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Abstract: A Milnor-Thurston type dynamical zeta function ( L ( Z ) is associated with
a family of maps of the interval (—1,1). Changing the direction of time produces
a new zeta function ζ'L{Z). These zeta functions satisfy a functional equation
ζL(Z)ζf

L(εZ) = ζo(Z) (where ε amounts to sign changes and, generically, ζ0 = 1).
The functional equation has non-trivial implications for the analytic properties
of ζL{Z).

0. Introduction

Milnor and Thurston [2] have shown how the zeta function ζ(z) counting the
periodic points of a piecewίse monotone interval map / could be expressed in terms
of a kneading determinant D(z). The zeta function considered by Milnor and
Thurston is closely related to the Lefschetz zeta function ζL, which we shall use
henceforth. Baladi and Ruelle [1] have shown how to replace z in the Milnor-
Thurston formula by Z = (Z\,...,ZN)9 where the interval of definition of / is cut
into subintervals with different weights zz. We shall here use a further extension of
the formula CL(Z) = D(Z), where / is allowed to be multivalued. The inverse f~ι

of / is again multivalued piecewise monotone; it is associated with a zeta function
ζ'L(Z). There is a natural relation (functional equation)

ζL{Z)CL{εZ) =

where ε corresponds to some sign changes and ζo(Z) counts "exceptional" orbits
(generically ζo(Z) = 1). The analytic properties of CL(Z) are related, via the knead-
ing determinant D(Z), to the spectral properties of a transfer operator Jίχ The
spectral properties needed here are a refinement of those proved in Ruelle [4]. Using
these properties one shows that ζι is meromorphic in a certain domain, with poles
only if 1 is an eigenvalue of Jίχ. Let Mz denote the transfer operator correspond-
ing to f~x\ using the functional equation one shows that CL can vanish only if 1
is an eigenvalue of Ji'z-

In what follows we shall write ζ instead of ζι, and use a family (ψω) of mono-
tone maps, instead of the multivalued map f~ι. Warning: If the φω are the branches
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of the inverse of a function / , the zeta function of [1] is here denoted by l/ζ(εZ),

and the kneading determinant by D(Z) (see Sect. 1.10) rather than D(Z).
I wish to thank Viviane Baladi who carefully read the present paper, and sug-

gested a number of improvements which have been incorporated in the manuscript.

1. Definitions and Statement of Results

1.1. Lefschetz Numbers. We shall use the notation

1 i f x > 0
Λ Λ f + 1 if JC =

d e l x = |

- 1 i f x < 0

f +

Let a < b, and φ : (a,b) ^ R be continuous and strictly monotone. We let ε = +1
if φ is increasing, —1 if φ is decreasing, and we define the Lefschetz number
L(φ) by

Lχ{φ) = \ [sgn(φ(a) -a)- sgn(ψ(b) - b)],

LoiΦ) = \ [del(^(fl) -a) + del(^(i) - b)],

where φ denotes the extension of φ by continuity to [a,b], so that φ(a) =
limxia φ(a), φ(b) = limx ΐ 6 φ(x).

Therefore, when ε = +1 we have

f 1 if φ(ά) ^ a and φ(b) ^ b
L{φ) = <

\—\ if φ(a) < a and φ(b) > b

when ε = — 1 we have

L(φ) = 1 if φ(a) > a and φ(b) < b ,

and in all other cases we have

L(ψ) = 0 .

Let Fix^ = {x e (a,b): φx ~ x}. If Fixi^ is finite and x G Ψixφ we write

L(ψ) lilimsgn(^(j;) - y) - limsgn(ιA(y) - y) .
2 [y?x ylχ J

Lemma (Properties of Lefschetz numbers), (a) If a Cc]-small perturbation φ of φ

shrinks the range (i.e., φ(a,b) C φ(a,b)) then it preserves the Lefschetz number

(b) Consider ψ ' defined on the open interval ψ(a,b), then

(c) Let Έixφ be finite and φ(a) + a, φ(b)^b. Then

L(φ)= Σ Ux,Ψ)
xGFix φ
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Part (a) of the lemma follows from the list given above of cases when L(φ) =
1,-1, or 0. Part (b) results directly from the definitions. To prove (c) notice that
by assumption

L(φ) = Lγ{φ) = l- [sgn(ιKα) - a) - sgn(φ(b) - b)]

= - lim sgn(φ(y) - y) - lim sgn(φ(y) - y) = ]Γ L(x, φ) .
1 i ^b J

This concludes the proof. D

1.2. Zeta Functions. Let (J ω ), (φω), (εω), (zω) be families indexed by ω £ {1,... ,Λf},
where Jω = (wω,t;ω) is a nonempty bounded interval of 1R; φω : J0J> —>• 1R is a strictly
monotone continuous map; εω = +1 or - 1 depending on whether φω is increasing
or decreasing; and zω G C We write Z = (zω), εZ = (εωzω).

It will be convenient to assume henceforth that all Jω and ^ ω J ω are contained
in (—1, + 1); this is no restriction of generality since IR can be mapped homeo-
morphically on (—1,+1).

If m ^ 1 and ω = (ωi, . . . ,ω m ) E {1,...,A^}W, we write |ω| = m, ε(ω) =
Yΐk=\£ωk, Z(ω) = ΠJtLi2©*- W e a l s o l e t ^ ω : Λ> -^ IR be defined by ^ ω = φωm o
'•-oψωx, o n

Λ, = Λ,, n C , 1 ^ n ^ ( ' ^ T l / ω w •••))•

If J ω φ 0 , we write Jω = (uω,vω).
The Lefschetz zeta function (associated with the data (Jω),(φω)) is the formal

power series

where the sum is restricted to those ω for which J ω φ 0 (or one defines L(φω) = 0
when Jω = 0). One can write a product formula for ζ(Z) (see Appendix A) and
check that ζ(Z), l/ζ(Z) £ Z[[ZI,.. .,ZJV]] (Lemma A.2). The zeta function associated
with the data (φωJω), (Φΰl) is

C/(Z) = expE—L(φ~ι)Z(ω),
ω &

and we write

t{Z) = ζ'(εZ).

We shall also need the function

ζo(Z) = ^

= exp £ —
ω : ε(ω)=l ™

1.3. Transfer Operators and Kneading Determinant. We introduce the (general-
ized) transfer operator Jt — Jίχ, the formal adjoint Jt' — Jί'z^ and the associated
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operator Jί such that

where χω is the characteristic function of Jω and χ'ω the characteristic function of
ψωJω. These operators act on the Banach space £% of functions of bounded variation
R —> (C. It is also convenient to consider them as acting on the Banach space of
bounded functions R —> C (with the uniform norm || ||o).

