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Abstract: A Milnor—Thurston type dynamical zeta function {;(Z) is associated with
a family of maps of the interval (—1,1). Changing the direction of time produces
a new zeta function (}(Z). These zeta functions satisfy a functional equation
{(Z)(eZ) = {o(Z) (where ¢ amounts to sign changes and, generically, {, = 1).
The functional equation has non-trivial implications for the analytic properties
of {1(Z).

0. Introduction

Milnor and Thurston [2] have shown how the zeta function {(z) counting the
periodic points of a piecewise monotone interval map f could be expressed in terms
of a kneading determinant D(z). The zeta function considered by Milnor and
Thurston is closely related to the Lefschetz zeta function {;, which we shall use
henceforth. Baladi and Ruelle [1] have shown how to replace z in the Milnor—
Thurston formula by Z = (zy,...,2zy), where the interval of definition of f is cut
into subintervals with different weights z;. We shall here use a further extension of
the formula (;(Z) = D(Z), where f is allowed to be multivalued. The inverse f !
of f is again multivalued piecewise monotone; it is associated with a zeta function
{;(Z). There is a natural relation (functional equation)

{(Z)(e2) = L(2),

where ¢ corresponds to some sign changes and {y(Z) counts “exceptional” orbits
(generically {o(Z) = 1). The analytic properties of {;(Z) are related, via the knead-
ing determinant D(Z), to the spectral properties of a transfer operator M z. The
spectral properties needed here are a refinement of those proved in Ruelle [4]. Using
these properties one shows that {; is meromorphic in a certain domain, with poles
only if 1 is an eigenvalue of .#. Let .4/, denote the transfer operator correspond-
ing to f~!; using the functional equation one shows that {; can vanish only if 1
is an eigenvalue of .#/.

In what follows we shall write { instead of {;, and use a family (i) of mono-
tone maps, instead of the multivalued map f~'. Warning: If the i, are the branches



64 D. Ruelle

of the inverse of a function f, the zeta function of [1] is here denoted by 1/{(¢Z),
and the kneading determinant by B(Z ) (see Sect. 1.10) rather than D(Z).

I wish to thank Viviane Baladi who carefully read the present paper, and sug-
gested a number of improvements which have been incorporated in the manuscript.

1. Definitions and Statement of Results

1.1. Lefschetz Numbers. We shall use the notation

+1 ifx>0 .
. +1 ifx=0
sgnx =< 0 ifx=0, delx = ) .
. 0 if x+0
-1 ifx<O

Let a < b, and ¥ : (a,b) — R be continuous and strictly monotone. We let ¢ = +1
if Y is increasing, —1 if  is decreasing, and we define the Lefschetz number

L()) by
L) = Li(¥) + Lo(¥) ,
1 _ _
Li(y) = 5 [sen(¥(a) — a) = sgn((5) - b)]
Lo(§) = 5 [del((a) — a) + del(j(5) — b)]

where / denotes the extension of ¥ by continuity to [a,b], so that lﬁ(a) =

limy o (@), Y(b) = limeyp Y(x).

Therefore, when ¢ = +1 we have
1 ify(a) = aand Y(b) < b
L) = o ) :
-1 if Y(a) < a and Yy(b) > b
when ¢ = —1 we have
Ly)=1 ifY(a) >a and Y(b) <b,

and in all other cases we have
Liy)=0.
Let Fixyy = {x € (a,b): Yx = x}. If Fix{ is finite and x € Fix ) we write
1. .
Lx,y) = 7 limsgn(y(y) — y) — limsgn(y(y) — »)| .
yix ylx

Lemma (Properties of Lgfschetz numbers). (a) If a C%-small perturbation IZ of W
shrinks the range (i.e., Y(a,b) C Y(a,b)) then it preserves the Lefschetz number

(ie., LOP) = L))
(b) Consider y~! defined on the open interval \J(a,b), then

L") =—eLi(y),
Lo(y™") = Lo(¥) .

(¢) Let Fixy be finite and (a)=*a, J(b)=b. Then
L) = > Lxy).

x€Fix ¢
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Part (a) of the lemma follows from the list given above of cases when L(y) =
1,—1, or 0. Part (b) results directly from the definitions. To prove (c) notice that
by assumption

L) = L) = 5 [sen(f(@) — @) ~ sga((b) ~ b)

1
=3 limsgn(Y(y) — ») — limsgn(y(y) — y)| = > Llxy).
yla yTo

x€Fx ¢

This concludes the proof. [

1.2. Zeta Functions. Let (Jy), (Ww); (60)s (Zw ) be families indexed by o € {1,...,N},
where J,, = (4, V) is a nonempty bounded interval of R; ¥, : J, — R is a strictly
monotone continuous map; &, = +1 or —1 depending on whether ¥, is increasing
or decreasing; and z, € €. We write Z = (2,,), ¢Z = (8pZw)-

It will be convenient to assume henceforth that all J, and ,J, are contained
in (—1,41); this is no restriction of generality since IR can be mapped homeo-
morphically on (—1,+1).

If m>21 and @ = (wy,...,0,) € {1,...,N}", we write |o|=m, &w)=
T o> Z(@) = [T} 20, We also let ¥, = J, — R be defined by ¥ = Y, ©
e lpwl , on

Jo =Ju, N xpajll (Jop, N 1//(;21(. . W;,:_,me ).
If J,+0, we write J, = (4w, Ve ).

The Lefschetz zeta function (associated with the data (Jy,),(Y,)) is the formal
power series

{Z) =exp Z L(l//w)Z(w)

where the sum is restricted to those w for which J, #0 (or one defines L(y/,) = 0
when J, = }). One can write a product formula for {(Z) (see Appendix A) and
check that {(Z), 1/{(Z) € Z][|z,...,znv]] (Lemma A.2). The zeta function associated
with the data (Y,J,,), (Y5, ') is

U(Z)=expd L(%, V(@) ,

o o]

and we write
U(2)="0(2).

We shall also need the function

Co(Z) = exp Z Lo(lﬁw)(l + &(w))Z(w)

=exp > [del(,, () — tte) + del(Y,(ve) — v0)1Z(®) .

o:gw)= 1[ |

1.3. Transfer Operators and Kneading Determinant. We introduce the (general-
ized) transfer operator M = Mz, the formal adjoint .#' = .#',, and the associated
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operator M such that
MP(x) = EZwa(x)é(wwx) 5
w

M D(x) =3z, )0 (X) DYy ')

:%Azjz—:%gz,

where y,, is the characteristic function of J,, and y/, the characteristic function of
YwJw. These operators act on the Banach space 4 of functions of bounded variation
R — €. It is also convenient to consider them as acting on the Banach space of
bounded functions R — € (with the uniform norm || - ||o).

