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Abstract: We consider actions of quantum groups on lattice spin systems. We show
that if an action of a quantum group respects the local structure of a lattice system,
it has to be an ordinary group. Even allowing weakly delocalized (quasi-local)
tails of the action, we find that there are no actions of a properly quantum group
commuting with lattice translations. The non-locality arises from the ordering of
factors in the quantum group C*-algebra, and can be made one-sided, thus allowing
semi-local actions on a half chain. Under such actions, localized quantum group
invariant elements remain localized. Hence the notion of interactions invariant under
the quantum group and also under translations, recently studied by many authors,
makes sense even though there is no global action of the quantum group. We
consider a class of such quantum group invariant interactions with the property that
there is a unique translation invariant ground state. Under weak locality assumptions,
its GNS representation carries no unitary representation of the quantum group.

1. Introduction

Symmetry has always played an important role in theoretical physics in helping
to reduce a problem with many variables to a more tractable size. In statistical
mechanics we have infinitely many degrees of freedom to deal with, so often the
symmetry, while helpful, is not sufficient to solve the problem, unless we have "in-
finitely many symmetries." One example is the theory of mean-field lattice systems,
where the inherent permutation symmetry is sufficient to reduce the computation
of the limit free energy density, of the possible limit states [FSV, RW], and of the
limit dynamics [DW] to corresponding problems in the algebra for a single spin.

Another example, which has been studied intensively by many authors recently
[Bab,BMNR,DC,KS,MN,GS], is the class of models which can be solved exactly
(though not always rigorously) by means of the Bethe Ansatz. The basis of this
method is to diagonalize the Hamiltonian along with an infinite set of constants
of motion. In some cases the occurrence of this infinite set of constants of motion
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is related to the appearance of a new kind of symmetry, called quantum group
symmetry. This nourishes the hope that by relaxing the demands usually made on the
structure of a symmetry group, and allowing the wider class of quantum groups, one
can benefit from symmetry considerations in new situations, where a symmetry in
the traditional sense is simply not present. A particularly interesting development in
this direction is the integrable Haldane-Shastri model [Hal,Sha]. This quantum spin
chain with long-range interactions can be interpreted as an ideal semion gas, i.e.
the spinon excitations obey fractional statistics. For more details and generalizations
we refer the reader to [Ha2] and the references therein. Another example where a
quantum group symmetry plays an explicit role is in the study of non-translation
invariant ground states of the ferromagnetic XXZ chain [GW,ASW].

In this paper we exclusively consider one-dimensional quantum spin systems, or
"spin chains," as a testing ground for applications of quantum group symmetries.
We emphasize that here we use the word "spin chain" in its meaning familiar from
statistical mechanics, i.e. spins at different sites commute, and we do not consider
modified (braided) tensor products [Maj]. A number of models of this type have
been considered in the recent literature [KSZ, BY]. The interactions in these models
are both translation invariant, like the usual lattice interactions, and quantum group
invariant in a sense we will make more precise below. It is thus natural to ask for
the quantum group symmetry of the relevant states - temperature and ground states
- of these models. For example, could there be "spontaneous quantum symmetry
breaking"? In the case of ordinary groups it is clear how to define such notions:
the symmetry is implemented locally by unitaries, in a way which is compatible
with the thermodynamic limit. The symmetry group thus acts by automorphisms on
the infinite system described by the quasi-local algebra, and it is with respect to
this action that we can talk about "invariant states" of the infinite system.

As we will show in this paper, however, this approach does not work for quan-
tum group symmetries. The first limitation is that the formation of tensor products
with non-abelian coefficients requires an ordering of the factors in the product,
which is correlated with the algebraic ordering of factors in the algebra. This limits
all considerations to one dimensional systems, or, in the field theoretical context, to
systems with one space dimension and one time dimension. If we make the tech-
nical simplifications of choosing a discrete space variable, and a finite dimensional
one-site algebra, we arrive at the setting of quantum spin chains, used in this paper.
Given a unitary action on the one-site algebra, we can define a product action of
a quantum group, for each finite segment of the chain. The fundamental difficulty,
however, is that these actions are not compatible with the identifications used to
form the inductive limit to the infinite system. More precisely, the compatibility
holds for enlargement of the system towards the right, but not towards the left (or,
conversely, depending on conventions). This means that we can define quantum
group actions on a semi-infinite chain, but not on the full chain. We prove that this
restriction is inherent in the quantum group concept, by showing that there is no
action on the quasi-local algebra of the chain which commutes with translations.

In [DFJMN] Davies et al. study the quantum group symmetries of the anti-
ferroelectric XXZ chain. The infinite dimensional symmetry algebra introduced there
contains the finite dimensional quantum group SVU(2). Therefore our results, in
particular Theorem 11, imply that the construction of [DFJMN] cannot lead to a
proper action of the quantum symmetries on the observable algebra which commutes
with the translations of the chain (or any infinite subgroup of the translations). It
is an interesting open question in what sense such an action could be defined.
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In contrast to the actions defined for each segment, the sets of invariant elements
for these actions are compatible with the inductive limit. This allows us to define
quantum group invariant interactions (see, e.g. [MMP]), even though this invariance
cannot be understood as invariance with respect to a global action.

The fact that the invariant elements have much better localization properties than
general elements is reminiscent of the theory of superselection sectors in relativistic
quantum field theory. Interpreting the quantum group as a gauge group, one would
consider only the invariant elements as "observables." The rest of the algebra would
then be an algebra of unobservable fields, whose function in the theory is to describe
operations changing the superselection sector ("creating a charge"). Already in the
case of Fermi fields one has to relax the requirement of locality for the field algebra
(allowing anti-commutation rules). The lack of locality for the action of the quantum
group on the "fields" could be seen as a reflection of this general feature of field
algebras. Indeed, some constructions of field algebras in this context lead to very
non-local objects [BF,Ber].

The theory of superselection sectors in field theory provides some of the most
interesting applications of quantum groups. The basic problem is to relate the set
of sectors, together with their composition ("fusion") rules, to the set of irreducible
representations of a group or quantum group with the rules for decomposing ten-
sor products. In two and more space dimensions this program has been carried out
with complete success by Doplicher and Roberts [DR1,DR2], building on earlier
work together with Haag [DHR]. They managed to show, in two or more space
dimensions, and using only axiomatic assumptions on the observable algebra, that
the superselection structure indeed comes from the representation theory of a com-
pact gauge group. They also reconstructed an algebra of fields with an action of the
gauge group, whose fixed points are precisely the observables. The fact that they get
a (non-quantum) group depends crucially on having more than one space dimen-
sion, and hence the possibility of exchanging two spacelike regions in a continuous
process during which they always remain spacelike. In one space dimension the
superselection structure can be much more complex [MS, SV]. At the same time,
there is a rich supply of explicit models with conformal symmetry, for which the
superselection structure can be computed (see e.g. [Vec]).

Regarding the connection with the present paper, we wish to point out, however,
that quantum groups of the kind we use are not so interesting for the project of
reconstructing superselection structures. For example, the irreducible representations
of the quantum deformation SVU(2) of SU(2) and the decomposition weights for
tensor products are precisely the same as for SU(2) for real values of the deforma-
tion parameter v. New features, such as structures with only finitely many sectors,
are seen only for complex values of v, particularly roots of unity. In that case,
however, one loses the involution in the algebra of "functions" on the group, and
with it the notion of an action on the observable algebra, which is the object of
our investigation.

The decomposition of the algebra of a spin chain with respect to the representa-
tions of a group is also reflected in the decomposition theory of invariant states. We
discuss one possibility of defining quantum group invariant states even when there
is no action: a "hereditarily invariant state" has the property that all its restrictions
to finite segments are invariant to the quantum group action given for the segment.
Unfortunately, this seems to give no interesting result: on the basis of computations
on short chains we conjecture that for SVU(2) only one state (an infinite product
state) has this property.
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In the case of classical groups, there is a general construction [FNW1,FNW2]
yielding non-trivial states on a chain which are translationally invariant, and also
invariant under the action of the group. These states are automatically ground states
of a suitable finite range interaction. The whole construction is naturally covariant,
also with respect to quantum groups. It then yields a class of translationally invariant
finite range interactions, which are also invariant with respect to an irreducible
representation of a quantum group, and have a unique ground state (see [KSZ] for
the minimal non-trivial example in this class). Of course, in the case of a classical
group the unique ground state is then also invariant under the group. Not so for
quantum groups: on the full chain we cannot even say what an invariant state
should be, because there is no action of the quantum group. On the half chain,
where we can define an action of the quantum group, the uniqueness of the ground
state fails, and we get a finite dimensional set of ground states, parametrized by a
boundary condition. Among these ground states we now have one state which is
translationally invariant, and another state, which is quantum group invariant. Of
course, the two are different.

Since our main objective is to point out the difficulties in combining local struc-
ture with quantum group symmetry, we have not aimed at maximum generality. The
only concrete quantum group we consider is Woronowicz's one-parameter deforma-
tion SVU(2) of SU(2). Since this example has served as the paradigm of a quantum
group in many papers, we are confident that the difficulties pointed out by us are
indeed typical. There are two properties which we prove for SVU(2) (Proposition 4
and Proposition 5) which can be stated for general quantum groups. We would like
to pose their generalization to other quantum groups as a challenge to experts in the
field. Even in case of SVU(2) we had to leave unsettled one statement (Conjecture
8), which implies, among other things, that only a specific product state is both
quantum group and translationally invariant for the canonical action on the half
chain. Much of the literature is phrased in terms of quantum groups in the sense of
DrinfeΓd rather than Woronowicz. We chose the latter definition because the notion
of "action" seemed more natural in this context. The connection between the two
approaches is briefly indicated in the Appendix.

