© Springer-Verlag 1996

Functional Equation for Dynamical Zeta Functions of Milnor-Thurston Type

David Ruelle

I.H.E.S., 35, route de Chartres, F-91440 Bures-sur-Yvette, France

Received: 8 April 1994

Abstract: A Milnor–Thurston type dynamical zeta function $\zeta_L(Z)$ is associated with a family of maps of the interval (-1,1). Changing the direction of time produces a new zeta function $\zeta'_L(Z)$. These zeta functions satisfy a functional equation $\zeta_L(Z)\zeta'_L(\varepsilon Z) = \zeta_0(Z)$ (where ε amounts to sign changes and, generically, $\zeta_0 \equiv 1$). The functional equation has non-trivial implications for the analytic properties of $\zeta_L(Z)$.

0. Introduction

Milnor and Thurston [2] have shown how the zeta function $\zeta(z)$ counting the periodic points of a piecewise monotone interval map f could be expressed in terms of a kneading determinant D(z). The zeta function considered by Milnor and Thurston is closely related to the Lefschetz zeta function ζ_L , which we shall use henceforth. Baladi and Ruelle [1] have shown how to replace z in the Milnor-Thurston formula by $Z = (z_1, \ldots, z_N)$, where the interval of definition of f is cut into subintervals with different weights z_i . We shall here use a further extension of the formula $\zeta_L(Z) = D(Z)$, where f is allowed to be multivalued. The inverse f^{-1} of f is again multivalued piecewise monotone; it is associated with a zeta function $\zeta'_L(Z)$. There is a natural relation (functional equation)

$$\zeta_L(Z)\zeta'_L(\varepsilon Z) = \zeta_0(Z)$$
,

where ε corresponds to some sign changes and $\zeta_0(Z)$ counts "exceptional" orbits (generically $\zeta_0(Z) = 1$). The analytic properties of $\zeta_L(Z)$ are related, via the kneading determinant D(Z), to the spectral properties of a transfer operator \mathcal{M}_Z . The spectral properties needed here are a refinement of those proved in Ruelle [4]. Using these properties one shows that ζ_L is meromorphic in a certain domain, with poles only if 1 is an eigenvalue of \mathcal{M}_Z . Let \mathcal{M}_Z' denote the transfer operator corresponding to f^{-1} ; using the functional equation one shows that ζ_L can vanish only if 1 is an eigenvalue of \mathcal{M}_Z' .

In what follows we shall write ζ instead of ζ_L , and use a family (ψ_{ω}) of monotone maps, instead of the multivalued map f^{-1} . Warning: If the ψ_{ω} are the branches

of the inverse of a function f, the zeta function of [1] is here denoted by $1/\zeta(\varepsilon Z)$, and the kneading determinant by $\widehat{D}(Z)$ (see Sect. 1.10) rather than D(Z).

I wish to thank Viviane Baladi who carefully read the present paper, and suggested a number of improvements which have been incorporated in the manuscript.

1. Definitions and Statement of Results

1.1. Lefschetz Numbers. We shall use the notation

$$\operatorname{sgn} x = \begin{cases} +1 & \text{if } x > 0 \\ 0 & \text{if } x = 0, \\ -1 & \text{if } x < 0 \end{cases} \quad \operatorname{del} x = \begin{cases} +1 & \text{if } x = 0 \\ 0 & \text{if } x \neq 0 \end{cases}.$$

Let a < b, and $\psi : (a,b) \mapsto \mathbb{R}$ be continuous and strictly monotone. We let $\varepsilon = +1$ if ψ is increasing, -1 if ψ is decreasing, and we define the *Lefschetz number* $L(\psi)$ by

$$\begin{split} L(\psi) &= L_1(\psi) + L_0(\psi) \,, \\ L_1(\psi) &= \frac{1}{2} \left[\text{sgn}(\bar{\psi}(a) - a) - \text{sgn}(\bar{\psi}(b) - b) \right] \,, \\ L_0(\psi) &= \frac{\varepsilon}{2} \left[\text{del}(\bar{\psi}(a) - a) + \text{del}(\bar{\psi}(b) - b) \right] \,, \end{split}$$

where $\bar{\psi}$ denotes the extension of ψ by continuity to [a,b], so that $\bar{\psi}(a) = \lim_{x \downarrow a} \psi(a)$, $\bar{\psi}(b) = \lim_{x \uparrow b} \psi(x)$.

Therefore, when $\varepsilon = +1$ we have

$$L(\psi) = \begin{cases} 1 & \text{if } \bar{\psi}(a) \ge a \text{ and } \bar{\psi}(b) \le b \\ -1 & \text{if } \bar{\psi}(a) < a \text{ and } \bar{\psi}(b) > b \end{cases},$$

when $\varepsilon = -1$ we have

$$L(\psi) = 1$$
 if $\bar{\psi}(a) > a$ and $\bar{\psi}(b) < b$,

and in all other cases we have

$$L(\psi)=0$$
.

Let Fix $\psi = \{x \in (a,b): \psi x = x\}$. If Fix ψ is finite and $x \in \text{Fix } \psi$ we write

$$L(x,\psi) = \frac{1}{2} \left[\lim_{y \uparrow x} \operatorname{sgn}(\psi(y) - y) - \lim_{y \downarrow x} \operatorname{sgn}(\psi(y) - y) \right].$$

Lemma (Properties of Lefschetz numbers). (a) If a C^0 -small perturbation $\tilde{\psi}$ of ψ shrinks the range (i.e., $\tilde{\psi}(a,b) \subset \psi(a,b)$) then it preserves the Lefschetz number (i.e., $L(\tilde{\psi}) = L(\psi)$).

(b) Consider ψ^{-1} defined on the open interval $\psi(a,b)$, then

$$L_1(\psi^{-1}) = -\varepsilon L_1(\psi) ,$$

$$L_0(\psi^{-1}) = L_0(\psi)$$
.

(c) Let Fix ψ be finite and $\tilde{\psi}(a) \neq a$, $\tilde{\psi}(b) \neq b$. Then

$$L(\psi) = \sum_{x \in \text{Fix } \psi} L(x, \psi)$$
.

Part (a) of the lemma follows from the list given above of cases when $L(\psi) = 1, -1$, or 0. Part (b) results directly from the definitions. To prove (c) notice that by assumption

$$L(\psi) = L_1(\psi) = \frac{1}{2} \left[\operatorname{sgn}(\bar{\psi}(a) - a) - \operatorname{sgn}(\bar{\psi}(b) - b) \right]$$
$$= \frac{1}{2} \left[\lim_{y \downarrow a} \operatorname{sgn}(\psi(y) - y) - \lim_{y \uparrow b} \operatorname{sgn}(\psi(y) - y) \right] = \sum_{x \in \operatorname{Fix}} L(x, \psi) .$$

This concludes the proof. \square

1.2. Zeta Functions. Let $(J_{\omega}), (\psi_{\omega}), (\varepsilon_{\omega}), (z_{\omega})$ be families indexed by $\omega \in \{1, ..., N\}$, where $J_{\omega} = (u_{\omega}, v_{\omega})$ is a nonempty bounded interval of \mathbb{R} ; $\psi_{\omega} : J_{\omega} \to \mathbb{R}$ is a strictly monotone continuous map; $\varepsilon_{\omega} = +1$ or -1 depending on whether ψ_{ω} is increasing or decreasing; and $z_{\omega} \in \mathbb{C}$. We write $Z = (z_{\omega}), \ \varepsilon Z = (\varepsilon_{\omega} z_{\omega})$.

It will be convenient to assume henceforth that all J_{ω} and $\psi_{\omega}J_{\omega}$ are contained in (-1,+1); this is no restriction of generality since \mathbb{R} can be mapped homeomorphically on (-1,+1).

If $m \ge 1$ and $\boldsymbol{\omega} = (\omega_1, \dots, \omega_m) \in \{1, \dots, N\}^m$, we write $|\boldsymbol{\omega}| = m$, $\varepsilon(\boldsymbol{\omega}) = \prod_{k=1}^m \varepsilon_{\omega_k}$, $Z(\boldsymbol{\omega}) = \prod_{k=1}^m z_{\omega_k}$. We also let $\psi_{\boldsymbol{\omega}} : J_{\boldsymbol{\omega}} \to \mathbb{R}$ be defined by $\psi_{\boldsymbol{\omega}} = \psi_{\omega_m} \circ \dots \circ \psi_{\omega_1}$, on

$$J_{\omega} = J_{\omega_1} \cap \psi_{\omega_1}^{-1}(J_{\omega_2} \cap \psi_{\omega_2}^{-1}(\cdots \psi_{\omega_{m-1}}^{-1}J_{\omega_m}\cdots)).$$

If $J_{\omega} \neq \emptyset$, we write $J_{\omega} = (u_{\omega}, v_{\omega})$.

The Lefschetz zeta function (associated with the data $(J_{\omega}), (\psi_{\omega})$) is the formal power series

$$\zeta(Z) = \exp \sum_{\omega} \frac{1}{|\omega|} L(\psi_{\omega}) Z(\omega) ,$$

where the sum is restricted to those ω for which $J_{\omega} \neq \emptyset$ (or one defines $L(\psi_{\omega}) = 0$ when $J_{\omega} = \emptyset$). One can write a product formula for $\zeta(Z)$ (see Appendix A) and check that $\zeta(Z)$, $1/\zeta(Z) \in \mathbb{Z}[[z_1,\ldots,z_N]]$ (Lemma A.2). The zeta function associated with the data $(\psi_{\omega}J_{\omega})$, (ψ_{ω}^{-1}) is

$$\zeta'(Z) = \exp \sum_{\omega} \frac{1}{|\omega|} L(\psi_{\omega}^{-1}) Z(\omega) ,$$

and we write

$$\widehat{\zeta}(Z) = \zeta'(\varepsilon Z) .$$

We shall also need the function

$$\begin{split} \zeta_0(Z) &= \exp \sum_{\omega} \frac{1}{|\omega|} L_0(\psi_{\omega}) (1 + \varepsilon(\omega)) Z(\omega) \\ &= \exp \sum_{\omega : \varepsilon(\omega) = 1} \frac{1}{|\omega|} [\det(\bar{\psi}_{\omega}(u_{\omega}) - u_{\omega}) + \det(\bar{\psi}_{\omega}(v_{\omega}) - v_{\omega})] Z(\omega) \; . \end{split}$$

1.3. Transfer Operators and Kneading Determinant. We introduce the (generalized) transfer operator $\mathcal{M} = \mathcal{M}_Z$, the formal adjoint $\mathcal{M}' = \mathcal{M}'_Z$, and the associated

operator $\widehat{\mathcal{M}}$ such that

$$\mathcal{M}\Phi(x) = \sum_{\omega} z_{\omega} \chi_{\omega}(x) \Phi(\psi_{\omega} x) ,$$

 $\mathcal{M}'\Phi(x) = \sum_{\omega} z_{\omega} \chi'_{\omega}(x) \Phi(\psi_{\omega}^{-1} x) ,$
 $\widehat{\mathcal{M}} = \widehat{\mathcal{M}}_{7} = \mathcal{M}'_{27} ,$

where χ_{ω} is the characteristic function of J_{ω} and χ'_{ω} the characteristic function of $\psi_{\omega}J_{\omega}$. These operators act on the Banach space \mathscr{B} of functions of bounded variation $\mathbb{R} \to \mathbb{C}$. It is also convenient to consider them as acting on the Banach space of bounded functions $\mathbb{R} \to \mathbb{C}$ (with the uniform norm $\|\cdot\|_0$).

We define R = R(Z), R' = R'(Z) and \widehat{R} by

$$R = \lim_{m \to \infty} (\|\mathcal{M}^m\|_0)^{1/m} ,$$

$$R' = \lim_{m \to \infty} (\|\mathcal{M}'^m\|_0)^{1/m} ,$$

$$\widehat{R} = \widehat{R}(Z) = R'(\varepsilon Z) .$$

The submultiplicativity of $m \mapsto \|\mathcal{M}^m\|_0$, $\|\mathcal{M}'^m\|_0$ guarantees the existence of the limits; R, R' and \widehat{R} are in fact the spectral radii of $\mathcal{M}, \mathcal{M}'$ and $\widehat{\mathcal{M}}$ acting on bounded functions $\mathbb{R} \to \mathbb{C}$. In general $R \neq \widehat{R}$.

Let $\{a_1, \ldots, a_L\}$ contain the set of all endpoints u_{ω}, v_{ω} of the intervals J_{ω} , and assume that $a_1 < \cdots < a_L$. We define $\alpha_i \in \mathcal{B}$ by

$$\alpha_i(x) = \operatorname{sgn}(x - a_i)$$

for i = 1, ..., L, and write

$$D_{ij}^{(m)+} = \lim_{x \downarrow a_i} \sum_{\omega : u_{\omega} = a_i} z_{\omega} \cdot \left[(\mathcal{M}^{m-1} \alpha_j) (\psi_{\omega} x) \right],$$

$$D_{ij}^{(m)-} = \lim_{x \uparrow a_i} \sum_{\omega : v_{\omega} = a_i} z_{\omega} \cdot \left[(\mathcal{M}^{m-1} \alpha_j) (\psi_{\omega} x) \right].$$

The elements of the $L \times L$ kneading matrix $[D_{ij}]$ are then defined by

$$D_{ij}(Z) = \delta_{ij} + \sum_{m=1}^{\infty} \frac{1}{2} \left[D_{ij}^{(m)+} - D_{ij}^{(m)-} \right]$$

(this is an extension of the concept of kneading matrix introduced by Milnor and Thurston [2]). The determinant

$$D(Z) = \det[D_{ij}(Z)] \in \mathbb{Q}[[z_1, \dots, z_N]]$$

is called kneading determinant.

