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Abstract: We show that the conformal characters of various rational models of
y/^-algebras can be already uniquely determined if one merely knows the central
charge and the conformal dimensions. As a side result we develop several tools for
studying representations of SL(2,Z) on spaces of modular functions. These methods,
applied here only to certain rational conformal field theories, may be useful for the
analysis of many others.
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1. Introduction

In the last years two-dimensional conformal field theories played a profound
role in theoretical physics as well as in mathematics. Starting with the work of
A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov [1] in 1984, many new
results connecting statistical mechanics and string theory with the theory of topo-
logical invariants of 3-manifolds or with number theory were found [2,3]. In
mathematical physics the classification of rational conformal field theories (RCFT)
became one of the important outstanding problems.

Since one hopes that it is possible to consider all RCFTs as rational models
of ^-algebras, special vertex operator algebras generalizing in a certain sense
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Kac-Moody algebras, different methods for the investigation of these algebras and
their representations have been developed (for a review see e.g. [4]).

An important tool in the study of rational models of ^-algebras are the
associated conformal characters. These conformal characters ^ form a finite set
of modular functions satisfying a transformation law

Here A runs through the full modular group Γ=: SL(2,Z) or through a certain
subgroup G(2) (accordingly as the underlying ^-algebra is bosonic or fermionic),
and p is a matrix representation of Γ or G(2), which depends on the rational model
under consideration.

It has already been noticed that conformal characters are very distinguished mod-
ular functions: First of all, similar to the j -function, their Fourier coefficients are
nonnegative integers and they have no poles in the upper half plane. They some-
times admit interesting sum formulas: These formulas, which allow an interpretation
as generating functions of the spectrum of certain quasi-particles, can be used to
deduce dilogarithm-identities (see e.g. [5,6]). In some cases the conformal charac-
ters have simple product expansions. If one has both sum and product expansions,
the resulting identities are what is known in combinatorics as Roger-Ramanujan or,
more generally, as Andrews-Gordon identities.

In this paper we add one more piece to this theme. We show, for certain rational
models, that the central charge and the finite set of conformal dimensions uniquely
determine its conformal characters. More precisely, we shall state a few general
and simple axioms which are satisfied by the conformal characters of all known
rational models of ^-algebras. These axioms state essentially not more than the
SL(2, Z)-invariance of the space of functions spanned by the conformal characters,
the rationality of their Fourier coefficients and an upper bound for the order of their
poles. The only data of the underlying rational model occurring in these axioms are
the central charge and the conformal dimensions which give the upper bound for
the pole orders and a certain restriction on the SL(2, Z)-invariance. We then prove
that, for various sets of central charges and conformal dimensions, there is at most
one set of modular functions which satisfies these axioms (cf. the Main Theorem
in Sect. 4).

This result has several implications. First, it shows that the simple constraints
imposed on modular functions by the indicated axioms are surprisingly restrictive.
Apart from giving an aesthetical satisfaction this observation gives further evidence
that conformal characters are modular functions of a rather special nature, which
may deserve further studies, even independently of the theory of ^-algebras.

Secondly, it implies that, in the case of the rational models considered in this
article, the conformal characters do a priori not give more information about the
underlying rational model than the central charge and the conformal dimensions.
This is in perfect accordance with the more general belief that these data al-
ready determine completely the rational models of 1^-algebras which do not contain
currents (currents are nonzero elements of dimension 1: see Sect. 2). In general one
expects that a unique characterization of rational models can be obtained if one
takes into account certain additional quantum numbers which can be defined in
terms of the Lie algebra spanned by the zero modes of the currents.

Thirdly, our main result has a useful practical consequence for the computation
of conformal characters. Apart from several well-understood rational models where
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one has simple closed formulas for the conformal characters, it is in general difficult
to compute them directly. Any attempt to obtain the first few Fourier coefficients
by the so-called direct calculations in the ^algebra, the so far only known method
in the case where no closed formulas are available requires considerable computer
power. Our result indicates a way to avoid the direct calculations: Once the central
charge and conformal dimensions are determined the computation of the conformal
characters can be viewed as a problem which belongs solely to the theory of modular
forms, i.e. a problem whose solution affords no further data of the rational model in
question. We shall show elsewhere how one can indeed solve this problem in many
cases using theta series, and, in particular, how one obtains in this way explicit
closed formulas for the conformal characters of certain nontrivial models which
could not be computed using known methods [7].