We define R = R(Z\ Rf = R\Z) and R by

R= lim (\\Jίm\\o)ι/m ,
m—>oo

R' = lim ( |μ#' m | |o) 1 / m ,

R = R(Z) = R'(sZ).

The submultiplicativity of m ^ \\Jίm\\o, \\Jί'm\\o guarantees the existence of the

limits; R,Rf and R are in fact the spectral radii of Jt^Jt' and M acting on bounded

functions IR —> C. In general R^R.
Let {a\,...,aι} contain the set of all endpoints uω9υω of the intervals Jω, and

assume that a\ < < aL. We define αz G ώ by

for z = 1,... ,Z, and write

4 m ) + = iim E Zω
Xlaι ω : uω=aι

4 W ) - = lim E zω
*T«i ω : υω=at

The elements of the L x L kneading matrix [D^] are then defined by

(this is an extension of the concept of kneading matrix introduced by Milnor and
Thurston [2]). The determinant

is called kneading determinant.

1.4. Theorem A. We have identically

= D(Z).

This will be proved using a homotopy argument similar to the one used origi-
nally by Milnor and Thurston [2], and then by Baladi and Ruelle [1] in an analogous
situation. This means that (for fixed families (Jω),(εω),(zω)) first the formula ζ = D
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is checked for a special choice φ° of ψ. Then, for a suitable one-parameter family
(φA) with ψι = ψ, one verifies that ζ and D are multiplied by the same factor
at each bifurcation. The proof presented here is similar to that of [1], but with
significant differences; we defer it to Appendix A. D

1.5.Theorem B. (a) The spectral radius of Jί, acting on ^ , is ^ max(R,R).

(b) The essential spectral radius of Jί is ^ R.

This is closely related to the results of Ruelle [4] but, again, with significant
differences. In Appendix B we give an improved version of the theorem of [4],
which will yield Theorem B as a special case. D

1.6.Theorem C. (a) We have identically ζ(Z) - ζ(Z) = ζo(Z).

(b) ((Z) is holomorphic when R(Z) < 1.

(c) £(Z) is meromorphic when R(Z) < 1, with poles only when 1 e spectrum JίZ

(d) ζo(Z) is holomorphic when min{R(Z),R(Z)} < 1.

This is proved in Sect. 2, and some strengthening of the theorem is provided by
the four remarks below. D

1.7. Remark. Sharpening of Theorem C. Define

^oo = { ^ e f : {x: A(x)ή=0} is countable}

and let

be the quotient Banach space. If Φ G ̂ , we may define Φ# by

„ 1 Γ 1
φ#(x) = - him φ(y) + lim φ(y) .

2 L yiχ yU J
We have then the properties

Φ — Φ -\- Φ Φ G 3$

lim Φ#(y) +l im Φ#(

If | |[Φ]| |# denotes the norm of the class of Φ in jyJΌo = ^ # we have

Using || ||Q to denote the "sup norm up to a countable set" we see that || ||$ is
defined on ^ # and that

wmt = Kilo
Since J*^ is stable under Jί, Jί we may, by going to the quotient, define operators
Jί#, Jί# on «^#. We also use the notation ^# # , Jί# for Jί. Jί acting on bounded
fucntions up to a countable set. We may then write

R# = R#(Z) = lim
m—>-oc

R# = R#(Z) = lim
m—>oo
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The point of the above definitions is that in defining the kneading matrix [A/]
we may neglect countable sets, i.e., use the operator Jί^ instead of Jί. As a
consequence of this we may replace Jί,Jί,R,R by Ji^,Jί#,R^,R# in the statement
of Theorem C (b), (c),(d). We shall not give an explicit demonstration of the results
thus obtained, but note that they follow by inspection of the proofs in Appendix B
(#-version of Theorem B. 1) and Sect. 2. The basic fact is that the continuous
linear functionals on 0$ defined by Φ h-» limx |α, \\mx^a Φ(x) yield continuous linear
functionals on ^ # (while Φ H^ Φ(a) is not defined on 0β#).

The set Zm = Xm U Ym, with Xm = {uω, vω: |ω| = m}, Ym = {x: ψω(x) = ψω'(x)
with |ω| = lω'l = m and ε(ω/) = —ε(ω)} is finite. Given x <$Zm there is δ > 0 such
that for each bounded Φ we may construct Φε with ||Φc | |o = \\Φ\\o, a n d ΦεiΨωy) =
ε(ω)Φ(φωy) when \y — x\ < δ and |eo| = m. We have then

if\y-x\<δ9

hence

hence by symmetry

and therefore

Since R#(Z) S R(Z) we also

R#

\\J?t

\\Jt

R*

have

(Z)i

εzl lo =

#mιι#
εZllO -

II //#m\\#

ll-^fΊlo.

R\Z).

i min{R(Z),R(εZ)} .

Notice that Theorem B(b) can also be sharpened as follows: the essential spec-
tral radius of Ji is ^ R#. To prove this it suffices to find Km of finite rank such
that

^ m -Km\\{/m ^ R# . (*)
m-^oo

Φ#We write as above Φ — Φ# + Φoo, so that

\\Φ#h = \\[Φ]\f and ||Φoo||Λ

Let χ be the characteristic function of \Jω{Ψωuω,φωvω} with \ω\ = m.
The map E : Φ ^ χΦ is of finite rank, and so is K'm = JίmE. Note that
when y${jω{φωuω,φωvω) and Ψ = Ψ#, we have (JίlmΨ){y) = (^ / W Ϊ F) # (j). We
may now write

lm - K'JΦoe = Var^rM(Φ 0 O - χΦoo) = 2 ^ \Jlm{Φaΰ - χΦoo)(x)\

= 2 sup

X
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(where the sup is over Ψ such that ||!P||o = 1 and Ψ = Ψ#)

= 2 sup

= 2 sup

69

In conclusion if ε > 0 we have

\\{Jim -K^ΦnU £ const(Λ# + e

By the proof of Theorem B (#-version) there is K^ of finite rank on ^ # such that

n -K^\f g const (£# + ε f .

We choose Km of finite rank on $ such that Km induces K^ on J*# and
KmΦ = (KmΦ)#. There is also K% of finite rank such that

Therefore

and

- KmΦ# - #f- KmΦ#

-K#

m)[Φ]f S

Defining now KmΦ = (Km + K^)Φ# + K'mΦΌo we obtain

\\{Jtm-Km)Φ\\Λ S constφ + ε)m\\Φy ,

and therefore (*) holds.

One can also show that the spectral radius of
be used).

