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Abstract: We consider zero temperature correlation functions of the spin-^ XXZ
Heisenberg chain in the critical regime -1 < A ^ 1 in a magnetic field. Starting
from the algebraic Bethe Ansatz we derive representations for various correlation
functions in terms of determinants of Fredholm integral operators.

1. Introduction

Despite the great advances made over the last sixty years in the study of integrable
quantum models, evaluation of their correlation functions still poses a formidable
problem. Quite recently there has been significant progress in this direction: the
group at RIMS succeeded in deriving integral representations for some correlation
functions of the Heisenberg XXZ model [2,13,46,5,16,49-51,56-58,53] defined
by the hamiltonian (1.1) for A > 1 by taking advantage of the infinite quantum
affine symmetry of the model on the infinite chain [10,27]. (see e.g. [28,12,6,7] for
further developments). The isotropic (XXX) limit A —> 1 was obtained in [45,33].
These integral representations are most powerful for studying the short distance
behaviour of correlators, whereas it is not obvious how to extract the large distance
behaviour. Also it is not straightforward to extend this approach to the critical
regime -1 < A < 1 or to include an external magnetic field.

Precisely these issues can be very naturally addressed in the framework of a
different approach to studying correlation functions in integrable models, which was
carried out in [29,30,18-21,23,34,35] for the example of the ^-function Bose gas
[40,41]. A detailed and complete exhibition of this work can be found in the book
[32]. We call this method the Dual Field Approach (DFA). The DFA permits
one to derive determinant representations for correlation functions of models of
interacting fermions (the corresponding spectrum of the hamiltonian is not equivalent
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to free fermions). It can be considered as a generalization of the seminal work on
correlation functions for the impenetrable <5-function Bose gas: using a determinant
representation for zero temperature equal time quantum correlation functions [38,39]
M. Jimbo, T. Miwa, Y. Mori and M. Sato proved that the correlators are described
by an ordinary differential equation reducible to the Painleve transcendent [26].

The DFA is directly based on the (algebraic) Bethe-Ansatz solution of the model
and thus is applicable to a large variety of correlation functions and integrable
models. It allows to derive explicit expressions for the large distance asymptotics
of correlation functions (even at finite temperature), and the inclusion of an external
magnetic field poses no problem. The DFA thus nicely complements the approach
of the RIMS group. In this paper we will apply the DFA to the Heisenberg XXZ
and XXX chains at zero temperature in a magnetic field h, i.e. the hamiltonian

^ = Σ^+ι+^;+ι+^(^+1-l)-/ιέ^, -\<Δ^\9 (1.1)
y=ι y'=ι

where σz = ( l ° V σx = (° l}9 σy = (° ~'Y and A = cos(2τ/),
V o - i / ' V i o / ' V i o / ' v "

I < η ^ π. We impose periodic boundary conditions σ£+1 = σ", where α = x,y,z.
There are four main steps in the DFA: First the model needs to be "solved"

by means of the Algebraic Bethe Ansatz. Then one uses this solution to express
correlation functions in terms of determinants of Fredholm integral operators. In step
three these determinants are embedded in systems of integrable integro-difference
equations (IDE). This step is inspired by the work of E. Barouch, B.M. McCoy,
T.T. Wu [1] and C. Tracy and B.M. McCoy [54], who pioneered the idea of
describing quantum correlation functions by means of differential equations. Finally
the large-distance asymptotics of the correlators is extracted from a Rίemann-Hilbert
problem for the IDE's. As the computations for the various steps are rather involved
we will only deal with the first steps here, i.e. review the known Bethe Ansatz
solution for the XXZ and XXX chains and then derive determinant representations
for correlation functions.

2. A Short Review of Algebraic Bethe Ansatz

Let us review a few main features of the Algebraic Bethe Ansatz (ABA) for both
XXZ and XXX Heisenberg magnets [11,36,47,53,52] in order to fix notations for
things to come. The XXX case can of course be obtained by taking a certain limit
of the XXZ case, but in practice this is more difficult than treating the XXX case
separately from the beginning. Thus we will treat both cases on an equal footing
throughout this paper.

The starting point and central object of the Quantum Inverse Scattering Method
(for a comprehensive review and more references see [37,52] is the R-matrix, which
is a solution of the Yang-Baxter equation [59,3]. For the case of the XXZ and XXX
models it is of the form

R(λ,μ) =

//(/U) 0 0 0 \

0 g(μ,λ) 1 0

0 1 g(μ,λ) 0

V 0 0 0 f(μ,λ)J

(2.1)
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where for XXZ

(2-2)

and for the XXX-case

f(λ,μ) = 1 + j—-, 00ί,μ)=y—-. (2.3)

The ^-matrix is a linear operator on the tensor product of two two-dimensional
linear spaces: R(μ) G End((C2 0 C2). From the ^-matrix (2.1) one can construct an
L-operator of a "fundamental spin model" (see e.g. [32] p. 126) by considering the
matrix R(μ)Π, where Π is the permutation matrix on C2 0 C2, and then making
it into an operator-valued matrix by identifying one of the linear spaces with the
two-dimensional Hubert space ffln of *ST/(2)-spins over the nth site of a lattice of
length L,

sinh(μ - iησz

n} -ί $m(2η)σ~

—/ sin(2^)σ+ sinh(μ + iησz

n

(2.4)

The Yang-Baxter equation for R implies the following relations for the L-operator

R(λ - μ)(Ln(λ) ® Ln(μ)) = (Ln(μ) ® Ln(λ))R(λ - μ) . (2.5)