The paper is organized as follows. In Sect. 2 we review briefly the notion of
quantum group in the sense of Woronowicz [Wo2,Wo4], and of the action of a
quantum group on a C*-algebra, of fixed points under such an action, and of in-
variant states with respect to such an action. In Sect. 3 we consider the operation of
tensor product for unitary representations and for actions, and describe the basic lo-
cality problem for such tensor products. We introduce a more restrictive definition of
"actions," which seems more natural for discussing tensor products. Unfortunately,
where the standard definition leads to locality problems for extending the chain to
the left, the more restrictive definition creates problems right and left. In Sect. 3,
we also define the action on a half chain associated with a unitary representation on
the one-site Hubert space, and its construction in terms of an action on the Cuntz
algebra Oj. In Sect. 4, we define invariant elements, and show the compatibility
of this notion with the local structure, and discuss the hereditarily invariant states.
Sect. 5 contains the NO-GO Theorem for actions on the quasi-local algebra, and
Sect. 6 discusses similar problems for the implementation of actions by unitaries in
the GNS representation of an invariant state. In Sect. 7, we discuss the quantum
group covariance of the construction of finitely correlated states. The decay rate
in such a state is given by a quantum Wigner όy-symbol. These have been com-
puted in detail [Rue,Bie,LB], so, in principle, we can save ourselves the work of
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diagonalizing a transfer operator. In the explicit example of the q-AKLT model,
however, diagonalizing the transfer matrix directly by hand is so straightforward
that checking the conventions used in any particular computation of Wigner 67-
symbols would not be worth the effort.

In order to do some of the more tedious quantum group computations reliably,
we developed a package for Mathematica [Mat], which is available by anonymous
ftp from nostromo.physik.Uni-Osnabrueck.de.

2. Quantum Groups

As there is not yet a standard notion of quantum group (also called pseudogroup)
and of the related invariance and covariance properties, we will briefly review
how quantization works for the case of compact groups .̂ Our discussion will
be based completely on the notion of quantum groups introduced by Woronowicz
[Wo2,Wo4,Wol,Wo3]. An alternative would be the DrinfeΓd approach [Dri, Jim],
which provides a "quantization" of Lie algebras rather than groups. Some of the
questions considered in this paper could also be posed using this approach, but
we found the Woronowicz approach more suited for this purpose. On the other
hand, the DrinfeΓd approach is much more effective for doing explicit computa-
tions. Therefore, for the reader's convenience, we have included a brief Appendix
on the connection of these approaches. A new approach to quantum groups has
recently been initiated by Baaj and Skandalis [BS]. In this context actions on C*-
algebras have been considered by Cuntz [Cu2].

The topology of a compact group ^ is encoded in the algebra ^(^) of conti-
nuous, complex-valued functions on the group. This is a *-algebra under the natu-
ral notions of addition, multiplication and complex conjugation. Equipped with the
supremum norm, ^(^) becomes a commutative C* -algebra with identity. That this
algebra carries the complete information about ^ as a topological space, is the con-
tent of the "GeΓfand Isomorphism Theorem" which reconstructs, starting from any
commutative C* -algebra, the compact space on which this algebra is the algebra of
continuous functions. The next step is to encode the multiplication operation of .̂
Three maps are naturally connected to the composition law in ,̂ the existence of
a neutral element e e ̂  and of the inverse g~λ of any g e ,̂ respectively. These
three maps become, in turn,

i) the coproduct A which maps #(^) into #(0 x 0) ̂  #(0) <g> <β(<$\ the
complex continuous functions in two variables:

ii) The antίpode K which maps ^(^) into itself, given by:

κ(/)ω = /(ίΓ'), /
iii) The counίt ε which is the character

The group-axioms are reflected in the properties of the maps Δ,κ and ε:

i) Associativity of the composition law in &:

(A®id)oA=(id®A)oA . (2.1)
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ii) e is the neutral element in :̂

(ε (8) id) o A = (id 0 ε) o J = id . (2.2)

iii) g"1 is the inverse of g in 3?:

m((id ®κ)oA) = m((κ (g) id) o A) = εl , (2.3)

where m is the multiplication map from ^(^) 0 ̂ (^) — » ^(^) taking /
into /0.

We could now consider an abelian algebra that comes with such maps Δ,κ
and ε and reconstruct the compact group <&. The key point is, however, that we
have nowhere used the commutativity of ^(^), so we can drop this assumption, and
arrive at the more general notion of quantum groups. In dropping the commutativity
assumption problems arise with the boundedness of K, ε and m. The multiplication
map m on &( Jjf ) 0 ̂ ( Jf7), for instance, has norm dim Jf (consider the unitary flip
operator Fφ (g) ψ = ψ 0 φ on &(&) 0 J*(^f ), for which ||m(F)|| = dim Jf ). The
following definition, due to Woronowicz [Wo4], takes care of this difficulty:

1. Definition. A compact quantum group (#, A) consists of:

i) a separable C*-algebra <$ with identity 1 and
ii) a unital *-homomorphism A : <β — > <6 0mjn ,̂

i) (A 0 id) o A = (id 0 Zl) o A9 and
ii) ftorA Λ(#)(1L 0 ̂  ) β«^ zl(^)(^ 0 1) are dense in

It is shown in [Wo4] that there exists a dense *-subalgebra ^o of # such
that zl(^o) C ^o Θ^o? where Θ denotes the algebraic tensor product of ^o with
itself, i.e. the finite linear combinations of elements of the form α 0 &, a,b G #o
Furthermore ^o is a Hopf *-algebra. This means that there are, uniquely determined
maps, K and ε, such that:

i) K is a linear, antimultiplicative map from ^o into itself that satisfies
κ((κ(a*))*) = a, α e ^ o and

ii) ε is a *-preserving character on ^0

The maps A, K and ε satisfy Eqs. (2.1), (2.2) and (2.3). The dense *-subalgebra
^o consists of all matrix elements of the finite-dimensional unitary representations
of (#, A) (the notion of unitary representation will be introduced shortly).

The standard example of such a structure is the one-parameter deformation
SVU(2) of SU(2). Such a deformation is rather drastic in so far that the com-
mutative algebra of complex functions on SU(2) is replaced by an algebra ^ with
trivial center (see Proposition 4). Still, the whole representation theory of SVU(2)
turns out to depend smoothly on v.

Example. Let —1 ^ v ^ 1 and ̂  be the C* -algebra with unit, generated by α and
7, which satisfy the relations:

αα* + v2y*y = 11 ,

α*α + yy* = 11 ,

αy* - vy*α = 0 . (2.4)
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The relations
yy* = γ*γ and ocγ = vyα

follow automatically [JSW]. The coproduct, antipode and counit are determined by:

Zlα = α & α — vy* C*D y , zly = y 0 α + α * 0 y ,

κ (α) = α* , κ (y) = -vy ,

e(α) - 1, ε(γ) = 0 . (2 5)

The relations between α and y are such that

'α —vy*

is a unitary in MI ® C6. This u is called the fundamental representation of SVU(2).
In order to define representations of quantum groups and to construct products of

representations two new products are introduced. Let j/, & and # be C* -algebras
with units. We put for A e jtf, B G ,<% and C\, C2 G <£:

= (A 0 d ® t*)(lUf 0 5 0 C2) , (2.6)

and, for A\,A2 G ̂ / and Cι,C2 G #:

04 1 ® C ι ) Φ G 4 2 ® C 2 ) = Λ ι , 4 2 Θ C ι ΘC2 . (2.7)

It should be stressed that both Φ and CD involve an ordinary product in a non-
commutative algebra. Therefore the order of the factors is quite important and also
the * -operation will behave badly with respect to these products. Although the
multiplication map m : ̂  ® ̂  — > ̂  is not bounded on an infinite dimensional non-
abelian algebra #, the norm estimate ||^®Γ|| ^ PΠ|||IΊ| holds.

We can now define the analogues of many concepts of classical group theory.
In each case it is easy to verify that for abelian ,̂ that is for an ordinary group,
the new concept coincides with the ordinary one. When there is a possibility of
confusion, we will denote the unit element of an algebra stf by 1;Q/, and the identity
map on j/ by id,,,/.

f> A unitary representation v of a quantum group (^,A) on a Hubert space Jf is
a unitary element v G ̂ (Jf7) <g> # such that v Φ v = (id 0 Δ)(v). Suppose that
2tf is ^-dimensional and let {///|z,y = 1,2, . . .&} be matrix units in ^(C).
t; can then be written as:

v = Σfij®VEj, vtjeV. (2.8)
v

We can thus consider the t;// as the elements of a ^-valued matrix, and identity
^(C)0^ with Jfk(^)9 the ^-valued A; x ^-matrices. In terms of the % the
representation condition is:

k
A ( v i j ) = Σ^/^^ (2.9)



484 M. Fannes, B. Nachtergaele, R.F. Werner

> A linear operator W : J^\ — > J^2 intertwines between the unitary representa-
tions ι?ι and v2 of (#,Λ) on Jf i and Jf2 if (^ 0 l«>ι = v2(W 0 !<*).