1.4. Theorem A. We have identically

$$\zeta(Z) = D(Z) .$$

This will be proved using a homotopy argument similar to the one used originally by Milnor and Thurston [2], and then by Baladi and Ruelle [1] in an analogous situation. This means that (for fixed families $(J_{\omega}), (\varepsilon_{\omega}), (z_{\omega})$) first the formula $\zeta = D$

is checked for a special choice ψ^0 of ψ . Then, for a suitable one-parameter family (ψ^{λ}) with $\psi^1 = \psi$, one verifies that ζ and D are multiplied by the same factor at each bifurcation. The proof presented here is similar to that of [1], but with significant differences; we defer it to Appendix A. \square

- **1.5. Theorem B.** (a) The spectral radius of \mathcal{M} , acting on \mathcal{B} , is $\leq \max(R, \widehat{R})$.
 - (b) The essential spectral radius of \mathcal{M} is $\leq \widehat{R}$.

This is closely related to the results of Ruelle [4] but, again, with significant differences. In Appendix B we give an improved version of the theorem of [4], which will yield Theorem B as a special case. \Box

- **1.6. Theorem C.** (a) We have identically $\zeta(Z) \cdot \widehat{\zeta}(Z) = \zeta_0(Z)$.
 - (b) $\zeta(Z)$ is holomorphic when R(Z) < 1.
 - (c) $\zeta(Z)$ is meromorphic when $\widehat{R}(Z) < 1$, with poles only when $1 \in \operatorname{spectrum} \mathcal{M}_Z$.
 - (d) $\zeta_0(Z)$ is holomorphic when $\min\{R(Z), \widehat{R}(Z)\} < 1$.

This is proved in Sect. 2, and some strengthening of the theorem is provided by the four remarks below. \Box

1.7. Remark. Sharpening of Theorem C. Define

$$\mathcal{B}_{\infty} = \{ A \in \mathcal{B} : \{ x : A(x) \neq 0 \} \text{ is countable} \}$$

and let

$$\mathscr{B}^{\#} = \mathscr{B}/\mathscr{B}_{\infty}$$

be the quotient Banach space. If $\Phi \in \mathscr{B}$, we may define $\Phi^{\#}$ by

$$\Phi^{\#}(x) = \frac{1}{2} \left[\lim_{y \downarrow x} \Phi(y) + \lim_{y \uparrow x} \Phi(y) \right].$$

We have then the properties

$$\begin{split} & \Phi = \Phi^{\#} + \Phi_{\infty}, \qquad \Phi_{\infty} \in \mathscr{B}_{\infty}, \\ & \Phi^{\#}(x) = \frac{1}{2} \left[\lim_{y \downarrow x} \Phi^{\#}(y) + \lim_{y \uparrow x} \Phi^{\#}(y) \right]. \end{split}$$

If $\|[\Phi]\|^{\#}$ denotes the norm of the class of Φ in $\mathscr{B}/\mathscr{B}_{\infty} = \mathscr{B}^{\#}$ we have

$$\|[\boldsymbol{\Phi}]\|^{\#} = \|\boldsymbol{\Phi}^{\#}\|_{\mathscr{B}} \; .$$

Using $\|\cdot\|_0^\#$ to denote the "sup norm up to a countable set" we see that $\|\cdot\|_0^\#$ is defined on $\mathscr{B}^\#$ and that

$$\|[\boldsymbol{\Phi}]\|_0^{\#} = \|\boldsymbol{\Phi}^{\#}\|_0$$
.

Since \mathscr{B}_{∞} is stable under $\mathscr{M}, \widehat{\mathscr{M}}$ we may, by going to the quotient, define operators \mathscr{M}^{\sharp} , $\widehat{\mathscr{M}}^{\sharp}$ on \mathscr{B}^{\sharp} . We also use the notation \mathscr{M}^{\sharp} , $\widehat{\mathscr{M}}^{\sharp}$ for \mathscr{M} . $\widehat{\mathscr{M}}$ acting on bounded functions up to a countable set. We may then write

$$R^{\#} = R^{\#}(Z) = \lim_{m \to \infty} (\|\mathcal{M}^{\#m}\|_{0}^{\#})^{1/m},$$

$$\widehat{R}^{\#} = \widehat{R}^{\#}(Z) = \lim_{m \to \infty} (\|\widehat{\mathscr{M}}^{\#m}\|_{0}^{\#})^{1/m} .$$

The point of the above definitions is that in defining the kneading matrix $[D_{ij}]$ we may neglect countable sets, i.e., use the operator $\mathcal{M}^{\#}$ instead of \mathcal{M} . As a consequence of this we may replace $\mathcal{M}, \widehat{\mathcal{M}}, R, \widehat{R}$ by $\mathcal{M}^{\#}, \widehat{\mathcal{M}}^{\#}, R^{\#}, \widehat{R}^{\#}$ in the statement of Theorem C (b), (c), (d). We shall not give an explicit demonstration of the results thus obtained, but note that they follow by inspection of the proofs in Appendix B (#-version of Theorem B. 1) and Sect. 2. The basic fact is that the continuous linear functionals on \mathcal{B} defined by $\Phi \mapsto \lim_{x \downarrow a} \lim_{x \uparrow a} \Phi(x)$ yield continuous linear functionals on $\mathcal{B}^{\#}$ (while $\Phi \mapsto \Phi(a)$ is not defined on $\mathcal{B}^{\#}$).

The set $Z_m = X_m \cup Y_m$, with $X_m = \{u_\omega, v_\omega : |\omega| = m\}$, $Y_m = \{x : \psi_\omega(x) = \psi_{\omega'}(x) \}$ with $|\omega| = |\omega'| = m$ and $\varepsilon(\omega') = -\varepsilon(\omega)$ is finite. Given $x \notin Z_m$ there is $\delta > 0$ such that for each bounded Φ we may construct Φ_ε with $\|\Phi_\varepsilon\|_0 = \|\Phi\|_0$, and $\Phi_\varepsilon(\psi_\omega y) = \varepsilon(\omega)\Phi(\psi_\omega y)$ when $|y - x| < \delta$ and $|\omega| = m$. We have then

$$(\mathcal{M}_{\varepsilon,T}^m \Phi)(y) = (\mathcal{M}_T^m \Phi_{\varepsilon})(y)$$
 if $|y - x| < \delta$,

hence

$$\|\mathcal{M}_{\varepsilon Z}^{\#m}\|_{0}^{\#} \leq \|\mathcal{M}_{Z}^{\#m}\|_{0}^{\#},$$

hence by symmetry

$$\|\mathcal{M}_{\varepsilon Z}^{\#m}\|_{0}^{\#} = \|\mathcal{M}_{Z}^{\#m}\|_{0}^{\#},$$

and therefore

$$R^{\#}(\varepsilon Z) = R^{\#}(Z) .$$

Since $R^{\#}(Z) \leq R(Z)$ we also have

$$R^{\#}(Z) \leq \min\{R(Z), R(\varepsilon Z)\}$$
.

Notice that Theorem B(b) can also be sharpened as follows: the essential spectral radius of \mathcal{M} is $\subseteq \widehat{R}^{\#}$. To prove this it suffices to find \widetilde{K}_m of finite rank such that

$$\limsup_{m \to \infty} \| \mathcal{M}^m - \widetilde{K}_m \|^{1/m} \le \widehat{R}^{\#}. \tag{*}$$

We write as above $\Phi = \Phi^{\#} + \Phi_{\infty}$, so that

$$\| arPhi^{\sharp} \|_{\mathscr{B}} = \| [arPhi] \|^{\sharp} \quad ext{and} \quad \| arPhi_{\infty} \|_{\mathscr{B}} \leqq \| arPhi \|_{\mathscr{B}} \;.$$

Let χ be the characteristic function of $\bigcup_{\omega} \{\bar{\psi}_{\omega}u_{\omega}, \bar{\psi}_{\omega}v_{\omega}\}$ with $|\omega| = m$. The map $E: \Phi \mapsto \chi \Phi$ is of finite rank, and so is $K'_m = \mathscr{M}^m E$. Note that when $y \notin \bigcup_{\omega} \{\bar{\psi}_{\omega}u_{\omega}, \bar{\psi}_{\omega}v_{\omega}\}$ and $\Psi = \Psi^{\#}$, we have $(\mathscr{M}'^m \Psi)(y) = (\mathscr{M}'^m \Psi)^{\#}(y)$. We may now write

$$\operatorname{Var}(\mathcal{M}^m - K'_m)\Phi_{\infty} = \operatorname{Var}\mathcal{M}^m(\Phi_{\infty} - \chi\Phi_{\infty}) = 2\sum_{x} |\mathcal{M}^m(\Phi_{\infty} - \chi\Phi_{\infty})(x)|$$
$$= 2\sup \left|\sum_{x} \Psi(x)[\mathcal{M}^m(\Phi_{\infty} - \chi\Phi_{\infty})](x)\right|$$

(where the sup is over Ψ such that $\|\Psi\|_0 = 1$ and $\Psi = \Psi^{\#}$)

$$= 2 \sup \left| \sum_{y} (\mathcal{M}'^{m} \Psi)(y) \cdot (\Phi_{\infty} - \chi \Phi_{\infty})(y) \right|$$

$$= 2 \sup \left| \sum_{y} (\mathcal{M}'^{m} \Psi)^{\#}(y) \cdot (\Phi_{\infty} - \chi \Phi_{\infty})(y) \right|$$

$$\leq \|(\mathcal{M}'^{\#})^{m}\|_{0} \|\Phi_{\infty}\|_{\mathcal{B}}.$$

In conclusion if $\varepsilon > 0$ we have

$$\|(\mathcal{M}^m - K'_m)\Phi_{\infty}\|_{\mathscr{B}} \leq \operatorname{const}(\widehat{R}^{\#} + \varepsilon)^m \|\Phi\|_{\mathscr{B}}.$$

By the proof of Theorem B (#-version) there is $K_m^{\#}$ of finite rank on $\mathscr{B}^{\#}$ such that

$$\|\mathcal{M}^{\#m} - K_m^{\#}\|^{\#} \leq \operatorname{const}(\widehat{R}^{\#} + \varepsilon)^m$$
.

We choose K_m of finite rank on \mathscr{B} such that K_m induces $K_m^{\#}$ on $\mathscr{B}^{\#}$ and $K_m \Phi = (K_m \Phi)^{\#}$. There is also K_m'' of finite rank such that

$$\mathcal{M}^m \Phi^{\#} - K_m^{"} \Phi^{\#} = (\mathcal{M}^m \Phi^{\#})^{\#}.$$

Therefore

$$\mathcal{M}^m \Phi^{\#} - K_m \Phi^{\#} - K_m'' \Phi^{\#} = (\mathcal{M}^m \Phi^{\#} - K_m \Phi^{\#})^{\#}$$

and

$$\|(\mathscr{M}^m - K_m - K_m'')\Phi^{\#}\|_{\mathscr{B}} = \|(\mathscr{M}^{\#m} - K_m^{\#})[\Phi]\|^{\#} \leq \operatorname{const}(\widehat{R}^{\#} + \varepsilon)^m \|\Phi\|_{\mathscr{B}}.$$

Defining now $\widetilde{K}_m \Phi = (K_m + K_m'') \Phi^{\#} + K_m' \Phi_{\infty}$ we obtain

$$\|(\mathcal{M}^m - \widetilde{K}_m)\Phi\|_{\mathscr{B}} \leq \operatorname{const}(\widehat{R}^{\#} + \varepsilon)^m \|\Phi\|_{\mathscr{B}},$$

and therefore (*) holds.

One can also show that the spectral radius of $\mathcal{M}^{\#}$ is $\geq \widehat{R}^{\#}$ (this will not be used).

If $\Phi \in \mathscr{B}_{\infty}$ we have

$$\operatorname{Var} \mathcal{M}^{m} \Phi = 2 \sum_{x} |(\mathcal{M}^{m} \Phi)(x)| = 2 \sup_{\Psi : \|\Psi\|_{0} = 1} \left| \sum_{x} \Psi(x) \cdot (\mathcal{M}^{m} \Phi)(x) \right|$$
$$= 2 \sup_{\Psi} \left| \sum_{y} (\mathcal{M}^{m} \Psi)(y) \cdot \Phi(y) \right| \leq \|\mathcal{M}^{m}\|_{0} \cdot \operatorname{Var} \Phi$$

so that the spectral radius of $\mathcal{M}_Z | \mathcal{B}_{\infty}$ is $\leq \widehat{R}(\varepsilon Z)$. In particular \mathcal{M}_Z and $\mathcal{M}_Z^{\#}$ have the same eigenvalues λ with the same multiplicity when $|\lambda| > \max(\widehat{R}(Z), \widehat{R}(\varepsilon Z))$.

1.8. Remark. Further properties of ζ_0 . The proof of Lemma 2.4 below shows that if $\zeta_0(Z)=0$ and $\widehat{R}^\#(Z)<1$, then 1 belongs to the spectrum of $\mathscr{M}_Z|\mathscr{B}_\infty$ or $\mathscr{M}_{\varepsilon Z}|\mathscr{B}_\infty$. Similarly, if $\zeta_0(Z)=0$ and $R^\#(Z)<1$, then 1 belongs to the spectrum of $\widehat{\mathscr{M}}_Z|\mathscr{B}_\infty$ or $\widehat{\mathscr{M}}_{\varepsilon Z}|\mathscr{B}_\infty$.