If Φ e JΌo we have

is g; R# (this will not

Var Φ = ϊmφ)(χ)\ = 2 sup
Ψ:\\Ψ\\0 = \

= 2 sup
ψ

Φ(y) Ho VarΦ

so that the spectral radius of' Jίz\$oo is ύ R(εZ). In particular Mχ and M\ have

the same eigenvalues λ with the same multiplicity when \λ\ > maκ(R(Z),R(εZ)).

1.8. Remark. Further properties of CQ. The proof of Lemma 2.4 below shows that if

ζo(Z) = 0 and R#(Z) < 1, then 1 belongs to the spectrum of Jtz\@Όo or -y#εZ|^oo.

Similarly, if ζo(Z) = 0 and R#(Z) < 1, then 1 belongs to the spectrum of Jiz\^oo

or ,
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The following condition is generically satisfied.

Condition G. For all m ^ 1 and ω = (ω\,...,ωm) with ε(ω) = 1, we have

Φωuωχ *uωχ if φωuωi is defined ,

Φωvωι + ι>ω, if Φωvωι is defined .

It is clear from the definition of ζ0 that if Condition G holds, then ζ0 = 1 identically.

1.9. Remark. Poles of D(zZ). Let Z be fixed. The function z ι—>• D(zZ) is mero-
morphic when \z\R#(Z) < 1, and clearly can have a pole at λ~ι only if Λ, is an
eigenvalue of Jί^ — Jί\. Let

2 = {z: |z| < / ^ ( Z ) " 1 and z" 1 is not an eigenvalue of Jicz\Boo}

In particular (see the end of Remark 1.7),

{z: 1

We shall show that the function z ^ D(zZ) does not vanish in Q), and has a
pole of order m at λ~ι precisely if λ is an eigenvalue of order m of Jί#.

The proof will be in several steps.

(i) Let us define

A = {al9...,aL}\J{φ-ιaί: \ω\ ^ 1 , 1 S i ύ L} ,

gffiA — {[Φ] G ̂ # : the derivative of Φ is an atomic measure carried by A} .

Then the generalized eigenspace of Ji# corresponding to any eigenvalue λ with

\λ\ > R#(Z) is contained in 38\.
We may extend the linear operator Mz from bounded functions to measures by

letting

{Jίzμ){dx) = Σzω V

(where φ^ιμ is the image of μ by Φΰι) We shall write

(Ψ,μ) = Jμ(dx)Ψ(x)

if Ψ is a continuous function. If Φ is of bounded variation, we denote by dΦ its
derivative, which is a bounded measure. (If Φ G ̂ oo, then dΦ = 0. Therefore δΦ
only depends on the class [Φ] G ̂ # . ) We also let 0* be the projection on measures
μ such that \μ\(A) = 0 (i.e., 9 "erases" the mass carried by A). If X : R ι-» {0,1}
is 0 on {a\,...,aι} and 1 elsewhere, we have

When [^#Φ] = λ[Φ] (mod ^ ) we have thus

= λ~m(Ψ,0>dJΐ%Φ) = λ-m{Ψ,{XJίz)
m^dΦ)
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If |λ| > £#(Z), the right-hand side must vanish, so that 0>dΦ = 0, i.e., [Φ] G 0lPA.
By induction we see that if [{Ji — λ)kΦ] = 0, i.e., if [Φ] is in the generalized
eigenspace of Jί^ corresponding to λ, we have [Φ] G 38*A. D

(ii) Let λ~ι G Θ and suppose that {with αz defined in Sect. 1.3)

(1 - λ~~ιJί#)Ω = 0 ,

(l-λ~ιJί#)yj = (Xj for y = l , . . . , I .

Then if

has no mass at a\,...,aι we have Ω = 0 and c\ — = cι = 0.
Let us write

Then (1-/1 ιJίγ)Ψ = Φ\ in particular JίzΨ = λΨ (mod J ^ ) which implies
Ψ G ̂  as we have seen in (i). Furthermore (1 - λ~ιJίεZ)dΨ has no mass outside
of «i,..., aι, so that by assumption

Since Ψ G ̂ , this is equivalent to

with Ψ e 38oo such that Ψ(x) = (dΨ)({x})> and the assumption λ~ι G ̂  implies
Ψ = 0, i.e., 5 ^ = 0, i.e., !F = constant. Therefore Φ tends to the constant Ψ at
±oo, but since Φ(-oo) = —Φ(oo), we obtain Ψ = 0. Therefore Φ = 0, so that
c\ = - - = cL = 0, and finally also Ω = 0. D

(iii) If λ~~ι G 9 and λ is not an eigenvalue of Jί§, then D(λ~ιZ)ή=0.
We may write yJ• = (1 - λ~ιJί#)-ι<Xj and define Φ = ^ ] c Λ , ^ = (1 -

λ~ιJiz)~ιΦ — Y^Cjjj. Suppose there is a linear relation

between the columns of (A/X i.e.,

Ci + ^ lim E λ~ιzωψ(φωx) - \ lim ^ λ~ιzωψ(φωx) = 0 .

This may be rewritten as

j8ί(Φ) + βi(λ~λJ(zΨ) - correction = 0 ,

where the correction corresponds to those terms ± | \\mx^aι λ~ιzωψ(φωx) such that
ai&Jω. Equivalently we may write

mass at ax of (dΦ + dλ~ιJίzΨ - λ~\£,zdΨ) = 0
or

mass at at of (δΨ - λ~ιJί&zdΨ) = 0 .

In view of (iί) we have then c\ = = cL — 0. Therefore D(/ί~ 1Z)φ0. D
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(iv) If λ~λ G Q) and λ is a simple eigenvalue of' Jfl', then λ~ι is a simple pole
of z^ D(zZ).

Let ΩΦO be chosen such that (1 - λ~ιJf*)Ω = 0.
First, we show that a\,...,(xL cannot all be in the range of (1 - λ~ιJί#).

Otherwise let y\,...,yι be such that

for j = 1,... ,L. In view of (ii) the Z-dimensional vectors

mass at {a\,...,aL} of (1 - λ~ιJΐzZ)dyj

are linearly independent. Therefore we may take C\,...,CL such that

mass at {au...,aL} of (1 - λ~λJ(εZ)d (Ω + Σcj7j) =°

Using again (ii) yields Ω = 0 contrary to assumption.

Let us replace CC\,...,CCL by independent linear combinations Φ\,...,Φι and
write,

Ψj(z) = (l -zJί#yλΦj ,

Ψij(z) = X- mass at a, of (dΨj-zJfeZdΨj),
so that

Since we have shown that αi,...,αχ are not all in the range of (1 — λ~ιJί#)~ι, we
may assume that Ψ\(z) ~ (1 -zλ)~ιΩ for z near λ~\ while Ψ2(z),...,ΨL(z) are
holomorphic at λ~ι. To prove that A"1 is a simple pole of z ι—> D(zZ), it suffices
now to show that the vectors

mass at {a\,...,aL} of (1 - λ~ιJίεz)dΩ

and
mass at {αi,.. .,^} of (1 -λ~ιJΐεZ)δΨj

for y = 2,...,L are linearly independent. This again results from (ii). D

(v) If λ~ι £ Θ and λ is an eigenvalue of order m of c/##, then λ~ι is a pole
of order m of z *-> D(zZ).