In this paper we restrict our attention to rational models of 1^-algebras where
the associated representation p turns out to be irreducible. This restriction is mainly
of a technical nature. It simplifies the identification of p. However, we believe that
the Main Theorem holds true in more generality, i.e. that it can be extended to
rational models with composite p, possibly with a slightly larger set of axioms.

We have organized our article as follows: In Sect. 2 we give (axiomatic) def-
initions of the basic notions concerning ^-algebras since there seems to be no
satisfactory reference for this. In Sect. 3 we give a short overview of those rational
models for which we prove our Main Theorem. There might be a dispute whether
the existence of various rational models mentioned in Sect. 3 is rigorously proved or
not. We do not feel competent or willing to judge the literature cited in this section
with respect to its mathematical cleanness. Our policy here is that we simply cite
what is asserted in the literature. Since what is actually needed from this (short) sec-
tion are solely Tables 1 and 2, we are perfectly safe in remaining neutral. In Sect. 4
we state and prove our main result. Sections 4.2 and 4.3, where we develop the
necessary tools needed for the proof of the Main Theorem, may be of independent
interest for those studying representations p arising from conformal characters.

Notation. We use § for the complex upper half plane, τ as a variable in §,
q = e2π/τ,

I ' l 0

Γ for the group SL(2,Z), and

Γ(n) = {Ae SL(2,Z)M = id (moan)}

for the principal congruence subgroup of SL(2, TL) of level n. Recall that a congru-
ence subgroup of Γ is a subgroup containing Γ(n) for some n. We use η for the
Dedekind eta function

2. Vertex Operator Algebras, ^F-Algebras and Rational Models

^'-algebras are a special kind of vertex operator algebras. For the reader's conve-
nience we repeat the definition of vertex operator algebras and their representations
(see e.g. [8,9]).



120 W. Eholzer, N.-P. Skoruppa

Definition (Vertex operator algebra). A vertex operator algebra is a complex N-
graded vector space

with dim(FΛ) < oo for all n £ N (an element φ G Vn is said to be of dimension
n\ together with a linear map

V -> (End K)[[z,z-']], φ .-> Y(φ,z) = £ Φnz'"^ ,

(the elements of the image are called vertex operators), and two distinguished
elements 1 G VQ (called the vacuum) and ω £ VΊ (called the Virasoro element)
satisfying the following axioms:

(1) The map φ ι— > Y(φ9z) is ίnjectίve.
(2) For all φ, ψ G V there exists a ΠQ such that φnψ = 0 for all n g; nQ.
(3) For all φ,ψ G V and m,n e Z one has

(ΦmΦ)n = Σ(-l)' 7 (Φm-iΦn+i ~ (-I)1"* m+n-iΦί) -

(For m < 0 the sum on the right-hand side is infinite', in this case this identity
has to be read argumentwise, i.e. it has to be understood in the sense that the
left-hand side applied to an arbitrary element of V equals the right-hand side
applied to the same element: Note that this makes sense since by (2) in the sum
on the right-hand side all but a finite number of terms become 0 when evaluated
at an element of V.)

(4) Y(\,z) = \άv.
(5) Writing F(ω,z) = Y^n^^Lnz~n~2, i.e. Ln = ωn+\9 one has

Vn=n \άVn,

>Z)=d~z]

3 c

[Lm,Ln] = (m- n)Lm+n + δm+n$(m - m) — \άv ,

for all n,m £ TL, φ G V, where c is a complex constant (called the central charge
or rank).

Remarks. 1. For m ^ 0 property (3) is equivalent to

[ψm,Φn] = Σ ( 7 I (ΨiΦ)m+n-i >
/^O \ l J

where the left-hand side denotes the ordinary commutator of endomorphisms.
2. This commutator identity implies in particular [L0,φn] — (L-\φ)n+\ + (LQφ)n,

hence [Lo,φn] — (d — n — \)φn for φ £ Vj (here we used (L-\φ)n+\ = (—n — \)φn
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from axiom (5)). From this one obtains

ΦnVm £ Vm+d-n-\

Definition (Representation of a vertex operator algebra). A representation of a
vertex operator algebra V is a linear map

p : V -> ( E n d λ f ) [ [ z , z - l ] ] 9 φ ̂  YM(φ,z) =

where M is a ^-graded complex vector space

M =
/7GN

with dim(M,7) < oo for all n £ N, swc/z ί//αί the following axioms are satisfied:

(1) For α// φ £ Vj and m,n one has p(φ)nMm C Mm_Λ_ι+ ί/.
(2) For all φ £ V and v £ M fλere ex/si α WQ ^c^ ^β/ p(Φ)nv = 0 /or #/

fl ̂  W0.
(3) For «// φ,ψ £ V and all m,n G

where again this identity has to be read argumentwίse.
(4) YM(\,z) = iάM.
(5) t/j/Λgf YM(ω,z) = Σn£zP(L\z-n-2, i.e. p(L)n = ρ(ω)n+\ (note that this

equality is not an identity involving some special L G V, but introduces only a
suggestive abbreviation for the right-hand side}, one has

l^' ' dz
c

[p(L)m, p(L)n] = (m- n)p(L)m+n + δm+n$(m - m} — \άM ,

for all n, m £ TL, φ £ V, where c is the central charge of V.

The representation p is called irreducible if there is no nontrίvial subspace of M
which is invariant under all ρ(φ)n

In the following we shall occasionally use simply the term F-module M instead
of representation p : V —> End(M)[[z,z~1]].

Remarks. Note that a vertex operator algebra V is a F-module itself via φ \-+
Y(φ,z) (use Remark (2) after the definition of vertex operator algebra for verifying
axiom (1) of a representation).

Lemma. Let p : V —> End(M)[[z,z~1]] be an irreducible representation of the ver-
tex operator algebra V. Then there exists a complex constant hm such that

for all n £ N.
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Proof. By axiom (1) of a vertex operator algebra representation we have that
p(L)oMo C M0. Hence, since M0 is finite dimensional, there exists an eigenvector v
of ρ(L)o in MO. Let HM be the corresponding eigenvalue. Since p is irreducible the
vector space M is generated by the vectors ρ(φ)nv (φ C F</, d G N, w G Z); for
proving this note that the subspace spanned by the latter vectors is invariant under
all ρ(φ\ as can be deduced from axiom (3). For m G N let M'm be the subspace
generated by all p(φ)nv with φ G Mj and d — n — I = m. By axiom (1) we have
M'm C Mw, and since M is the sum of all the M'm we conclude M!

m = Mm.

On the other hand, one has [ρ(L)Q, p(φ)n] — (d — n — \)φn for all n and all
φ G Vd (similarly as in Remark (2) after the definition of vertex operator algebras).
From this we obtain p(L) \M'm = (hM + «)idM//?. This proves the lemma. D

The lemma suggests the following.

Definition (Character of a vertex operator algebra module). Let M be an irre-
ducible module of the vertex operator algebra V (with respect to the representation
p\ Then the character χM of M is the formal power series defined by

where c is the central charge of V and hM the conformal dimension of M.

The most important class of vertex operator algebras is given by "rational"
vertex operator algebras:

Definition (Rationality of vertex operator algebras). A vertex operator algebra V
is called rational if the following axioms are satisfied:

(1) V has only finitely many inequivalent irreducible representations.

(2) Every finitely generated representation of V is equivalent to a direct sum
of finitely many irreducible representations.

Here the notions equivalence, finitely generated and direct sum are to be under-
stood in the obvious sense. The importance of the rational algebras becomes clear
by the following theorem:

Theorem (Zhu [12J). Let M/ (i — l,...,n) be a complete set of inequivalent irre-
ducible modules of the rational vertex operator algebra V. Assume, furthermore,
that Zhu's finiteness condition is satisfied, i.e.

K) < oo ,

where (F)_2F C V is defined by (F)_2F := {φ^2ψ\Φ, Ά £ V}. Then the con-
formal characters XM, become holomorphic functions on the upper complex half

plane § by setting q = G2πιτ with τ G §. Furthermore, the space spanned by
the conformal characters χ^ (i = !,...,«) is invariant under the natural action
( χ ( τ ) , A ) i— > χ(Aτ) of the modular group SL(2,Z).

We now turn to the definition of ϋ^- algebras and rational models of ^-algebras.
As indicated above we describe these in terms of vertex operator algebras.
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Definition (^F-algebra). A vertex operator algebra V is called a (bosonic) W-
algebra if it satisfies the following additional axioms:

(1) dim(Ko)= 1.
(2) There exist finitely many homogeneous elements φ1 G ker(Z,j ) (/=! , . . . ,«)

which generate V.