The following condition is generically satisfied.

Condition G. For all $m \ge 1$ and $\omega = (\omega_1, ..., \omega_m)$ with $\varepsilon(\omega) = 1$, we have

$$\begin{split} \bar{\psi}_{\omega} u_{\omega_1} & = u_{\omega_1} & \text{if } \bar{\psi}_{\omega} u_{\omega_1} \text{ is defined ,} \\ \bar{\psi}_{\omega} v_{\omega_1} & = v_{\omega_1} & \text{if } \bar{\psi}_{\omega} v_{\omega_1} \text{ is defined .} \end{split}$$

It is clear from the definition of ζ_0 that if Condition G holds, then $\zeta_0 = 1$ identically. 1.9. Remark. Poles of D(zZ). Let Z be fixed. The function $z \mapsto D(zZ)$ is mero-

1.9. Remark. Poles of D(zZ). Let Z be fixed. The function $z \mapsto D(zZ)$ is meromorphic when $|z|\widehat{R}^{\#}(Z) < 1$, and clearly can have a pole at λ^{-1} only if λ is an eigenvalue of $\mathcal{M}^{\#} = \mathcal{M}_{Z}^{\#}$. Let

$$\mathscr{D} = \{z \colon |z| < \widehat{R}^{\#}(Z)^{-1} \text{ and } z^{-1} \text{ is not an eigenvalue of } \mathscr{M}_{\varepsilon Z}|B_{\infty}\}$$
.

In particular (see the end of Remark 1.7),

$$\{z\colon |z|<\widehat{R}(Z)^{-1}\}\subset\mathscr{D}$$
.

We shall show that the function $z \mapsto D(zZ)$ does not vanish in \mathcal{D} , and has a pole of order m at λ^{-1} precisely if λ is an eigenvalue of order m of $\mathcal{M}^{\#}$.

The proof will be in several steps.

(i) Let us define

$$A = \{a_1, \ldots, a_L\} \cup \{\psi_{\omega}^{-1} a_i : |\omega| \ge 1, \ 1 \le i \le L\},$$

 $\mathscr{B}_A^\# = \{ [\Phi] \in \mathscr{B}^\# : \text{ the derivative of } \Phi \text{ is an atomic measure carried by } A \}$.

Then the generalized eigenspace of $\mathcal{M}^{\#}$ corresponding to any eigenvalue λ with $|\lambda| > \widehat{R}^{\#}(Z)$ is contained in $\mathscr{B}_{A}^{\#}$.

We may extend the linear operator \mathcal{M}_Z from bounded functions to measures by letting

$$(\mathcal{M}_Z \mu)(dx) = \sum_{\omega} z_{\omega} \chi_{\omega}(X) \cdot (\psi_{\omega}^{-1} \mu)(dx)$$

(where $\psi_{\omega}^{-1}\mu$ is the image of μ by ψ_{ω}^{-1}). We shall write

$$(\Psi, \mu) = \int \mu(dx) \Psi(x)$$

if Ψ is a continuous function. If Φ is of bounded variation, we denote by $\partial \Phi$ its derivative, which is a bounded measure. (If $\Phi \in \mathcal{B}_{\infty}$, then $\partial \Phi = 0$. Therefore $\partial \Phi$ only depends on the class $[\Phi] \in \mathcal{B}^{\#}$.) We also let \mathcal{P} be the projection on measures μ such that $|\mu|(A) = 0$ (i.e., \mathcal{P} "erases" the mass carried by A). If $X : \mathbb{R} \mapsto \{0,1\}$ is 0 on $\{a_1, \ldots, a_L\}$ and 1 elsewhere, we have

$$\mathcal{P}\partial \mathcal{M}_{7}\Phi = X\mathcal{M}_{57}\mathcal{P}\partial\Phi$$
.

When $[\mathscr{M}\Phi] = \lambda[\Phi] \pmod{\mathscr{B}_A^{\#}}$ we have thus

$$(\Psi, \mathcal{P}\partial\Phi) = \lambda^{-m}(\Psi, \mathcal{P}\partial\mathcal{M}_Z^m\Phi) = \lambda^{-m}(\Psi, (X\mathcal{M}_Z)^m\mathcal{P}\partial\Phi)$$
$$= \lambda^{-m}((\widehat{\mathcal{M}}_{r_Z}^m X)^m \Psi, \mathcal{P}\partial\Phi).$$

If $|\lambda| > \widehat{R}^{\#}(Z)$, the right-hand side must vanish, so that $\mathscr{P}\partial \Phi = 0$, i.e., $[\Phi] \in \mathscr{B}_{A}^{\#}$. By induction we see that if $[(\mathscr{M} - \lambda)^{k}\Phi] = 0$, i.e., if $[\Phi]$ is in the generalized eigenspace of $\mathscr{M}^{\#}$ corresponding to λ , we have $[\Phi] \in \mathscr{B}_{A}^{\#}$. \square

(ii) Let $\lambda^{-1} \in \mathcal{D}$ and suppose that (with α_i defined in Sect. 1.3)

$$(1 - \lambda^{-1} \mathcal{M}^{\#}) \Omega = 0 ,$$

$$(1 - \lambda^{-1} \mathcal{M}^{\#}) \gamma_j = \alpha_j \quad \text{for } j = 1, \dots, L .$$

Then if

$$(1 - \lambda^{-1} \mathcal{M}_{\varepsilon Z}) \partial \left(\Omega + \sum_{j=1}^{L} c_j \gamma_j \right)$$

has no mass at a_1, \ldots, a_L we have $\Omega = 0$ and $c_1 = \cdots = c_L = 0$.

Let us write

$$\Phi = \sum c_j \alpha_j, \qquad \Psi = \Omega + \sum c_j \gamma_j \ .$$

Then $(1 - \lambda^{-1} \mathcal{M}_Z^{\#}) \Psi = \Phi$; in particular $\mathcal{M}_Z^{\#} \Psi = \lambda \Psi \pmod{\mathcal{B}_A^{\#}}$ which implies $\Psi \in \mathcal{B}_A^{\#}$ as we have seen in (i). Furthermore $(1 - \lambda^{-1} \mathcal{M}_{\varepsilon Z}) \partial \Psi$ has no mass outside of a_1, \ldots, a_L , so that by assumption

$$(1 - \lambda^{-1} \mathcal{M}_{\varepsilon Z}) \partial \Psi = 0.$$

Since $\Psi \in \mathcal{B}_A$, this is equivalent to

$$(1 - \lambda^{-1} \mathcal{M}_{\varepsilon Z}) \widetilde{\Psi} = 0$$

with $\widetilde{\Psi} \in \mathcal{B}_{\infty}$ such that $\widetilde{\Psi}(x) = (\partial \Psi)(\{x\})$, and the assumption $\lambda^{-1} \in \mathcal{D}$ implies $\widetilde{\Psi} = 0$, i.e., $\partial \Psi = 0$, i.e., $\Psi = \text{constant}$. Therefore Φ tends to the constant Ψ at $\pm \infty$, but since $\Phi(-\infty) = -\Phi(\infty)$, we obtain $\Psi = 0$. Therefore $\Phi = 0$, so that $c_1 = \cdots = c_L = 0$, and finally also $\Omega = 0$. \square

(iii) If $\lambda^{-1} \in \mathcal{D}$ and λ is not an eigenvalue of $\mathcal{M}^{\#}$, then $D(\lambda^{-1}Z) \neq 0$. We may write $\gamma_j = (1 - \lambda^{-1}\mathcal{M}^{\#})^{-1}\alpha_j$ and define $\Phi = \sum c_j\alpha_j$, $\Psi = (1 - \lambda^{-1}\mathcal{M}_Z^{\#})^{-1}\Phi = \sum c_j\gamma_j$. Suppose there is a linear relation

$$\sum c_j D_{ij}(\lambda^{-1} Z) = 0$$

between the columns of (D_{ij}) , i.e.,

$$c_i + \frac{1}{2} \lim_{x \downarrow a_i} \sum_{\omega: \mu_\omega = a_i} \lambda^{-1} z_\omega \Psi(\psi_\omega x) - \frac{1}{2} \lim_{x \uparrow a_i} \sum_{\omega: \nu_\omega = a_i} \lambda^{-1} z_\omega \Psi(\psi_\omega x) = 0.$$

This may be rewritten as

$$\beta_i(\Phi) + \beta_i(\lambda^{-1} \mathcal{M}_Z \Psi) - \text{correction} = 0$$
,

where the correction corresponds to those terms $\pm \frac{1}{2} \lim_{x \to a_i} \lambda^{-1} z_{\omega} \Psi(\psi_{\omega} x)$ such that $a_i \varepsilon J_{\omega}$. Equivalently we may write

mass at
$$a_i$$
 of $(\partial \Phi + \partial \lambda^{-1} \mathcal{M}_Z \Psi - \lambda^{-1} \mathcal{M}_{\varepsilon Z} \partial \Psi) = 0$

or

mass at
$$a_i$$
 of $(\partial \Psi - \lambda^{-1} \mathcal{M}_{\varepsilon Z} \partial \Psi) = 0$.

In view of (ii) we have then $c_1 = \cdots = c_L = 0$. Therefore $D(\lambda^{-1}Z) \neq 0$. \square

(iv) If $\lambda^{-1} \in \mathcal{D}$ and λ is a simple eigenvalue of $\mathcal{M}^{\#}$, then λ^{-1} is a simple pole of $z \mapsto D(zZ)$.

Let $\Omega \neq 0$ be chosen such that $(1 - \lambda^{-1} \mathcal{M}^{\#})\Omega = 0$.

First, we show that $\alpha_1, \ldots, \alpha_L$ cannot all be in the range of $(1 - \lambda^{-1} \mathcal{M}^{\#})$. Otherwise let $\gamma_1, \ldots, \gamma_L$ be such that

$$(1 - \lambda^{-1} \mathcal{M}^{\#}) \gamma_i = \alpha_i$$

for j = 1, ..., L. In view of (ii) the L-dimensional vectors

mass at
$$\{a_1,\ldots,a_L\}$$
 of $(1-\lambda^{-1}\mathcal{M}_{\varepsilon Z})\partial\gamma_j$

are linearly independent. Therefore we may take c_1, \ldots, c_L such that

mass at
$$\{a_1,\ldots,a_L\}$$
 of $(1-\lambda^{-1}\mathcal{M}_{\varepsilon Z})\partial\left(\Omega+\sum c_j\gamma_j\right)=0$.

Using again (ii) yields $\Omega = 0$ contrary to assumption.

Let us replace $\alpha_1, \ldots, \alpha_L$ by independent linear combinations Φ_1, \ldots, Φ_L and write,

$$\begin{split} \Psi_{J}(z) &= (1 - z \mathcal{M}^{\#})^{-1} \Phi_{J} , \\ \Psi_{ij}(z) &= \frac{1}{2} \text{ mass at } a_{i} \text{ of } (\partial \Psi_{J} - z \mathcal{M}_{\varepsilon Z} \partial \Psi_{J}) , \end{split}$$

so that

$$D(zZ) = \det(\Psi_{ij}(z)).$$

Since we have shown that $\alpha_1, \ldots, \alpha_L$ are not all in the range of $(1 - \lambda^{-1} \mathcal{M}^{\#})^{-1}$, we may assume that $\Psi_1(z) \sim (1 - z\lambda)^{-1} \Omega$ for z near λ^{-1} , while $\Psi_2(z), \ldots, \Psi_L(z)$ are holomorphic at λ^{-1} . To prove that λ^{-1} is a simple pole of $z \mapsto D(zZ)$, it suffices now to show that the vectors

mass at
$$\{a_1,\ldots,a_L\}$$
 of $(1-\lambda^{-1}\mathcal{M}_{\varepsilon Z})\partial\Omega$

and

mass at
$$\{a_1, \ldots, a_L\}$$
 of $(1 - \lambda^{-1} \mathcal{M}_{\varepsilon Z}) \partial \Psi_i$

for j = 2, ..., L are linearly independent. This again results from (ii). \square

(v) If $\lambda^{-1} \in \mathcal{D}$ and λ is an eigenvalue of order m of $\mathcal{M}^{\#}$, then λ^{-1} is a pole of order m of $z \mapsto D(zZ)$.

By extending the index set for ω from $\{1,\ldots,N\}$ to $\{1,\ldots,N^*\}$ we can obtain small perturbations $\mathcal{M}^{*\#}$ of $\mathcal{M}^{\#}$ and \mathcal{D}^* of \mathcal{D} such that λ is replaced by m simple eigenvalues $\lambda_1^*,\ldots,\lambda_m^*$ contained in a disk $B_{\lambda^{-1}}(\varepsilon)\subset \mathcal{D}\cap \mathcal{D}^*$ with small ε . The corresponding $D^*(zZ)$ has simple poles and no zero near λ^{-1} . Since $D^*(zZ)$ tends to D(zZ) away from poles it follows that D(zZ) has a pole of order m at λ^{-1} . \square

1.10. Remark. Zeros of $\widehat{D}(zZ)$. Let

 $\mathscr{D}^* = \{z \colon |z| < \widehat{R}^{\#}(Z)^{-1} \text{ and } z^{-1} \text{ is not an eigenvalue of } \mathscr{M}_Z | \mathscr{B}_{\infty} \text{ or } \mathscr{M}_{\varepsilon Z} | \mathscr{B}_{\infty} \}$.