> A unitary representation i; of (*&,A) is irreducible if the only intertwiners
between i; and v are the multiples of the identity.

t> A state h on ̂  is called a //flαr measure if:

(A 0 id) o zl = (id 0 h) o A = h . (2.10)

In this formula the right-hand side is to be read as the map taking a G ̂  to
A(α)l«.

t> A unitary representation v of (Ή,A) on Jjf implements an action αy of ( ,̂ Zl)
on όS(Jjf) by restricting ad(t ) to &(jf) 0 1 :̂

αι;(^) = ad(t;)(^01l^) = t;(^01l^)t;*, Λ G 0(Jf) . (2.11)

More generally, an αc#0« of a quantum group (^9A) on a C* -algebra j/ is
a *-homomorphism α of s# into j/ 0mjn ^ mapping the identity of jtf into
that of stf 0 # and such that:

(α 0 id« ) o α = (id,P/ 0 A) o a . (2.12)

o We will say that a state ω on j/ is invariant under an action α of (#, A ) on
jtf if for all A e */, (ω 0 i

Let us show the existence of invariant states for a quantum group with a Haar
measure h acting on a C* -algebra <£/ by α. For any state ω on j/, define the average
ω over the group by: ω(A) = (ω 0 /z)(α(^4)), ^4 G ̂ /. A simple computation shows
that ω is α-invariant:

(ω 0 id** )(«G4)) = (ω 0 h 0 id^)((α 0 i

= (ω 0 h 0 idtf )((id.rf 0 J)(

= (ω 0 (h 0 id-*) o Δ)(u.(A))

Unitary representations and actions on C* -algebras are special cases of "linear
representations on a vector space." Yet the definitions look slightly different: we
took a unitary representation as an element v G J*( J f ) 0 ,̂ and an action as a map
α : j/ — » stf 0 #. The classical intuition for all representations is that under an action
(or representation) R the vector x G X becomes a function on the group with values
in X, i.e. an element of X 0 .̂ Thus a representation is a map R: X — > ̂  0 ,̂
and the compatibility with the product becomes encoded in the relation

(R 0 id.* ) o Λ = (id* ®A)oR. (2.13)

Of course, when X is finite dimensional, we can set Rel — Σj ej 0 ^7/? where /?7/ G ̂
satisfy (2.9). This is the ^-valued matrix we used for the definition of unitary
representations. The difference between unitary representations on Hubert spaces and
actions on C* -algebras is thus mainly in the structure of the underlying space and the
sense in which it is preserved by the representation: unitarity is most conveniently
formulated in terms of v G ̂ S(J^) 0 #, whereas the homomorphism property is
more easily expressed in terms of α : #0 — » s
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For the definition of tensor products it is important to apply a representation
not only to X (i.e. to "group independent vectors," but also to vectors x £ X 0 ^
which already depend on a group element. Thus we also need to consider maps

R:X

In the classical case, when ^ = ^(G\ we can define R in terms of R. In order to
do this, we identify X 0 ^ with the algebra of JΓ-valued continuous functions on
G, and set, for continuous x : G — > X,

(Rx)(g) = Rβ(x(g)) . (2.14)

More abstractly, this can be written as

R(X (g) C) = R(x)idx <g) C , (2.15)

where the product on the left is shorthand for (x ® C'}(\άx 0 C) = c 0 (C'C).
Equation (2.14) makes sense in the quantum group case as well, and one read-

ily verifies that the representation relation for R becomes

(Λ(8)id 2 )o(idι 0Λ)o( id . r f® Λ ) = (id,/ ® A) oR . (2.16)

This is an equation between maps X ^^ — * X (& %> (& %> , and the subscripts 1 and
2 of the identity maps refer to the first and second tensor factor (6. Tensor factors
X and ̂  have to be reshuffled but the order of the ̂  factors is kept unchanged.

From these considerations it seems that the view of an action as a map R on
X 0 # satisfying (2.16) is simply equivalent to the general definition in Eq. (2.13).
However, this is true only as long as we do not consider additional structures on X:
a representation on a Hubert space X is required to be unitary, and a representation
on a C* -algebra X is required to be a homomorphism. We have seen that for a

unitary representation R we can always pass from R to R by (2.15). However,

for actions on a C* -algebra this choice of R destroys the homomorphism property.
Therefore, the following definition is needed to single out the good cases.

2. Definition. An extended action of a quantum group (^9A) on a C* -algebra <$#
is an automorphism α of s$ <S>mjn ^ such that

(α®id 2 )o( id ι (g) a) o (id^ ® A ) = (id </ Θ A ) o a . (2.17)

An action a : j/ — » jtf (g)min ^ is called extendible, if it is the restriction of an
extended action to stf (g) 1#.

One easily verifies that, for any unitary representation ι;, ad(f ) is an extended
action, hence any implemented action in the sense of the above definitions is auto-
matically extendible. Of course, any action of a classical group is also extendible.
It is not immediately obvious, then, that there are non-extendible actions at all.
However, we will give an example below, in Proposition 5, showing that Definition
2 has non-trivial content.

3. Tensor Products of Representations and Actions

In this paper we are mainly interested in the action of quantum groups on composite
quantum systems, i.e. in actions on a tensor product. Let α and β be actions of
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a quantum group (#, A ) on j/ and ̂  respectively. The product of α and β should
then be a homomorphism from jtf 0 J* into j/ 0 ^ 0 .̂ Let 5 G .̂ For a non-
trivial action, /?(#) will have components in # and, as we only know how to act with
α on elements of the form A§§\<$^ we cannot apply α ® id,^ to A ® β(B\ A G si
and # e ̂ . Therefore the general notion of action as defined in (2.12) is ill-adapted
to tensor constructs.

It is clear from the discussion at the end of the previous section what is missing:
we need to define actions as operators on si 0 .̂ With this modified definition
of actions it is clear how to define tensor products of general representations: let

R-.X^tf^X^W a n d S : 7 Θ ^ ^ 7 ( g ) ^ b e "extended representations" in the
sense of Eq. (2.16). Then we set

R®S = (R® idyXid r 0 S) , (3.1)

with the obvious reshuffling of tensor factors. One then verifies that RΦS is indeed

again an extended representation. Moreover, it is obvious that if R and S are both
*-homomorphisms, or unitary, then so is their Φ -product. Of course, the definition
agrees with the usual tensor product in the abelian case, provided R is extended

to R by virtue of Eq. (2.14). Note, however, that RΦS and SΦR differ not only
in the order of the factors X and 7, which could be undone by a suitable flip
isomorphism, but also by the ordering of the factors in #.

Of course, we can use the extension (2.15) to extend an arbitrary representa-

tion R to R, and thus define R Φ S = (R (8) idy )(id^ 0 S) for such representations.
This coincides, in fact, with the standard definition of tensor products of unitary
representations. It is unsuitable for actions on C* -algebras, however, since it would
practically never lead to a homomorphism, and hence not to an action in the sense
of (2.12).

For unitary representations, say a representation υ G ̂ S(J^f) 0 #, and w £ ^(Jf)
0 ,̂ the Φ -product can be written out in terms of matrix elements as

(vΦw)ίμJv = VijWμv , (3.2)

where latin and greek indices run over bases of Jf and JΓ, respectively. Obviously,
this use of the symbol "Φ" is also consistent with the definition given in (2.6).

In the sequel, we will always consider actions αy implemented by a unitary
representation v. Since such actions are always extendible (α^ = ad(f )), their Φ-
product is well defined according to (3.1). If v and w are as in (3.2), we find

ad(ι;Φ w) = ad(f)Φad(w) . (3.3)

The following theorem summarizes the "locality" properties of the tensor product
of two representations.

3. Theorem. Let v and w be unitary representations of a quantum group (^9A)
on Hubert spaces ffl and 3C. Then

(1)
0 Ijr C 3i(Jtf) 0 fly 0 # .

(2) If E G ^(Jf ) is ^-invariant, i.e. <xw(B) = 5 0 !<*, then
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(3) If ffl and Jf are finite dimensional and if the quantum group is ,SVU(2),
then, conversely, oίvφw(^.^ 0 B) G ir 0 &( Jf ) 0 # implies that B G (̂ Jf) is

Proof. In case (1) we have

o^φvvίX 0 Ijf ) = (t;Φ

= 00 I.* )(1U 0 w)(X

C

In case (2):

= 0 0 ly XI r 0 (w£ 0 l^w* ))0 0 fljr )*

= (t; 0 I* )(1^ 0 5 0 l^Xi? 0 1̂  )*

(3 ) It is useful to express the action of ocvφw in matrix elements with respect to some

bases in C^ and C*. Then υ G JίdC^>) has matrix elements u// G ̂ ,/,y = !,. . .,£/,
and w G Jίk(^) has matrix elements w^μ G ̂ 9λ9μ = l,...,k. Then

77'

where Xλ)J = Σ,WλμBμμ'(wλ'μΎ = (™(B 0

Suppose that, for some B G ̂ ^(C), and ^477/ = δjj/9 the above matrix element con-

tains a factor δhr. We can rewrite this as Σ7

 vij^λλf(vt'jT — δa'X λλΊ with ̂ / G ̂ .