By extending the index set for ω from {\,...,N} to {l,...,N*} we can obtain
small perturbations ^#* # of Jίn and ̂ * of ^ such that λ is replaced by m simple
eigenvalues λ*,...9λ^ contained in a disk £ ; - i(ε) C i^ Π £^* with small ε. The
corresponding D*(zZ) has simple poles and no zero near λ~ι. Since D*(zZ) tends
to D(zZ) away from poles it follows that D(zZ) has a pole of order rn at λ~ι. D

7.70. Remark. Zeros ofD(zZ). Let

^ * = {z: |z| < R#(Z)~ι and z" 1 is not an eigenvalue of M^M^ or ^ ε Z | ^ o o }

In particular (see the end of Remark 1.7)

{z: |z| < mm{R(Zy\R(εZy1}} c ^* .

Denote by D the kneading determinant associated with Jt (so that Z) = ζ). Then,
the function z \-^ D(zZ) is holomorphic in *2)* and has a zero of order m at λ~λ

precisely if λ is an eigenvalue of order m of Jί# {or equivalently
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In view of Remark 1.8, the zeros of D{zZ) are the same as the poles of D(zZ),
with the same multiplicity. It suffices therefore to apply Remark 1.9. (Since (1 -
λ~x JMz)\&oo is invertible when λ~x G &*, the multiplicity of λ is the same as an
eigenvalue of Jί^ or Ji.) D

The function z \—> D(zZ) in @* is the natural generalization of the kneading
determinant considered by Milnor and Thurston [2], and also in [1].

2. Proof of Theorem C

The proof results from the four lemmas below

2.1. Lemma. We have identically

ζ(Z)ζ(Z) = ζo(

Using the definitions we obtain

ζ(Z)?(Z) = expΣΛ
ω \ω\

1

1
-—-Lo(φω)(l -f ε(ω))Z(ω) = ζo(Z),

which proves the lemma. D

2.2. Lemma. Ay(Z) is holomorphic when R(Z) < 1.

Suppose that R(Zo) < 1, and let R(Z0) < ξ < 1. We may then choose M such
that

ll^zjo <ξ M

Therefore, for some δ > 0, we have

| |Λ# | |o < £ M if \Z-Zo\<δ.

The polynominals Z ι—> D-7 thus satisfy

I D ^ ^ I < C^m if |Z - Zo | < (5, m ^ 0

for some C > 0. This implies that Dy(Z) is holomorphic for |Z — Zo| < (5, i.e.,
A (Z') is holomorphic when R(Z) < 1. D

2.3. Lemma. Ay(Z) w meromorphic when R{Z) < 1, v̂/Y/z /?6)/^ 6>«/y w/ze«
1 G spectrum cy#z

Suppose that7?(Z0) < 1. We may choose ξ such that R(Z0) < ξ < 1 and no
eigenvalue of Jίχ^ has modulus ξ (cf. Theorem B(b)). There is then <5o > 0 such
that, for \Z - Zo\ <; δθ9 we have^(Z) < ξ and the circle S = {λ: \λ\ = ξ} is dis-
joint from the spectrum of Jίχ. We then define the projection

p 1 d λ

2πi ϊ λ — Ji7
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Therefore Pχ commutes with yMχ, and 1 — Pχ is finite dimensional. We may choose
M such that

For some δ G (0, δo) we also have

\\PzJt%\\ <ξM if | Z - Z o | <<5,

hence, for some C > 0,

l l ^ z e ^ z I I < c £ m if \ Z - Z o \ < δ, m ^ O .

Therefore the functions

lim Σ zω

 I

lim Σ Z ω [(Pz(l -
^ΐα/ ω : vω=cii

are holomorphic for |Z — Zo | < 5. The functions

lim Σ zω . [((1 - Pz)(l -
χ i f l ί ω : uω=aι

lim Σ zω [((1 - Pz)(1 - j
χ\aι ω: vω=cij

are meromorphic for \Z — ZQ\ < δ, and in fact holomorphic if 1 ^ spectrum Jtχ-
In conclusion Dij(Z) is meromorphic when R(Z) < 1 and holomorphic unless
1 G spectrum J(z- •

2.4. Lemma. ζo(Z) is holomorphic when min {R(Z),R(Z)} < 1.

Let A ={a\— ,a\+,..., aL-,aL+}. If ξ — at± G A, we write \ζ\ — at, signζ = ±.

For ζ,η £ A, m ^ 1, we define Γ ^ to be the sum of the Z(ω) over all

ω = (ω\,...,ωm) such that

(a) ε(ω) = signζ signrj,

(b) either |£| = Mωi and sign ζ = + ,

or |C| = uωi and sign ξ = - ,

(c) *Aa)J£l ^s m m e ( °P e n ) interval of definition

of φωm o o ι̂ ω2, and φWm o o i/ 2̂ (ι/ίω |ξ|) = |^| .

Denote by T — T(Z) the matrix with elements

m>\
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\-uω) + del(ψω(vω)-υω)]

ξnTξnξλ . (*)

Consider the symbol (ω,ε), where ω — (ω\,...,ωm) satisfies ε(α>) = 1, and
ε = ± 1 . We write (ω,ε) ~ (ω\εf) if ω' = (ω^,. . . ,ω m ,ωi, . . . ,ωyt_i) is a circular
permutation of ω and εx = εεi ε^-i To a nonvanishing term del(ι/^ω(wω) — uω) or
del(ι^ω(ι;ω) — vω) we associate the pair ( ω , + ) or (ω, —) respectively. The left-hand
side of the formula (*) may thus be rewritten as

Dynamical

We shall

Zeta Functions of Milnor-Thurston

now prove

Σ

=

that

ω

Σ I
n Πξ

ω ω

2—/ ζ\ζ2 ^2^3
•••ξn

Type

(ω,ε) ω

where the sum Σ * ^s restricted in an obvious manner. Equivalently one can sum
over equivalence classes [(α>, ε)] for the relation ~, so that the above sum is

The classes [(ω, ε)] appearing in the sum correspond to "extended orbits" of
the form

where φ denotes as usual the extension of φ by continuity to the closure of the
interval of definition. Consider the values k(i) (with i = l,...,n) of A: such that
1 ^ k rg m and (φω/c_ι ° * * ° Φωλ )~x is an endpoint uω]ζ or vωk of Jωk. We let
i ( l ) < k(2) < < k(n) and call ω ( 1 ) , . . . , ω { n ) the pieces of ω such that ω ( 1 ) =
(ω Z / t ( 1 ) , . . . , ω Z / t ( 2 ) 1 )etc. We have thus Z(ω) = Z ( ω ( 1 ) ) Z(ω(n)).