In particular (see the end of Remark 1.7)

$${z: |z| < \min{\{\widehat{R}(Z)^{-1}, \widehat{R}(\varepsilon Z)^{-1}\}}\} \subset \mathscr{D}^*}$$
.

Denote by \widehat{D} the kneading determinant associated with $\widehat{\mathcal{M}}$ (so that $\widehat{D} = \widehat{\zeta}$). Then, the function $z \mapsto \widehat{D}(zZ)$ is holomorphic in \mathcal{D}^* and has a zero of order m at λ^{-1} precisely if λ is an eigenvalue of order m of $\mathcal{M}^{\#}$ (or equivalently \mathcal{M}).

In view of Remark 1.8, the zeros of $\widehat{D}(zZ)$ are the same as the poles of D(zZ), with the same multiplicity. It suffices therefore to apply Remark 1.9. (Since $(1 - \lambda^{-1} \mathcal{M}_Z) | \mathcal{B}_{\infty}$ is invertible when $\lambda^{-1} \in \mathcal{D}^*$, the multiplicity of λ is the same as an eigenvalue of $\mathcal{M}^{\#}$ or \mathcal{M} .) \square

The function $z \mapsto \widehat{D}(zZ)$ in \mathcal{D}^* is the natural generalization of the kneading determinant considered by Milnor and Thurston [2], and also in [1].

2. Proof of Theorem C

The proof results from the four lemmas below.

2.1. Lemma. We have identically

$$\zeta(Z)\widehat{\zeta}(Z) = \zeta_0(Z)$$
.

Using the definitions we obtain

$$\zeta(Z)\widehat{\zeta}(Z) = \exp \sum_{\omega} \frac{1}{|\omega|} [L(\psi_{\omega}) + L(\psi_{\omega}^{-1})\varepsilon(\omega)] Z(\omega)
= \exp \sum_{\omega} \frac{1}{|\omega|} [L_1(\psi_{\omega}) + L_1(\psi_{\omega}^{-1})\varepsilon(\omega) + L_0(\psi_{\omega}) + L_0(\psi_{\omega}^{-1})\varepsilon(\omega)] Z(\omega)
= \exp \sum_{\omega} \frac{1}{|\omega|} L_0(\psi_{\omega}) (1 + \varepsilon(\omega)) Z(\omega) = \zeta_0(Z) ,$$

which proves the lemma. \Box

2.2. Lemma. $D_{ij}(Z)$ is holomorphic when R(Z) < 1.

Suppose that $R(Z_0) < 1$, and let $R(Z_0) < \xi < 1$. We may then choose M such that

$$\|\mathcal{M}_{Z_0}^M\|_0 < \xi^M$$
.

Therefore, for some $\delta > 0$, we have

$$\|\mathscr{M}_Z^M\|_0 < \xi^M \quad \text{if } |Z - Z_0| < \delta.$$

The polynominals $Z \mapsto D_{ij}^{(m)\pm}$ thus satisfy

$$|D_{ii}^{(m)\pm}| < C\xi^m$$
 if $|Z - Z_0| < \delta, \ m \ge 0$

for some C > 0. This implies that $D_{ij}(Z)$ is holomorphic for $|Z - Z_0| < \delta$, i.e., $D_{ij}(Z)$ is holomorphic when R(Z) < 1. \square

2.3. Lemma. $D_{ij}(Z)$ is meromorphic when $\widehat{R}(Z) < 1$, with poles only when $1 \in \operatorname{spectrum} \mathcal{M}_Z$.

Suppose that $\widehat{R}(Z_0) < 1$. We may choose ξ such that $\widehat{R}(Z_0) < \xi < 1$ and no eigenvalue of \mathcal{M}_{Z_0} has modulus ξ (cf. Theorem B(b)). There is then $\delta_0 > 0$ such that, for $|Z - Z_0| \leq \delta_0$, we have $\widehat{R}(Z) < \xi$ and the circle $S = \{\lambda \colon |\lambda| = \xi\}$ is disjoint from the spectrum of \mathcal{M}_Z . We then define the projection

$$P_Z = \frac{1}{2\pi i} \oint_S \frac{d\lambda}{\lambda - \mathcal{M}_Z} .$$

Therefore P_Z commutes with \mathcal{M}_Z , and $1 - P_Z$ is finite dimensional. We may choose M such that

$$||P_{Z_0}\mathcal{M}_{Z_0}^M|| < \xi^M.$$

For some $\delta \in (0, \delta_0)$ we also have

$$||P_Z \mathcal{M}_Z^M|| < \xi^M \quad \text{if } |Z - Z_0| < \delta$$

hence, for some C > 0,

$$||P_Z \mathcal{M}_Z^m|| < C \xi^m$$
 if $|Z - Z_0| < \delta$, $m \ge 0$.

Therefore the functions

$$\lim_{x \downarrow a_i} \sum_{\omega : u_{\omega} = a_i} z_{\omega} \cdot \left[(P_Z (1 - \mathcal{M}_Z)^{-1} \alpha_j) (\psi_{\omega} x) \right],$$

$$\lim_{x\uparrow a_i} \sum_{\omega: v_{\omega}=a_i} z_{\omega} \cdot [(P_Z(1-\mathcal{M}_Z)^{-1}\alpha_j)(\psi_{\omega}x)]$$

are holomorphic for $|Z - Z_0| < \delta$. The functions

$$\lim_{x \downarrow a_1} \sum_{\omega : u_{\omega} = a_1} z_{\omega} \cdot \left[\left((1 - P_Z)(1 - \mathcal{M}_Z)^{-1} \alpha_j \right) (\psi_{\omega} x) \right],$$

$$\lim_{x\uparrow a_{t}} \sum_{\omega: v_{\omega}=a_{j}} z_{\omega} \cdot \left[((1-P_{Z})(1-\mathcal{M}_{Z})^{-1}\alpha_{j})(\psi_{\omega}x) \right]$$

are meromorphic for $|Z - Z_0| < \delta$, and in fact holomorphic if $1 \notin \operatorname{spectrum} \mathcal{M}_Z$. In conclusion $D_{ij}(Z)$ is meromorphic when $\widehat{R}(Z) < 1$ and holomorphic unless $1 \in \operatorname{spectrum} \mathcal{M}_Z$. \square

2.4. Lemma. $\zeta_0(Z)$ is holomorphic when min $\{R(Z), \widehat{R}(Z)\} < 1$.

Let $A = \{a_1 -, a_1 +, \dots, a_L -, a_L +\}$. If $\zeta = a_i \pm \in A$, we write $|\zeta| = a_i$, sign $\zeta = \pm$. For $\zeta, \eta \in A$, $m \ge 1$, we define $T_{\xi\eta}^{(m)}$ to be the sum of the $Z(\omega)$ over all $\omega = (\omega_1, \dots, \omega_m)$ such that

$$\varepsilon(\boldsymbol{\omega}) = \operatorname{sign} \zeta \cdot \operatorname{sign} \eta ,$$

(b) either
$$|\zeta|=u_{\omega_1}$$
 and sign $\xi=+$, or $|\zeta|=v_{\omega_1}$ and sign $\xi=-$,

(c) $ar{\psi}_{\omega_1} |\xi|$ is in the (open) interval of definition

of
$$\psi_{\omega_m} \circ \cdots \circ \psi_{\omega_2}$$
, and $\psi_{\omega_m} \circ \cdots \circ \psi_{\omega_2}$ $(\bar{\psi}_{\omega_1} | \xi |) = |\eta|$.

Denote by T = T(Z) the matrix with elements

$$T_{\xi\eta} = \sum_{m\geq 1} T_{\xi\eta}^{(m)}$$
.

We shall now prove that

$$\sum_{\omega:\varepsilon(\omega)=1} \frac{Z(\omega)}{|\omega|} [\operatorname{del}(\bar{\psi}_{\omega}(u_{\omega}) - u_{\omega}) + \operatorname{del}(\bar{\psi}_{\omega}(v_{\omega}) - v_{\omega})]$$

$$= \sum_{n} \frac{1}{n} \sum_{\xi_{1} \dots \xi_{n}} T_{\xi_{1}\xi_{2}} T_{\xi_{2}\xi_{3}} \dots T_{\xi_{n-1}\xi_{n}} T_{\xi_{n}\xi_{1}}. \tag{*}$$

Consider the symbol (ω, ε) , where $\omega = (\omega_1, \ldots, \omega_m)$ satisfies $\varepsilon(\omega) = 1$, and $\varepsilon = \pm 1$. We write $(\omega, \varepsilon) \sim (\omega', \varepsilon')$ if $\omega' = (\omega_k, \ldots, \omega_m, \omega_1, \ldots, \omega_{k-1})$ is a circular permutation of ω and $\varepsilon' = \varepsilon \varepsilon_1 \cdots \varepsilon_{k-1}$. To a nonvanishing term $\text{del}(\bar{\psi}_{\omega}(u_{\omega}) - u_{\omega})$ or $\text{del}(\bar{\psi}_{\omega}(v_{\omega}) - v_{\omega})$ we associate the pair $(\omega, +)$ or $(\omega, -)$ respectively. The left-hand side of the formula (*) may thus be rewritten as

$$\sum_{(\boldsymbol{\omega},\,\varepsilon)}^* \frac{1}{|\boldsymbol{\omega}|} Z(\boldsymbol{\omega}) \,,$$

where the sum \sum^* is restricted in an obvious manner. Equivalently one can sum over equivalence classes $[(\omega, \varepsilon)]$ for the relation \sim , so that the above sum is

$$= \sum_{[(\omega,\varepsilon)]}^{**} \frac{\operatorname{card}[(\omega,\varepsilon)]}{|\omega|} Z(\omega) .$$

The classes $[(\omega, \varepsilon)]$ appearing in the sum correspond to "extended orbits" of the form

$$x, \ \overline{\psi}_{\omega_1}x, \ldots, (\psi_{\omega_m} \circ \cdots \circ \psi_{\omega_1})^-x = x,$$

where $\bar{\psi}$ denotes as usual the extension of ψ by continuity to the closure of the interval of definition. Consider the values k(i) (with $i=l,\ldots,n$) of k such that $1 \leq k \leq m$ and $(\psi_{\omega_{k-1}} \circ \cdots \circ \psi_{\omega_1})^- x$ is an endpoint u_{ω_k} or v_{ω_k} of J_{ω_k} . We let $k(1) < k(2) < \cdots < k(n)$ and call $\omega^{(1)},\ldots,\omega^{(n)}$ the pieces of ω such that $\omega^{(1)} = (\omega_{i_{k(1)}},\ldots,\omega_{i_{k(2)-1}})$ etc. We have thus $Z(\omega) = Z(\omega^{(1)})\cdots Z(\omega^{(n)})$.

By construction, among the *n* circular permutations of $\{1, 2, ..., n\}$ generated by $1 \to 2 \to \cdots \to n \to 1$, there are $n(\omega, \varepsilon) = |\omega|/\text{card}[(\omega, \varepsilon)]$ which leave

$$(\xi_1, \boldsymbol{\omega}^{(1)}), (\xi_2, \boldsymbol{\omega}^{(2)}), \dots, (\xi_n, \boldsymbol{\omega}^{(n)})$$

fixed, hence the number of equivalence classes of permutations is $n/n(\omega, \varepsilon)$. The sum written above is thus

$$= \sum_{[(\omega, \varepsilon)]}^{**} \frac{n}{n(\omega, \varepsilon)} \cdot \frac{1}{n} Z(\omega^{(1)}) \cdots Z(\omega^{(n)})$$

$$= \sum_{n} \frac{1}{n} \sum_{\xi_{1} \cdots \xi_{n}} T_{\xi_{1} \xi_{2}} T_{\xi_{2} \xi_{3}} \cdots T_{\xi_{n-1} \xi_{n}} T_{\xi_{n} \xi_{1}}$$

proving (*). Therefore

$$\zeta_0(Z) = \exp + \sum_n \frac{1}{n} \operatorname{tr} T^n = \exp \operatorname{tr} (-\log(1-T)) = \det(1-T(Z))^{-1}$$
.

Given $\varepsilon > 0$, let $\chi_{\eta}^{\varepsilon}$ be the characteristic function of $(|\eta|, |\eta| + \varepsilon)$ when sign $\eta = +$, of $(|\eta| - \varepsilon, |\eta|)$ when sign $\eta = -$. Also write $x \to \xi$ when sign $\xi \cdot (x - |\xi|) \downarrow 0$, and

let $\sum_{\omega:\xi}$ be the sum over those ω such that $u_{\omega}+\operatorname{or} v_{\omega}-\operatorname{is} \xi$. Then one checks that

$$\sum_{n\geq 1} (T^n)_{\xi\eta} = \sum_{m\geq 1} \lim_{\epsilon\to 0} \lim_{x\to\epsilon} \sum_{\omega\cdot\xi} z_{\omega} [(\mathscr{M}^{m-1}\chi_n^{\epsilon})(\psi_{\omega}(x))].$$

Therefore $\det(1 - T(Z))^{-1}$ is holomorphic when R(Z) < 1. By symmetry, $\zeta_0(Z)$ is holomorphic when $\min(R(Z), \widehat{R}(Z)) < 1$, proving the lemma.