In basis free formulation this reads (̂11̂  0 J0;/)f* =1^/0^^, for all λ, λ' . This
condition can be considered for each pair λλ' separately, and yields, in the special

case of SVU(2), that X^ — B^/ί.^ for some B)j> G C (see the proposition below).
But then, by applying the counit ε to the definition of X, we find that

Hence X = (w(B 0 l^)w*) = 50 %, i.e. B is invariant under w. D

The special property of SVU(2) used in the proof of (3) is isolated in the fol-
lowing proposition. It is clearly violated for ordinary groups, for which (3) fails
accordingly. In a sense it expresses the property that SVU(2) is "completely quan-
tum." In particular, it shows that the center of SVU(2) consists only of multiples of
the identity.
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4. Proposition. Let v be a non-trivial d -dimensional unitary representation of

SVU(2) with d < oo, and let X,X <E SVU(2) such that

Then X =X is a multiple of the identity in SVU(2).

Proof, v contains a non-trivial irreducible subrepresentation, hence we may assume
without loss of generality that v is irreducible, say, the irreducible representation of
dimension d — (2s + \),s > 0. Moreover, by applying the result to hermitian and

skew-hermitian parts, we can assume that X , and consequently, X, is hermitian. By

multiplying the equation from the right by v we get v(^ ®X) — (!</ ®X)υ9 or

ΌjjX = Xυtj ,

for all i,j.
In order to make use of this condition we have to obtain information about the

matrix elements of the (2s -f 1 )-dimensional, or "spin-s"-representatίon of SVU(2).
We use the standard notation \s,m),m = —s,...9s for the basis vectors of this repre-
sentation. We can realize it as that subrepresentation of the 2s-fold tensor product of
the defining spin-^ representation u with itself, which contains the product vectors

Ψ+ = l^i)®2*, and Ψ- = ||,-±}Θ2*, and these vectors are identified with \s,±s),
respectively. Hence

and, similarly,

(s9-s\v\s,s) -(-v)2Y2%

(s,s|ϋ|s, -s + 1) = const x ot*γ2s~l .

Now let X and X be as in the proposition, and hermitian. Then Xy2s — y2 X, and

Xy*2S = y*2sχ^ which implies y2sχ =χyis. Hence X commutes with (77* )2s . Simi-

larly, we conclude that X commutes with even powers of α*^25"1.
The irreducible representations of the C* -algebra of SVU(2) are well-known

[JSW, Wo2]. In particular, one obtains a faithful family of representations π^,
parametrized by a phase ζ £ C, by starting from a cyclic vector Ω G JΊfζ with
πζ(α)Ώ = 0, and setting

The mutually orthogonal vectors πζ(a*n)Ω,n G N span the representation space Jtifζ.
Since the spectrum of πζ(yy*) is simple, and πς(X) commutes with this operator,
πζ(X) is determined by its eigenvalues ξn via

Since X commutes with even powers of a,*y2s~l, it commutes with α*2, and hence
ζn+2 = ζn Hence πζ(X) is a linear combination of the identity and the unitary
operator U determined by

Uπζ(u*n)Ω = (-l)nπζ(ot*n)Ω .
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The coefficient of U must be zero, because U is not in the C*-algebra generated by
πζ(α) and πζ(y). To see this, consider the images of t/,πζ(α), and πζ(y) in the Calkin
algebra, i.e. the quotient of ^(J^) by the algebra of compact operators. There the
compact operator πζ(γ) becomes zero, so π^(α) becomes unitary, and the algebra
generated by these two becomes abelian. On the other hand, Uπζ(u) = -πζ(α)£7,
hence the image of U cannot be in this abelian algebra.

Hence τtζ(X) = /(£)!, and we have to show that / is constant. Different repre-
sentations are connected via πζ o Φt — π^+/, where Φt are the automoφhisms defined
by Φ/(α) = α, and Φt(γ) = e\p(it)γ. The «th Fourier coefficient of / is determined
by the element Xn = (2π)~l f dt exp (-int)Φt(X) G SVU(2). Recall that X may be
approximated in norm by polynomials Xκ in α, y, and their adjoints. Using the rela-
tions (2.4) we can bring every approximating polynomial into a form in which no
monomial contains both y and y*. Then the above integral picks out precisely those
terms from any polynomial containing n factors y (or —n factors y*). Let X* denote
the sum of these terms. Since Uζ(γ) is a compact operator it follows that πζ(X£) is
compact for «ΦO, and, by norm approximation, so is πζ(Xn). On the other hand,
nζ(Xn) is a multiple of the identity, and hence must be zero for w Φ O . It follows
that all Fourier coefficients of / except the 0th vanish, and so / is constant. D

We now come to the discussion of the consequences of Theorem 3 and of the
definition of action. Items (1) and (2) of Theorem 3 can both be used to define
structures on infinite systems. Let us fix the algebra j/ = ,/^χC) as the observable
algebra at each site of a lattice system, and a unitary representation v G Jίd(^) =
£/ &<$ of the quantum group (^9A). The observable algebra associated with a
finite subset A of the lattice under consideration is then s$A = ®/e/1 ̂ /(/), where

j/(/) is an isomorphic copy of stf. By ί.Λ we denote the identity element in this
algebra. If A = Λ\ U Λ2 is the disjoint union of two subregions, we have a canonical
isomorphism sίA = ̂ AI 0 .a/'*2. For Λ\ C Λ2 we have the inclusion j/^i C j^2,
where the inclusion map is A ι—>• A ® 1^2\ΛI . For an infinite set A we can therefore
consider the union of all algebras s$Af for finite Λf C Λ. This algebra carries a

natural C*-norm, and we will denote by s$A the C*-inductive limit of the stfAι, i.e.
completion of the union in this norm. As a special case, we obtain the observable
algebra, also called the quasi-local algebra of the infinite lattice system [BR], by
taking A as the whole lattice.

In order to define a quantum group action on s$A we begin with the case of finite
A. The unitary representation vΦv Φv (n times) is easily seen to be independent
of the bracketing of the Φ-products, hence we can define the action α^φ. .φt) on
j/Π'Ό. Note that, in contrast to the case of ordinary groups, the ordering of sites in
this product is essential, since it fixes the ordering of factors in .̂ This means that
actions of quantum groups can only be defined on one-dimensional lattice systems.
Analogously, in quantum field theory, the typical applications of quantum groups
are to systems in one space and one time dimension.

In order to define an action on a quasi-local algebra, we have to use the in-
ductive limit process. Thus we would like to define a,(A) = α(ϋφ... φy)G4), when-
ever A G jtflm+l>m+n\ i.e. A is in an algebra belonging to n consecutive sites. This
preliminary definition has to be checked for consistency with the inclusion maps
A ι—» A 0 ^Λ2\Λ\ 9 i.e. we have to verify that we obtain the same result if we consider
A as an element of a larger algebra eβ/[/M+1-/»m+w+/'] wim /,r ^ 0. This is precisely
the function of Theorem 3(1): it shows that consistency holds for arbitrary r and
/ = 0. On the other hand, Theorem 3(3) shows that for a proper quantum group
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consistency fails on the left, i.e. for / > 0. The best we can do is therefore to define
an action α^ on the half-infinite chain J/N, setting

o^(A) = oc(vφ...φv}(A) foτ A e s/[l * . (3.4)

There is a very elegant way of constructing this action [KNW], which also
underlines the special role of the half chain in this context: the algebra J?/N with
stf — Jίd(^) can be considered as the gauge invariant part of the Cuntz algebra (9 4
[Cul]. This is the algebra generated by d Hubert space operators S/, i = I 9 . . . 9 d
satisfying the relations

S S) = <5ιyll, for ij= ! , . . . ,</,

= 1 . (3.5)

The algebra generated by such operators is independent of the realization, in the
sense that for any C* -algebra j/, and any elements Si G j/ satisfying the same
relations, there is a unique injective C*-homomorphism Φ : Od — * ̂  such that
Φ(Sj) = St. In particular, there is a one-parameter automorphism group yt on @d
such that yt(Sj) — eltSj. The fixed point algebra of this action is called the gauge
invariant part of (9d It is canonically isomorphic to the half chain algebra J2/N,
because the operators

SΛ WV,-'-^ for iv = ! , . . . , < / ,

satisfy precisely the algebraic relations of the matrix units in j/^1'^. Moreover,
these matrix units are compatible with tensoring of identity operators on the right,
because in the above expression the sum over in leaves the corresponding expression
for n' — n — 1 . The idea of [KNW] for obtaining an action of a quantum group on
J^N is to define an action vf>d on &d instead, which restricts to J/N, because the
action commutes with yt. Given a unitary representation v (Ξ J^d(^) of the quantum
group (%>9Δ\ they define

a?d(Si) = Σ$j ® "ft £ ®d ® * - (3.6)
7=1

The existence of a unique injective C*-homomorphism αβ/ί/ with this property fol-
lows at once from the universal property of (9j9 by verifying that the right-hand side
satisfies the relations (3.5). By considering the action on matrix units it becomes
clear that this action is the same as the one constructed above. An extension of
this construction to the doubly infinite chain is impossible, since the identification
of the matrix units, and hence of J/N as the gauge invariant part of @d breaks
down.

We argued at the beginning of this chapter that for the definition of tensor
products it is more natural to consider extended actions α : ̂  Θ # — > si ® ̂ , rather
than simple actions α : si — » stf 0 ̂  The drawback of this approach to the tensor
product of actions is again in the issue of locality: with the simpler notion based
on tensoring of unitary representations, we had locality problems at the left end of
the chain. With the approach based on extended actions, we get problems right and
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left. In particular, the action on the half chain fails to meet the higher standards for
extended actions.