By construction, among the n circular permutations of {1,2,...,«} generated by
1—»2—»•••—>π—>1, there are n(ω,ε) = |ω|/card[(ω,ε)] which leave

fixed, hence the number of equivalence classes of permutations is n/n(ω,ε). The
sum written above is thus

Σ 7 ^ z < ω ) z < ω )
[(ω,e)] n(ω,ε) n

\~^ _ V~̂  T T T T
- 2 ^ 1^ i C 1 i 2

i C 2 C3 ' ' 1ξn-\ξn1ξnξ\
n n ξV-ξn

proving (*). Therefore

Co(Z) - exp + Σ -tr Tn = exptr(- log(l - T)) = det(l - T(Z)yι .
n n

Given ε > 0, let χε

η be the characteristic function of (\η\, \η\+ε) when sign^ = +,

of (1̂ 1 - ε, 1̂ 1) when sign^ = - . Also write x —> ξ when signξ (x — \ξ\) I 0, and



76 D. Ruelle

let Σ ω c ^ e the sum over those ω such that uω + ori;ω— is ξ. Then one checks
that

Σ (T")ξη = Σ lim lim Σ ^ω[(^w~1Z«)(^ω(^))]
n ^ 1 w ^ 1 ε~^° *~^ ε ω c

Therefore det(l — T(Z))~ι is holomorphic when R(Z) < 1. By symmetry, ζo(Z) is
holomorphic when min(R(Z),R(Z)) < 1, proving the lemma.

Write now χ\n\(x) — del(x - \n\) and

m ^ 1 m 1 m 1

then we have

ω:ξ

with the signzb = εωsign^ sign 77. Therefore Tξη is a holomorphic function of Z

when R#(Z) < 1 and 1 is not an eigenvalue of Jίz\^oo or Jtzz\&Όo This justifies
Remark 1.8. D

Appendix A. Proof of Theorem A

Let εω = ±1 for ω = 1,... ,7V. Fixing (Jω) and (εω), let P be the space of families
xjj = (\l/ω) such that each φω: Jω —> (— 1,1) is continuous and strictly increasing if
eω = + l ? or strictly decreasing if εω = — 1. We denote by Cr(Jω) the space of Cr

functions on the closure Jω of Jω, and write

Pι = I φ: (φω) extends to ( 4 ) e®Cι(Jω),

and the derivatives φωvanish on Jω\Ja

pP01 = {φ e pλ the ι/̂ ω are polynomials} .

We use the topology of P,Pλ induced by ΘC°(Jω),ΘC 1(^ω) In particular P p o 1 is
dense in P,Pι.

For finite M we define

FM — {Φ' Fixι/fω is finite when |ω| ^ M} ,

and φω(vω)ή-vω when |ω| ^ M and J ω φ 0 } .

Equivalently we may define PM as the set of those ψ such that ψω(uω{) (if defined)

is ή=uωι, and φω(vωι) (if defined) is =t=ϋωi, when |ω| ^ M. We also write

Note that PM is open in P.

A.I. Lemma. If ψ <E FM (~ϊ PM and \ω\ ^ M, we have

L(φω)= Σ ^ > ω )
xGFix ψo)

This follows from part (c) of the lemma of Sect. 1.1. D
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Let |ω| be the class of ω under circular permutations, and say that [ω] is prime
if ω is not the periodic repetition of n copies of a sequence ωr with |ω' | < |ω|.
Then we have the product formula

ζ(Z)= Π Gίω](Z),
[ω] prime

where

The following possibilities exist

= 0, then G[ω](Z) = 1,

= - 1 , then G[ω](Z) = 1 - Z(ω),

= 1, then G[ω](Z) = (l-Z(ω)Γ1

) = 1, then G M ( Z ) = ( l-Z(ω)Γ 1

(4) ε(ω) = -1, L(φωoφω) = -1, then G M ( Z ) = 1 + Z(ω) .

(0)

(1)

(2)

(3)

ε(ω) =
ε(ω) =

ε(ω) =

ε(ω) =

±1,
+ 1,
+ 1,
- 1 ,

L(ψω)
L(φω)
L(φω)
L(Ψω'

A.2. Lemma. C(Z) α«rf 1/C(Z) G Z|[zi,...,z^]l. If^M+\ is the ideal of elements of
order ^ M + I in Q|[zi,...,z^]l, ίAe« C(Z) (mod3M+i) ^ locally constant on PM-

This follows from the product formula given above and the definition of PM ••

A.3. Lemma. If φ satisfies φωJω > aι for ω = 1,..., ΛΓ, we have

Clearly φ G Foo ΠPoo. In fact ¥ixφω = 0 for all ω, hence ζ(Z) = 1.
In the present situation Jίm — 0 for m > 1. We have thus

^ = - ί T z - y
** ω : UQ}—^ ω : vOJ—aι

i.e., the kneading matrix [Z)zy] is the sum of the unit matrix [<5;y] and a matrix of
rank ^ 1. Therefore

£> = d e t [ A , ] = l 4

which concludes the proof. D

A.4. Lemma. Let Jω,ζ,D correspond to Jω,ζ,D when φ replaces φ. Given M ^ 1,

we assume that φ is sufficiently close to φ in P {in particular Jω — Jω), and that

Jω^Jω, ΦωJωCφωJω, (1)

Jω π φωJω = Φ^Jωn φωjω = 0 (2)

for \ω\ ^ M. Then

( m o d 3 M + i ) ,

D(Z)=D(Z) (mod
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Furthermore, if

uω), Φω(vω)=\=φω(vω) (3)

for \ω\ ^ M, we may assume that

when \ω\ :§ M {in particular φ e PM)

First note that if Jω — 0, then Jω = 0 (because (1) gives φωJω C φωJω — 0). If

Jω Φ0? the set Jω is close to Jω and the set φωJω is close to φωJω; then (2) and the

inclusions (1) imply that L(φω) — L(φω) for \ω\ ^ M (the argument is the same as

for part (a) of the lemma in Sect. 1.1: check the list of cases when L(φω) = 1 , - 1 ,

or 0). This implies ζ(Z) = ζ(Z) (mod^M+i)-

Suppose that uω = uωχ = at. When φ —> φ, then

and the inclusion (1) implies that the above limit is reached on the same side as
the limit

φω(x) -> φω(di)

when x j at. Therefore (for φ close to φ)

and similarly

AT = D^f~
This means that

hence

D(Z) = D(Z)(mod3M+i).