We define R = R(Z), R’ = R'(Z) and R by
R = lim (|.#"™o)"",
m—oo
R = lim (||l |o)"™,
R=R(Z)=R(:2).

The submultiplicativity of m — || 4™, ||.#"™||o guarantees the existence of the
limits; R,R’ and R are in fact the spectral radii of .#,.#' and .4 acting on bounded
functions R — C. In general R=+R.

Let {ay,...,a.} contain the set of all endpoints u,, v, of the intervals J,, and
assume that a; < --- < g;. We define o; € 4 by

o;(x) = sgn(x — a,)

fori=1,...,L, and write

ngf")"L—llm > zo - (M o) (Yox)]

xla o . ugp=a,

(’”) _hm Sz [ o) (X))

x1a; ¢ ; Ve =a,

The elements of the L x L kneading matrix [D;;] are then defined by
> 1
Dy(Z) =6+ > 5 IDJ" = D7
m=1

(this is an extension of the concept of kneading matrix introduced by Milnor and
Thurston [2]). The determinant

D(Z) = det[Di}(Z)] € Q[z1,....zx]]

is called kneading determinant.
1.4.Theorem A. We have identically

{(2)=D(2).

This will be proved using a homotopy argument similar to the one used origi-
nally by Milnor and Thurston [2], and then by Baladi and Ruelle [1] in an analogous
situation. This means that (for fixed families (J,,), (&), (2, )) first the formula { = D
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is checked for a special choice y/° of . Then, for a suitable one-parameter family
(¥*) with ! =, one verifies that { and D are multiplied by the same factor
at each bifurcation. The proof presented here is similar to that of [1], but with
significant differences; we defer it to Appendix A. O

1.5.Theorem B. (a) The spectral radius of M, acting on B, is < max(R,ﬁ).
(b) The essential spectral radius of M is < R.

This is closely related to the results of Ruelle [4] but, again, with significant
differences. In Appendix B we give an improved version of the theorem of [4],
which will yield Theorem B as a special case. [J

1.6.Theorem C. (a) We have identically [(Z) - {(Z) = (o(Z).
(b) {(Z) is holomorphic when R(Z) < 1.
(¢) U(Z) is meromorphic when E(Z ) < 1, with poles only when 1 € spectrum ./ ;.
(d) {o(Z) is holomorphic when min{R(Z),R(Z)} < 1.

This is proved in Sect. 2, and some strengthening of the theorem is provided by
the four remarks below. O

1.7. Remark. Sharpening of Theorem C. Define
Boo ={A € B: {x: A(x)#0} is countable}

and let
= BB

be the quotient Banach space. If & € 4, we may define ®* by
1
P(x) == [lim &(y) + lim <P(y)] )
2 | ylx yix
We have then the properties

="+ Dy, Do € HBoo s
o (x) = {llm *(y) + 11m o*( y)}

If |[®]]|* denotes the norm of the class of @ in %/%B., = #* we have

@1l = (9%l -
Using || - ||# to denote the “sup norm up to a countable set” we see that || -
defined on %" and that

15 is

el = 11#*flo -

Since Boo is stable under ./, M we may, by gomg to the quotlent define operators

AP, A% on B*. We also use the notation 4%, .i* for M. 4 acting on bounded
fucntions up to a countable set. We may then write

R = R'(Z) = lim ([l.4*"5)"" ,

R# = R¥(Z) = lim (||.4*m|[§)"m .
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The point of the above definitions is that in defining the kneading matrix [D,;]
we may neglect countable sets, i.e., use the operator .#* instead of .#. As a
consequence of this we may replace M, 4,R,R by M*, /*,R¥ R in the statement
of Theorem C (b), (c), (d). We shall not give an explicit demonstration of the results
thus obtained, but note that they follow by inspection of the proofs in Appendix B
(#-version of Theorem B. 1) and Sect.2. The basic fact is that the continuous
linear functionals on # defined by @ — lim,,, lim,y, @(x) yield continuous linear
functionals on %" (while @ — ®(a) is not defined on %*).

The set Z, = X, U Yy, With X, = {Ug, 0 |©] = m}, Vi = {x: Y (x) = Yo (x)
with |@| = |0'| = m and &(w’') = —¢(w)} is finite. Given x ¢ Z, there is 6 > 0 such
that for each bounded @ we may construct @, with ||®.llo = ||Plo, and P(Yy) =
&(@)P(Ypy) when |y —x| < d and |w| = m. We have then

(M7, PNy) = (M7D)y) if|y—x| <0,

hence

a7 05 < 47" lg
hence by symmetry

e = 1wzl
and therefore

RYeZ) = RN2).

Since R(Z) < R(Z) wé also have

R*(Z) < min{R(Z),R(¢Z)} .

Notice that Theorem B(b) can also be sharpened as follows: the essential spec-
tral radius of M is < R*. To prove this it suffices to find K, of finite rank such
that

limsup ||.#™ — K,||'/" < R¥ . (%)

m-—0o0

We write as above @ = ¢ + &, so that

19"]l2 = I[@)" and [Poclls < [|D]ls -

Let x be the characteristic function of |J,{¥,uwVyle} Wwith |o| =m.
The map E: P+ y® is of finite rank, and so is K], = .#™E. Note that
when y ¢ U, {Volw, Yoo} and ¥ = P¥*, we have (M'™P)(y) = (M"™P)*(y). We
may now write

Var( " — K.,)Poo = Var M™ (Do — 1Poo) =23 | M (Do — 1Poo )(x)]

=2sup D V)M (Poo — 1Poo)I(x)
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(where the sup is over ¥ such that ||¥|o = 1 and ¥ = ¥#)

= 2sup

LHMENY)  (Poo — 1 Poc)(P)
y

S () - (Poo — 1 Poo (V)
y

= 2sup

S Y ol| Do)l 5 -
In conclusion if ¢ > 0 we have

(™ — K)ol p < const(RF + )" || |5 .

By the proof of Theorem B (#-version) there is K7, of finite rank on %" such that
|| — KA < const(R¥ + &) .

We choose K, of finite rank on # such that K,, induces K? on %" and
K ® = (K, ®)". There is also K,/ of finite rank such that

MMD* — K" = (™D
Therefore
M"D* — K, & — KD = (" — K, D)
and
™ = Koy — K@ |l = (|4 — K@ < const(R¥ + )" || @] .

Defining now K, @ = (K,, + K.))®* + K/ &, we obtain
(4™ = Kn)®|l 4 < const(R¥ + &)"[| @] 5,

and therefore () holds.

One can also show that the spectral radius of M* is > R* (this will not
be used).