Here vectors φl (i = 1,...,«) are said to generate V if the smallest subspace of
V which is invariant under the action of (φl)m (/ = l , . . . , w ; m G Z) and contains
1 equals V.

A U/-algebra K is said to be of type if(d\,...,dn) if there exists a minimal
set of homogeneous generators φl G ker(Lj) (/ = !,...,«) whose dimensions equal
d\,...dn. Here minimal means that no proper subset of the set of the φl generates V.
Note that the dj occurring here may in general not be unique.

Remarks. 1. Examples of ^-algebras can be constructed from the Virasoro and
affine Kac-Moody algebras. They are of type ϋ^(!,...,!), respectively ^(2) for
the Virasoro algebra [9].

2. Note the following for connecting our definition of 1^-algebras with the
corresponding notion used in the physical literature. The right-hand side of (3) in
the definition of vertex operator algebras is, for m < 0, what is usually called the
«th mode N(ψ9d~^~mφ)n of the normal ordered product of the vertex operators
corresponding to ψ and the (—m — l) th derivative of vertex operator corresponding
to φ (see e.g. [10]). Moreover, the commutator formula in Remark (1) after the
definition of vertex operator algebras implies the (in the physical literature) well-
known formula for the commutator of two homogeneous elements in ker(Lι) of a
iT-algebra V (see e.g. [10,11]).

Definition (Rational model). A rational model (or rational model of a ϋ^-algebra)
is a rational i^-algebra V which satisfies Zhu's finiteness condition. The effective
central charge of a rational model is defined by

c — c — 24 min h^l ,

where Ml runs through a complete set of inequivalent irreducible representations
ofV.

Remarks. 1. Examples of rational models are given by certain vertex operator
algebras constructed from affine Kac-Moody algebras [9] or the Virasoro algebra
[13] (for more details see also Sect. 3).

2. One can show that the effective central charge of a rational model with a
minimal generating set of n vectors lies in the range [14]

0 <; c < n .

3. Historically the term "rational models" was used in the physical literature [1]
for field theories in which the operator product expansion of any two local quantum
fields decomposes into finitely many conformal families from a finite set.

The following theorem justifies the terminology "rational models":

Theorem ([15]). Assume that the representation of the modular group acting on
the space spanned by the conformal characters of a rational model is unitary.
Then the central charge and the conformal dimensions of the rational model are
rational numbers.
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3. Central Charges and Conformal Dimensions of Certain Rational Models

In this section we review some facts about those rational models which are con-
cerned with the Main Theorem in Sect. 4. Note that some of the results summarized
in this section are not yet proved on a rigorous mathematical level. However, we
shall not be concerned by this since we are only interested in the central charges
and sets of conformal dimensions provided by these models. This section serves
rather as a motivation than as a background for the considerations in the subsequent
sections.

Firstly, we review some known rational models with effective central charge
less than 1. The simplest ^-algebras are those which can be constructed from
the Virasoro algebra (as already mentioned in the foregoing section). The rational
models among these are called the Virasoro minimal models (see e.g. [1, 16, 13]).
They can be parameterized by a set of two coprime integers p,q §; 2. The rational
model corresponding to such a set p,q has central charge

and its conformal dimensions are given by:

h(p,q,r,s) = (rP-stf(P-tf (i g Γ < ?, (2,r) = I, I Z s < p) ,

where we assume q to be odd.
The Virasoro minimal models are special examples of the larger class of rational

models with c < 1 which emerges from the ^DE'-classification of modular invariant
partition functions [17, 14]. Their central charges and conformal dimensions are
given in Table 1 : The first column describes the type of modular invariant partition
function, the central charge is always c = c(p,q), where p and q are the parameters
of the respective row under consideration. Moreover, c(p,q) and h(p,q, , ) are
as defined above. Note that the listed models exist also for p,q,m not necessarily
prime. The primality restrictions have been added for technical reasons which will
only become clear in the next section.