From the ultralocal L-operator the monodromy matrix is constructed as

_ / A ( μ ) B(μ)\

^ L~{ μ '" ' μ ~ \C(μ) D(μ)J '

Equation (2.5) can be lifted to the level of the monodromy matrix

R(λ - μ)(T(λ) ® T(μ)) = (T(μ) ® T(λ))R(λ - μ). (2.7)

Below we will repeatedly use especially the following matrix elements of (2.7):

[B(λ\ C(μ)] - g(λ, μ)(D(λ)A(μ) - D(μ)A(λ)),

D(μ)B(λ) = f(λ,μ)B(λ)D(μ) + g(μ> λ)B(μ)D(λ),

A(μ)B(λ) = f(μ,λ)B(λ)A(μ) + g(λ, μ)B(μ)A(λ). (2.8)

By tracing (2.7) over the matrix space one then finds that the transfer matrices
t(μ) = tr(Γ(μ)) — A(μ) + D(μ) commute for any values of spectral parameter μ,
i.e. [τ(μ),τ(v)] = 0. From this it follows that the transfer matrix is the generat-
ing functional of an infinite number of mutually commuting conserved quantum
operators (via expansion in powers of spectral parameter). One of these operators
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is the hamiltonian

H = -2isin(2η)—- ln(τxxz(μ)) -2Lcos(2η)-2hSz. (2.9)
=—"7

Below we also make use of some properties of mhomogeneous XXX and XXZ mod-
els, which are constructed in the following way: we first note that the intertwining
relation for the L-operator (2.5) still holds, if we shift both spectral parameters λ
and μ by an arbitrary amount vn, i.e.

R(λ - μ)(Ln(λ - vn)®Ln(μ - vπ)) = (Ln(μ - vn)®Ln(λ - vn))R(λ - μ) . (2.10)

The reason for this fact is of course that the /^-matrix only depends on the difference
of spectral parameters. We now can construct a monodromy matrix as

Tinh(λ)=LL(λ-vL)LL-l(λ-vL-l)...Ll(λ-vl)={ _ J . (2.11)

The inhomogeneous monodromy matrix (2.11) obeys the same intertwining relation
(2.7) as (2.6).

The ABA deals with the construction of simultaneous eigenstates of the trans-
fer matrix and the hamiltonian. The starting point is the choice of a reference
state, which is a trivial eigenstate of τ(μ). In our case we make the choice |0) =

I ||t ... I) — ®t=ι l ί )«> i e we choose the completely ferromagnetic state. The
action of the L-operator (2.4) on | |)Λ can be easily computed and implies the
following actions of the matrix elements of the monodromy matrix for the XXZ
case,

A(μ)\0) = αOOlO) , a(μ) = (sinh(μ - ίη))L ,

D(μ)\0) = d(μ)\0) , d(μ) = (sinh(μ + ίη})L ,

Φ O , (2.12)

whereas in the XXX case

(
. \ L / . \ L

μ-l-J , d(μ)={μ+l-J . (2.13)

From (2.12) it follows that B(λ) plays the role of a creation operator, i.e. one can
construct a set of states of the form

ΨN(λl,...,λN)=f\B(λj)\Q). (2.14)

The requirement that the states (2.14) ought to be eigenstates of the transfer matrix
τ(μ) puts constraints on the allowed values of the parameters λn: the set {λj} must
be a solution of the following system of coupled algebraic equations, called Bethe
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equations [4,46]:

'- '•••••"• (2 15)

These equations are the basis for studying the ground state, excitation spectrum and
thermodynamics of Bethe Ansatz solvable models. For the case of the XXZ model
with A > — 1 (the case we are interested in here) it was proved by C.N. Yang
and C.P. Yang in [56, 57] that the ground state is characterized by a set of real λj
subject to the Bethe equations (2.15). Without an external magnetic field (h = 0)
their number is N = L/2. In the thermodynamic limit the ground state is described
by means of an integral equation for the density of spectral parameters p(λ) [17, 57]

2πp(λ)- f dμK(λ,μ)p(μ)=D(λ), (2.16)
-Λ

where the integral kernel K and the driving term D are given by

sinh(μ - λ + 2iη) sίnh(μ — λ — 2iη)'

—ΓT- (2-17)

For the XXX case we have [16]

Here Λ depends on the external magnetic field h. The physical picture of the ground
state is that of a filled Fermi sea with boundaries ±A. The dressed energy of a
particle in the sea is given by the solution of the integral equation [49, 50]

ε(λ) - - / dμK(λ,μ)ε(μ) = 2h- . , .. . . , (2.19)
2π_Λ sιnh(x - lη) sιnh(/l + lη)

The requirement of the vanishing of the dressed energy at the Fermi boundary
ε(±A) = 0 determines the dependence of A on h. For small h this relation can be
found explicitly by means of a Wiener-Hopf analysis [57]. For h ^ hc = (2 cos 77 )2

the system is in the saturated ferromagnetic state, which corresponds to A = 0.

3. Two-Site Generalized Model

For the evaluation of correlation functions the so-called "two-site generalized model"
has proven an extremely useful tool. From the mathematical point of view this is
simply the application of the co-product associated with the algebra defined by
(2.7). The main idea is to divide the chain of length L into two parts and associate
a monodromy matrix with both sub-chains, i.e.