Write now $\chi_{|n|}(x) = \text{del}(x - |n|)$ and

$$(\mathcal{M}^{m-1})_{\pm} = \frac{1}{2} (\mathcal{M}_Z^{m-1} \pm \mathcal{M}_{\varepsilon Z}^{m-1}),$$

then we have

$$T_{\xi\eta}^{(m)} = \sum_{\omega : \xi} z_{\omega} [(\mathcal{M}^{m-1})_{\pm} \chi_{|\eta|}] (\bar{\psi}_{\omega} |\xi|)$$

with the sign $\pm = \varepsilon_{\omega} \operatorname{sign} \xi \cdot \operatorname{sign} \eta$. Therefore $T_{\xi\eta}$ is a holomorphic function of Z when $\widehat{R}^{\#}(Z) < 1$ and 1 is not an eigenvalue of $\mathscr{M}_{Z}|\mathscr{B}_{\infty}$ or $\mathscr{M}_{\varepsilon Z}|\mathscr{B}_{\infty}$. This justifies Remark 1.8. \square

Appendix A. Proof of Theorem A

Let $\varepsilon_{\omega} = \pm 1$ for $\omega = 1, ..., N$. Fixing (J_{ω}) and (ε_{ω}) , let P be the space of families $\psi = (\psi_{\omega})$ such that each $\psi_{\omega} \colon J_{\omega} \to (-1,1)$ is continuous and strictly increasing if $\varepsilon_{\omega} = +1$, or strictly decreasing if $\varepsilon_{\omega} = -1$. We denote by $C^r(\bar{J}_{\omega})$ the space of C^r functions on the closure \bar{J}_{ω} of J_{ω} , and write

$$P^1 = \left\{ \psi \colon (\psi_\omega) \text{ extends to } (\bar{\psi}_\omega) \in \bigoplus_\omega C^1(\bar{J}_\omega) \text{ ,} \right.$$
 and the derivatives $\bar{\psi}_\omega \text{vanish on } \bar{J}_\omega \backslash J_\omega \right\} \text{ ,}$

 $P^{\mathrm{pol}} = \{ \psi \in P^1 : \text{ the } \psi_{\omega} \text{ are polynomials} \}$.

We use the topology of P, P^1 induced by $\oplus C^0(\bar{J}_{\omega}), \oplus C^1(\bar{J}_{\omega})$. In particular P^{pol} is dense in P, P^1 .

For finite M we define

$$F_M = \{ \psi \colon \operatorname{Fix} \psi_{\boldsymbol{\omega}} \text{ is finite when } |\boldsymbol{\omega}| \leq M \}$$
,

$$P_M = \{ \psi \colon \bar{\psi}_{\omega}(u_{\omega}) + u_{\omega} \text{ and } \bar{\psi}_{\omega}(v_{\omega}) + v_{\omega} \text{ when } |\omega| \leq M \text{ and } J_{\omega} + \emptyset \} .$$

Equivalently we may define P_M as the set of those ψ such that $\bar{\psi}_{\omega}(u_{\omega_1})$ (if defined) is $\pm u_{\omega_1}$, and $\bar{\psi}_{\omega}(v_{\omega_1})$ (if defined) is $\pm v_{\omega_1}$, when $|\omega| \leq M$. We also write

$$F_{\infty} = \bigcap_{M} F_{M}, \qquad P_{\infty} = \bigcap_{M} P_{M}.$$

Note that P_M is open in P.

A.1. Lemma. If $\psi \in F_M \cap P_M$ and $|\omega| \leq M$, we have

$$L(\psi_{\omega}) = \sum_{x \in \text{Fix } \psi_{\omega}} L(x, \psi_{\omega}) .$$

This follows from part (c) of the lemma of Sect. 1.1. \square

Let $|\omega|$ be the class of ω under circular permutations, and say that $[\omega]$ is prime if ω is not the periodic repetition of n copies of a sequence ω' with $|\omega'| < |\omega|$. Then we have the product formula

$$\zeta(Z) = \prod_{[\omega] \text{ prime}} G_{[\omega]}(Z) ,$$

where

$$G_{[\omega]}(Z) = \exp \sum_{n=1}^{\infty} \frac{1}{n} L(\psi_{\omega}^n) Z(\omega)^n$$
.

The following possibilities exist

- (0) $\varepsilon(\omega) = \pm 1$, $L(\psi_{\omega}) = 0$, then $G_{[\omega]}(Z) = 1$, (1) $\varepsilon(\omega) = +1$, $L(\psi_{\omega}) = -1$, then $G_{[\omega]}(Z) = 1 Z(\omega)$, (2) $\varepsilon(\omega) = +1$, $L(\psi_{\omega}) = 1$, then $G_{[\omega]}(Z) = (1 Z(\omega))^{-1}$, (3) $\varepsilon(\omega) = -1$, $L(\psi_{\omega} \circ \psi_{\omega}) = 1$, then $G_{[\omega]}(Z) = (1 Z(\omega))^{-1}$,
- (4) $\varepsilon(\omega) = -1$, $L(\psi_{\omega} \circ \psi_{\omega}) = -1$, then $G_{(\omega)}(Z) = 1 + Z(\omega)$.

A.2. Lemma. $\zeta(Z)$ and $1/\zeta(Z) \in \mathbb{Z}[[z_1, ..., z_N]]$. If \mathfrak{J}_{M+1} is the ideal of elements of order $\geq M+1$ in $\mathbb{Q}[[z_1,\ldots,z_N]]$, then $\zeta(Z) \pmod{\mathfrak{J}_{M+1}}$ is locally constant on P_M .

This follows from the product formula given above and the definition of P_M .

A.3. Lemma. If ψ satisfies $\psi_{\omega}J_{\omega} > a_L$ for $\omega = 1, ..., N$, we have

$$\zeta = D = 1.$$

Clearly $\psi \in F_{\infty} \cap P_{\infty}$. In fact Fix $\psi_{\omega} = \emptyset$ for all ω , hence $\zeta(Z) = 1$. In the present situation $\mathcal{M}^m = 0$ for m > 1. We have thus

$$egin{aligned} D_{ij} &= \delta_{ij} + A_i \;, \ A_i &= rac{1}{2} \left[\sum_{\omega \; : \; u_{\omega} = a_i} z_{\omega} - \sum_{\omega \; : \; v_{\omega} = a_i} z_{\omega}
ight] \;, \end{aligned}$$

i.e., the kneading matrix $[D_{ij}]$ is the sum of the unit matrix $[\delta_{ij}]$ and a matrix of rank ≤ 1 . Therefore

$$D = \det[D_{ij}] = 1 + \sum_{i} A_i = 1 + \frac{1}{2} \left(\sum_{\omega} z_{\omega} - \sum_{\omega} z_{\omega} \right) = 1,$$

which concludes the proof.

A.4. Lemma. Let $\tilde{J}_{\omega}, \tilde{\zeta}, \tilde{D}$ correspond to J_{ω}, ζ, D when $\tilde{\psi}$ replaces ψ . Given $M \geq 1$, we assume that $\tilde{\psi}$ is sufficiently close to ψ in P (in particular $\tilde{J}_{\omega} = J_{\omega}$), and that

$$\tilde{J}_{\omega} \supset J_{\omega}, \qquad \tilde{\psi}_{\omega} \tilde{J}_{\omega} \subset \psi_{\omega} J_{\omega} ,$$
 (1)

$$J_{\omega} \cap \psi_{\omega} J_{\omega} = \emptyset \Rightarrow \tilde{J}_{\omega} \cap \tilde{\psi}_{\omega} \tilde{J}_{\omega} = \emptyset \tag{2}$$

for $|\omega| \leq M$. Then

$$\tilde{\zeta}(Z) = \zeta(Z) \pmod{\mathfrak{J}_{M+1}}$$
,

$$\tilde{D}(Z) = D(Z) \pmod{\mathfrak{J}_{M+1}}$$
.

Furthermore, if

$$\bar{\tilde{\psi}}_{\omega}(u_{\omega}) + \tilde{\psi}_{\omega}(u_{\omega}), \qquad \bar{\tilde{\psi}}_{\omega}(v_{\omega}) + \tilde{\psi}_{\omega}(v_{\omega})$$
(3)

for $|\omega| \leq M$, we may assume that

$$\bar{\tilde{\psi}}_{\omega}(u_{\omega}), \bar{\tilde{\psi}}_{\omega}(v_{\omega}) \notin \{a_1, \dots, a_L\}$$

when $|\omega| \leq M$ (in particular $\tilde{\psi} \in P_M$).

First note that if $J_{\omega} = \emptyset$, then $\tilde{J}_{\omega} = \emptyset$ (because (1) gives $\tilde{\psi}_{\omega} \tilde{J}_{\omega} \subset \psi_{\omega} J_{\omega} = \emptyset$). If $J_{\omega} \neq \emptyset$, the set \tilde{J}_{ω} is close to J_{ω} and the set $\tilde{\psi}_{\omega} \tilde{J}_{\omega}$ is close to $\psi_{\omega} J_{\omega}$; then (2) and the inclusions (1) imply that $L(\tilde{\psi}_{\omega}) = L(\psi_{\omega})$ for $|\omega| \leq M$ (the argument is the same as for part (a) of the lemma in Sect. 1.1: check the list of cases when $L(\psi_{\omega}) = 1, -1$, or 0). This implies $\tilde{\zeta}(Z) = \zeta(Z)$ (mod \mathfrak{J}_{M+1}).

Suppose that $u_{\omega} = u_{\omega_1} = a_i$. When $\tilde{\psi} \to \psi$, then

$$\bar{\psi}_{\omega}(a_i) \rightarrow \bar{\psi}_{\omega}(a_i)$$
,

and the inclusion (1) implies that the above limit is reached on the same side as the limit

$$\psi_{\omega}(x) \to \bar{\psi}_{\omega}(a_i)$$

when $x \downarrow a_i$. Therefore (for $\tilde{\psi}$ close to ψ)

$$\tilde{D}_{ij}^{(m)+} = D_{ij}^{(m)+}$$
,

and similarly

$$\tilde{D}_{\iota j}^{(m)-}=D_{\iota j}^{(m)-}\;.$$

This means that

$$\tilde{D}_{ij} = D_{ij} \pmod{\mathfrak{J}_{M+1}}$$
,

hence

$$\tilde{D}(Z) = D(Z) \pmod{\mathfrak{J}_{M+1}}.$$

The last statement of the lemma follows from the fact that the numbers

$$|\bar{ ilde{\psi}}_{\omega}(u_{\omega}) - \bar{\psi}_{\omega}(u_{\omega})|, \qquad |\bar{ ilde{\psi}}_{\omega}(v_{\omega}) - \bar{\psi}_{\omega}(v_{\omega})|$$

are in an arbitrarily small interval $(0, \delta)$. \square

A.5. Proof of the Theorem. It will suffice to prove Theorem A $(\text{mod }\mathfrak{J}_{M+1})$ for all integers $M \ge 1$. We fix M for the rest of the argument.

For small $\delta > 0$, let the homeomorphism $\varphi_{\omega} : (u_{\omega}, v_{\omega}) \to (u_{\omega} + \delta, v_{\omega} - \delta)$ be the identity on $[u_{\omega} + 2\delta, v_{\omega} - 2\delta]$ and a contraction on $(u_{\omega}, u_{\omega} + 2\delta)$ and $(v_{\omega} - 2\delta, v_{\omega})$. We define $\widetilde{\psi}_{\omega} = \psi_{\omega} \circ \varphi_{\omega}$ for $\omega = 1, \dots, N$. Writing

$$\boldsymbol{\omega} = (\omega_1, \ldots, \omega_m), \qquad \boldsymbol{\omega}' = (\omega_1, \ldots, \omega_{m-1}),$$

we may assume that the length of $J_{\omega_m} \cap \psi_{\omega'} J_{\omega'}$ is $\geq a > 0$ whenever $|\omega| \leq 2M$ and $J_{\omega} \neq \emptyset$. If δ is sufficiently small we may also assume that the length of $J_{\omega_m} \cap \psi_{\omega'} J_{\omega'}$ is $\geq a > 0$ whenever $|\omega| \leq 2M$ and $J_{\omega} \neq \emptyset$. If δ is sufficiently small we may also assume that the length of $J_{\omega_m} \cap \widetilde{\psi}_{\omega'} \widetilde{J}_{\omega'}$ is $\geq b = \frac{a}{2}$. Note that

$$\widetilde{\psi}_{\omega}\widetilde{J}_{\omega} = \widetilde{\psi}_{\omega_m}(J_{\omega_m} \cap \widetilde{\psi}_{\omega'}\widetilde{J}_{\omega'}).$$

Assuming now that $2\delta < b$, we see by induction on $|\omega|$ that

$$\widetilde{\psi}_{\omega}\widetilde{J}_{\omega}\subset\psi_{\omega}J_{\omega}$$
.

Writing $\omega(k) = (\omega_1, ..., \omega_k)$ we also see (by induction on k, and assuming δ small enough) that

 $\widetilde{\psi}_{\omega(k)}J_{\omega}\subset\psi_{\omega(k)}J_{\omega}$.

In particular $\widetilde{\psi}_{\omega}$ is defined on J_{ω} , i.e.,

$$\tilde{J}_{\omega} \supset J_{\omega}$$
.