5. Proposition.

( 1 ) Let αj^ be the action on the half chain associated with the irreducible
representation v of SVU(2). Then the relative commutant of αJsί(j/N) c J/N Θ^
consists only of multiples of the identity.

(2) The action of α^ is not extendίble.

Proof. Suppose that X G «β/N ® Ή commutes with αJSJ(j/N). We have to show
that X = jtfl. Let ω be a state on j/, and let ]EN : J/N ® # -> J3/N ® <g be the
conditional expectation defined by

JEN(AN ® Λ' 0 C) = ω®°°G4')4v 0 1 0 C ,

where the tensor product refers to the decomposition J/N 0 ̂  = j^1'^ 0 j/fyv'oo) 0
#, and ω000 denotes the infinite product state. Then, since X G J/N 0 #, the
sequence XN = E/v(^0 converges in norm to X ' . Moreover, X, and hence XN

commutes with v (A^ ® 11 ® l^)ι> *, for AN £ J^I>A^. Since t> is unitary,

this means that v *XNV * commutes with all AN. Hence this element must
be in H/y 0 j?/^'00) 0 ̂ . By definition of the conditional expectation, it is also in
s^[^N] 0 1 <g> <β. Hence there is some CN e% such that

Using the relation XK = E^(A^+ι), we find the formula connecting the different
CN e %:

CN = ω (g) id(i;(l,c/ ® C/v+i X) . (*)

We will show, in the special case of SVU(2), that this implies CM = cl^ for all
TV. Then XN = cfl, and X = lim^X^ = cfl. The non-extendibility (2) of αj^ follows
from statement (1): for if α G Aut(^N ® ̂ ) is an automoφhism extending α^4,
every element of the form α(l 0 C) is in the commutant of α(j/ 0 1^) = a^(j2/).
Hence by the determination of the commutant, there must be a linear functional
; / : # - > € such that

which clearly contradicts α being an automorphism. Even if we do not insist on
the invertibility of α, and allow more general homomorphisms satisfying (2.17), we
find from (2.17) that η must be a one-dimensional representation of the quantum
group, i.e. typically η = ε. This choice once again contradicts (2.17).

It remains to prove that equation (*) implies that all CW are multiples of the
identity, assuming that υ is the spin-s representation of iS'vU(2). We are free to
choose the state ω for convenience, and we will take ω as the pure state with
highest 3-component of the spin. Then

= ω(8)id(ι;(]l.< /ΘC)ι;*)= £ vStmCv^m
m=—s

= £ λM(αί+l")*(yί~m)*<y-mαί+M ,
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where the λm are strictly positive constants. We will evaluate condition (*), i.e.
CN = Φ(Cyv+ι) in the faithful family of representations πζ used in the proof of
Proposition 4. Thus, denoting orthonormal basis of the representation space by \n)9

with n = 0,1,..., and Ω = \ 0), we have

πc(α)| n) = \/\ - v2n \n - 1} ,

π c(α*)|/ι> = A/1 -v2n+2\n+l) ,

It follows that the matrix element (n\Φ(C)\m) depends only on the matrix ele-
ments (n1 \C\rn') with n' ^ n, m' ^ m, and n — m — n' — m'. The iteration of Φ
thus breaks down into a family of finite dimensional iterations of a triangular ma-
trix with positive entries. Each of these operators is contractive, and has a unique
fixed point, which is zero for nή=m, and a vector with constant entries for n = m.
Now for each TV, CN = ΦM(CN+M\ with \(n\CN+M\m)\ ^ \\X\\, for all n,m. Since
M can be chosen arbitrarily large, each matrix element of C# must be arbitrarily
close to a fixed point. Hence C/v is a multiple of the identity. D

4. Invariance of Observables and States

In the previous section we studied the difficulties in extending the notion of group
action to an infinite chain. The basic problem was that the family of actions, defined
for each finite segment, are not compatible with the identifications used for the C*-
inductive limit by which the algebra of the whole chain is defined. In this section
we will see that some derived structures, defined on finite segments in terms of the
quantum group action, may nevertheless be compatible with the inductive limit.

The most important case in point is the notion of invariant elements under the
action: by Theorem 3 the locality property α( s$A ) C stfA 0 # does hold for the
quantum group invariant elements. This allows us to make the following definition:

6. Definition. Let stf = Jtd(&\ and v a d-dimensional unitary representation of
a quantum group (<&,A). Let m^TL, and n £ N, and let A £ J3/N+1'w+«]. Then A
is called ad(v)-invariant, if A is an intertwiner for vΦ - - - ®v, or equίvalently, if
ad(> Φ - - - Φ v)(A) =A® 1̂ .

The point is that this definition is independent of the local algebra in which
we consider A, i.e. the ad(f)-invariance of A implies the invariance of 1.̂  ® A, and
A (g) 1,̂ , which are considered to be "the same element" in the quasi-local algebra.
For ordinary groups, the notion of ad(t;)-invariance is equivalent to the invariance
of A under the action ad(f®°°) on the whole lattice system. However, as we have
seen, this action on the whole chain s$Έ is not well-defined in the quantum group
case. Thus the invariance in Definition 6 is not the invariance with respect to a
fixed action of the quantum group.

The structure of the algebra of invariant elements on a finite chain is determined

essentially by the reduction theory of the tensor product representations υ " into
irreducible ones. In the case of SVU(2) these decompositions are isomorphic to
those for the classical group SU(2). Therefore the inductive limits of the algebras
of invariant elements are also isomorphic in the deformed and undeformed case.
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The second notion we are interested in is that of invariant states. We saw
we cannot define the quantum group invariance of a translation invariant state as
invariance under an action, simply because such actions don't exist. However, just
as in the case of invariant observables we may define this property by considering
only a finite subchain at a time.

7. Definition. Let 3$ — ̂ ^((C), and v a d-dimensίonal unitary representation of a
quantum group (C, Δ). Then a state ω on s$Έ is called hereditarily invariant, if,
for all n ^ m G TL, the restriction ω \ ^/^m^ is invariant with respect to ocυφm-n+\.

It is easy to see that if ω is invariant for αyφw, its restriction to the first tensor
factor is αy -invariant. From examples one can see that its restriction to the second
factor is not necessarily ULW -invariant. On the other hand, hereditarily invariant states
do exist: if ω = ω\ 0 ω2 with ωi uυ -invariant, and ω2 uw -invariant, then ω turns out
to be αyφM;-invariant. Hence the infinite product state formed with an ay-invariant
state at each site of an infinite chain is hereditarily invariant. Since the reduction
theory of tensor products, and hence the decomposition rules for invariant states
are the same for SVU(2) as for SU(2) one might expect that, as in the classical
case, there may be many hereditarily invariant states. However, once more the v-
deformation spoils this expectation. In explicit computations (spin- 1/2 chain up to
length 6, spin-1 chain up to length 3, and some tensor products of other irreducible
representations) we found that only the product state is hereditarily invariant. We
were not able, however, to decide the following statement:

8. Conjecture. Let v be an irreducible unitary representation 0/SvU(2). Then the
only hereditarily invariant state of ^Έ is the product state ωf °° formed with the
^-invariant state ω\ at each single site.

5. Quasi-Local Actions

The arguments of the previous paragraphs show that local actions of quantum groups
cannot be obtained using the recipes familiar from classical groups. We will now
show that these difficulties are inherent in the quantum group concept, i.e. local
actions do not exist on general grounds. Of course, there is always the trivial action
of a quantum group, which is obviously local. For a classical group we would
exclude such trivialities by assuming the action to be faithful, i.e. that the only
group element g with oiy(A) = A for all A is the identity. The following proposition
shows how to say this for the action of a quantum group. The condition of nuclearity
is automatically satisfied for the quasi-local algebra of a spin chain. It implies that
the minimal and maximal C* -tensor products [Tak] of stf with any other C* -algebra
coincide. In particular, the minimal tensor product s$ ®mjn ^ we have been using
in the definition of actions is the same as the maximal one.

9. Proposition. Let α : stf — » <stf ® ̂  be an action of a quantum group (*$, A) on
a nuclear C* -algebra stf. Then there is a smallest C*-subalgebra ΉQ C Ή such
that α(j/) C J/ ® #o ^o is closed under the coproduct in the sense that A(<£Q) C
%>o <8) ^o5

 ana is hence a quantum group in its own right. In the classical case
<$ = (β(G) it is the algebra of functions on the quotient of G by the subgroup of
all h such that ah(A) = A for all A = j/.
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For the proof we need a fact about nuclear C*-algebras, which we summarize in
a lemma. When p G si* is a linear functional, denote by "p 0 id#" the continuous
linear extension of (p 0 id%)(A 0 C) = p(A)C. For a state p this is the conditional
expectation onto the second factor.

10. Lemma. Let ^ be a nuclear C*-algebra, Ή another C*-algebra, and Q) C
j/ 0 <& a closed subspace. Let ΉQ C^ be the closed subspace generated by all
elements of the form (p 0 id^)(D), where p G J/*, and D £ Q). Then ^o is the
smallest closed subspace with the property

Proof of the Lemma. We first show that ^o has the stated property. Since Q) and

si 0 ^o are norm closed subspaces, the inclusion given is equivalent to

(j/O^o)-1 C^-1, (*)

where ̂  denotes the space of functionals in (W 0 #)* annihilating a subspace
.̂ We now show that, for any finite rank operator F : stf* —> si* , we have

(F 0 id*)(«s/ 0 ^o) C 0 - . (**)

Since F is of finite rank, it is of the form

N

(Fω,A)^r&?* = Σ(ω9Xi). &*,&** (ωi9 A) j/*,* ,
/=!

where the brackets denote the canonical bilinear forms of the pairings indicated, and

Xi G J3/**,ωz G ̂ /*. This can also be expressed conveniently as a map F on density
matrices Dω (defined by (ω,A) = tr/)ωπ(^)) in the universal representation π
of j/:

where Xi is now considered as an element of the weak closure of π(W). The
operator F 0 id% can be expressed similarly by its action on density matrices in the
representation π 0 π#, where π^ is any faithful representation of Φ. One gets

((F 0 id*)fi, Y) := Σ\x(DQXt 0 π*((ωί 0 id^)(7))) .