/At(μ) B,(μ)\
= T(2,μ)T(l,μ), T(i,μ)=[ (« '=1,2) . (3.1)

D,(μ)J
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In terms of Z-operators the monodromy matrices are given by

T(29μ)=LL(μ)LL-l(μ)...Ln(μ)9

T(\,μ)=Ln.λ(μ)Ln-2(μ)...Lλ(μ). (3.2)

By construction it is clear that both monodromy matrices T(ί,μ) fulfill the same
intertwining relation (2.7) as the complete monodromy matrix Γ(μ). Similarly the
reference state for the complete chain is decomposed into a direct product of refer-
ence states |0)/ for the two sub-chains |0) = |0}2 ® |0}ι. The resulting structure can
be summarized as

A,(μ)\0), = a,(μ)\0), A00|0), = d,(μ)\0). >

C00|0>,=0, β, (Aθ|0),Φθ, (3.3)

where the eigenvalues a and d in (2.12) are given by a(μ) = a2(μ)a\(μ) and d(μ) =
d2(μ)dι(μ). The creation operators B(μ) for the complete chain are decomposed
as B(μ) = A2(μ) ® B\(μ) + B2(μ) ® D\(μ)9 which implies that eigenstates of the
transfer matrix can be represented as

Σrί π
/,// jei ken

|0)0, (3.4)

where the sum is over all partitions { λ j } U {A7/} of the set {λt} with card {A7} = n\9

card{Λ,77} = «2 = N — n\. A similar equation holds for dual states

Σ Π π
ι,ιι jεi ken

x 7)) 0 (2{0|C2(47)) . (3.5)

4. Reduction of Correlators to Scalar Products

In this section we reduce the problem of evaluating correlators of the form (ήσfy

(where {) denotes the normalized zero temperature vacuum expectation value, i.e.
the expectation value with respect to the antiferromagnetic ground state described by
(2.16)-(2.19)) to the computation of certain scalar products between states given by
the Algebraic Bethe Ansatz. We start by noting that due to translational invariance
it is sufficient to consider the correlator G(m) = (σz

mσ\). In terms of the operators
qj = |(1 — σj) the correlator takes the form

G(m) = 4(qmqι) - 4(qι) + I , (4.1)

where we have again used translational invariance. The quantity {</ι} is nothing
but the density of down spins in the ground state and can thus be reexpressed
as (#ι) — f^^dAp(A). The first term in (4.1) is expressed in terms of the quantity
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where A (not to be confused with the inhomogeneity A in the XXZ hamiltonian)
is the lattice laplacian A f ( j ) = f ( j ) + f(j — 2) — 2 f ( j — 1). Putting everything
together we obtain

G(m) = 2A((Q}(m))2) + 1 - 4 / dλp(λ) . (4.2)

The only nontrivial quantity to determine is thus ((Q\(m))2) = -
(m)))|α=0. We will now use the two-site generalized model to express the "gener-
ating functional"

F(α,/w) := (exp(αgι(m))) :=
(Ό\l I7=ι ^(Λj)[ lk=ι#(Λk J|u;

(4.3)

in terms of scalar products: we take the first sub-chain to contain sites 1 to m and
the second one sites m-\- 1 to L. We note that Q\(m) now acts only on the first
sub-chain and simply counts the number of down spins. Using (3.4) and (3.5) in
(4.3) we obtain

ON l ιc

 Ic IB

 /B

) Π
He "B ιBJc

5) π

where the sum is over all partitions

of the set {λ} with card {λ/B } = card {λjc }=n\, card {/l//c } = card {λllβ }=N — n\
and

σN = (0\ΠC(λj)flB(λk)\0) . (4.5)
y=l A =l

Note that due to (3.3) and (2.7) (for #z(μ),C/(μ)) we only need to consider parti-
tions such that the size of partitions IB and /c (and //# and lie) are the same. In the
following section we will show that scalar products of the form appearing in (4.4)
can be expressed as determinants and then use this fact to obtain a determinant
representation for F(α,m).
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A particularly simple correlator to compute within this approach is the
"Ferromagnetic String Formation Probability" (FSFP). This correlation function
is defined as

and physically corresponds to the probability to find a string of ferromagnetically
ordered adjacent spins in the (antiferromagnetic) ground state. It can be obtained
from F(α,m) in the limit α — > — oo,

P(m) — lim F(α,w).
α— * — oo

5. Scalar Products

We now turn to the investigation of scalar products of the form

|0). (5.1)
7=1 k=l

Following [30,31] we will show how to represent (5.1) as a determinant. Here we
do not assume that the sets of spectral parameters {λB} and {λc} are the same, and
we also do not impose the Bethe equations (2.15), because our goal is to determine
the scalar products occurring in (4.4). From (2.8) and (2.12) it follows that scalar
products can be represented as [29]

{λB}
ΛJ>}=\ ~V V '*=! """" '"" V {^} {1°}

where the sum is over all partitions of {λc} U {λB} into two sets {λA} and {λD}.
The coefficients KN are functions of the λj and are completely determined by the
intertwining relation (2.7). In particular the KN'S are identical for the homogeneous
model (2.6) and the inhomogeneous model (2.11), i.e. the A^'s are independent of
the inhomogeneities {vn} and also do not depend on the lattice length L as long as
N < L. The reason for this is that the intertwining relations for the matrix elements
jtf(μ), $(μ)9 y>(μ) and 2(μ) of (2.11) are the same as the ones for the matrix
elements A(μ), B(μ), C(μ), D(μ) of (2.6) (see Sect. 2 above). We will exploit this
fact by considering special inhomogeneous models for which all terms but one jn
the sum in (5.2) vanish, and then represent this term as a determinant. The basic
tool for representing scalar products as determinants in a theorem due to Izergin,
Coker and Korepin [24,25], which deals with determinant representations for the
partition functions of inhomogeneous XXZ and XXX models constructed according
to (2.11):