Table 1. Data of certain it/'-algebras related to the ^ZλE-classification.

type type of ^-algebra Hc(P^) (In := {l,. . .,/ι})

(Aq>-\,Ap-\) W(2) {h(p,q,r,s)\r G lq-\, s G /^-i, ( 2 , r ) = l }

p > q odd primes

CVι,A,2+ι) lT'(2, (/"~1^~2)) {Λ(/7,^r,5 ) | r e / ( ^ _ i ) / 2 , J e/«,, ( 2 , j ) = l }
/? = 2m
q,m odd primes

> ) ^(2,^ — 3) {min(/z(/?,#,r, 1), h(p,q,r, 7))|r G 7(^_i)/ 2}U
/? = 12,^ ^ 5 {mir\(h(p,q,r, 5), h(p,q,r, 1 l))|r G 7(^_i)/2}U
^ prime {/z(/?,^r,r,4)|r G /(^_i)/2}

i) 1^(2,̂  — 5) {min(Λ(/?,^,r, 1),/z(/?,g,r, 1 l))|r G/(^_i)/ 2 }U

g prime
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The second list of rational models which we shall consider are special cases of
the so-called Casimir ^algebras.

Starting from an affine Kac-Moody algebra associated to a simple Lie algebra
$' one can construct a 1-parameter family ϋfff of ^F-algebras, the parameter
being the central charge (see e.g. [18]) (note that this construction is different from
the one mentioned in the foregoing section). For all but a finite number of central
charges these ^"-algebras are of type if(d\9...9dn)9 where n is the rank of Jf and
the d[ (ϊ — !,...,«) are the orders of the Casimir operators of Jf. The remaining
ones, called truncated, are of type iΓ(dlΛ,...,dlk), where the dik form a proper
subfamily of the dι above. Note that the ^-algebras constructed from the Virasoro
algebra mentioned in Sect. 2 are exactly the Casimir Ί^-algebras associated to stf\.
The rational models of Casimir ^ -algebras (sometimes called minimal models)
have been determined, assuming certain conjectures, in [18].

In Table 2 we list the central charges c9 effective central charge c and the sets
of conformal dimensions Hc of 6 rational models with c > 1.

The last four are Casimir ^-algebras associated to ^2,^2,^7 and ̂ 3.

The first two ^algebras are "tensor products" of the rational Y/^-algebra with
c = —22/5 constructed from the Virasoro algebra and the rational ^F-algebras with
c = 14/5 or c — 26/5 constructed from the aίfine Kac-Moody algebras associated to
^2 or Jξ, respectively. We denote them by ^2(2,114) and ̂ (2,126), respectively.
Here the construction of the ^-algebras in question is the one mentioned in Sect. 2.

We give some comments on these 6 rational models. Using [16] and [19] the
central charges, conformal characters and dimensions of the two composite rational
models can be computed. For the rational models of type i^'(2,d) lists of the
associated conformal dimension can be found in [14]. The conformal dimensions of
the last rational model of type ^"(2,4,6) have been calculated in [20].

As it will turn out in the next section the first five rational models in Table 2 ex-
hibit some interesting analogy: The representations of Γ afforded by their conformal
characters belong, up to multiplication by certain 1-dimensional Γ-representations,
to one and the same series p/ (cf. Sect. 4.4 for details). So one could ask whether
there exist more rational models with this property. A more detailed investigation
of the fusion algebras associated to such potentially existing models showed that
this is not the case [21] (cf. also the speculation in [14]).

Table 2. Data of the six rational models.

Hc

14
"G2\* ι )

it"
Fj
(2, 1

26
)

y/
7
(2,4)

/̂(2,8)

8
5

4
5

_444
1 1

_ 1420

3164
-n

16
5

28
5

12
1 1

20
17

28
11

!
5 \U, I, 1,2}

Hθ,-l,2,3}

__1_{0,9, 10, 12, 14, 15, 16, 17, 18, 19}

- -1 {0, 27, 30, 37, 39, 46, 48, 49, 50, 52, 53,

-^{0,54,67,81,91,94,98,103,111,112.

55,57,58,59,60}

,116,118,119,120,

122,124,125,129,130,131,132,133}

Ts^'(2,4,6) -|| |̂  ^{0,-15,-8,-3,12,37,57,60,100,117,120,132,145,252,
285,405}
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4. Uniqueness of Conformal Characters of Certain Rational Models

4.1. Statement of the Main Theorem

Main Theorem. Let c be any of the central charges of Table 1 or 2, let Hc

denote the set of corresponding conformal dimensions, and let H be a subset of Hc

containing 0. Assume that there exist nonzero functions ξc^ (h G H), holomorphic
on the upper half plane, which satisfy the following conditions:

(1) The functions ξc,h are modular functions for some congruence subgroup of

(2) The space of functions spanned by the ξc^ (h G //) is invariant under Γ
with respect to the action (A,ξ) ι— >• ζ(Aτ).