Now, if Ω G (X 0 ^o)1-, and Y G 0, we have tr(£)Ω^ 0 π^(ω/ 0 id^(7))) = 0 for
Xi G π(j/), and this extends to Xl G j?/**, identified with the weak closure of π(j/).
Hence (F 0 id^)ί2 G ί̂ -1, which proves (**).

By nuclearity, the identity on si* is the simple weak* -limit of a net Fα of
completely positive normalized, finite rank operators [CE]. Since the Fa are uni-
formly bounded this implies that the identity on (si 0 #)* is the limit of the net
(Fα 0 id*). That is, for Ω G (si 0 #)* we have
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Hence, for Ω G (j/ 0 ^o)"1 the preceding paragraph implies Ω G ̂ , proving (*).
It remains to be shown that ^o is the smallest subspace with the stated property.

_ II . ii

Suppose that <gλ also satisfies 2 C <stf 0 #ι , and let D G 2. Then we can write
D as the norm limit of elements

NΛ

Cα, with Cα E #ι .

Thus, for any state p G <£/*, we get (p 0 id#)(Z)α) = Σ/./>(^4α)Cα G ̂ i, and, since
(p 0 idtf ) is a contraction: (p 0 id^)(£)) G ^j. Consequently, ^0 C #ι. D

0/ the Proposition. It is clear that the lemma remains valid, if we demand
^o to be a C*-subalgebra rather than a closed subspace. Hence we can take ^o as
the C*-subalgebra of ̂  generated by all elements of the form (p 0 id^)(α(^4)) G ^ .
It remains to be shown that Δ(p 0 id^)α(^) C ^o ® ^o By the action property of
α we have

id^)α(^) = zl(p 0 id)α(^) = (p 0 id% 0 id^)(id^/ 0 A)a(A)

= (p 0 idr^ 0 id^)(α 0 id^)α(^) = ((p 0 id^)α 0 id^)α(^)

G ((p 0 idtf )α 0 idtf).β/ 0 ^0 C ̂ 0 ̂  ̂ o •

Since the (p 0 id^)α(^) generate ^o, and Zl is a *-homomorphism, we find Δ(%>Q) C

When ^ — ̂ (G) is abelian, any C*-subalgebra ^o is uniquely characterized by
the equivalence relation g ^ g' defined by f ( g ) = f(g'} for all / G ̂ (G). In the
present case this becomes p((x,g(A)) = p(ag/(A)) for all A and all p, i.e. occj = agt.
Thus ^o is the algebra of functions on the quotient of G by the subgroup acting
trivially on jtf. D

Consider now an action on a C*-algebra stf, containing two "local" subalgebras
j/i and j/2, by which we only mean in the present context that they commute ele-
mentwise. The action is called strictly local, if α(ja/z) C sίl 0 ,̂ which is the notion
considered in the previous section. The action is called local, if a(^) C s0® 0 ,̂
where j/f D j/7, / = 1, 2, are two algebras which still commute elementwise. The
typical situation we have in mind here is that the j^ are the algebras belong-
ing to two disjoint finite regions in the lattice of a spin system, and the &0f
belong to two larger, but still disjoint regions. We can consider a still weaker
condition, which does not require α(/4) to be localized in any finite region, but
allows a weak delocalized tail. We call the action quasi-local if, for any localized
A, a(A) G j/qi 0 #, where j^qι denotes the quasi-local algebra of the spin system,
i.e. the C*-inductive limit of the local algebras. Then by the norm continuity of α,
we have α(,c/qι) C ,£/qι 0^. Thus quasi-locality of an action of a quantum group
just means that it can be considered as an action on the quasi-local C*-algebra.

11. Theorem. Let jtfq\ be the quasi-local observables of a spin system on an
infinite (not half-infinite) lattice, and let α : j/qι —> j/qι 0 ^ be the action of a
quantum group (^,Δ) on jtfq\. Assume that α is faithful in the sense that α(j/qι) C
^qi 0 ^o holds for no proper C* -subalgebra ΉQ c ,̂ and that aτx = (τx 0 id^)α,
for all x, where τx denotes the automorphism of j/q\ of translation by the lattice
vector x. Then the C*-algebra %> is abelian.
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Proof. For a continuous linear functional p on j/qί, and A G J2/qι, consider (p 0
id<^)α(;4) G # as in the proof of the above lemma. By assumption, elements of this
form generate (€. Therefore, we only have to show that (p 0 id^)α(^) and (p1 0
id^)α(^/) commute for all A, A' G j/qι, and p,p' G eS/J. Now, for every ε > 0, we

can find expressions α(Λ) = Σ"=ι^/ ® C, + R(ε), and α^') = Σ"'=\Ai ® C[ + R(ε),
where ^/?^J G j/qι,C/, C\ G #, and here and in the sequel R(ε) stands for any rest
which is bounded in norm by ε. In these expressions we may take the Al and A\ to
be localized in a finite subset A of the lattice. Now let x be a translation such that
A Π (Λ + *) - 0, and || [Λ,M']|| ^ ε. Then

[(p 0 i )αG4')]

I +3ε))

= (p

IMΊI + 3ε))

R(4e(|μ|| + |M'

IMΊt + 3e)) ,

3ε))

where p is a state on s/q\ which coincides with p in A and with p' o τ-x in
(Λ+x). Hence ||[(p 0 id«)α(Λ),(p7 0 id^)α(^)]|| ^ ε + 4e(||^|| + |MΊ| + 3c), for
any ε. D

6. Quasi-Local Actions in a Representation

The aim of this section is to show the impossibility of constructing in the GNS space
of a translation invariant state, genuine quantum group representations, commuting
with the shift and sufficiently local.

Let ω be a translation invariant state on ̂  and (Jjf,π,Ω) the corresponding
GNS space, representation and cyclic vector. The translation automorphism τ is
implemented by the unitary shift S on jήf:

π(τ(X)) = Sπ(X)S* with Sπ(X)Ω = π(τ(X))Ω, * E j*z . (6.1)

Δ) on 3f. For φ, ψ G Jf7,Let U be a unitary representation of a quantum group
Λ,C G ^(^f) and B,D G ̂  we put

, C = (Aφ,C\l/}B*D , (6.2)

and extend this bilinearly to 3S(Jjf) 0min

 (6. This is possible because we have for
each representation π of ^ on a Hubert space JΓ and for all choices of φ,ψ
G J^9ζ9η G Jf, AhCt G^(JT) and Bi9D, E # , / = 1,2, ...«, « = 1,2,...,
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By \\Aφ\\2 we denote (Aφ,Aφ),φ G 2tf and A G ̂ (Jf) 0min ίί. (7 is said to act
/0c<2//y if for any φ G Jf , σ G #*, Λ and B G

lim σ (\\[π(τn(A)\ Uπ(B)U*]φ\\2} = 0 . (6.3)
/?— >oo V /

12. Proposition. Let ω be a translation invariant, clustering state on j/z, with
GNS triplet (Jf,π,Ώ). Let U be a unitary representation of a quantum group
(^9A) on 2tf which commutes with the shift S on J>f, acts almost locally and
leaves Ω invariant. Suppose that there is no proper C* -subalgebra &Q of ^ such
that U G &( $e ) (g) «Ό Then <β is abelίan.

Proof. Denoting by S the unitary on Jf that implements the shift, we can express
clustering as:

Choose now A, B, C, D G π(,s/z). Using the asymptotic abelianness of s$Έ , US —
SU, UΩ = SΩ = Ω and the almost locality of the action of U9 we compute:

(AS"BΩ,UCS"DΩ) = (A(SnB(S*)")Ω,UCSnDΩ)

- (AΩ,(SnB*(S*)n)UCSnDΩ)+o(l)

+ (AΩ,USn[U*B*U,(S*)nCSn]DΩ)+v(\)

= (C*U*AΩ,S"U*B*UDΩ)+o(\)

= {C* U*AΩ, Ω) (Ω, £/*£* UDΩ) + o( 1 )

= (AΩ, UCΩ) (BΩ, UDΩ) + o( 1 ) .

Exchanging the roles of A and B and also of C and D9 replacing n by — n, and
using the asymptotic abelianness of s^Έ we conclude:

(AΩ,UCΩ)(BΩ,UDΩ)= lim (AS"BΩ,UCSnDΩ) = lim (BSnAΩ,UDS"CΩ)
«— >oo n— » — co

= (BΩ,UDΩ)(AΩ,UCΩ) .

But this implies precisely the statement of the proposition. D

7. C*-Finitely Correlated States

The basic construction of states on a half chain and a chain that we will use in this
section is a generalization of the so-called Valence Bond Solid states [AKLT]. It
was first given in [FNW1] and is based on an earlier proposal for the construction
of quantum Markov states in [AF]. Apart from quasi-free CAR-states, it is the only
construction that we know of for obtaining non-product pure translation invariant
states on a spin chain.