Theorem 1. Consider an inhomogeneous XXZ chain of even length N with
inhomogeneities vJ9j=l...N. Let |0) and |0) be the ferromagnetic reference
states with all spins up and down respectively. Let 38(μ) and Ή(μ) be the creation/
annihilation operators over the reference state |0). Then the following determinant
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representations hold for the XXZ magnet:

TV N

= (-O^Π Π sinh(/lα - v* -
α=l £=1

VsiΏh(λ,-λβ) Π s inh(v/-v t ) det(

(5.3)

where
isin(2η)

sinh(Aα -vk - / ^ s i - 1 - ' 1 - ' ^ ' ^ ' '

A similar representation holds for the XXX magnet.

Let us now derive explicit expressions for the coefficients K^. It will be conve-
nient to work with the following sets of spectral parameters

{λ
AB
} = {λ

A
} n {λ

B
}, {λ

DB
} = {λ°} n {λ

B
} ,

with cardinalities
» = card{ADC} = card{λAB} ,

N-n = card{A^c} = card{λDB} .

The partition with n = 0 is characterized by{λAC} = {λc}, {λDB} = {λ8}, {λAB} =

( iλC} iλB} \
nc{ }ιB\ } is called highest
i/ j ιΛ / /

Lemma 1. For highest coefficients the following determinant representation holds:

KN = Π ff(^, 4M4, λ j } Π λ(^, A )det(M) ,
\UC} {^δ}/ V>* ' ) j* J

For //z^ A'XZ magnet we find

t(λ,μ)=-
isin(2η) ' ' sinh(yl — μ + 2/^)sinh(A — μ) '

(5.6)
α«ί/ /w //z£ A^JSf cα^ w^ Aαt e instead

h(λ,μ)=l-i(λ-μ), t(λ,μ)=-- -\ -—. (5.7)
(λ-μ)(λ-μ + ι)
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Proof. We will carry out the proof for the XXZ case, the XXX case is similar.
Consider an inhomogeneous XXZ model on a lattice of length N with inho-
mogeneities v/ = λ*j + iη. We have a(λ) = Π/=ι sinh(λ — λj — 2iη) and d(λ) =

Π/=ι sinn(^ ~ tf\ Inspection of (5.2) yields that in this situation only one term

in the sum of the r.h.s of (5.2) survives, namely the one with {λD} = {λB}. Thus
for this special scalar product we obtain

Mcί it! ) Π s inh(λJ - λϊ - 2/f?) Π sinh(^ - λ f ) . (5.8)
{/t } {/I } / j\k mj

On the other hand B(λ) flips one spin, and as we have chosen TV to be the length

of the lattice we find that Π/Li ^(A/)|0) *s proportional to the ferromagnetic state

with all spins flipped, and thus orthogonal to all states in a basis other than |0).
Thus

' ' 7=1 k=l

By Theorem 1 both factors can be represented as determinants. By direct computa-
tion we find for one of the factors

= Π sinh(/lf - λCj - 2iη) .

Using the determinant representation given by Theorem 1 on the other factor we
arrive at (5.5). D

Lemma 2. Arbitrary coefficients KN are expressed in terms of highest coefficients
as follows:

3 C \ J I B
ϊAC >\DC

ί{λAC} {λ™}\
"\{λAB} {λDC}J N-"\{λAC} {λDB})' ^ '

Proof. We again will only treat the XXZ case explicitly, the XXX case being
very similar. Consider an inhomogeneous XXZ model with inhomogeneities{v7} =

( MCΊ \λB

ίlA\ } 1D\
\λ } \λ ί

the sum on the r.h.s of. (5.2) survives. Proceeding as in the proof of Lemma 1
above we arrive at (5.9). D

Combining the results of Lemmas 1 and 2 with (5.2) we arrive at the following
expression for general scalar products of XXZ and XXX magnets:

SN = Π0αf,λf)0(λ£^)Σsg^^

x ΠMAf,^c)ΠΛαf,^δ)det(M^)det(M^), (5.10)
/, k j, m



Determinant Representation for Correlation Functions 201

where Pc is the permutation {Afc,...,^c,Λfc,. . .9λ^n} of {λf,...,λ%}, PB is

the permutation {λf^...,λ^,λf5,...,λ^_Λ} of {λf,...,4}, sgn(P) is the sign of
the permutation P, and

(κ/fAB\ +( IAB ιDC\Λf ιDc\π( ΊAB\ +n ,,\(MDc)jk = t(λj ,/£ )d(λk )a(λj ), f(/,μ) .
, μ)

Note that (5.10) is formally the same as the corresponding expression for the delta-
function Bose gas (see [32] p. 213), only the functions f(λ,μ), g(λ,μ) (and thus
also h and t\ a(λ) and d(λ) are different.