The last statement of the lemma follows from the fact that the numbers

\Φω(Mω) - Ψω(Uω)\, \Ψω(Vω) ~ Φω(vω)\

are in an arbitrarily small interval (0,(5). D

A. 5. Proof of the Theorem. It will suffice to prove Theorem A (mod3M+i) for
all integers M ^ 1. We fix M for the rest of the argument.

For small δ > 0, let the homeomorphism φω : (uω,υω) —> («ω + δ,υω — δ) be
the identity on [uω+ 2δ,vω — 2δ] and a contraction on (uω,uω + 2δ) and (uω -
2(5, vω). We define φω = φω o φω for ω = 1,... ,7V. Writing

we may assume that the length of Jωm Π φω>Jω' is ^ a > 0 whenever |ω| ^ 2M
and yω Φ 0. If δ is sufficiently small we may also assume that the length of Jωm Π
φωfjωf is ^ α > 0 whenever \ω\ ^ 2M and «/ωφ0. If (5 is sufficiently small we
may also assume that the length of Jωm Π φω>Jωι is ^ έ = f. Note that

α̂»Λ> = Ψωm(Jωm Π ̂ ω/ /ω/ ) .
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Assuming now that 2δ < b, we see by induction on |ω| that

Writing ω{k) = (co\,...,cok) we also see (by induction on k9 and assuming δ small
enough) that _

Ψω(k)Jω C ψω(k)Jω

In particular φω is defined on Jω, i.e.,

The condition (1) of Lemma A.4 is thus satisfied when |ω| ^ 2M. Writing
(ωi, . . . ,ω m ,ωi , . . . ,ω m ) = 2ω9 we have

Therefore (2) for |ω| :g M follows from the implication φiω^iω = 0 =>

— 0 (which follows from (1)). By induction on m we see that (3) also
holds. _

We may now approximate φ in P° by ψι G P p o 1 while respecting the conditions
(1), (2), and (3). Lemma A.4 thus shows that, to prove Theorem A, it suffices to
prove that

ζ\Z) = D\Z) (mod3M+i),

where ζ ! (Z) and Dι(Z) are constructed with φι e Ppo1 such that

for |ω| ^ M.
Let φ°ePpo1 be defined as in Lemma A.3, and ψλ = (1 - λ)ψ° + λψι. By

definition, φλ = (φ(\.. .,φ^) is an iV-tuple of polynomials, none of which is affine
[φω is non-constant, with derivatives vanishing at uω9vω]; in particular φλ G F ^ .
Note that the functions (x, λ) ι—> φ£(x\ Φ'ω

 a r ^ polynomials, and extend therefore
naturally to R 2 . Until further notice we shall use these extended definitions. The
polynomials λ \-+ φ^(ai) — a5 (defined for all ω = (ω\,...,ωm) with 1 ^ m ^ M
and i,j G {1,...,L}) may be assumed not to vanish at λ = 0,1. Therefore there is
a finite set yl c (0,1) of values of λ such that

for some z',y', and ω. If ζΛ and DΛ denote ζ and D computed with φ'\ we see that

ζλ (mod3M+i) remains constant in each interval of [0, \]\Λ [see Lemma A.2] and

the same is true for Dλ(mod%M+\) [because the Z)/ are constant].

In view of Lemma A.3, in order to prove Theorem A it suffices to show that ζA

and DA are multiplied by the same factor (mod 3M+I ) whenever λ crosses a point
of A

The changes of sign of the φ^(at) — aj when λ crosses an element of A may

be complicated. We shall make them simpler by modifying (φλ) to obtain a family

(φλ) with nonlinear dependence on λ.

Let us assume that (x,λ) H-» φ^(x), defined on R 2 , is C°° close to (x,λ) »-> φ^(x),

for ω = 1,...,N9 and construct φy

ω = φ^m o oi^J In particular the functions
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λ i—> Ψωicij) — cij are C°° close to the polynomials λ •-» φ^ia^ — α7 and may be

assumed not to vanish at λ = 0,1. Let A be the set of all λ G (0,1) for which

Ψω(ai) — α7 f° r s o m e ί,y, and some o> with |ω| ̂  M. Then card/t is bounded by

the sum (over ij,ω) of the degrees of the polynomials λ »—• ψ^icii) — cij, hence

uniformly in (φλ) for (^Λ) in a suitable C°° neighborhood of (φλ). We shall use
the uniformity of this bound in a moment.

Given λo G A we construct an oriented graph Γ as follows. The set of vertices
of JΓ is

X = {ξ G R: there exist ω = (ωi, . . . ,ω w ) with 1 ̂  m ̂  M, ι,y G {1,...,Z}

and £ G {0,...,/n} such that ψ$ o o ̂ o Λ / = ̂  o . . . o ̂ + 1 ί = */} .

The set of arrows is

{(ξ,ω): 1 ̂  ω S N, ξ eX and ^

The arrow (ξ, ω) starts at ξ and goes to ?y = ι/̂ ω0 ;̂ there may thus be several arrows
ξ => η. An arrow (ξ, ω): ξ => η may be removed from the graph corresponding to
λo by a C°° small change of (x,y) ^ Ψ(Q(X) near (ξ,λo). Repeating this operation,
we can arrange that (φλ) is replaced by (φλ) such that the graph corresponding
to λo consists of a simple arc at => ξ => η => => aj (where aj may be equal to
CLi) and ξ,η,... φ{αz ,.. . ,«L}. This means that there are unique i,j, and ω* with

\ω*I ^ M such that φ^(aj) = αy and φω* o o ι//ΐαz ^ {fli,...,«i} for k < \ω* .

By a small change of (φλ) near 2 = λo we may further achieve that Fixt/4° is finite
when \ω\ ^ M, and that the fixed points are not degenerate (i.e., the derivative of
φ'(S at ξ G Fixi^ω0 is +1) . Note that the families (φλ) and ( ιp) coincide outside
of a small neighborhood of Ao; to obtain A from /I we have replaced λo by a finite
set {λo,^,...}.

We may now start again the above process with a new element λo of A (being
careful to leave (φλ°) unchanged). Since the cardinality of the sets A,A,... is
uniformly bounded, after a finite number of steps the family (φλ) is replaced by
(Ψλ) with the following properties.