The condition (1) of Lemma A.4 is thus satisfied when $|\omega| \leq 2M$. Writing $(\omega_1, \ldots, \omega_m, \omega_1, \ldots, \omega_m) = 2\omega$, we have

$$J_{\omega} \cap \psi_{\omega} J_{\omega} = \psi_{\omega} J_{2\omega}$$
.

Therefore (2) for $|\omega| \leq M$ follows from the implication $\psi_{2\omega}J_{2\omega} = \emptyset \Rightarrow \widetilde{\psi}_{2\omega}\widetilde{J}_{2\omega} = \emptyset$ (which follows from (1)). By induction on m we see that (3) also holds

We may now approximate $\widetilde{\psi}$ in P^0 by $\psi^1 \in P^{\text{pol}}$ while respecting the conditions (1),(2), and (3). Lemma A.4 thus shows that, to prove Theorem A, it suffices to prove that

$$\zeta^{1}(Z) = D^{1}(Z) \pmod{\mathfrak{J}_{M+1}},$$

where $\zeta^1(Z)$ and $D^1(Z)$ are constructed with $\psi^1 \in P^{\text{pol}}$ such that

$$\tilde{\psi}^1_{\boldsymbol{\omega}}(u_{\boldsymbol{\omega}}), \ \tilde{\psi}^1_{\boldsymbol{\omega}}(v_{\boldsymbol{\omega}}) \notin \{a_1, \ldots, a_L\}$$

for $|\omega| \leq M$.

Let $\psi^0 \in P^{\mathrm{pol}}$ be defined as in Lemma A.3, and $\psi^{\lambda} = (1 - \lambda)\psi^0 + \lambda\psi^1$. By definition, $\psi^{\lambda} = (\psi_1^{\lambda}, \dots, \psi_N^{\lambda})$ is an N-tuple of polynomials, none of which is affine $[\bar{\psi}_{\omega}^{\lambda}]$ is non-constant, with derivatives vanishing at u_{ω}, v_{ω} ; in particular $\psi^{\lambda} \in F_{\infty}$. Note that the functions $(x, \lambda) \mapsto \psi_{\omega}^{\lambda}(x), \psi_{\omega}^{\lambda}$ are polynomials, and extend therefore naturally to \mathbb{R}^2 . Until further notice we shall use these extended definitions. The polynomials $\lambda \mapsto \psi_{\omega}^{\lambda}(a_i) - a_j$ (defined for all $\omega = (\omega_1, \dots, \omega_m)$ with $1 \leq m \leq M$ and $i, j \in \{1, \dots, L\}$) may be assumed not to vanish at $\lambda = 0, 1$. Therefore there is a finite set $\Lambda \subset (0, 1)$ of values of λ such that

$$\psi_{\omega}^{\lambda}(a_i) = a_i$$

for some i, j, and ω . If ζ^{λ} and D^{λ} denote ζ and D computed with ψ^{λ} , we see that ζ^{λ} (mod \mathfrak{J}_{M+1}) remains constant in each interval of $[0,1]\backslash \Lambda$ [see Lemma A.2] and the same is true for D^{λ} (mod \mathfrak{J}_{M+1}) [because the $D_{ij}^{(m)\pm}$ are constant].

In view of Lemma A.3, in order to prove Theorem A it suffices to show that ζ^{λ} and D^{λ} are multiplied by the same factor (mod \mathfrak{J}_{M+1}) whenever λ crosses a point of Λ .

The changes of sign of the $\psi_{\omega}^{\lambda}(a_i) - a_j$ when λ crosses an element of Λ may be complicated. We shall make them simpler by modifying (ψ^{λ}) to obtain a family $(\widetilde{\psi}^{\lambda})$ with nonlinear dependence on λ .

Let us assume that $(x, \lambda) \mapsto \widetilde{\psi}_{\omega}^{\lambda}(x)$, defined on \mathbb{R}^2 , is C^{∞} close to $(x, \lambda) \mapsto \psi_{\omega}^{\lambda}(x)$, for $\omega = 1, \dots, N$, and construct $\widetilde{\psi}_{\omega}^{\lambda} = \widetilde{\psi}_{\omega_m}^{\lambda} \circ \cdots \circ \widetilde{\psi}_{\omega_1}^{\lambda}$. In particular the functions

 $\lambda \mapsto \widetilde{\psi}_{\omega}^{\lambda}(a_i) - a_j$ are C^{∞} close to the polynomials $\lambda \mapsto \psi_{\omega}^{\lambda}(a_i) - a_j$ and may be assumed not to vanish at $\lambda = 0, 1$. Let $\widetilde{\Lambda}$ be the set of all $\lambda \in (0,1)$ for which $\widetilde{\psi}_{\omega}^{\lambda}(a_i) = a_j$ for some i,j, and some ω with $|\omega| \leq M$. Then card $\widetilde{\Lambda}$ is bounded by the sum (over i,j,ω) of the degrees of the polynomials $\lambda \mapsto \psi_{\omega}^{\lambda}(a_i) - a_j$, hence uniformly in $(\widetilde{\psi}^{\lambda})$ for $(\widetilde{\psi}^{\lambda})$ in a suitable C^{∞} neighborhood of (ψ^{λ}) . We shall use the uniformity of this bound in a moment.

Given $\lambda_0 \in \Lambda$ we construct an oriented graph Γ as follows. The set of vertices of Γ is

$$X = \{ \xi \in \mathbb{R} : \text{ there exist } \omega = (\omega_1, \dots, \omega_m) \text{ with } 1 \leq m \leq M, i, j \in \{1, \dots, L\}$$
 and $k \in \{0, \dots, m\}$ such that $\psi_{\omega_k}^{\lambda_0} \circ \dots \circ \psi_{\omega_1}^{\lambda_0} a_i = \xi, \psi_{\omega_m}^{\lambda_0} \circ \dots \circ \psi_{\omega_{k+1}}^{\lambda_0} \xi = a_j \}$.

The set of arrows is

$$\{(\xi,\omega)\colon 1\leq\omega\leq N,\ \xi\in X\ \text{and}\ \psi_{\omega}^{\lambda_0}\xi\in X\}$$
.

The arrow (ξ, ω) starts at ξ and goes to $\eta = \psi_{\omega}^{\lambda_0} \xi$; there may thus be several arrows $\xi \Rightarrow \eta$. An arrow (ξ, ω) : $\xi \Rightarrow \eta$ may be removed from the graph corresponding to λ_0 by a C^{∞} small change of $(x, y) \mapsto \psi_{\omega}^{\lambda}(x)$ near (ξ, λ_0) . Repeating this operation, we can arrange that (ψ^{λ}) is replaced by $(\widetilde{\psi}^{\lambda})$ such that the graph corresponding to λ_0 consists of a simple arc $a_i \Rightarrow \xi \Rightarrow \eta \Rightarrow \cdots \Rightarrow a_j$ (where a_j may be equal to a_i) and $\xi, \eta, \ldots \notin \{a_i, \ldots, a_L\}$. This means that there are unique i, j, and ω^* with $|\omega^*| \leq M$ such that $\widetilde{\psi}_{\omega_*^*}^{\lambda_0}(a_i) = a_j$ and $\widetilde{\psi}_{\omega_k^*}^{\lambda_0} \circ \cdots \circ \widetilde{\psi}_{\omega_1^*}^{\lambda_0} a_i \notin \{a_1, \ldots, a_L\}$ for $k < |\omega^*|$.

By a small change of $(\widetilde{\psi}^{\lambda})$ near $\lambda = \lambda_0$ we may further achieve that Fix $\widetilde{\psi}^{\lambda_0}_{\omega}$ is finite when $|\omega| \leq M$, and that the fixed points are not degenerate (i.e., the derivative of $\widetilde{\psi}^{\lambda_0}_{\omega}$ at $\xi \in \operatorname{Fix} \widetilde{\psi}^{\lambda_0}_{\omega}$ is ± 1). Note that the families (ψ^{λ}) and $(\widetilde{\psi}^{\lambda})$ coincide outside of a small neighborhood of λ_0 ; to obtain $\widetilde{\Lambda}$ from Λ we have replaced λ_0 by a finite set $\{\lambda_0, \lambda'_0, \ldots\}$.

We may now start again the above process with a new element $\tilde{\lambda}_0$ of $\widetilde{\Lambda}$ (being careful to leave $(\widetilde{\psi}^{\lambda_0})$ unchanged). Since the cardinality of the sets $\Lambda, \widetilde{\Lambda}, \ldots$ is uniformly bounded, after a finite number of steps the family (ψ^{λ}) is replaced by (Ψ^{λ}) with the following properties.

- (a) $\Psi^{\lambda} \in P^1$, $(x,\lambda) \mapsto \Psi^{\lambda}(x)$ is C^{∞} , and $\Psi^0 = \psi^0$, $\Psi^1 = \psi^1$.
- (b) For λ outside of a finite set Λ^* ,

$$\Psi_{\omega}^{\lambda}(a_i) \neq a_j$$

if $i, j \in \{1, ..., L\}$ and $|\omega| \leq M$.

(c) If $\lambda \in \Lambda^*$ there are unique $i, j \in \{1, ..., L\}$ and ω^* with $|\omega^*| \leq M$ such that

$$\Psi_{\boldsymbol{\omega}^*}^{\lambda}(a_i) = a_j ,$$

and $\Psi_{\omega_k^*}^{\lambda} \circ \cdots \circ \Psi_{\omega_i^*}^{\lambda} a_i \notin \{a_1, \ldots, a_L\}$ if $k < |\omega^*|$.

(d) If $\lambda \in \Lambda^*$, and $|\omega| \leq M$, then Fix Ψ_{ω}^{λ} is finite and the fixed points $\xi \in \text{Fix } \Psi_{\omega}^{\lambda}$ are nondegenerate, i.e., $(\Psi_{\omega}^{\lambda})'(\xi) \neq 1$.

To prove the theorem it suffices therefore to check (under the conditions (a), (b), (c), (d)) that the zeta function ζ and the kneading determinant D associated with (Ψ^{λ}) are multiplied by the same factor (mod \mathfrak{J}_{M+1}) when λ crosses a point of Λ^* . This is done in the following lemma. \square

We return now to the standard notation where ψ_{ω} is defined only on J_{ω} and $\bar{\psi}_{\omega}$ is the extension of ψ_{ω} by continuity to the closure \bar{J}_{ω} ; similarly for $\psi_{\omega}, \bar{\psi}_{\omega}$.

A.6. Lemma. Let $\psi \in P^1$ be such that there are unique $i, j \in \{1, ..., L\}$ and ω^* with $|\omega^*| \leq M$ such that

$$\bar{\psi}_{\boldsymbol{\omega}^*}(a_i) = a_i$$

and $\bar{\psi}_{\omega_k^*} \circ \cdots \circ \bar{\psi}_{\omega_1^*} a_i \notin \{a_1, \ldots, a_L\}$ if $k < |\omega^*|$. We further assume that whenever $|\omega| \leq M$ the set Fix ψ_{ω} is finite and consists of nondegenerate fixed points ξ , i.e., $\psi'_{\omega}(\xi) \neq 1$.

Then if $\psi^>$, $\psi^<$ are sufficiently close to ψ in P^1 and such that $\psi^>_{\omega^*}(a_i) > a_j$, $\psi^<_{\omega^*}(a_i) < a_j$ we have

$$\zeta^{>}/\zeta^{<} = D^{>}/D^{<} \pmod{\mathfrak{J}_{M+1}}$$

where ζ^{\geq} , D^{\geq} denote ζ ,D computed from ψ^{\geq}

We first observe that $\zeta^>/\zeta^< = D^>/D^< = 1 \pmod{\mathfrak{J}_{M+1}}$ unless a_i is one of the endpoints $u_{\omega_1^*}$ or $v_{\omega_1^*}$ of $J_{\omega_1^*}$. Using the symmetry $x \to -x$ of \mathbb{R} we see that it suffices to consider the situation where $u_{\omega_1^*} = a_i$. In this case we claim that we have $\pmod{\mathfrak{J}_{M+1}}$

$$\zeta^{>} = \zeta^{<},$$
 $D^{>} = D^{<}$
if $j \neq i$,
$$\zeta^{>} = \zeta^{<} \cdot (1 - Z(\omega^{*}))^{-1},$$
 $D^{>} = D^{<} \cdot (1 - Z(\omega^{*}))^{-1}$
if $j = i$.

We first discuss the easy proof of the formulas for the zeta function. If $j \neq i$, then $\zeta \pmod{\mathfrak{J}_{M+1}}$ is locally constant at ψ (Lemma A.2), hence $\zeta^{>} = \zeta^{<}$.

Let j=i. We have $\bar{\psi}_{\omega^*}a_i=a_i$. The point a_i bifurcates into an attracting fixed point for $\psi_{\omega^*}^>$, absent for $\psi_{\omega^*}^<$ (see the figure). Apart from the periodic orbit thus created, the periodic orbits for $\psi,\psi^>,\psi^<$ correspond to each other, with the same weight, up to order $\geq M+1$, if $\psi^>$ and $\psi^<$ are sufficiently close to ψ in P^1 . Therefore

$$\zeta^> = \zeta^< (1 - Z(\boldsymbol{\omega}^*))^{-1}$$

as announced.

Graph of ψ_{ω} . The graph of $\psi_{\omega^*}^{>}$ (resp. $\psi_{\omega^*}^{<}$) is obtained by pushing the graph of ψ_{ω^*} upwards (resp. downwards).