(3) For each h G H one has ξc^ = (9(q~c/24) as Im(τ) tends to infinity, where
c = c-24minH.

(4) For each h G H the function q~(h~^ζc,h is periodic with period 1.
(5) The Fourier coefficients of the ξc^ are rational numbers.

Then H — Hc, and, for each h £ H, the function ξCth is unique up to multiplication
by a scalar.

Remarks. 1. Note that the theorem only ensures the uniqueness of the functions ξCth
but not their existence. However, they do indeed exist. For Table 1 the existence
of the corresponding functions is a well-known fact [17, 14]: explicit formulas for
them can be given in terms of the Riemann-Jacobi theta series

Σ exp(2πra;2/4£) .
teZ

x=λ mod 2k

The existence of the functions ξc^ related to Table 2 will be proved elsewhere [7].
2. Note that the conformal characters XM of a rational model with H as set

of conformal dimensions satisfy the properties listed under (2)-(5) by the very
definition of rational models and Zhu's theorem if we set £Cj/, = XM (h = conformal
dimension of M). Property (1) is not part of this definition, and it is not clear
whether it is implied by the axioms for rational models. However, there is evidence
that it holds true, at least in the cases discussed in this article (cf. the discussion
below).

3. If we assume for a rational model corresponding to a row in Table 1 or Table
2 that its conformal characters satisfy (1) we can conclude from our theorem that
the corresponding set Hc is exactly the set of its conformal dimensions and that the
properly normalized functions ξcj (h G Hc) are its conformal characters.

4. For the proof of the theorem for the first 5 models of Table 2 the assumption
0 £ H is not needed, and it can possibly be dropped in all cases. However, we did
not pursue this any further: From the physical point of view the assumption 0 G H
is natural since h = 0 corresponds to the vacuum representation of the underlying
^F-algebra, i.e. the representation given by the 1^-algebra itself.

For the first two cases of Table 2 the requirement that the ξc^ are modular
functions on some congruence subgroup is not necessary. Here we have the

Supplement to the Main Theorem. For c = - 1 and c = | and with Hc as in
Table 2 the equality H = Hc and the uniqueness of the ξc^ (h e H) are already
implied by properties (2) to (5).
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For the other cases we do not know whether the statement about the uniqueness
of// and the ξc^ remains true if one also takes into account non-modular functions
or non-congruence subgroups.

However, as already mentioned, it seems to be reasonable to expect that the
conformal characters associated to rational models satisfy (1). So far there is no
example of a conformal character of any rational model which is not a modular
function of a congruence subgroup. Moreover, in our cases we have the following
evidence for (1) holding true:

As mentioned above the functions ξc^ whose uniqueness is ensured by the
Main Theorem, exist. As it turns out they can be normalized so that their Fourier
coefficients are always nonnegative integers (for the case of Table 2 cf. [7]). This
gives further evidence that they are identical with the conformal characters of the
corresponding ^algebra models whence the latter therefore satisfy (1).

According to the Main Theorem, for each //, of Table 1 and 2 the Γ-module
spanned by the ξc^ is uniquely determined. In particular the ^-matrix (i.e. the matrix
representing the action of S with respect to the basis given by the ξcj with the
normalization indicated in the preceding remark) is unique. Closed formulas for the
S-matrices corresponding to the first four rows of Table 2 can be found in [7]. This
can be compared to the S-matrix of the corresponding ^F(2,4) rational model with
c — — ηy as numerically computed in [22] using so-called direct calculations in the
^algebra. Both ^-matrices coincide within the range of the numerical precision.

All rational models listed in Table 2 are minimal models of Casimir ^Γ-algebras
for which formulas for the corresponding conformal characters have been obtained
in [18] under the assumption of a certain conjecture. Once more, the conformal
characters so obtained are modular functions on congruence subgroups [7].

In the rest of Sect. 4 we prove our main theorem. To this end we will develop
some general tools dealing with modular representations, i.e. with representations
of Γ = SL(2, Z) on spaces of modular functions or forms. These methods are in-
troduced in the next two subsections. In Sect. 4.4 we conclude with the proof of
the Main Theorem.