If & € %, we have

2 P(x) - (A" P)(x)

X

Var A" =25 (M"P)x)| =2 sup
x v Pllo=1

=2sup | S (A"P)y) - B(p)| £ LMo - Var
¥

y

so that the spectral radius of M 7| B is < ﬁ(sZ ). In particular .#; and /%§ have
the same eigenvalues 4 with the same multiplicity when |A| > max(R(Z),R(¢Z)).

1.8. Remark. Further properties of (. The proof of Lemma 2.4 below shows that if
{o(Z) =0 and E#(Z) < 1, then 1 belongs to the spectrum of 4 z|Bo, O M .7 B oo .
Similarly, if {o(Z) = 0 and R*(Z) < 1, then 1 belongs to the spectrum of M. 7| B
or M yz|Bos.
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The following condition is generically satisfied.
Condition G. For all m =2 1 and @ = (wy,...,w,) with &(w) = 1, we have
l/;wuwl Fu, if quwl is defined ,
l/;a,vwl *Uy, if lﬁwvm] is defined .

It is clear from the definition of {q that if Condition G holds, then {;, = 1 identically.

1.9. Remark. Poles of D(zZ). Let Z be fixed. The function z — D(zZ) is mero-

morphic when |z|§#(2) < 1, and clearly can have a pole at A~! only if 4 is an
eigenvalue of /" = M%. Let

9 ={z: |z| < R¥Z)"" and z~" is not an eigenvalue of .#,7|Bso} .
In particular (see the end of Remark 1.7),
{z: |zl <RZ) "} c 9.

We shall show that the function z — D(zZ) does not vanish in 9, and has a
pole of order m at A=! precisely if A is an eigenvalue of order m of M*.
The proof will be in several steps.

(i) Let us define
A={ay,..,ayU{Y,'a: o] =21, 1 <i <L},
A" = {[®] € B": the derivative of ® is an atomic measure carried by A} .

Then the generalized eigenspace of M* corresponding to any eigenvalue ). with
|A| > R#(Z) is contained in .

We may extend the linear operator .#; from bounded functions to measures by
letting

(Mzp)dx) = 3 zoxolX) - (4 ' 1)(dx)
(where > 'u is the image of u by Y !). We shall write

(¥, 1) = [u(dx)¥(x)

if ¥ is a continuous function. If @ is of bounded variation, we denote by 09 its
derivative, which is a bounded measure. (If @ € %, then 0@ = 0. Therefore 0P
only depends on the class [®] € %*.) We also let 2 be the projection on measures
u such that |u|(4) =0 (i.e., P “erases” the mass carried by 4). If X : R — {0,1}
is 0 on {ay,...,ar} and 1 elsewhere, we have

POM7zP =X Mz P0D .
When [.#®] = 2[®] (mod %) we have thus
(P, P0®) = A" (Y, POMY®) = L""(V, (X Mz)"PID)
= AT((MTX Y, POD) .
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If 2] > R¥(Z), the right-hand side must vanish, so that 209 = 0, i.e., (@] € #.
By induction we see that if [(# — A)¥®] =0, ie., if [#] is in the generalized
eigenspace of .#* corresponding to 1, we have [®] € 4%. [

(ii) Let ™' € @ and suppose that (with o; defined in Sect. 1.3)
(1-2"rahHe=o0,
(A= 1"utyy; =a; forj=1,...,L.

Then if
L
(1= 2" 7)o (Q + 3 c,yj>
j=1
has no mass at ay,...,a; we have Q =0 and ¢y =---=c; =0.
Let us write

CD:ECI‘(X]', W:Q-cmjyj

Then (1 — A~'.#%)¥ = &; in particular #%5¥ = ¥ (mod #%) which implies
¥ € %' as we have seen in (i). Furthermore (1 — 27 !.#,7)0%¥ has no mass outside
of ay,...,ay, so that by assumption

(1 =27, 2)0¥ =0.
Since ¥ € %, this is equivalent to
(A= )¥ =0

with ¥ € P such that ‘T’(x) = (0¥)({x}), and the assumption A1~ € & implies

¥ =0, ie., 0¥ =0, i.e., ¥ =constant. Therefore @ tends to the constant ¥ at
400, but since P(—o0) = —P(c0), we obtain ¥ = 0. Therefore & =0, so that
¢y =--=c¢; =0, and finally also Q =0. O

(iii) If A=' € @ and A is not an eigenvalue of M*, then D(J~'Z)+0.
We may write y; =(1—A"'#*)"'a; and define &= cjo,, ¥ =(1—
A=Y y)"1@ =" cjy;. Suppose there is a linear relation
ZCJ'DU'(AA.—IZ) =0
between the columns of (Dj;), ie.,
1. 1.
ci+=lim Y ATz, Px) — - lim Y A7z, P(Yux) =0.
2 xlai o ug=a, 2 x4 o vp=a,
This may be rewritten as
Bi(®) + Bi(A™ ol ;W) — correction = 0,

where the correction corresponds to those terms i% limy 4, 2712, Y (Y,x) such that
a;eJ,. Equivalently we may write

mass at @; of (0@ + 0A™ 'MW — A7 M z0P) =0
or
mass at a; of (0¥ — A~ ' M ,z0%)=0.

In view of (ii) we have then ¢; = --- = ¢; = 0. Therefore D(A~'Z)+0. O
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(iv) If 2" € @ and A is a simple eigenvalue of M*, then A~ is a simple pole
of zw D(zZ).

Let Q40 be chosen such that (1 — A~L.#Z%)Q = 0.

First, we show that «,...,0; cannot all be in the range of (1 — A~L.%).
Otherwise let yi,...,7y, be such that

(11— }u_lﬂ#)’y/’ =ay
for j=1,...,L. In view of (ii) the L-dimensional vectors
mass at {aj,...,a;} of (I — i_lﬂgz)éyj
are linearly independent. Therefore we may take cj,...,c; such that
mass at {aj,...,a.} of (1—A""M,7)0 (Q + }:cjyj) =0.

Using again (ii) yields € = 0 contrary to assumption.
Let us replace o;,...,0; by independent linear combinations @,,...,9P; and
write,
¥,(z)=(-z4") "0, ,

1
Vi(z) = 3 mass at @, of (0¥; —z.M;70¥;),
so that
D(zZ) = det(¥,(z)) .
Since we have shown that «;,...,a; are not all in the range of (1 — A~L.#%*)~!, we
may assume that ¥(z) ~ (1 —z4)~'Q for z near A=, while ¥Yy(2),..., ¥1(z) are

holomorphic at A~'. To prove that A~! is a simple pole of z — D(zZ), it suffices
now to show that the vectors

mass at {aj,...,a;} of (1 —A7'#,2)0Q
and
mass at {ay,...,a;} of (1 — /1“1%62)6‘1’]-
for j =2,...,L are linearly independent. This again results from (ii). O

V) If 271 € @ and A is an eigenvalue of order m of J*, then A~ is a pole
of order m of z+— D(zZ).