We consider now the changes for D. Let δD denote the jump of D from $\psi^{<}$ to $\psi^{>}$ and similarly for $\delta D_{ik},\ldots$ We have $\delta D_{ik}^{(m)-}=0$, hence

$$\delta D_{ik} = \frac{1}{2} \sum_{m=1}^{\infty} \delta D_{ik}^{(m)+} = \frac{1}{2} \sum_{m \ge 1} \lim_{x \downarrow a_i} \left[((\mathcal{M}^{>})^m \alpha_k)(x) - ((\mathcal{M}^{<})^m \alpha_k)(x) \right]$$
$$= \frac{1}{2} Z(\omega^*) \sum_{n \ge 0} \lim_{x \downarrow a_i} \left[((\mathcal{M}^{>})^n \alpha_k)(\psi_{\omega^*}^{>} x) - ((\mathcal{M}^{<})^n \alpha_k)(\psi_{\omega^*}^{<} x) \right]$$

Fig. 1.

with obvious notation. Let Φ denote a function which is locally constant on \mathbb{R} outside of $\{a_1, \ldots, a_L\}$, like χ_ω or α_k . If $|\omega^*| + |\omega| \leq M$ we have

$$\lim_{x \downarrow a_i} (\Phi \circ \psi_{\omega}^{>} \circ \psi_{\omega^*}^{>})(x) = \lim_{x \downarrow a_j} (\Phi \circ \psi_{\omega}^{>})(x) ,$$

$$\lim_{x \downarrow a_i} (\Phi \circ \psi_{\omega}^{<} \circ \psi_{\omega^*}^{<})(x) = \lim_{x \uparrow a_i} (\Phi \circ \psi_{\omega}^{<})(x) = \lim_{x \uparrow a_j} (\Phi \circ \psi_{\omega}^{>})(x) ,$$

when $\psi^{<}$ and $\psi^{>}$ are sufficiently close to ψ in P^{1} . Therefore (mod \mathfrak{J}_{M+1})

$$\delta D_{ik} = Z(\omega^*) \sum_{n \geq 0} \frac{1}{2} \left[\lim_{x \downarrow a_j} ((M^>)^n \alpha_k)(x) - \lim_{x \uparrow a_j} ((M^>)^n \alpha_k)(x) \right] = Z(\omega^*) D_{jk}^>.$$

If $i \neq j$, we have $D_{jk}^{>} = D_{jk}$. Therefore in $\delta[D_{ik}]$ the i^{th} and j^{th} line are proportional, giving $\delta D = 0$, i.e., $D^{<} = D^{>}$.

If
$$i = j$$
, we have

$$D^{>} - D^{<} = \delta D = Z(\boldsymbol{\omega}^{*})D^{>},$$

hence

$$D^{>} = D^{<} \cdot (1 - Z(\omega^{*}))^{-1}$$

as announced. \square

Appendix B. Generalized Transfer Operators

As before, \mathscr{B} denotes the Banach space of functions $\Phi: \mathbb{R} \to \mathbb{C}$ of bounded variation. We use on \mathscr{B} the norm Var defined by

Var
$$\Phi = \lim \left[|\Phi(a_0)| + \sum_{i=1}^n |\Phi(a_i) - \Phi(a_{i-1})| + |\Phi(a_n)| \right],$$

where the limit is taken over finite sets $\{a_0, ..., a_n\}$ (with $a_0 < a_1 < \cdots < a_n$) ordered by inclusion.

We also write

$$\mathscr{B}_{\infty} = \{ \Phi \in \mathscr{B} \colon \{ x \colon \Phi(x) \neq 0 \} \text{ is countable} \}$$

and let $\|\cdot\|^{\#}$ denote the quotient norm on $\mathscr{B}^{\#} = \mathscr{B}/\mathscr{B}_{\infty}$. We have then

$$\|[\boldsymbol{\Phi}]\|^{\#} = \operatorname{Var}^{\#}\boldsymbol{\Phi} ,$$

where $\operatorname{Var}^{\#}$ is defined like Var, but with $\{a_0,\ldots,a_n\}$ ranging over the finite subsets of a generic dense set **R**. By this we mean that the closure of **R** is **IR**, and that **R** is disjoint from any countable set given in advance. (For the definition of $\operatorname{Var}^{\#}\Phi$, the set to avoid is that of discontinuities of Φ .) Using $\operatorname{Var}^{\#}$ it is easy to implement Remark 1.7, and obtain a #-version of Theorem B.1 below.

We let Ω be a countable set and for each $\omega \in \Omega$ we suppose that

 Λ_{ω} is an interval of \mathbb{R} (not necessarily open or closed).

 $\psi_{\omega}: \Lambda_{\omega} \to \mathbb{R}$ is continuous and strictly monotone (i.e. $\psi_{\omega}: \Lambda_{\omega} \to \psi_{\omega}\Lambda_{\omega}$ is a homeomorphism).

 $\varphi_{\omega}: \Lambda_{\omega} \to \mathbb{C}$ has bounded variation. We also assume that

$$V = \sum_{\omega \in \Omega} \operatorname{Var} \varphi_{\omega} < \infty$$
.

[In order to define $\operatorname{Var} \varphi_{\omega}$, we extend φ_{ω} to be 0 on $\operatorname{IR} \backslash \Lambda_{\omega}$.]

We write $\varepsilon_{\omega} = +1$ if ψ_{ω} is increasing, -1 if ψ_{ω} is decreasing [we make an arbitrary choice if Λ_{ω} is reduced to one point or empty].

On the Banach space \mathscr{B} we define the operators \mathscr{M} and $\widehat{\mathscr{M}}$ such that

$$\begin{split} \mathcal{M}\Phi(x) &= \sum_{\omega} \varphi_{\omega}(x) \Phi(\psi_{\omega} x) \,, \\ \widehat{\mathcal{M}}\Phi(x) &= \sum_{\omega} \varepsilon_{\omega} \varphi_{\omega}(\psi_{\omega}^{-1} x) \Phi(\psi_{\omega}^{-1} x) \,. \end{split}$$

[We let $\varphi_{\omega}(x)\Phi(\psi_{\omega}x) = 0$ if $x \notin \Lambda_{\omega}$ and $\varphi_{\omega}(\psi_{\omega}^{-1}x)\Phi(\psi_{\omega}^{-1}x) = 0$ if $x \notin \psi_{\omega}\Lambda_{\omega}$.] The operators \mathcal{M} and $\widehat{\mathcal{M}}$ are bounded. If we denote by ||M|| the norm of the operator M acting on \mathcal{B} (with the Var norm) and by $||M||_0$ the norm of the operator M acting on bounded function (with the uniform norm $||\cdot||_0$) we have

$$\|\mathcal{M}\|, \|\widehat{\mathcal{M}}\|, \|\mathcal{M}\|_0, \|\widehat{\mathcal{M}}\|_0 < V$$
.

We write

$$R = \lim_{m \to \infty} (\|\mathcal{M}^m\|_0)^{1/m} ,$$

$$\widehat{R} = \lim_{m \to \infty} (\|\widehat{\mathcal{M}}^m\|_0)^{1/m} .$$

The submultiplicativity of $m \mapsto \|\mathcal{M}^m\|_0$, $\|\widehat{\mathcal{M}}^m\|_0$ guarantees the existence of the limits; R and \widehat{R} are in fact the spectral radii of \mathcal{M} , $\widehat{\mathcal{M}}$ acting on bounded functions $X \to \mathbb{C}$. In general $R \neq \widehat{R}$.

- **B.1. Theorem.**¹ (a) The spectral radius of \mathcal{M} acting on \mathcal{B} is $\leq \max(R, \widehat{R})$ and $\geq \widehat{R}$.
 - (b) The essential spectral radius of \mathcal{M} is $\leq \widehat{R}$.
- (c) If $\varphi_{\omega} \geq 0$ for all ω , the spectral radius of \mathcal{M} is $\geq R$. If furthermore $\widehat{R} < R$, then R is an eigenvalue of \mathcal{M} , and there is a corresponding eigenfunction $\Phi_R \geq 0$.

¹ This is an improved version of the theorem of [4].

Note that \mathcal{M} , $\widehat{\mathcal{M}}$ play symmetric roles: \mathcal{M} may be replaced by $\widehat{\mathcal{M}}$ in the theorem if R, \widehat{R} are interchanged.

It will be convenient to assume that all Λ_{ω} and $\psi_{\omega}\Lambda_{\omega}$ are contained in (-1,+1). This can be achieved by the embedding $\mathbb{R} \to (-1,+1)$ given by $x \to x(1+x^2)^{-1/2}$. We can then also extend the ψ_{ω} to homeomorphisms $\mathbb{R} \to \mathbb{R}$, and take $\varphi_{\omega}|(\mathbb{R} \setminus \Lambda_{\omega}) = 0$.

The proof of the theorem will use bilinear forms on \mathscr{B} which we now introduce. If $\Phi, \Psi : \mathbb{R} \to \mathbb{C}$ are of bounded variation we may define

$$\begin{split} \langle \Psi, \Phi \rangle_{+} &= \lim \sum_{i=1}^{n} \Psi(a_{i}) (\Phi(a_{i}) - \Phi(a_{i-1})) \,, \\ \langle \Psi, \Phi \rangle_{-} &= \lim \sum_{i=1}^{n} \Psi(a_{i-1}) (\Phi(a_{i}) - \Phi(a_{i-1})) \,, \\ \langle \Psi, \Phi \rangle &= \frac{1}{2} \langle \Psi, \Phi \rangle_{+} + \frac{1}{2} \langle \Psi, \Phi \rangle_{-} \\ &= \lim \sum_{i=0}^{n} \frac{\Psi(a_{i}) + \Psi(a_{i-1})}{2} \left(\Phi(a_{i}) - \Phi(a_{i-1}) \right) \,. \end{split}$$

The limits are taken over finite sets $\{a_0, \ldots, a_n\}$ (with $a_0 < a_1 < \cdots < a_n$) ordered by inclusion. The limits for $\langle \Psi, \Phi \rangle_{\pm}$ exist by monotonicity if Φ, Ψ are real monotone and Φ is constant on $(\infty, a]$ and $[b, \infty)$. Therefore (using linear combinations and density) the limits exist in general.

Note that $\langle \Psi, \Phi \rangle$ depends only on the restriction of Ψ to a small neighborhood of the support of Φ . Also

$$|\langle \Psi, \Phi \rangle| \leq \|\Psi\|_0 \operatorname{Var} \Phi$$
.

Let $\mathscr{B}_0 = \{ \Phi \in \mathscr{B} : \lim_{|x| \to \infty} \Phi(x) = 0 \}$ and denote by Ψ_x the characteristic function of $(-\infty, x)$. Using the linear form

$$\Psi \mapsto \alpha(\Psi) = \langle \Psi, \Phi \rangle$$
,

we define

$$\Phi_{\alpha}(x) = 2\alpha(\Psi_x) - \lim_{y \nearrow x} \alpha(\Psi_y).$$

When $\Phi \in \mathcal{B}_0$, it is easily checked that $\Phi_{\alpha} = \Phi$. More generally if $\alpha : \mathcal{B} \to \mathbb{C}$ is linear and satisfies

$$|\alpha(\Psi)| \leq C_{\alpha} ||\Psi||_{0}$$
,

the function $x \mapsto \alpha(\Psi_x)$ has $Var \leq 2C_\alpha$ and

$$\operatorname{Var} \Phi_{\alpha} \leq 6C_{\alpha}$$
.

 $[\Phi_{\alpha}$ is thus in \mathscr{B} , but not necessarily in \mathscr{B}_0 . Furthermore it is not claimed that $\langle \Psi, \Phi_{\alpha} \rangle = \alpha(\Psi)$.]