6. Dual Fields

The most important step in the DFA follows next: we introduce dual quantum fields
in order to simplify (5.10) and obtain a manageable expression for scalar products.
This step was first carried out in [30] for the delta-function Bose gas. The XXX and
XXZ cases of interest here can be treated very similarly, so that we will be brief in
our discussion. The fundamental observation is that the r.h.s. in (5.10) looks like
the determinant of the sum of two matrices:

Lemma 3. Let A and B be two N x N matrices over C. Then the determinant of
their sum can be decomposed as follows:

B} = £ sgn(Pr ) sgn(Pc) det(ΛPrPc ) det(BPrPc ) . (6.1 )
P,,Pc

Here PΓ and Pc are partitions of the N rows and columns into two subsets
&,$ and #,# of cardinalities n (for <%,<β) and N - n (for <%,<£) respectively,
Aprpc is the n x n matrix obtained from A by removing all 3$-rows and ^-columns,
and Bprpc is the N - n x N - n matrix obtained from B by removing all 3%-rows
and <$ -columns. Finally sgn(/V) is the parity of the permutation obtained from
(1, . . . ,7V) by moving all &-rows to the front.

Proof. See [32] p. 221 ff.

Comparison of (5.10) with Lemma 3 shows that one does not get the h(λ,μ)-
factors by simply taking the determinant of the sum of the matrices M^. This
leads to the introduction of two dual quantum fields ΦA(^) and Φ/>(Λ.) which are
represented as sums of "momenta" PA and "coordinates" QA as follows:

ΦD(λ) = QD(λ) + PA(λ) ,

[PD(λ),QD(μ)] = ln(Λ(λ,μ)), [PA(λ),QA(μ)] = \n(h(μ,λ)) . (6.2)

All other commutators of P's and Q's vanish. A very important property of the
fields Φ is that they commute for different values of spectral parameters

[ΦΛ(λ),ΦD(μ)] = 0 = [ΦA(λ),ΦΛ(μ)] = [ΦD(λ),ΦD(μ)] .

The dual quantum fields act on a bosonic Fock space with reference states |0) and
(0| defined by

Pa(λ)\0) = 0, (0|βfl(λ) = 0, a = A,D, (0|0) = 1 . (6.3)
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Using the dual fields it is now possible to recast (5.10) as a determinant of the sum
of two matrices.

Theorem 2. Scalar products for the Heίsenberg XXZ and XXX magnets can be
represented as determinants in the following way:

Sjk = t(λ

+ ΦA(λ*h)) . (6.4)

Proof. Using Lemma 3 to expand the determinant in (6.4) we arrive at

(0|detS|0) =

x(0|exp ΣΦXλf ) + ΦD(λf* ) + ,αf ) + *D(Afc) |0). (6.5)

Evaluating the expectation value of the dual quantum fields by means of (6.2) and
(6.3) we arrive at (5.10). D

It is possible to further simplify (6.4) by eliminating one dual field: we define
a new dual vacuum (0| according to

/ N \
(6|=(0|exp ΣPD(^) + PΛλ?) , (0|0) = 1 , (6.6)

V=1 )

and a new dual field

ψ(λ) = p(λ) + q(λ), q(λ) = QA(λ) - QD(λ) - (6\QA(λ) - QD(λ)\0) ,

p(λ) = PD(λ) - PA(λ), (ΰ\q(λ) = 0 =

), p(μ)] = 0 = [q(λ\ q(μ)}, [ψ(λ\ φ(μ)] = 0 . (6.7)

In terms of this field we obtain the following determinant representation:

B

k, λ* ) e(^X(Af) Π htf, λ* )(0|de
j=\ j,k

Sjk =

where r(λ) = JT^. Now we have all the machinery ready to tackle the problem of

representing (4.4) as a determinant.
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7. On Norms

In this section we will have a closer look at norms of Bethe wave functions. These
were first conjectured in [14] (see also [15]). This conjecture was generalized and
proved in [29], so that the answers are already known. Here we will consider
norms as special cases of scalar products in order to build up some machinery
needed below for further analysis of (6.4). We will treat the XXZ case in detail
and quote the results for XXX. In order to study norms we ought to set {λc} = {λβ}
in (6.4) and then impose the Bethe equations (2.15). Immediately some problems
arise as the diagonal elements of the matrix S in (6.4) become ill-defined ("§") and
have to be investigated more carefully. The off-diagonal matrix elements are easily
dealt with. The Bethe equations (2.15) together with the antisymmetry property

9(λ,μ) = -g(μ,λ) imply

=(-iyV- 1. *=!,...,#. (7.1)

Thus we obtain

Sjk = t(λj9λk) + t(λk,λj)exp(φ(λk) - φ(λj)\ j*k . (7.2)

To obtain the diagonal matrix elements we take the limit λj — > λk in the matrix S
and use Γ Hospital's rule (here we have to make use of the explicit expressions for
the functions f,g,a9d, etc for the XXZ case)

-2
oλ

(7.3)

To obtain this expression we also have made use of the Bethe equations (7.1).
We observe that the last two terms in (7.3) are precisely what one obtains when
taking the limit λj — » λk in (7.2). Putting everything together we find the following
expression for the norm (4.5):

JV]k = t(λj9λk) + t(λk9λj)exp(φ(λk) -

, (7.4)

where we now interpret the first two terms in JV in the sense of Γ Hospital for the
diagonal elements. For the case of the XXX magnet we have to replace sm(2?y)
by 1 and use the functions f,g,h,t following from (2.3). There is one further
simplification: from [29] it follows that the expectation value of the dual field part
in (7.4) is such that the dual fields can be simply set equal to zero, i.e. we can
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replace (0|det,/K|0) by detyK', where Ji1 is obtained from Jf by dropping the
exp(φ)-terms. Then a further simplification takes place as

t(λj9λk) + t ( λ k 9 λ j ) = -sin(2η)K(λj9λk)9

where K is defined in (2.17). This is summarized in the following theorem due to
Korepin [29]:

Theorem 3. Norms for the Heisenberg XXZ and XXX magnets can be represented
as determinants in the following way:

(0\UC(λj)UB(λk)\0) = Π/OW*) ft a(λf)d(λj)άetΛ" . (7.5)
7=1 *=1 y Φ * 7=1

For the XXZ case the matrix Λf' is given by

λk) + iδjk^- Lr(λ, )) + £ In f §
VAj L n=\ \n\An, Λ

= sin(2η) (-K(λJ9λk) + δjk \i^-\n(r(λj)) + £ K(λJ9λn)] } , (7.6)
\ L "A] Λ=l J /

where K(λ,μ) and h(λ,μ) are defined in (2.17) and (5.6) respectively. For the
XXX case we have instead

See [29].