By extending the index set for @ from {1,...,N} to {1,...,N*} we can obtain
small perturbations .#** of .4* and 9* of & such that / is replaced by m simple
eigenvalues A},..., Ay contained in a disk B;-1(¢) C 2 NZ* with small & The
corresponding D*(zZ) has simple poles and no zero near A~!. Since D*(zZ) tends
to D(zZ) away from poles it follows that D(zZ) has a pole of order m at A~!. [

1.10. Remark. Zeros of 5(22 ). Let
9" ={z: |z| < 13""(2)_1 and z7! is not an eigenvalue of M7\ Boo OF Mez| B}
In particular (see the end of Remark 1.7)

{z: |2z| < min{ﬁ(Z)_l,ﬁ(eZ)“l}} c 9.

Denote by D the kneading determinant associated with A (so that D= Z). Then,
the function z — D(zZ) is holomorphic in Z* and has a zero of order m at /7"
precisely if ) is an eigenvalue of order m of M* (or equivalently ).
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In view of Remark 1.8, the zeros of D(zZ) are the same as the poles of D(zZ),
with the same multiplicity. It suffices therefore to apply Remark 1.9. (Since (1 —
A7Vl 7)| B is invertible when A~! € 2*, the multiplicity of 1 is the same as an
eigenvalue of .#/* or #.) [

The function z — D(zZ) in @* is the natural generalization of the kneading
determinant considered by Milnor and Thurston [2], and also in [1].

2. Proof of Theorem C

The proof results from the four lemmas below.

2.1. Lemma. We have identically
UDUZ) = (2) .
Using the definitions we obtain
- 1
UZ)(Z) = exp Y- — [L(Yw) + LY, De(@)]Z(@)

o]
= exp Zﬁ[lzl(ww) + LYy e(@) + Lo(Yo) + Lo(Yy, e(@)]Z(@)

1
= exp Zmlo(l//w)(l + &(w))Z(w) = {o(Z) ,
which proves the lemma. [J
2.2. Lemma. D;;(Z) is holomorphic when R(Z) < 1.

Suppose that R(Zp) < 1, and let R(Zp) < ¢ < 1. We may then choose M such
that
[l o < €.

Therefore, for some 6 > 0, we have
Yo < & if |Z -2 < 6.

The polynominals Z +— Dg.")i thus satisfy

IDSF| < cem i |Z—Zol < 6, m = 0

for some C > 0. This implies that D;;(Z) is holomorphic for |Z — Zy| < o, i.e.,
D, (Z) is holomorphic when R(Z) < 1. [

2.3. Lemma. D;(Z) is meromorphic when ﬁ(Z) < 1, with poles only when
1 € spectrum .4 7.

Suppose that ﬁ(Zo) < 1. We may choose ¢ such that E(ZO) < ¢ <1 and no
eigenvalue of .4z, has modulus ¢ (cf. Theorem B(b)). There is then §p > 0 such

that, for |Z — Zy| < 89, we have §(Z) < ¢ and the circle S = {4: [i| = ¢} is dis-
joint from the spectrum of .# ;. We then define the projection

1 di

- 2mi S A— %Z '

Py
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Therefore P; commutes with .# 7, and 1 — P is finite dimensional. We may choose
M such that
[Pz, % || < M.

For some ¢ € (0,00) we also have
Pzt | < &M if|Z-2Z| <6,
hence, for some C > 0,
|Pz A7 || < CE" if |Z—2Zy] <0, m =2 0.
Therefore the functions

im Yz, - [(P2(1 = Mz) o)) (Yox)] s

xlai g Up=a,

lim 3z, -« [(Pz(1 — Mz) o) (Yox)]

x14i ¢ : vy =a;

are holomorphic for |Z — Z;| < 6. The functions

lim Yz - [((1=Pz)(1 = 7)™ o) ()] s

X ot ug=a,

im 3 zo - (1= Pz)(1 =l z)™ o) )(Wx)]

xTa, ' vy=a,

are meromorphic for |Z — Zy| < 4, and in fact holomorphic if 1 ¢ spectrum ..

In conclusion D;j(Z) is meromorphic when ﬁ(Z) < 1 and holomorphic unless
1 € spectrum #;. [

2.4. Lemma. ((Z) is holomorphic when min {R(Z), R(Z )} < 1.

Let A ={a)—, a1+,...,a,—a,+}. If E = a;+ € 4, we write |{| = a;, sign{ = +.
For {,n €4, m = 1, we define Téﬂm) to be the sum of the Z(w) over all
o = (w1,...,wy) such that

(a) e(w) =sign{ - signy,

(b) either |{| = u,, and signl =+,
or |{| =ve,, and signé=—,
(c) l/;w1 |€| is in the (open) interval of definition
Of Y, 0+ 0 Yoy, and Yy, © - 0 Yy (1) = In] -
Denote by T = T(Z) the matrix with elements

Tey = ZTcgyn)'

m=1
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We shall now prove that

s lz|(a|’)[d el t0) = to) + del(f (1) = v0)]
1
:Z;E T€1§2T§2§3"'chn-lcfananl : )

Consider the symbol (,¢), where o = (wy,...,wy,) satisfies gw) =1, and
e=+1. We write (w,¢) ~ (@,¢') if @ = (wy,...,0n,w1,...,w;_1) is a circular
permutation of @ and ¢’ = e¢) - - - ¢—1. To a nonvanishing term del(n/;w(u,,,) — Uy ) OF
del(&w(v,,,) — U, ) We associate the pair (w,+) or (@, —) respectively. The left-hand
side of the formula () may thus be rewritten as

> —Z(w)

(w,¢) ‘(Dl
where the sum " is restricted in an obvious manner. Equivalently one can sum
over equivalence classes [(w,¢)] for the relation ~, so that the above sum is

« card[(w, €)]
[(@, £)] o]

Z(ow) .

The classes [(w,¢)] appearing in the sum correspond to “extended orbits” of
the form

X, wlx,...,(lﬁwm0-~01//w1)'x=x,

where Y denotes as usual the extension of i by continuity to the closure of the
interval of definition. Consider the values k(i) (with i = /,...,n) of k such that
Il =k <mand (Y, , 0+ 0y ) x is an endpoint u,, or v,, of J, . We let
k(1) < k(2) < -+ < k(n) and call ®V,..., @™ the pieces of @ such that o)) =
(15> Dy, ) €tc. We have thus Z(w) = Z(@V) - -- Z(0™).

