freed, N. Reshetikhin
and A. Vaintrob for many consultations and encouragement.
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Appendix

We illustrate some calculations of Sect. 2 by considering an example: a large k
asymptotics of the Jones polynomial of the type (m,n) torus knot jΓm,n in S3. The
\jK expansion of this polynomial has been worked out by H. Morton in [25], Here
we take a limit in which the ratio a — oc/K is kept constant as k —* oo. This allows
us to identify the contributions of various flat connections in the knot complement.
According to Proposition 2.2, the contribution of the reducible flat connection will
provide the usual l/K expansion of the Jones polynomial.
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The Jones polynomial Za(S3, Jfm^n;k) is expressed as a sum

293

7 (g3 n^ . £λ _ _

/?-αodd

m

f sin \^ μ)

m
. (A.I)

The sum over β can be converted into an integral with the help of the Poisson
resummation formula. In this particular case

/i-αodd

(A.2)

so that

(A.3)

To find the large k asymptotics of this expression we apply a stationary phase
approximation to the integral over β in the way similar to [5]. We start with the
contribution of the boundary points β — ±oc. They contribute the same amount due
to the symmetry of the integrand, so we simply double the contribution of the
point β = —α. After shifting the integration variable β —> β - α and some additional
transformations we get the following formula:

1 ιπ -m2-n2

2mn

in
—β{ε-mna-
A

ιπ
μιμ2Qxp —

~ 1 /^m«N1
> —

β

iπ

ε=0

μ2m)
m 2 ^i 2 — m2 — n2

2mn

^ «P ^ ^ + v ^ Σ/7 / J L 7Γ / € 2 ε — mna — Kl

iπ I ra2ft2 — m2 — ,

Kμχ,2=±\

sin (f «α) sin (f mά)

sin ^mna)

2mn

^ x ι'2πi ^~ y

Σ 77 T ^

ε=0

(A.4)
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If we substitute Eq. (2.5) then we find that in the 1-loop approximation,

l). (A.5)

This is a particular case of relation (2.9) if we recall the formula for the Alexander
polynomial of the torus knot,

, , % ,* xx sin(πmft<2)sm(π<2) . A ^ x

^ ( S 3 , X, n ; exp(2πiΛ» = —7 . / { . (A.6)
sin(πm<z)sm(π«α)

Thus we see that the contribution of the boundary points β — ±α is in fact the
contribution of the reducible flat connection in the knot complement satisfying the
boundary condition (2.7). The final expression of Eq. (A.4) is well defined not only
for α of order K (where it was derived) but also for α of order 1, where it becomes
a formula for Zα(£3, J f ^ A;).

The stationary phase points of the integral (A.3),

βf = -—, (A.7)
mn

also contribute to the Jones polynomial Z0C(S3,Xm^n;k). The contributions of the

points βy and β_} are equal and should be combined into

4Z V K μ{2=±\ -00

x exp ^ [^j52 + (μ l Λ + μ2m + Kl) + μιμ2-
1ψ(a2 - Y)+Kliμ

_̂_ ί|sign(m«)+zπ/
2 1 4sin (π-M sin iπι- )

iπ I m2n2 — m2 — n2

s j <A8)

The contributions zi(S3,Jfmin;k) come from the irreducible flat connections
in the knot complement satisfying Eq. (2.7). The classical exponent as well as the
ingredients of the 1-loop formula (1.14) can be easily identified in the expression
(A.8). Note that the whole expression is 2-loop exact similar to the results of [5].

A particular value of / may contribute to the integral (A.3) only if the point

/?(

z

st) lies within the integration range, that is

0 < / < mna. (A.9)

This condition cannot be satisfied for sufficiently small values of a. We see that the
first irreducible connection appears only for a > -—. New irreducible connections
emerge at critical values

afY) = —, 0 < / < mn. (A.10)
mn
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These are also the zeros of the Alexander polynomial (A.6). This is not surprising
(see e.g. [26,27]), since the zeros signal the presence of a zero mode in one of the
determinants comprising the Ray-Singer analytic torsion. This mode is responsible
for the "off-diagonal" deformation of the flat reducible connection.

The formula (A.4) becomes singular near the critical points (A. 10). However
in this case it only means that the calculation of the contribution of the boundary
points β = ±α has to be modified when one of the stationary phase points (A.7) is
close to the boundary. More specifically, the integral over β in Eq. (A.4) has to be
recalculated for / = /Q if

α = K —
mn mn . (A.11)

As a result, the combined contribution of the stationary phase points β^) and

boundary points ±α to Zα(S3,Xmy9k) is given by the formula

7(/0,±α).ς,3 ψ .

mn '

_ . /|sign(ww)+zπ/0

sm ( π ^ ) sin

iπ
x exp I — [ -mny"

ZA

m2n2 — m2 — n2

iπ fnΐn2 - m2 - n2

mn

sin i^~

mny

~ 1 (2πi

iπ
exp l -—mnyy

A
(A.12)

which demonstrates the smooth behavior oί Zy(S3, Jfm^n; k) in the vicinity of critical
points (A. 10).

The following proposition summarizes our calculations:

Proposition A.I. A large k asymptotics of the Jones polynomial of a type (m,n)
torus knot in the limit when a = ^ is kept fixed, contains the contribution of the
reducible connection (A.4) as well as the contributions of irreducible connections
(A.8) for the values of I satisfying the condition (A.9).

The formula (A.4) works also in the limit when α is fixed. It becomes a
contribution of the trivial connection and provides a usual l/K expansion of the
Jones polynomial Z^S3, Ctfm,n\k).

The expression (A.4) has a singular behavior at zeros of the Alexander poly-
nomial (A.6), however the whole Jones polynomial is smooth {see Eq. (A.12)).
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