8. Correlators on the Finite Chain

Let us now come back to the generating functional for correlators (4.4). We will
now use the machinery built up in the last few sections to express F(α,m) as a
determinant. We will proceed in two steps: we first will analyse (4.4) without using
that {λ8} = {λc} = {λ} and without imposing the Bethe-equations (2.15). In the
second step we will then impose these two constraints. Using (6.8) we can represent
the scalar products in the two-site generalized models in (4.4) as determinants.

Lemma 4.

°Nj>k IBJIB

x Π K^^fιcjιc

(sι({λc}9{λ*}))jk =

c B(s2({λc}9{λB}))jk = αiαfXiαf )(ί2(μ
c},{^}))^ , (8.1)
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where

(sy({λc}, {λB}))jk = t(λ<j, λl )a,(λ(j)d,,(λB

k )exp(ΦA,,(λC) + ΦDγ(λf))

+ t(λf, A,cK,(Af )ay(λζ )exp(ΦD;.(;v

c) + ΦA,.(λf )) . (8.2)

Here the dual fields are defined according to

ΦΛ,(λ) = QA,(λ) + PD.,(λ\ ΦD..(λ) = QD.,(λ) + PA,,(λ) ,

[PD,.(λlQDβ(μ)] = δyβ\n(h(λ,μ)), [PA,(λ),QAl,(μ)] = δ,βln(h(μ,λy) . (8.3)

All other commutators vanish. The reference state |0) and its dual (0| are anni-
hilated by all momenta/ coordinates respectively

Pa(λ)\Q) = 0, (0\Qa(λ) = 0, a= Ay,D79 (0|0) - 1 . (8.4)

Proof. We use (6.4) to express both \(Q\ΠιcC\(tfc)UιB

 B\(tfB)\®)\ and

2{0|Π// ^2(Λ tf)Π//5 ^2(Λ //5)|0)2 as determinants. We are led to introduce two
sets of dual fields (one for each scalar product) ΦAy(λ\Φo,,(λ\ y = 1,2 with com-
mutation relations given by (8.3). The two kinds of dual fields are completely in-
dependent of each other (all commutators between momenta/coordinates of different
sets vanish). The representation (8.1)-(8.2) is now obtained by direct computation,
where the sgn(P# )sgn(/^c ) arises upon taking the factor Y[ .>k g(λj-,λ% )g(λf,λj ) in
front of the sum due to g(λ,μ) = —g(μ,λ). D

We now observe that (8.1) is basically of the same structure as (5.10). Thus,
in analogy with (6.4), we can introduce new dual quantum fields and reexpress
F(α, m) as a single determinant.

Lemma 5. Consider the set of four commuting dual quantum fields

φD2(λ) = £D2(λ) + »Al(λ\ l / / A 2 ( λ ) = £A2(λ) + »Dλ(λ) ,

with commutation relations of the momenta/ coordinates given by

= δyβ\n(h(λ,μ)), [0>A,W, ΆΛβ(μ)} = δγβln(h(μ, A)) .

All other commutators vanish. The action of the dual fields on the dual refer-
ence states is given by ^fl(/ί)|0) = 0, (0| Άa(λ) = 0, a=Aι9A29D},D2. Then the
following determinant representation holds

F(a,m) =

^) + fe2(A)), (8.5)

where (Sγ)β are given by (8.1).
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Proof. The proof is analogous to the one for Theorem 2, only the expectation value
of dual quantum fields is slightly different.

So far we have not used the fact that we are dealing with expectation values of
Bethe states, i.e. we have neither used the fact that {λc} = {λB} = {λ} nor imposed
the Bethe equations (2.15). In the next step we will impose these constraints. The
discussion will be reminiscent of Sect. 7 above. The result is summarized in the
following.

Theorem 4. The generating functional F(oc,m) can be represented as a ratio of
determinants in the following way:

= t(λj,λk)

+ exp(α

+ δjkω LD(λj) + ΣK(λj,λn) , (8.6)
\ n J

where r λ ( λ ) = aλ(λ)/dλ(λ\ K(λ,μ) and D(λ) are defined in (2.17), (2.18),
ω = sin(2f/) for XXZ and ω = -1 for XXX, and the commuting dual fields φa

are defined according to

<PaW = pa(λ) + qa(λ\ (6\qa(λ) = 0 = pa(λ)\0), (0|0) = 1, α = 1 . . . 4 ,

I 0 0 1
o i i o
j Q { {

0 1 1 I

(8.7)

Here all terms not proportional to δβ in ̂  ^r^ understood in the sense of
Γ Hospital for the diagonal elements.