By construction, among the » circular permutations of {1,2,...,n} generated by
1 —>2—---—n—1, there are n(w,¢) = |w|/card[(w, ¢)] which leave

(él?w(l))a (62,0)(2))7 s 7(€naw(n))

fixed, hence the number of equivalence classes of permutations is n/n(w,¢). The
sum written above is thus
%k n

1
— —-Z(a)(”)‘ . 'Z(w(”))
[(w, £)] n(w,z) n

—Z Z &Hé <2C3 . T'fn_lfananl

n N <L
proving (x). Therefore

lo(2) = exp—i—Z trT"—exptr( log(1 — T)) = det(1 — T(Z2))~".

Given ¢ > 0, let y, be the characteristic function of (||, |#|+¢) when signn=+,
of (|n] — &, |n|) when signy = —. Also write x — ¢ when sign¢ - (x —|¢]) | 0, and
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let 3" .. be the sum over those w such that u, + oruv,— is {. Then one checks

that
2 (T = 2>:1 lim lim Y7 z [ 25 (ho(x))] -

n=1 £e—0 x—¢ w- ¢

Therefore det(1 — T(Z))~" is Eolomorphic when R(Z) < 1. By symmetry, {o(Z) is
holomorphic when min(R(Z),R(Z)) < 1, proving the lemma.
Write now x,(x) = del(x — |n|) and

1
(MmN = z(//’;*‘ .07,

then we have _
T = 3 2" ) s 1 1 IED)

w:é
with the sign+ = ¢, sign¢ - signy. Therefore T¢, is a holomorphic function of Z

when R#(Z) < 1 and 1 is not an eigenvalue of .4 7| B O M 7| Boo. This justifies
Remark 1.8. O

Appendix A. Proof of Theorem A

Let ¢, = +1 for = 1,...,N. Fixing (J,) and (&, ), let P be the space of families
¥ = (Y») such that each y,: J, — (—1,1) is continuous and strictly increasing if
€y, = +1, or strictly decreasing if &, = —1. We denote by C"(J,,) the space of C”
functions on the closure J,, of J,, and write

P' = {./;: () extends to () € D C'(Jw) ,
and the derivatives l/;wvanish onJ u,\Jw} R

P = {i) € P': the W, are polynomials} .

We use the topology of P, P! induced by &C°(J,,),dC'(J,). In particular PP is
dense in P,P!.
For finite M we define

Fy = {y: Fixy,, is finite when |o| < M},
Py = {2 ), (tte) F e and ¥, (v,) F0,, When |0 £ M and J, 0} .

Equivalently we may define Py, as the set of those y such that tﬁw(uwl) (if defined)
is uy,, and Y, (vy, ) (if defined) is +v,,, when o] £ M. We also write

Foo=(\Fu»  Poo=(\Pu .
M M

Note that Py, is open in P.
A.l. Lemma. If y € Fyy N Py and || £ M, we have

L(Y) = E L(x, Vo) -

x€FiX Yo

This follows from part (c) of the lemma of Sect. 1.1. [
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Let |o| be the class of @ under circular permutations, and say that [w] is prime
if w is not the periodic repetition of n copies of a sequence @’ with |0'| < |o|.
Then we have the product formula

()= 11 Gu2),
[@] prime
where

x 1
Gy(2) =exp 3. - LWL)Z(@)'

The following possibilities exist

0) elw) = £1, L{y) = 0, then G,(Z) = 1,

1) o) = +1, L(Y) = -1, then G(Z) = 1-Z(w),

2) ew) = +1, Ly) = 1, then Gi(Z) = (1 — Z(w))_l S
(3) «w) = =1, LlwoVs) = 1, then Gui(Z) = (1-Z(w)™",
4) ew) = -1, LWYwoYy) = —1, then G(Z) = 1+ Z(w).

A2, Lemma. {(Z) and 1/{(Z) € Z|z1,...,zn]. If Sp41 is the ideal of elements of
order =2 M 4+ 1 in Q[[zy,...,z5], then {(Z) (mod Jy,11) is locally constant on Py,.

This follows from the product formula given above and the definition of Py,.00
A3. Lemma. If s satisfies Y,J,, > a; for o =1,...,N, we have
(=D=1.

Clearly Y € Foo N Po. In fact Fixy, = (0 for all w, hence {(Z) = 1.
In the present situation .#” =0 for m > 1. We have thus

Dij =0, + 4,
1
4, = E Z 2o — Z Za| >
o up=a, O vy=a;

i.e., the kneading matrix [D,;] is the sum of the unit matrix [J;,] and a matrix of
rank < 1. Therefore

1
Dzdet[ij]=1+ZAi:1+§ (Zzw_zza)> =1,

which concludes the proof. [J

A.4. Lemma. LeE Jn, 5D correspond to J,,{,D when z/; replaces . Given M = 1,
we assume that \ is sufficiently close to \ in P (in particular J,, = J,)), and that

'-70) D) Ja» ‘/;ij C ijw k) (1)
me‘//ij:@ijwn&ij=@ (2)

Jfor lo| £ M. Then N
{(Z2)=UZ) (modJy+1),
D(Z)=D(Z) (modJu+1).
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Furthermore, if ) )
Vo (o) #U(te), V(o) + Y0 (00) 3)
for || £ M, we may assume that

‘//a)(uw)’ l//a)(vw) ¢ {ala cee aaL}
when |o| < M (in particular J € Py).

First note that if J,, = 0, then J,, = 0 (because (1) gives ¥, J C Yoo = 0). If
Jo» %0, the set J, is close to J, and the set lzij is close to Y,Jy; then (2) and the
inclusions (1) imply that L(l/;w) = L(Yy) for |w| < M (the argument is the same as
for part (a) of the lemma in Sect. 1.1: check the list of cases when L(y,) =1, —1,
or 0). This implies {(Z) = {(Z) (mod Jpr41).

Suppose that u,, = u,, = a,. When tZ — 1, then

V(@) = (ar) ,
and the inclusion (1) implies that the above limit is reached on the same side as
the limit -
ltbtl)(x) - l//a)(ai)
when x | a;. Therefore (for l/; close to V)
B = per
and similarly
By = ol

This means that _
Drj = Dlj (mOd 3M+1) >

hence .
D(Z) = D(Z) (mod Jp+1) -

The last statement of the lemma follows from the fact that the numbers

W () = V(W) Wip(0) = V(00|
are in an arbitrarily small interval (0,0). O

A.5.  Proof of the Theorem. 1t will suffice to prove Theorem A (mod Jy41) for
all integers M = 1. We fix M for the rest of the argument.