(a) Ψλ G P\ (x,λ) H-* Ψλ(x) is C°°, and Ψ° = φ°, Ψι = φ\
(b) For λ outside of a finite set A*,

if ij G {1,...,£} and \ω\ ̂  M.
(c) If λ G /t* ί/zere are unique ij G {1,...,L} andω* with |ω*| ^ M

(d) If λ G /t*, α«J |ω| ̂  M, then Fix ^ w /zw/^ and the fixed points
ξ G Fix Ψy

ω are nondegenerate, i.e., ( ^ ϊ
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To prove the theorem it suffices therefore to check (under the conditions
(a), (b), (c), (d)) that the zeta function ζ and the kneading determinant D asso-
ciated with (Ψλ) are multiplied by the same factor (mod3M+i) when / crosses a
point of A*. This is done in the following lemma. D

We return now to the standard notation where φω is defined only on Jω and φω

is the extension of φω by continuity to the closure Jω\ similarly for φω,φω.

A.6. Lemma. Let φ £ Pι be such that there are unique i,j G {\,...,L} and ω*
with | ω * | ^ M such that

and φω* o o φω*aι (£ {a\,.. .,<?/,} if k < |o>* |. We further assume that whenever

ω\ ^ M the set ¥ixφω is finite and consists of nondegenerate fixed points ξ, i.e.,

Then if' φ>, φ< are sufficiently close to φ in Pι and such that φ^(a1) > ctj,

Ψω*(ai) < aj Wβ naVe

ζ>/ζ< =D>/D< (mod3 M +i) ,

where ζ < , D κ denote ζ,D computed from φ <

We first observe that C>/C< = D>/Dκ = 1 (mod3M+i) unless at is one of the

endpoints uω* or vω* of Jω*. Using the symmetry x —> — x of IR we see that it

suffices to consider the situation where uω* = αz. In this case we claim that we

have (

C > - C < , D>=D< i f y φ z ,

ζ> = ζ< . (1 - Z(o)*))-1 , D> = D< (1 - Z(ft)*))-1 if j = i.

We first discuss the easy proof of the formulas for the zeta function. If j φ /,
then ζ (mod3M+i) is locally constant at φ (Lemma A.2), hence ζ> = ζκ.

Let j = i. We have φω*ai = at. The point a^ bifurcates into an attracting fixed
point for φ^*9 absent for φ<* (see the figure). Apart from the periodic orbit thus
created, the periodic orbits for φ,φ>,φ< correspond to each other, with the same
weight, up to order §: M -\- 1, if φ> and φ< are sufficiently close to φ in Pλ.
Therefore

as announced.

Graph of φω. The graph of φ>* (resp. φ^*) is obtained by pushing the graph of
φω* upwards (resp. downwards).

We consider now the changes for D. Let δD denote the jump of D from φκ

to φ> and similarly for <5Ai, We have δD^~ = 0, hence

1 °° ίMu 1
δDik = τ:Σ SD* = ό Σ lim [((Jί>)m0Lk)(x) - {{Jίκ )mak)(x)]
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>- x

Fig.l.

with obvious notation. Let Φ denote a function which is locally constant on

outside of {a\,...,aL}, like χω or α*. If |ω*| -f |ω| ^ M we have

lim (Φ o φ> o ,/,>* )(χ) = lim (Φ o ^> )(χ),
x[at xiaj

lim (Φ o φ< o ^ )(χ) = lim (Φ o ψ< )(χ) = lim (Φ o tfr> )(x),

when ι/̂ < and ι/̂ > are sufficiently close to φ in Pι. Therefore (mod3M+i)

δDut = Z(α>*) Σ \ ί lim ((M> fα.Xx) - lim ((M> )nock)(x)} = Z(ω*)D>k .

^O2 lχia χϊa J
If iή=j\ we have D% — Djk. Therefore in (5[Z)̂ ] the /th and / h line are propor-

tional, giving δD = 0, i.e., Dκ = D>.

If / = y, we have

D > -Dκ = δD = Z(ω*)Z)> ,

hence

as announced. •

D> = \ - l

Appendix B. Generalized Transfer Operators

As before, $ denotes the Banach space of functions Φ : IR —> C of bounded vari-

ation. We use on $ the norm Var defined by

Var Φ - lim \Φ(ao)\ + £ | Φ ( Λ ϊ ) - Φ ( ^ _ i ) | + | Φ ( α π ) |

where the limit is taken over finite sets {ao,...,an} (with #o < «i < ••• < an)

ordered by inclusion.

We also write

: {X: Φ(x)φO} is countable}
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and let || | |# denote the quotient norm on ^ # = ^jM^. We have then

where Var# is defined like Var, but with {ao,...,an} ranging over the finite subsets
of a generic dense set R. By this we mean that the closure of R is IR, and that R
is disjoint from any countable set given in advance. (For the definition of Var#Φ,
the set to avoid is that of discontinuities of Φ.) Using Var# it is easy to implement
Remark 1.7, and obtain a #-version of Theorem B.I below.

We let Ω be a countable set and for each ω G Ω we suppose that
Λω is an interval of IR (not necessarily open or closed).
φω : Λω —» R is continuous and strictly monotone (i.e. φω: Λω —> φωΛω is a

homeomorphism).
φω : Λω —> <t has bounded variation. We also assume that

v = Σ Varφω < oc .
ωeΩ

[In order to define Varφω, we extend φω to be 0 on IR\/lω.]
We write εω = +1 if φω is increasing, —1 if φω is decreasing [we make an

arbitrary choice if Λω is reduced to one point or empty].

On the Banach space 3$ we define the operators Jί and Jί such that

[We let φω(x)Φ(φωx) = 0 if x $Λω and ψω{φ-ιx)Φ{φ-χx) = 0 if x $φωΛω.] The
operators Jί and Jί are bounded. If we denote by | |M|| the norm of the operator M
acting on <% (with the Var norm) and by | |M| | 0 the norm of the operator M acting
on bounded function (with the uniform norm || ||o) we have

\Jl\\Q,\\.M\\ϋ< V.

We write
R= lim (\\Jίm\\o)ι/m ,

m—κx>

R= lim(||uf»||o)1 / m.
m—> o o

The submultiplicativity of m t-> \\Jίm\\o, \\Jίm\\o guarantees the existence of the

limits; R and R are in fact the spectral radii of Jt, JM acting on bounded functions

X -* C. In general R+R.

B.I. Theorem.1 (a) The spectral radius of Jί acting on M is rg max(iζi?)

and ^R.
(b) The essential spectral radius of Jί is ^ R.
(c) If φω ^ 0 for all ω, the spectral radius of Jί is ^ R. If furthermore

R < R, then R is an eigenvalue of Jί, and there is a corresponding eigenfunctίon
ΦR ^ 0.

This is an improved version of the theorem of [4].
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Note that M, Jί play symmetric roles: Jί may be replaced by Ji in the theorem

if R,R are interchanged.
It will be convenient to assume that all Λω and φωΛω are contained in

(—1,4-1). This can be achieved by the embedding R —• (—1,4-1) given by x —•
x(l 4-x2)~1/2. We can then also extend the φω to homeomoφhisms R —» R, and
take φω |(R\ylQ,) = 0.