498 M. Fannes, B. Nachtergaele, R.F. Werner

We will assume throughout this section that the single-site observable algebra stf
is that of the complex d x d matrices </^/((C) — Jίd A state ω of the left half chain
stf~ — J3/Z\N is completely determined by giving the expectation values ω^~n~^(A)
of observables A G £/[~n'~}\n = 1, 2,.... The prescription for o£~n>~λ\A) must be
compatible with the obvious requirement that ω^"""1'"1^! ®A) = af-~n'~l\A). If
we are furthermore able to give a construction such that also o£~n~l~l\A ® ί) =
cyt~/I'~1l(^4), then we have in fact defined a translation invariant state on the entire
chain by putting ω(A) = ω{-n~l\A\ A G €^[«-«^-Πj m G #? n = 1, 2,....

Let & be a *-subalgebra of the k x k matrices Jt\^ containing the identity 11 of
J/k and let E be a unity preserving, completely positive map from & 0 stf to $.
Tensoring E with suitable identity maps on factors s$ , we can iterate E to obtain,
for n € N, unity preserving, completely positive maps E^ : ̂  (8) s$®n — > ^, where

E(n+i) = (E(n) 0 id) o E = (E 0 id®") o E(w) , (7.1 )

and E(1) = E. Let p be a density matrix on Jίk and identify p with the state
# G ^ ι — >trp#. Given E and p, we define a C* -finitely correlated state ω on
j/~ by:

Λ G j/[-"'-1] . (7.2)

Subscripts d and k of 1 refer to jtf and ̂  respectively. This definition satisfies
the compatibility condition ω(A) = ω(t®A) because E is unity preserving. The
Markovian or transfer matrix like character of C* -finitely correlated states can be
put in evidence by expressing the expectations of elementary tensors as:

ω(A_n ®A_n+l ® - ® ΛLi ) = p(E^_, o EA_2 o . . . o Έ,A_H(lk)) , (7.3)

A-i G J/,/ = 1, 2, . . .Λ. The EΛ in this formula are linear transformations of J1

given by JEA(B) = Έ.(B®A\B G Ά. We will mostly assume that the triple (^,E,p)
which generates ω is minimal in the sense that p is a faithful state on & and that $
is the smallest *-subalgebra of M^ containing ̂  and invariant under the E^,^ G stf .

If p satisfies the additional requirement:

P = P o Efl , (7.4)

then ω becomes a translation invariant state on the full chain s$Έ by putting

ω(A) = p(E(π)(lU Θ^)), ^ G j/lm>m+n\ m G Z . (7.5)

A distinctive role is played by the map EH because its spectral properties are directly
connected to the ergodic properties of ω. In [FNW1,FNW2], it was proven that
a C* -finitely correlated state ω is ergodic iff there exists a minimal generating
triple (̂ , E, p) for ω such that the eigenvector 1̂  of EH is non-degenerate, ω is
exponentially clustering iff there is a minimal generating triple with trivial peripheral
spectrum, meaning that 1* is the only eigenvector of Ej with an eigenvalue of
modulus 1. For general C* -finitely correlated states, it is not known whether minimal
generating triples are unique, up to unitary equivalence. Much more can be said if
ω is purely generated, that is, if there is a generating triple (̂ , E, p) for p with
E = ad(F*) where V is an isometry from C^ to (C^t^C^. Minimal generating
triples are unique in this case and a C* -finitely correlated state ω is pure iff it
is purely generated and exponentially clustering. In this case J* will automatically
coincide with the full Jί^. Furthermore, pure C* -finitely correlated states arise as
the unique ground states of translation invariant, finite range interactions.
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In order to make this connection more explicit we introduce the iterates F^ of
V. V(n} is an isometry from C* into <Ck 0(Cί/)®/1, recursively defined by:

F("+1) = (F <8> (^d)®n)V(n} - (V(n) = (F(Λ) 0 \d)V (7.6)

and F (1) = F. The E(w) are now expressed as E<Λ) = ad(F<Λ)*). The reduced w-site
density matrices p[1'"] of ω can easily be computed. For /ί G

) - trp(F ( Λ )*lU

Therefore

p [1'Λ] - trc*F(π

Let {e\,...,eiι} be an orthonormal basis of (C*. It is clear from the computation
above that, for 0 < Λ, the reduced density matrix p[1'"] will live on the subspace
&n of (C^)0" spanned by the vectors {(/>// i, j = 1, ...,£}, where:

Therefore p[1'wί is supported by a subspace ^ of (<Cd)®n of dimension at most
k2, independently of n. It can be shown that for n large enough dim(^w) will
eventually reach the value k2. Let r be the smallest integer such that dim(^>) = k2.
If we choose as interaction h G (^d)^'+^ the projection operator in (C^)®^"1"1) on
the orthogonal complement of ^V+i then ω(τj(h)) = 0 for all j G 2. It is therefore a
ground state of H — Σ GZτ7(/z) in a very strong sense as it minimizes even locally

the energy. Moreover, it was shown in [FNW1] that ω is uniquely determined by
the conditions ω(τj(h)) = 0,y G Z. This means that ω is "locally" exposed by the
translates of h. The interaction h associated to the pure C* -finitely correlated state
ω is often called a VBS interaction.

We will now consider the construction of C* -finitely correlated states and of
VBS interactions and ground states which are invariant under the action of a quan-
tum group (y>,Δ). Suppose that we are given unitary representations v and w of
(^9A) on C^ and (C*, implementing extended actions aά(v) and ad(w) on j/ = J4d
and on ̂  C Jl^. A unity preserving completely positive map E : SS 0 s$ — » & is
co variant if:

ad(w)o(E0id^) = (E 0 id#) o ad(wΦt ) . (7.7)

On the level of the iterates E^) of E co variance becomes:

ad(w)o(E ( / ί )0id^)-(E ( r t )0id^)oad(wΦι;Φ ••• Φι;). (7.8)

It is instructive to write out the case n = 2:

ad(w) o (E(2) 0 id*) = ad(w) o (E 0 id^) o (E 0 id.^ 0 id« )

= (E 0 id#) o ad(wΦz ) o (E 0 idrC/ 0 id<^)

= (E (8) idtf ) o (ad(w) 0 id.^) o (id^ 0 ad(ι )) o (E 0 id,,/ 0 id^)

= (E 0 id^ ) o (ad(w) 0 id.^) o (E 0 id^ 0 id<^) o (id.^ 0 id,o/ 0 ad(ι ))

= (E 0 idtf) o (E 0 id,,/ 0 id^) o (ad(w) 0 id,P/ 0 id tC/)

o (id^ 0 ad(ι ) 0 id.p/) o (id^ 0 id,e/ 0 α)

= (E(2) 0 id^ ) o ad(w Φ v Φ v) .
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The following proposition shows how shift and quantum group invariance can
hold simultaneously for C* -finitely correlated states restricted to a half chain, at the
cost of introducing an extra tensor factor, however.

13. Proposition. Let (̂ , IE, p) be a minimal triple generating the C* -finitely cor-
related state ω such that p — p o EH and suppose that the eigenvalue 1 of EH
is non- degenerate. Let v and w be unitary representations of a quantum group
(Ή, A ) defining actions ocυ and aw on s$ and $ respectively and suppose that E is
co variant.

(1) ω(X) = p(E(w)(^)), X £ 38 0 ^[^n~]] defines a state of & 0 J/N and ω
coincides with ω on 1L# 0 ^/N.

(2) ω is invariant under the action (ad(w) 0 id ̂ N ) o α^ on

Proof. Let X G ̂  0 j/[0'w~1]. We then compute:

= p(E (E

This is precisely the compatibility condition we need for ώ. Positivity and
normalization of ώ are immediate consequences of the positivity and
normalization of p and the E .̂ By construction ώ extends the restriction of ω
to^N.

We first show that for all B G &,

Consider on $ the functional

B ̂  p 0 σ(aw(B)) ,

where σ is an arbitrary continuous functional on #. Using the covariance of E and
the invariance of p under Efl we compute:

p 0 σ(ocw(JE(B 0 Ij))) = p 0 σ(ad(w)((E 0 id*)(£ 0 ld 0 1^)))

= p 0 σ((E 0 id^)(ad(w Φ ι;)(5 0 ld 0 1^)))

= p 0 σ((E 0 id*)(αw(£) 0 I,/))

= p 0 σ(oίw(B)) .

By assumption, the eigenvalue 1 of Ea, and therefore also of its dual, is non-
degenerate. This implies that for all σ G ^*,

Therefore

for B e έ%. The invariance of ώ under (ad(w) 0 11 ̂ N ) o α^ can now be checked.
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LetX e^0j*[0'π-1],H = 1,2,...,

ώ 0 id«{(ad(w) 0 id ^N )(oC(^))) = 50 id^(ad(w Φ υ Φ -

= p 0

= p ®

. D

The density matrix p used in the construction of the C* -finitely correlated state
ω in Proposition 13 satisfies p = p o E j , which is needed in order to insure the
translation invariance of the state. It is straightforward to check that there is another
choice for the density matrix, namely a density matrix p7 that is invariant under
ad(w), which leads to an αj4 invariant state on J/N. For quantum groups (that
are not groups) one should not expect these two requirements, invariance under
ad(w) and p = p o EH, to be compatible. In the case of the spin S representation
of SVU(2), p and p' are both unique and coincide only for v = 1:

p = "24' p' = l

We refer to the Appendix for the notations and the calculation. The conclusion of
Theorem 1 1 , that αy and translations are incompatible properties, is then not so
surprising.