For small 6 > 0, let the homeomorphism @, : (e, Vy) — (Uy, + 0,0, — 0) be
the identity on [u, + 20,v, — 20] and a contraction on (u,u, + 20) and (v, —
28,v,). We define Y, = Y, 0 @, for w = 1,...,N. Writing

o= (0,...,0n), o =(w,...,0n_1),

we may assume that the length of J,, Ny Jy is = a > 0 whenever |o| < 2M
and J, 0. If ¢ is sufficiently small we may also assume that the length of J,, N
Wardy is = a > 0 whenever |w| £ 2M and J,=0. If § is sufficiently small we

may also assume that the length of Ji,, N YuJ, is = b= £. Note that

'ijw = 'zwm(me N ‘Zw’ jw’) .
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Assuming now that 26 < b, we see by induction on || that

ijw C 'pa)Jw .

Writing w(k) = (wy,...,w) we also see (by induction on k, and assuming ¢ small

enough) that N
Vo) Jo C Vo) Jo -
In particular Jw is defined on J,, i.e.,
Jp Do .

The condition (1) of Lemma A4 is thus satisfied when |w| < 2M. Writing
(w1,..., O, O01,...,0,) = 20, We have

Jo N l//a)Ja) = ‘//wJ2w .

Therefore (2) for |w| £ M follows from the implication hyJtre =0 =
ngj 20 = 0 (which follows from (1)). By induction on m we see that (3) also
holds.

We may now approximate i in P° by ' € PP while respecting the conditions
(1),(2), and (3). Lemma A.4 thus shows that, to prove Theorem A, it suffices to
prove that

({(Z)=D'(Z) (modJp1),

where (!(Z) and D!(Z) are constructed with ! € PP such that

Vo), Uh(ve) d{ar,..., a1}

for o] = M.

Let ° € PP be defined as in Lemma A.3, and ¥/ = (1 — A)y° + Ay'. By
definition, Y* = (y/,...,y4) is an N-tuple of polynomials, none of which is affine
[1/7;) is non-constant, with derivatives vanishing at u,, v, ]; in particular y* € Fo.
Note that the functions (x,4) + 1 (x), ¥/, are polynomials, and extend therefore
naturally to R?. Until further notice we shall use these extended definitions. The
polynomials 4 — /7 (a;) — a, (defined for all @ = (w1,...,0n) With 1 Em =M
and i,j € {1,...,L}) may be assumed not to vanish at A = 0, 1. Therefore there is
a finite set 4 C (0,1) of values of 4 such that

vi(a) = a

fqr some i, j, and @. If {* and D* denote { and D computed with ¥, we see that
{* (mod Jps+1) remains constant in each interval of [0, 1]\ A [see Lemma A.2] and
the same is true for D*(mod Jr41) [because the Dg-")i are constant].

In view of Lemma A.3, in order to prove Theorem A it suffices to show that ¢
and D* are multiplied by the same factor (mod J;;,;) whenever A crosses a point
of A.

The changes of sign of the W/ (a,) — a; when / crosses an element of A may
be complicated. We shall make them simpler by modifying (y/*) to obtain a family
(%) with nonlinear dependence on A.

Let us assume that (x, 1) — y*(x), defined on R2, is C°° close to (x, 1) — Y(x),

for w =1,...,N, and construct > =y’ o---oy’ . In particular the functions
) ‘om o p
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A %’;;(a,-) —a; are C* close to the polynomials A+ Wh(a,) — a, and may be
assumed not to vanish at 4 =0,1. Let A be the set of all 1€ (0,1) for which
Nt’},(a,-) = q, for some i,j, and some @ with |w| < M. Then card A is bounded by
the sum (over i,j,w) of the degrees of the polynomials A+ y(a,) — a;, hence

uniformly in (J)') for (x])‘) in a suitable C* neighborhood of (*). We shall use
the uniformity of this bound in a moment.

Given Ay € A we construct an oriented graph I' as follows. The set of vertices
of I' is

X ={¢ e R: there exist = (wy,...,w,) With 1 Em =M, i,j€{1,...,L}
and k € {0,...,m} such that WOO 1// a,-ét//’oo 0 E=aq;}.

0, Wk 41

The set of arrows is
{(Gw): 1S w <N, £€X and Y€ X} .

The arrow (&, w) starts at ¢ and goes to n = %}0 &; there may thus be several arrows
¢ = n. An arrow (£, w): ¢ = 5 may be removed from the graph corresponding to
Ap by a C* small change of (x, y) — Y/(x) near (£, 4o). Repeating this operation,

we can arrange that () is replaced by (/) such that the graph corresponding
to Ao consists of a simple arc a, = £ = 5 = --- = a; (where a; may be equal to
a;)) and &m,... ¢{a;,...,ar}. This means that there are unique i,/j, and w* with

|@*| £ M such that t,b .(a;) = a, and 1,[/ #0110 %‘Sa, d{ay,...,a.} for k < |w*|.
l ~

By a small change of (1//’) near 1 = Ay we may further achieve that Fix s’ is finite
When o] £ M, and that the fixed points are not degenerate (1 e., the derivative of
l,b at £ € F1x1// is #+1). Note that the families (¥*) and (lp’) coincide outside
of a small neighborhood of Ag; to obtain A from A we have replaced Ay by a finite
set {40, 4, ...}

We may now start again the above process with a new element o of A~(being

careful to leave (%) unchanged). Since the cardinality of the sets 4,4,... is
uniformly bounded, after a finite number of steps the family (y*) is replaced by
(¥*) with the following properties.

(a) P* € P!, (x,1) — PH(x) is C®, and P° =y°, ¥' =y
(b) For A outside of a finite set A*,
‘Pf;,(a,)#a,
ifi,je{l,....,.L} and lo| = M.
(¢) If A € A* there are unique i,j € {1,...,L} and o* with |0*| < M such that

'IIL;Z)*(ai) = aj 5

and ‘I’;'* 0.0 ‘I”z*a,- ¢{ai,...,ar} if k < |o*].

(d) If L€ A*, and |o| £ M, then Fix V. is finite and the fixed points
¢ € Fix ¥ are nondegenerate ie, (V5 (£)=|=1
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To prove the theorem it suffices therefore to check (under the conditions
(a),(b),(c),(d)) that the zeta function { and the kneading determinant D asso-
ciated with (¥*) are multiplied by the same factor (mod Js¢1) when A crosses a
point of A*. This is done in the following lemma. O

We return now to the standard notation where V), is defined only on J,, and l/;w
is the extension of i, by continuity to the closure J,; similarly for g, .