The proof of the theorem will use bilinear forms on 3$ which we now introduce.
If Φ, Ψ : R —> C are of bounded variation we may define

The limits are taken over finite sets {a0,... ,an} (with β0 < «i < * < ««) ordered
by inclusion. The limits for (Ψ,Φ)± exist by monotonicity if Φ, Ψ are real monotone
and Φ is constant on (oo, a] and [έ,cx>). Therefore (using linear combinations and
density) the limits exist in general.

Note that (Ψ, Φ) depends only on the restriction of Ψ to a small neighborhood
of the support of Φ. Also

\(Ψ,Φ)\ S

Let &o = {Φ e 3$: limμi^oo Φ(x) — 0} and denote by Ψx the characteristic function
of (—OO,JC). Using the linear form

Ψ *-*oι(Ψ)= (Ψ,Φ) ,
we define

Φa(x) = 2(x(Ψx)- lim oc(Ψy).

When Φ G ̂ o> it is easily checked that Φα = Φ. More generally if α : 38 —> (C is
linear and satisfies

<; C α | | y | | 0 ,

the function JC ι—> a ( ^ ) has Var ^ 2Cα and

Var Φα <; 6Ca .

[Φα is thus in ^ , but not necessarily in 3SQ. Furthermore it is not claimed that

B.2. Proof of part (a). Using the notation

we have

(Ψ JZmΦ) — V (Ψ ω
(Oy(Om
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We may write

\ * ? ψ(0\ •••(Dm * V ^ Ψoim ' * * ψθL>\ ) /

m m \

• [ φ ω Λ + r ωw ' (Φ ° feOT o O lAcα̂ +1 ) ] ( ^ ( 3 z _ i + Sym}

• [φωk(at)- φωk)(ai-\)]

+ lim X] -{[ε ω i ' * £<om ' (ψωv-ωm ' Ψ) ° Ψω}

1 ° * * ° ^ K ^ " ) "

where the "sym" terms are obtained by exchanging aι and αz _i. Note that when
the function ^ω^^! ° * ° Φω} is decreasing, the change of variables that it defines
interchanges "symmetric" terms and produces a negative sign (this is reflected in
the factor εωi £>ωk_x of the formula). We have thus

\(ψ,jΐmΦ)\ s Σ\\Jfk-ιΨ\\o\\J?m~kφ\\oV ^
k=\

Therefore if ξ > max(R9R), there is C > 0 such that

\{Ψ,JίmΦ)\ S Cίm

hence
Var MmΦ S 6(/w + 1 )Cξm Var Φ ,

\\ygm\\ ^ 6(m+l)Cξm ,

and finally

spectral radius Jί ^ max(R,R). D

B.3. Proof of part (b). If (Km) is a sequence of operators of finite rank we have
the general formula2

essential spectral radius of M g limsup(| |^#m - Km\\)ι/m .
m—»oo

Let ξ > R; there is thus C > 0 such that

H^llo ^ C^m

for all m. To prove (b) we will show that (for suitable Km) we have

\\.Jίm-Km\\ ^P(m).ξ"',

where P(m) is a polynomial (of degree 1) in m.

2 This is a relatively elementary fact, which constitutes the "easy" part of Nussbaum's essential
spectral radius formula (Nussbaum [3]).
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We can choose a finite set Ω* C Ω so that the operator Ji* defined by

I*Φ){X)= Σ (Pω

is arbitrarily close to Jί. We have indeed

• Jf*|| ^ Σ Varφω ,
ω£Ω\Ω*

f*\\ < V .

We may thus take Ω* (depending on m) such that

^ _ ^#*£|| < ξk

foτk= \,...,m. The same estimates may be assumed to hold for the || ||o operator
norms; in particular we obtain

H o ^ (C+l)ξξk

for k = 1,.. .,m.
For each ω e Ω* we decompose Λω into finitely many intervals A(ω>ι) and

define a function φ ω with constant value φ(ω, i) in ^4(ω,/). Taking φ(ω,i) G ̂ >ωΛ.(ω,z )
we have _

Var φω ^ Var φω .

Given ^ > 0 we may also assume that the Λ^ωj) are such that

\Wω-φωh < <

We define the operator Jl by

ωgΩ*

and obtain thus Λ

^ - ^ Ho ^ δ ,

\\0,Jt £ V .

We may thus choose δ sufficiently small that

\\j?*k - j?qo,\\Jί*t - lk\\0 ^ ξk

for k = 1,..., m. In particular

for fc = 1,...,m.
We note that the linear form associated with J(*mΦ is

m n 1 ^

-hsym} [φωk(«/) - ^ O z - i

ι=l 2

This expression will be used in a moment.
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Let us denote by ψ(ω,i) the restriction of ψω to Λ(ω,o For fixed k the intervals
of definition of the φ(ωm,ιm o ψ(ωk+ιjk+]) generate a partition of 1R into a finite
set 3m-A: of intervals. Let 3™-£ ^ e m e set of interval endpoints, and ^_k, the
set of interval interiors (this is a finite set of open intervals). For each / G 3™-£>
choose xj G / and define the operator Jίm-k by

•>-kφ)(x) if x € 3 ' _k

Finally we define the operator Km by

where Φa € & is the function associated with the linear form α:

m n 1

Therefore Γ̂m is of finite rank.
The values of Jίm-kΦ — Jfm-kΦ on the open interval / G c$"m-k are deter-

mined by
J = 2Φ(x) - lim Φ(y),

Φ{X) =

where

so that

|Φ(x)

and

\\Jm-kφ~ jrm_kφ\\0 ^

Since we also have

VarΦ

^ 3(C + 2 ) ^ " * Var Φ .

we find
||^*™-*φ _ Jίm_kφ\\o <; (3C + 7)ξm"^ Var Φ .

By definition of Km, we find that Jί*mΦ — ̂ W Φ is the function associated with
the linear form Ψ H-> (Ψ,Jί*mΦ) - a(Ψ). We have the estimate

\(Ψ,Jΐ*mΦ)-a(Ψ)\ £ Σ
k=\

A 1

ί = l l

S Σ(C+l)ξk~ι\\Ψ\\o
k=\

sym}

7Kw"*VarΦ F + (C + 1)<Π¥Ί|O VarΦ
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and
\\Jim -Km\\ S ξm + 6(mCf + C + l)ξm = P{m) . ξm ,

with .P(m) = 6mC + 6C + 7, of degree 1 in m as announced. D

i?.4. Proof of part (c). We refer to [4] where a similar result is proved. The proof
given in [4] also applies here, with inessential modifications.
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