Proof. We start by defining a new dual vacuum (0| and a new set of dual fields
according to

( N \
(0| = (0|exp ^PD2(λj) + PA2(λj) + ̂ Dl(λj) + ̂ Al(λj) , (0|0) = 1 , (8.8)

V=ι /

φι(λ) = ΦA[(λ) - ΦDl (λ), φ2(λ) = ΦA2(λ) - ΦD2(λ) ,

φ3(λ) = φA2(λ) - ψDί(λ) - ΦDl(λ) + ΦAϊ(λ) ,

φ4(λ) = ψAl(λ) - ψD2(λ) + ΦAl(λ) - ΦD2(λ) . (8.9)
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The fields φa(λ) can be decomposed into momenta pa and coordinates qa

(by using (8.3) and the definitions of ψa given in Lemma 5), which are found
to obey the commutation relations (8.7). By straightforward rewriting of (8.5) in
terms of the new fields and the new dual reference state we obtain

F(Λ,m)=—

r(λk)

r(λf)

Here we have used that

(N \
(Olexp Y* ιl/A>>(λi) + ίfch(Ί/) + ΦA >(λ, ) + ΦD~(λj)\ = ΠΛ(Λ,/,Λfc)(0 | .

V=ι 2 J J M J

It is found that whereas pa(λ)\Q) = 0, the coordinates qa(h) of φa(λ) do not anni-
hilate the new dual reference state (0|. Therefore we "shift" φa(λ) by subtracting
their vacuum expectation values in analogy with (6.7),

By construction the /?'s and g's have the same commutation relations (8.7) as
the momenta/coordinates pa(λ) and qa(λ) of the φa(λy$. Furthermore, pa(λ)\0) = 0

and (Q\qa(λ) — 0 for a = 1.. .4. The shifts are found to be

Ka(λ) = (0\φa(λ)\0) = ( I - δa}

r \h(λJ9λ)

If we replace the fields φa in (8.10) by the fields φa we pick up additional factors
due to the shifts

1 N

:,m)= — Π f(λj,λk) Π a(λj

= t(λJ9λk)

(8.12)
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The off-diagonal matrix elements of G can be further simplified by simply imposing
the Bethe equations. Rewriting the Bethe equations (2.15) as

,=ι
/**

(8.13)

we find that the additional factors take the form

Inserting this into (8.10) we arrive at (8.6) without the term proportional to δβ,
i.e. we have proved (8.6) for the off-diagonal matrix elements. To get the diagonal
matrix elements we have to investigate the limit λj —» λk of (8.12) in detail. In the
limit λj —> λk the sum of the first two terms in Gjk and the expression in brackets

are both of the form "jj". By using ΓHospitaΓs rule we find analogously to Sect. 7
above,

lim t(λj9λk) + ί
λt-*λk \

= -2cosh(2z/7)

l i m [ t ( λ j 9 λ k )
n\^k) j

sinh(2/>7)
= -2cosh(2/f/) + sinh(2/w) \\ ' + m—Λ ̂\ oλj sιnn(/ι7

Using these expressions we find that the diagonal terms of G in (8.12) are equal
to the diagonal terms of G in (8.6) if we keep in mind that the first two lines of
Gjk in (8.6) are interpreted a la Γ Hospital for j = k. Last but not least we insert
the expression (7.5) for ON in the resulting expression and arrive at (8.6). This
completes the proof of the theorem. D

Theorem 4 states the determinant representation for the generating functional
F(α,m) on & finite chain of length L. As always in Bethe Ansatz solvable models
significant simplifications take place if we take the thermodynamic limit L —> oo.
This is done in the next section.
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9. Thermodynamίc Limit

The results of taking the thermodynamic limit of (8.6) and the main results of this
paper are summarized in the following.

Theorem 5. In the thermodynamic limit the generating functional F τ(α, m) for the
case of the XXZ magnet can be represented as a ratio of determinants of Fredholm

integral operators (id-\- ^V\ and (id— ^K] in the following way:

F(a,m)= - —^ - . (9.1)

Here (0| and |0) are the vacua of the dual bosonic Fock space defined in (8.7)
and the integral operators act on functions f defined on the interval [—A, A]
according to

= f(λ)-~fdμK(λ,μ)f(μ),

where the kernel K(λ,μ) is defined in (2.17) and the kernel of V is given by

-sin(2f?)

sinh(/l — μ) sinh(Λ — μ + 2iη) sinh(μ — λ + 2iη)

: + ' "~^""' i, (92)
sinh(μ - λ + 2iη) sinh(/ί - μ + 2iη)J / ' V ' }

• 1 i \ \ /W / 1 / 1 *\ \ W

i ,™^vλ-f z w ) \ , . / sιnh(Λ — Z M ) \
~T7^ ^ exP(φ2(^))? ^ι(^) = U / Q . Λ exp(φι(l)) .\sιnh(/i — / ^ ) y \smh(/t + ιη) J

(9.3)

77zβ dual fields φa(λ) are defined in (8.7), w/Y/z h(λ,μ) given in (5.6).