A.6. Lemma. Let y € P' be such that there are unique i,j € {1,...,L} and »*
with |o*| £ M such that

Yo+ (ai) = a;

and (/;w; 0---0 z/;wl*a, d{ay,...,ar} if k < |o*|. We further assume that whenever
|w| £ M the set Fixy,, is finite and consists of nondegenerate fixed points &, i.e.,

Yo(O)*+1.
Then if W=, Y= are sufficiently close to  in P! and such that y_.(a,) > a;,
wx(a;) < a; we have

{7/~ =D7/D~ (modJp41),

where Cz , D < denote {,D computed from 2

We first observe that {” /(< = D> /D< =1 (mod J+1) unless a; is one of the
endpoints Ugyt OF gy of Jw;«. Using the symmetry x — —x of IR we see that it
suffices to consider the situation where Ut = Q. In this case we claim that we
have (mod Jp/+1)

(7 =<, D> = D< if j+i,
F=0-(-Z(o*)', D> =D< - (1-Z(w*))™" if j=i.

We first discuss the easy proof of the formulas for the zeta function. If j=i,
then { (mod J),41) is locally constant at y (Lemma A.2), hence { = (<.

Let j = i. We have {j,«a; = a;. The point @; bifurcates into an attracting fixed
point for Y., absent for Y. (see the figure). Apart from the periodic orbit thus
created, the periodic orbits for W, ™,/ < correspond to each other, with the same
weight, up to order = M + 1, if > and ¥ < are sufficiently close to  in P'.
Therefore

7 =00 - Zw")™!
as announced.

Graph of . The graph of . (resp. ) is obtained by pushing the graph of
Yo+ upwards (resp. downwards).
We consider now the changes for D. Let 6D denote the jump of D from <

to > and similarly for 6Dy,.... We have 5Df,':')_ = 0, hence

1 & 1
0Dy = 3 32 DL = 5 3 Hm (A7 ")) = ()" ) )]

mz1 *la

1
=5Z(@") 3 fim [(( A Y o ) (Y gex) = (A=)t ) (e )]

n=0 *idi
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by (z)
‘} * diagonal
gw”) = +1
> I
) = -1
Fig. 1.

with obvious notation. Let @ denote a function which is locally constant on IR
outside of {ay,...,a.}, like y, or oy. If |0*| + |@] £ M we have

llff (@ oYy oYy )x) = yfi} (@Y, )x),
lin (2 0 45 0 Y )(w) = lim (@0 Y3 )w) = lim (2 0.45)x)
when < and > are sufficiently close to ¥ in P'. Therefore (mod Jp/11)
oDy = Z(o" )Eo% [ fin (M Yo o) = lim (M ' )(x)] = Z(0")Dj; .

If i%j, we have D = Dj. Therefore in 6[Dy] the i and j* line are propor-
tional, giving 0D =0, i.e.,, DS =D~
If i = j, we have
D> —D< = 6D = Z(w*)D” ,

hence
D> =D~ - (1-Z(o*))™!

as announced. [

Appendix B. Generalized Transfer Operators

As before, 4 denotes the Banach space of functions @ : R — C of bounded vari-
ation. We use on 4 the norm Var defined by

Var & = lim ||®(a0)| + 3 |9(a,) — Bai_1)| + [D(an) | .
i=1

where the limit is taken over finite sets {aq,...,a,} (With a9 < a; < -+ < ay)
ordered by inclusion.
We also write

B ={P € A: {x: ®(x)=+0} is countable}
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and let || - ||* denote the quotient norm on %" = %/%.,. We have then
[@]]* = var'e,

where Var” is defined like Var, but with {ao,...,a,} ranging over the finite subsets
of a generic dense set R. By this we mean that the closure of R is R, and that R
is disjoint from any countable set given in advance. (For the definition of Var*®,
the set to avoid is that of discontinuities of @.) Using Var” it is easy to implement
Remark 1.7, and obtain a #-version of Theorem B.1 below.

We let 2 be a countable set and for each w € 2 we suppose that

Ay, 1s an interval of R (not necessarily open or closed).

Vo : A, — R is continuous and strictly monotone (i.e. ¥,: A, — Yy is a
homeomorphism).

w . Ayp — € has bounded variation. We also assume that

V=73 Varg, < .
weR

[In order to define Var ¢, we extend ¢, to be 0 on R\A,,.]
We write &, = +1 if i, is increasing, —1 if V), is decreasing [we make an
arbitrary choice if A, is reduced to one point or empty].

On the Banach space % we define the operators .# and A such that

MBx) =T o) D(ox)
MB(x) =3 e0Pully )P ).

[We let 0o(x)P(Yx) = 0 if x ¢ A,, and o, (Y x)P(Y'x) = 0 if x ¢ Yy A,.] The
operators ./ and ./ are bounded. If we denote by ||M|| the norm of the operator M
acting on % (with the Var norm) and by ||M||o the norm of the operator M acting
on bounded function (with the uniform norm || - ||o) we have

[t \l, N[0 ||, A Nlo, A Nlo < V.

We write
R = lim (||.#™|o)"™ ,
m—o0

R= lim (|l.dm]0)'"

The submultlphcatlwty of m s ||.™|o, ||ﬂm||0 guarantees the existence of the
limits; R and R are in fact the spectral radii of .7, Va acting on bounded functions
X — C. In general R=*R.

B.1. Theorem.' (a) The spectral radius of M acting on B is < max(R,]AE)
and = R R

(b) The essential spectral radius of M is < R.

(c) If ¢ = 0 for all w, the spectral radius of M is = R. If furthermore

R <R, then R is an eigenvalue of M, and there is a corresponding eigenfunction
&p = 0.

! This is an improved version of the theorem of [4].
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Note that .#, # play symmetric roles: .# may be replaced by A in the theorem
if R,R are interchanged.

It will be convenient to assume that all A, and y,4, are contained in
(—1,+1). This can be achieved by the embedding R — (—1,+1) given by x —
x(14+x*)""2. We can then also extend the i, to homeomorphisms R — IR, and
take @,|(R\4,) = 0.

The proof of the theorem will use bilinear forms on % which we now introduce.
If ,%: R — C are of bounded variation we may define

(¥, ), = lim > V(@) (Ba) — Bai_1)),

=1

(P, 8)_ = lim > (a1 )(Ba) — Ba_r)),

=1

1 1
(¥.0) = S (P, @), + 5 (¥, )
o P(a) + Pa,—
=limY ~()2—(’) ((a;) — D(a_1)) .
=0
The limits are taken over finite sets {aq,...,a,} (With ag < a1 < --- < a,) ordered

by inclusion. The limits for (¥, @) exist by monotonicity if @, ¥ are real monotone
and @ is constant on (co,a] and [b,00). Therefore (using linear combinations and
density) the limits exist in general.

Note that (¥, ®) depends only on the restriction of ¥ to a small neighborhood
of the support of @. Also

(¥, @) = [[¥llo Var @

Let By = {® € B: lim}y|_, o P(x) = 0} and denote by ¥, the characteristic function
of (—o0,x). Using the linear form

Yo a(¥) = (¥, 9)
we define
Dy(x) =20(¥y,) — li}n a(P,) .
v,/ x

When @ € %,, it is easily checked that @, = ®. More generally if «: 4 — C is
linear and satisfies
() = Cul|Pllo

the function x — o(¥y) has Var < 2C, and
Var®, < 6C, .