One should note that, though (ad(vv) 0 id^N ) o αj^ is not a proper action on J/N,
still, by Theorem 3(2), if A e J/N is invariant under α^, A is also invariant under
(ad(w) 0 id ^N o αj^. We now consider ground states of spin chains corresponding to
ad(f)-invariant VBS interactions. Suppose that we have two unitary representations
υ and w of (<#,A) on CJ and C* respectively and an isometry V : <Ek -» <C* 0 C^
intertwining w and t Φw, i.e.:

(V 0 l^)w - (wΦv)(V 0 I.*) . (7.9)

The intertwining property on the level of the V^ becomes:

(V(n)®^w = (w®vφn)(V(n}®Kv) (7.10)

Let p be a density matrix on Jί^ such that

B^Mk. (7.11)

Generically, p is uniquely determined by this condition and, putting E = ad( V* ), Ej
has trivial peripheral spectrum. The C* -finitely correlated state generated by
(=/^,E, p) is then a pure, translation-invariant state on the chain stfπ. Let, for
n — 1,2, ...,^π be the subspaces of ((Cd)®n introduced at the beginning of this sec-
tion. Recall that $n is the supporting subspace of the reduced w-site density matrix
of ω.
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14. Proposition. Let V : (C* — > C* 0 C^ &e αw isometry, intertwining the unitary
representations v and w of the quantum group (^,A) on C^ and C* respectively.

(V 0 ktf )w = (w Φ ι;)(F 0 !<*) . (7.12)

77ze orthogonal projection in {Md)®n on the subspace ^n of (<Ed)®n commutes

with v n ,n = 1,2, . . ..

Proof. Let {ej,^,...,^} be an orthonormal basis for C*. The subspace ^ of
(Cέ/)0/l is generated by the vectors {φ,y|/,y = 1,2,...*} with

We can, without loss of generality, assume that ^ is a (norm-closed) *-subalgebra
of the bounded linear operators on some Hubert space ffl . Let χ E Jf . We have to

show that, for i,j = I92...k,v "φijt&χ belongs to ̂ n^^ or, equivalently, that
for 7 = 1,2,...*,

is an element of 0Λ 0 C* 0 Jf,

(% ® v )(V^ 0 l#)e/ 0 χ = (w* 0 (Ij)^

= (w* (8) (lί/y^XF^ 0 ί.<#)wej 0 % .

This proves the statement as w* acts only in a non-trivial way on C* 0 Jf. D

In particular Proposition 14 shows that the VBS interaction corresponding to a
pure C*-finitely correlated state, generated by an isometric intertwiner of unitary
quantum group representations, is (#, A )-invariant. We conclude this section with
a discussion of what can be considered to be the simplest possible example of this
structure.

Example. Consider the irreducible representations of SVU(2) on C2 and C3. This
leads to the g-deformed AKLT-model as considered in [BY, KSZ] (in the present
paper, however, the parameter is called v instead of q). Instead of using the
Woronowicz description, as in the example of Sect. 2, we will turn to the DrinfeΓd
approach that is much more effective for computations. The connection between
both approaches is sketched in the Appendix.

Denote by [a]γ the v-numbers: [a]v — (va — v~a)/(v — v"1). The commutation
relations between the "Lie-algebra generators" of SVU(2) are:

[JZ9J±] = ±J± and [J+9J_] = [2JZ]V

Product representations are constructed according to the rule

Lz = Jz 0 11 + 1 0 Kz ,

L± = vJz ®K±+J±® v~Kz .

There is a quadratic Casimir operator C given by
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The irreducible representations of SVU(2) are completely similar to those of SU(2).
There is, for each j G ̂ N, a unique (2j + 1 )-dimensional representation labelled

by the eigenvalue [/]v[/+ l]v of C. The explicit forms of the spin ^ and spin 1
representations are:

i 0

o 4

0 1

0 0

0 0

1 0

and

0

0

0

Λ/PI;
0

0

0

x/Pϊ
0

\
/

J--ίV̂

0

/[2]v

0

0

0

[̂21;

0

0

0

Denoting by { |±), | - {}} and {|1),|0),| - 1)} the canonical bases of (C2 and C3,

the unique intertwiner V between the spin ^ representation and the product of the

spin I and the spin 1 representation is easily computed:

The 2 x 2 density matrix p, singled out by the invariance condition (7.4), is

P =
1

[2]v

-1 0
0 v

and the spectrum of EH consist of 1 and — v2/[3]v, with degeneracy 3. The eigen-
vectors are

1, Λv272, y+, and /__, .

Finally, the C*-finitely correlated state constructed in this way, is the unique, shift-
invariant ground state of the v-invariant, nearest-neighbour, VBS-Hamiltonian on
the spin 1 chain, determined by the interaction h = C2 — [2]VC. Here, the opera-
tor C is the Casimir operator in the tensor product of the spin 1 representation
with itself. It is, up to a normalization factor, the orthogonal projection onto the
spin 2 subrepresentation. For v = 1 (and up to a multiplicative_and_additiye Con-
stant) h reduces to the well-known spin 1 AKLT-interaction 3J\ JΊ -\-(J\ «/ι)2,
where J denotes the three Cartesian components of the spin 1 generators of
SU(2) [AKLT].

A. DrinfeΓd Approach to SVU(2)

The purpose of this Appendix is to set up the dual approach to SVU(2), which
is much more efficient in computations than the Woronowicz version. Nobody in
his right mind would do computations concerning representations of SU(2) using
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the explicit form of the representing unitaries as polynomials in matrix elements
of SU(2). Yet this is what the Woronowicz approach requires. Here we provide
the associated Lie algebraic version of SVU(2), i.e. the corresponding object in
the DrinfeΓd approach. We present this as a purely computational tool, and leave
it to the reader to construct the analogues of the results in the paper in this
language.

Throughout, we consider ^o> the algebra of polynomials in the generators α, 7,
and their adjoint and not the C* -algebra of SVU(2). Likewise, tensor products are
algebraic tensor products, and the dual ^Q is the algebraic dual. We make %>Q m^Q

a Hopf algebra with the operations

ξ η(a) = (ξ®η)oA(a)9

Δ(ζ)(a ®b) = ξom(a®b) = ξ(ab) ,

l(α) = ε(α). (A.I)

In the classical case there are two important kinds of linear functionals on
evaluations at group elements, and directional derivatives at the identity. The latter
make up the Lie algebra, and, since ̂  ^s an algebra, this space is to be considered
as the quantization of the universal enveloping algebra, of SVU(2), or the quantum
group SVU(2) in the sense of DrinfeΓd.

We consider three special functionals JZ,J+,J- £ ^Q, which satisfy the rela-
tions

Δ(JZ) = /z <8) 1 + I

= J± ® v~Λ + vJz ®J± . (A.2)

Here the exponential is to be computed using the product in #J, with the constant
term given by the counit. Using (A.2) we can compute these functionals on any
polynomials, once they are known on the generators. The following table gives the
necessary initial values:

J(A) A = & A = α A = α* A = γ A = y*

J=JZ 0 \ -\ 0 0

J=J+ 0 0 0 0 -1

J=J_ 0 0 0 1 0 (A 3)

For JZ(A),J+(A), and J-(A) to be well-defined on longer products, we must
guarantee that the value obtained using (A.2) and (A.3) does not change if
we transform A by any of the relations (2.4) of SVU(2) (including the relation
ocy = vyα). It suffices to show that if A = 0 is any of these relations, we get
J(A) = 0, and this is readily verified. In particular, this fixes the relation be-
tween the Woronowicz deformation parameter v, and the parameter appearing in
(A.2).

The three functionals J are easy to compute directly on any monomial. Let
m,mf denote monomials in α and α*, and let \m\ denote the grade of m with respect
α, i.e. the number of factors α minus the number of factors α*. / stands for
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either y or y*, and A & ^Q is arbitrary. Then

Jz(mγsm') = v±J* (my* m') = 0,

yV) = vJ'(m)J±(y*)v-J'(m'),

Jz(m) = \m\/2,

Using the definition of the product in ̂  in terms of the coproduct of <6, we find
the commutation relations

[J2,J±] = i/±, ./iV7' = v

[J+, y_] = (v2Λ - v~2 Λ) . (A.4)

Given a unitary representation u £ Λtd($>\ we can apply the linear function-
als £ £ ^Q to each matrix element, thus obtaining a scalar matrix ξ(u). Then the
representation relation (2.9) becomes

where on the left we have the product in #J, and on the right the matrix product.
In particular, the commutation relations (A.4) hold in any representation u. The
unitarity of u becomes a condition on the adjoints of the matrices J(u):

Jz(uT - Jz(u\ J±(uY = J^(u) . (A.5)

The condition of invariance of a state with respect to the action αM can be
written directly in terms of the matrices J(u) and the density matrix p. By apply-
ing J to the equation X),/,/ /V/w//(w/'/)* — Pij, and using the unitarity (A.5), we
get:

Jz(u)p = PJz(u) , J+(u)JJ*Wp - v2J^pJ+(u) . (A.6)

In particular, p — v~2Jz^/[2S -f l]v defines an invariant state, and, for an irre-
ducible representation this is the only one.
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