B.2. Proof of part (a). Using the notation

$$\varphi_{\omega_1\cdots\omega_m}(x) = \varphi_{\omega_1}(x)\cdots\varphi_{\omega_m}(\psi_{\omega_{m-1}}\cdots\psi_{\omega_1}x),$$

we have

$$\langle \Psi, \mathscr{M}^m \Phi \rangle = \sum_{\omega_1 \cdots \omega_m} \langle \Psi, \varphi_{\omega_1 \cdots \omega_m} \cdot (\Phi \circ \psi_{\omega_m} \circ \cdots \circ \psi_{\omega_1}) \rangle.$$

We may write

$$\begin{split} \langle \Psi, \varphi_{\omega_{1} \cdots \omega_{m}} \cdot (\varPhi \circ \psi_{\omega_{m}} \circ \cdots \circ \psi_{\omega_{1}}) \rangle \\ &= \sum_{k=1}^{m} \lim \sum_{i=1}^{m} \frac{1}{2} \{ [\varepsilon_{\omega_{1}} \cdots \varepsilon_{\omega_{k-1}} \cdot (\varphi_{\omega_{1} \cdots \omega_{k-1}} \cdot \Psi) \circ \psi_{\omega_{1}}^{-1} \circ \cdots \circ \psi_{\omega_{k-1}}^{-1}] (a_{i}) \\ & \cdot [\varphi_{\omega_{k+1} \cdots \omega_{m}} \cdot (\varPhi \circ \psi_{\omega_{m}} \circ \cdots \circ \psi_{\omega_{k+1}})] (\psi_{\omega_{k}} a_{i-1} + \operatorname{sym}) \} \\ & \cdot [\varphi_{\omega_{k}}(a_{i}) - \varphi_{\omega_{k}}) (a_{i-1})] \\ & + \lim \sum_{i=1}^{n} \frac{1}{2} \{ [\varepsilon_{\omega_{1}} \cdots \varepsilon_{\omega_{m}} \cdot (\varphi_{\omega_{1} \cdots \omega_{m}} \cdot \Psi) \circ \psi_{\omega_{1}}^{-1} \circ \cdots \circ \psi_{\omega_{m}}^{-1}] (a_{i}) + \operatorname{sym} \} \\ & \cdot [\varPhi(a_{i}) - \varPhi(a_{i-1})] , \end{split}$$

where the "sym" terms are obtained by exchanging a_i and a_{i-1} . Note that when the function $\psi_{\omega_{k-1}} \circ \cdots \circ \psi_{\omega_1}$ is decreasing, the change of variables that it defines interchanges "symmetric" terms and produces a negative sign (this is reflected in the factor $\varepsilon_{\omega_1} \cdots \varepsilon_{\omega_{k-1}}$ of the formula). We have thus

$$|\langle \Psi, \mathcal{M}^m \Phi \rangle| \leq \sum_{k=1}^m \|\widehat{\mathcal{M}}^{k-1} \Psi\|_0 \|\mathcal{M}^{m-k} \Phi\|_0 V + \|\widehat{\mathcal{M}}^m \Psi\|_0 \operatorname{Var} \Phi.$$

Therefore if $\xi > \max(R, \hat{R})$, there is C > 0 such that

$$\begin{aligned} |\langle \Psi, \mathscr{M}^m \Phi \rangle| &\leq C(m \xi^m || \Psi ||_0 || \Phi ||_0 + \xi^m || \Psi ||_0 \operatorname{Var} \Phi) \\ &\leq (m+1) C \xi^m || \Psi ||_0 \operatorname{Var} \Phi \,, \end{aligned}$$

hence

$$\operatorname{Var} \mathcal{M}^m \Phi \leq 6(m+1)C\xi^m \operatorname{Var} \Phi ,$$

$$\|\mathcal{M}^m\| \leq 6(m+1)C\xi^m ,$$

and finally

spectral radius
$$\mathcal{M} \leq \max(R, \widehat{R})$$
. \square

B.3. Proof of part (b). If (K_m) is a sequence of operators of finite rank we have the general formula²

essential spectral radius of
$$\mathcal{M} \leq \limsup_{m \to \infty} (\|\mathcal{M}^m - K_m\|)^{1/m}$$
.

Let $\xi > \widehat{R}$; there is thus C > 0 such that

$$\|\widehat{\mathscr{M}}^m\|_0 \leq C\xi^m$$

for all m. To prove (b) we will show that (for suitable K_m) we have

$$\|\mathscr{M}^m - K_m\| \leq P(m) \cdot \zeta^m$$
,

where P(m) is a polynomial (of degree 1) in m.

 $^{^2}$ This is a relatively elementary fact, which constitutes the "easy" part of Nussbaum's essential spectral radius formula (Nussbaum [3]).

We can choose a finite set $\Omega^* \subset \Omega$ so that the operator \mathcal{M}^* defined by

$$(\mathcal{M}^*\Phi)(x) = \sum_{\omega \in \Omega^*} \varphi_{\omega}(x) \Phi(\psi_{\omega} x)$$

is arbitrarily close to M. We have indeed

$$\|\mathcal{M} - \mathcal{M}^*\|, \|\widehat{\mathcal{M}} - \widehat{\mathcal{M}}^*\| \leq \sum_{\omega \in \Omega \setminus \Omega^*} \operatorname{Var} \varphi_{\omega},$$
$$\|\mathcal{M}^*\|, \|\widehat{\mathcal{M}}^*\| < V.$$

We may thus take Ω^* (depending on m) such that

$$\|\mathcal{M}^k - \mathcal{M}^{*k}\|, \|\widehat{\mathcal{M}}^k - \widehat{\mathcal{M}}^{*k}\| \leq \xi^k$$

for k = 1, ..., m. The same estimates may be assumed to hold for the $\| \|_0$ operator norms; in particular we obtain

$$\|\widehat{\mathscr{M}}^{*k}\|_0 \le (C+1)\xi^k$$

for k = 1, ..., m.

For each $\omega \in \Omega^*$ we decompose Λ_{ω} into finitely many intervals $\Lambda_{(\omega,i)}$ and define a function $\overline{\varphi}_{\omega}$ with constant value $\varphi(\omega,i)$ in $\Lambda_{(\omega,i)}$. Taking $\varphi(\omega,i) \in \varphi_{\omega} \Lambda_{(\omega,i)}$ we have

$$\operatorname{Var} \overline{\varphi}_{\omega} \leq \operatorname{Var} \varphi_{\omega}$$
.

Given $\delta > 0$ we may also assume that the $\Lambda_{(\omega,i)}$ are such that

$$\|\varphi_{\omega} - \overline{\varphi}_{\omega}\|_{0} < \delta / \operatorname{card} \Omega^{*}$$
.

We define the operator \overline{M} by

$$(\bar{\mathcal{M}}\Phi)(x) = \sum_{\omega \in \Omega^*} \overline{\varphi}_{\omega}(x)\Phi(\psi_{\omega}x),$$

and obtain thus

$$\begin{split} \|\mathcal{M}^* - \bar{\mathcal{M}} \,\|_0, &\|\hat{\mathcal{M}}^* - \bar{\hat{\mathcal{M}}} \,\|_0 \, \leqq \delta \,, \\ \|\bar{\mathcal{M}}\|, &\|\bar{\hat{\mathcal{M}}} \,\|, \|\bar{\mathcal{M}}\|_0, &\|\hat{\bar{\mathcal{M}}} \, \leqq V \,. \end{split}$$

We may thus choose δ sufficiently small that

$$\|\mathcal{M}^{*k} - \bar{\mathcal{M}}^k\|_0, \|\widehat{\mathcal{M}}^{*k} - \widehat{\bar{\mathcal{M}}}^k\|_0 \leq \xi^k$$

for k = 1, ..., m. In particular

$$\|\widehat{\widehat{\mathcal{M}}}^k\|_0 \le (C+2)\xi^k$$

for k = 1, ..., m.

We note that the linear form associated with $\mathcal{M}^{*m}\Phi$ is

$$\begin{split} \Psi \mapsto \langle \Psi, \mathscr{M}^{*m} \Phi \rangle &= \sum_{k=1}^{m} \lim \sum_{i=1}^{n} \sum_{\omega_{k}} \frac{1}{2} \{ [(\widehat{\mathscr{M}}^{*k-1} \Psi)(a_{i})] \cdot [(\mathscr{M}^{*m-k} \Phi)(\psi_{\omega_{k}} a_{i-1})] \\ &+ \operatorname{sym} \} \cdot [\varphi_{\omega_{k}}(a_{i}) - \varphi_{\omega_{k}}(a_{i-1})] \\ &+ \lim \sum_{i=1}^{n} \frac{1}{2} \{ (\widehat{\mathscr{M}}^{*m} \Psi)(a_{i}) + \operatorname{sym} \} \cdot [\Phi(a_{i}) - \Phi(a_{i-1})] \,. \end{split}$$

This expression will be used in a moment.

Let us denote by $\psi_{(\omega,i)}$ the restriction of ψ_{ω} to $\Lambda_{(\omega,i)}$. For fixed k the intervals of definition of the $\psi_{(\omega_m,i_m)} \circ \cdots \circ \psi_{(\omega_{k+1},i_{k+1})}$ generate a partition of $\mathbb R$ into a finite set \mathfrak{J}_{m-k} of intervals. Let \mathfrak{J}'_{m-k} be the set of interval endpoints, and \mathfrak{J}''_{m-k} , the set of interval interiors (this is a finite set of open intervals). For each $I \in \mathfrak{J}''_{m-k}$, choose $x_I \in I$ and define the operator \mathcal{N}_{m-k} by

$$(\mathcal{N}_{m-k}\Phi)(x) = \begin{cases} (\bar{\mathcal{M}}^{m-k}\Phi)(x) & \text{if } x \in \mathfrak{J}'_{m-k} \\ \langle \Psi_{x_I}, \bar{\mathcal{M}}^{m-k}\Phi \rangle & \text{if } x \in I \in \mathfrak{J}''_{m-k} \end{cases}.$$

Finally we define the operator K_m by

$$K_m \Phi = \Phi_{\alpha}$$
,

where $\Phi_{\alpha} \in \mathscr{B}$ is the function associated with the linear form α :

$$\Psi \mapsto \alpha(\Psi) = \sum_{k=1}^{m} \lim \sum_{i=1}^{n} \sum_{\omega_{k}} \frac{1}{2} \{ [(\widehat{\mathcal{M}}^{*k-1}\Psi)(a_{i})] \cdot [(\mathcal{N}_{m-k}\Phi)(\psi_{\omega_{k}}a_{i-1})] + \text{sym} \}$$
$$\cdot [\varphi_{\omega_{k}}(a_{i}) - \varphi_{\omega_{k}}(a_{i-1})] .$$

Therefore K_m is of finite rank.

The values of $\bar{\mathcal{M}}^{m-k}\Phi - \mathcal{N}_{m-k}\Phi$ on the open interval $I \in \mathfrak{J}''_{m-k}$ are determined by

$$\widetilde{\mathcal{M}}^{m-k}\Phi(x) - \mathcal{N}_{m-k}\Phi(x) = 2\widetilde{\Phi}(x) - \lim_{y \nearrow x} \widetilde{\Phi}(y),$$

where

$$\widetilde{\Phi}(x) = \langle \Psi_x - \Psi_{x_I}, \widetilde{\mathcal{M}}^{m-k}\Phi \rangle = \langle \widehat{\widehat{\mathcal{M}}}^{m-k}(\Psi_x - \Psi_{x_I}), \Phi \rangle,$$

so that

$$|\widetilde{\Phi}(x)| \leq \|\widehat{\bar{\mathcal{M}}}^{m-k}\|_0 \cdot \operatorname{Var} \Phi$$

and

$$\|\overline{\mathcal{M}}^{m-k}\Phi - \mathcal{N}_{m-k}\Phi\|_0 \le 3\|\widehat{\mathcal{M}}^{m-k}\|_0 \operatorname{Var}\Phi \le 3(C+2)\xi^{m-k} \operatorname{Var}\Phi.$$

Since we also have

$$\|\mathcal{M}^{*m-k}\Phi - \bar{\mathcal{M}}^{m-k}\Phi\|_{0} \le \xi^{m-k}\|\Phi\|_{0}$$

we find

$$\|\mathcal{M}^{*m-k}\Phi - \mathcal{N}_{m-k}\Phi\|_0 \le (3C+7)\xi^{m-k} \operatorname{Var} \Phi.$$

By definition of K_m , we find that $\mathcal{M}^{*m}\Phi - K_m\Phi$ is the function associated with the linear form $\Psi \mapsto \langle \Psi, \mathcal{M}^{*m}\Phi \rangle - \alpha(\Psi)$. We have the estimate

$$\begin{aligned} |\langle \Psi, \mathcal{M}^{*m} \Phi \rangle - \alpha(\Psi)| &\leq \sum_{k=1} \left| \lim \sum_{i=1}^{n} \sum_{\omega_{k}} \frac{1}{2} \{ [(\widehat{\mathcal{M}}^{*k-1} \Psi)(a_{i})] \right. \\ &\times [(\mathcal{M}^{*m-k} \Phi - \mathcal{N}_{m-k} \Phi)(\psi_{\omega_{k}} a_{i-1})] + \operatorname{sym} \} \cdot [\varphi_{\omega_{k}}(a_{i}) - \varphi_{\omega_{k}}(a_{i-1})] | \\ &+ \left| \lim \sum_{i=1}^{n} \frac{1}{2} \{ (\widehat{\mathcal{M}}^{*m} \Psi)(a_{i}) + \operatorname{sym} \} \cdot [\Phi(a_{i}) - \Phi(a_{i-1})] \right| \\ &\leq \sum_{k=1}^{m} (C+1) \xi^{k-1} \|\Psi\|_{0} \cdot (3C+7) \xi^{m-k} \operatorname{Var} \Phi \cdot V + (C+1) \xi^{m} \|\Psi\|_{0} \cdot \operatorname{Var} \Phi \\ &= (mC' + C+1) \xi^{m} \|\Psi\|_{0} \operatorname{Var} \Phi \end{aligned}$$

and

$$\|\mathcal{M}^m - K_m\| \le \xi^m + 6(mC' + C + 1)\xi^m = P(m) \cdot \xi^m,$$

with P(m) = 6mC' + 6C + 7, of degree 1 in m as announced. \Box

B.4. Proof of part (c). We refer to [4] where a similar result is proved. The proof given in [4] also applies here, with inessential modifications.

References

- 1. Baladi, V., Ruelle, D.: An extension of the theorem of Milnor and Thurston on the zeta functions of interval maps. Ergod. Th. and Dynam. Syst. 14, 621–632 (1994)
- 2. Milnor, J., Thurston, W.: On iterated maps of the interval. In: Dynamical systems, Alexander, J.C. (ed.). Lecture Notes in Mathematics N 1342. Berlin: Springer, 1988, pp. 465–563
- 3. Nussbaum, R.D.: The radius of the essential spectrum. Duke Math. J. 37, 473-478 (1970)
- 4. Ruelle, D.: Spectral properties of a class of operators associated with maps in one dimension. Ergod. Th. and Dynam. Syst. 11, 757–767 (1991)

Communicated by J.-P. Eckmann