[, is thus in %, but not necessarily in %y. Furthermore it is not claimed that
(¥, Py) = (V)]
B.2. Proof of part (a). Using the notation

Qowlwwm(x) = (Pwl(x) ce (Pwm('//wm,l T ll’w.x) >
we have

<T>%m¢> = Z <lpa(l)(u1"~com ° (@Olﬂwm O'”Owwl )> .

- Om
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We may write

<'P, Py oo * (Po lpwm ©:--0 ‘//wl )>

M=

me 1 _ _
:kzzl hm‘ 15{[8‘”1 oyt (Qoyapy + )0 w11 -0 wkl_l](ai)

1

I

° [q)wk-ﬂ”'wm . (¢ o lp(om 00 l//wk+1 )](l//wkat—l + Sym}
. [Qowk(az) = Py )(ai—~l )]
+ lim il %{[‘gun Tl ((pwl"'wm ° lIj) © 'pw_ll 00 ww_,;,l](ai) -+ Sym}

- [P(a) — P(a-1)],

where the “sym” terms are obtained by exchanging a; and a;_;. Note that when
the function v, |, o--- 0, is decreasing, the change of variables that it defines
interchanges “symmetric” terms and produces a negative sign (this is reflected in
the factor &, -+ - &y, , of the formula). We have thus

m ~ ~
(W, " @) < SN AP o || A" DoV + || AP || Var b .
k=1

Therefore if & > max(R,ﬁ), there is C > 0 such that

(W, A" P)| < Cm&™ | ¥llol|Pllo + <"[|¥[lo Var P)
S (m+ DCE"|¥lo Var @,
hence
Var #/"® < 6(m+ 1)CE" Var @,
4™ < 6(m+ 1H)CE™,
and finally

spectral radius # = max(R,IAi’). 0

B.3. Proof of part (b). If (K,) is a sequence of operators of finite rank we have
the general formula®

essential spectral radius of .# < lim sup (||.4™ — K, |)'/" .

m—o0
Let & > IAQ; there is thus C > 0 such that
| dmlly < €&
for all m. To prove (b) we will show that (for suitable K,,) we have
A"~ Kn| = P(m) - ",
where P(m) is a polynomial (of degree 1) in m.

2 This is a relatively elementary fact, which constitutes the “easy” part of Nussbaum’s essential
spectral radius formula (Nussbaum [3]).
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We can choose a finite set Q* C Q so that the operator .#* defined by
(M7 PYx) = . Pu(x)P(Yux)

wER*

is arbitrarily close to .#. We have indeed

M — ||, || M — 4| < 3 Varg,,
wEQ\Q*

AN A+ < V.
We may thus take Q* (depending on m) such that
ottt — t* |, |l — ) < &

for k = 1,...,m. The same estimates may be assumed to hold for the || ||o operator
norms; in particular we obtain

||y < (C+ 1)&

fork=1,...,m.

For each w € Q* we decompose A, into finitely many intervals A, and
define a function @, with constant value ¢(w, i) in Ay, ;). Taking @(,i) € ¢uA(w,i)
we have

Varp, < Var g, .
Given ¢ > 0 we may also assume that the A, ;) are such that
lpw — Pyllo < 8/ card Q* .
We define the operator .4 by

(AP)x) = 3 Pp(x)P(WYi¥) .

weN*

and obtain thus } R ~
™ — A o, | A+ — M o <6,

A\, |4 A o, A < V.
We may thus choose J sufficiently small that
ot — dik|lo, || Ak — Mo < &
for k =1,...,m. In particular

Lo < (C+2)é

fork=1,...,m.
We note that the linear form associated with .#*"® is

Vo (B AD) = 3 lim 35 (A @] - [ )]

i=1 wy
+sym} - [@o, (@) = Qo (ai-1)]
+ lim zj:l %{(/%A*'" ¥Y)(a,) + sym} - [&(a,) — P(a;—1)] .

This expression will be used in a moment.
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Let us denote by V., the restriction of v, to A, ;). For fixed & the intervals
of definition of the Yw,y,im) © - -+ © Wy, ,,i,, ) gENerate a partition of R into a finite

o~

set Ju—x of intervals. Let J,_, be the set of interval endpoints, and J, ,, the

>34

set of interval interiors (this is a finite set of open intervals). For each I € 3/ _,,
choose x; € [ and define the operator A,_; by

(Mm=kd)(x) fxe€J ,
(N -k ®P)x) = _ . .
(Py,, Mm=k®) if xel e, _,
Finally we define the operator K,, by
K,®=2ao,,
where @, € # is the function associated with the linear form o:
m. n 1 ~
P o(P)=3" lim) 3" 5{[(/4*"“‘ ¥)(@)] « (AN ik PY (Y, @i-1)] + sym}
k=1

i=1 (273

: [(/’wk(ai) = Qo (a-1)] -
Therefore K, is of finite rank.
The values of .#/m~k® — A,,_;® on the open interval 1 € J”,_, are deter-
mined by N B
M=k D(x) — Ny D(x) = 2(x) — li;n @(y),
y/'x

where ~
B(x) = (¥, — Wy, Mm—kD) = (Mm=F(P, — ¥,,), D),
so that ~
|0(x)| < M=Kl - Var &
and

(-t~ Ayl < 3“%%,,_1(“0\;3“15 < 3(C+2)m*Var @
Since we also have
| D — dim—k |y < E|| Do ,

we find
A" KD — Ny Pl £ BC 4+ TV FVar @ .

By definition of K,,, we find that .#*"® — K,,® is the function associated with
the linear form ¥ — (¥, #*"®) — a(¥). We have the estimate

(W, 7" ®) — ()] < 3.

k=1

X[ M KD — Nk @)Y ai=1)] + sym} + [@o, (@) — Qo (ai—1)]|

lim z S %{[(/Z*k—l ¥)(a)]

1=1 wy

n ] =
+ [lim ; 5{(/%*’"‘1’)(01) +sym} - [®(a,) — P(a,-1)]

< S(CH DEWo - BC+T)E"F Vard - V + (C + 1HE|P|lo - Var &
k=1

= (mC' + C + 1)é™|¥P|lo Var @
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and
™ — Knl| < &" +6(mC" + C+ 1) = P(m) - &",

with P(m) = 6mC’ + 6C + 7, of degree 1 in m as announced. [J

B.4. Proof of part (c). We refer to [4] where a similar result is proved. The proof
given in [4] also applies here, with inessential modifications.
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