Proof. We begin by taking the thermodynamic limit for the norm σ# (7.5). We
first write Λr' as the product of two matrices:

lζ

J . T — Z Jm T — Z Ω

where θm = LD(λm) + Σ,nK(λm9λn). Here D and K are defined in (2.16)-(2.17).
The determinant of J\r' is the product of the determinants of / and J. Next we use
that the set of roots { λ j } describes the ground state and the roots thus obey the
equations

2πLp(λj) - £ K(λ,,λk) = LD(λ,\ j=l...N9

k=\
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which is the discrete version of (2.16). Here p(λj) = L,, *_; .) , which becomes p(λ)

defined by (2.16) in the thermodynamic limit. We thus can rewrite θm = 2πLp(λm),
which leads to

N

det J = Π 2πLp(λj). (9.4)

In the thermodynamic limit the matrix / turns into an integral operator / = id —
— K

/ * / U = fW -^ I dμK(λ, μ)f(μ) ,
2π_A

where K is the kernel of K defined by (2.17).
The matrix Gjk in (8.6) is treated in a very similar way. We rewrite it as a

product

where Jjm = δjm2πLρ(λm) is the same as above, and

Wjk = δjk sin(2 )θk

exp(α

In the thermodynamic limit the matrix Wjk turns into an integral operator W =

id + ^V, with kernel V(λ,μ) defined by (9.2). Thus we obtain (9.1) in the
thermodynamic limit. D

For the XXX chain a determinant representation is obtained in an analogous
way. The result is found to be

„ , ,
Fχχχ(a.,m} = — — - - f - - — , (9.5)

det(l - £

where K.χχχ and Vχxx are integral operators with kernels K(λ,μ) from (2.18) and

-

-1
+

-λ + i λ-μ + i J ) '

The dual fields φa(λ) are again defined in (8.7), but now h(λ,μ) — 1 — i(λ — μ).
The Ferromagnetic String Formation Probability can be easily obtained from

(9.1) and (9.5) by setting α — — oo, which corresponds to dropping the second line
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in the expressions for the kernel of V in (9.2) and (9.6). For the XXX case this
exactly reproduces the result of [33].

10. Some Limiting Cases

It is quite straightforward to evaluate the determinants in (9.1) for strong magnetic
fields h ~ hc = (2 cos η)2, in which the ground state is very close to the ferromagnetic
vacuum and A <C 1. The near asymptotics (m <C (π/2Λ)tanη) of the FSFP for the
XXZ case follows to be

/ O Λ \

P(m) — 1 - ( —:—cos?/ ) m .
\ πsm η J

Using (2.16) and (2.19) this reproduces the obvious result

P(m) = i ( i _ (σz:})m = 1 \/hc - h, h —> hc, h < hc .
2 J π

Another interesting limiting case (which allows to make contact with known
results) is the XX0 free fermionic limit of the XXZ model [42], where η — ̂  in
(9.2) and (2.17). Correlation functions for this case have been previously consid-
ered by various authors [43,44,55,8,22]. In [8,22] a determinant representation for
F(α,m) was found, which does not involve dual quantum fields. Taking the free
fermionic limit of (8.7) we obtain

/2 0 1 1\
Γ / X , ' V I I 0 2 ! ! I 1 / U / 1 Λ Λ
[qb(μ\Pa(λ)]= 1 1 2 2 m(cosn(^ - ^)) •

\ 1 1 2 2/

Thus we can choose φι(λ) = φ^\(λ) and reduce the number of dual fields to 3. Fur-
thermore we have sin(4^) = 0 and therefore K(λ,μ) = 0. The determinant formula
then reads

= (0|det id + -

— μ)

x {1 -eΐl(λ)e2(μ)-ex+^-^λ\l - e? (μ)eι(λ))} , (10.1)

where now

This expression should be compared with the result obtained in [8,9] by means of
direct integration of the coordinate-space ground state wave function (which is of
free fermionic form). After transforming the latter expression to the notation used
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in the present paper the result of [8, 9] reads

id+— U . (10.2)
2π

Here U is the integral operator defined in terms of the kernel

m <ιo 3)

The representation ( 1 0.2 )-( 10.3) can be reobtained in the present formulation by
making use of a determinant representation for scalar products in the XXO case due
to N. Slavnov [48].

Theorem (N. Slavnov). Scalar products in the Heisenberg XXO model can be
represented as determinants in the following way:

SN= Π/αf^ί)/αf^y)det/ι,
j>k

njk = (0\C(λf)B(λB

k)\0) = g(λ^λB

k)(a(λ^d(λf) - d(λ^)a(λB)) , (10.4)

where f(λ,μ) = -/com (A - μ\ g(λ,μ) = ̂ ,̂ a(λ) = (sinh(λ - ϊ f ) ) L and

Proof Slavnov 's proof is based on the following identity for the N x N ma-
trix

bers

trix A with entries Ajk = sinhsχ

} _ — 5, where Xj and yk are arbitrary complex num-

- I

This equality can be proved by induction over N. Equation (10.4) is obtained by
using (10.5) for the determinants of the matrices M^B and Mβfi in expression (5.10)
for scalar products, and then using Lemma 3 to express the sum over partitions in
(5.10) as the determinant of the sum of two matrices. In the last step no dual
quantum fields need to be introduced. D

Using the new determinant representation (10.4) for scalar products in the XXO
case in the expression (4.4) we arrive at

F(α,m)= — Π

(10.6)
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where Py, y = B,C are the permutations {λ}},... λ] n, λy

π },... λy

π N_n} of {λ\5

..., λ]

N } and where

/ί }, {4} )jk = rfl (4* )«>

Now we can apply Lemma 3 to (10.6) and express F(α,w) as a single determinant
without dual quantum fields, and then take {λc} = {λ8} = {/I}. We obtain

F(oc,m) =
det

= ~

/
' 1 1 \ AWci p n / 2 _ -5ττ< \ \

wnere r \ ( λ ) = I . . " 3^ . In the thermodynamic limit (cf. Sect. 9) this turns\ sιnn(/,+ -τ-) /

into (10.2) and (10.3). This establishes the equivalence of the two determinant
representations with and without dual fields in the XXO model.
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