4.2. A Dimension Formula for Spaces of Vector Valued Modular Forms. In this
section we state dimension formulas for spaces of vector valued modular forms
on SL(2,Z). These formulas are one of the main tools in the proof of the main
theorem. It is quite natural in the context of conformal characters, or more generally
in the context of modular representations, to ask for such formulas: The vector χ
whose entries are the conformal characters of a rational model, multiplied by a
suitable power of η, is exactly what we shall call a vector valued modular form,
and as such is an element of a finite dimensional space. (The latter holds true at
least in the case where the characters are invariant under a subgroup of finite index
in Γ; see the assumptions in the theorem below.)

Multiplying χ by an odd power of η yields a vector valued modular form of half-
integral weight. However, because of the ambiguity of the squareroot of cτ + d (c, d
being the lowest entries of a matrix in Γ) we now do not deal with a vector valued
modular form on SL(2,Z) but rather on a certain double cover DΓ := DSL(2,Z)
of this group.

We now make these notions precise.
The double cover DΓ is defined as follows: the group elements are the pairs

04, w), where A is a matrix in Γ and w is a holomorphic function on § satisfying
w2(τ) = cτ + d with c,d the lower row of A. The multiplication of two such pairs
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is defined by
(Λ,w(τ)) (Λ'V(τ)) = (AA',w(A'τ) w'(τ)) .

For any & £ Z we have an action of DΓ on functions / on § given by

( f \ k ( A , w ) ) ( τ ) = f(Aτ)W(τΓ2k .

Note that for integral k this action factors to an action of Γ9 which is nothing else
than the usual " ^"-action of Γ given by (f\kA)(τ) = f(Aτ)(cτ + d)~k .

For a subgroup A of Γ we will denote by DA C DΓ the preimage of A with
respect to the natural projection DΓ — » Γ mapping elements to their first component.

Special subgroups of DΓ which we have to consider below are the groups

Γ(4mf = {(A,j(A,τ))\A 6 Γ(4m)} .

Here, for A e Γ(4m), we use

where $(τ) = Σneztf" ^ ^s well-known that indeed j(A,τ) = z(A)\Jcτ + d, where
c, J are the lower row of A and ε(^4 ) = ± 1 . Explicit formulas for ε(A ) can be found
in the literature, e.g. [23].

We can now define the notion of a vector valued modular form on Γ or DΓ.

Definition. For any representation p : DΓ — » GL(«, C) and any number k £ |Z
denote by Mk(p) the space of all holomorphίc maps F : § — * (Cn which satisfy
F|^α = p(α)F/or α// α £ DΓ, <?«£/ which are bounded in any region Im(τ) ^ r >
0. Denote by Sk(p) the subspace of all forms F(τ) in M^(p) which tend to 0 as
Im(τ) tends to infinity.

If p is a representation of Γ and k is integral we use Mk(p) for Mk(ρ o π),
where π is the projection of DΓ onto the first component. Clearly, in this case the
transformation law for the functions F of M*(p) is equivalent to F\kA = ρ(A)F for
all A G Γ. In general, if k is integral, the group DΓ may be replaced by Γ in all
of the following considerations.

Finally, for a subgroup A of DΓ or Γ we use Mk(A) for the space of modular
forms of weight k on A in the usual sense. In the case A C Γ the weight k has
of course to be integral. The reader may not mix the two kinds of spaces Mk(ρ)
and Mk(A); it will always be clear from the context whether p and A refer to a
representation or a group.

Clearly, if the image of p is finite, i.e. if the kernel of p is of finite index in DΓ
then the components of an F in M^(p) are modular forms of weight k on this kernel.
In particular, the space M^(p) is then finite dimensional. Formulas for the dimension
of these spaces can be obtained as follows: Let V be the complex vector space of
row vectors of length n = dimp, equipped with the DΓ-right action (z,α) ι— > zp(α).
The space Λ4(p) can then be identified with the space Hom/)r(F,M^(zl)) of DΓ-
homomorphisms from V to M^(zl), where A — kerp, via the correspondence

Mk(p) 3 F i— » the map which associates z £ V to z F £ Mk(A) .

By orthogonality of group characters the dimension of Hom/>r(F,M^(zl)) can be
expressed in terms of the traces of the endomorphisms defined by the action of
elements of DΓ on Mk(A). These traces in turn can be explicitly computed by
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using the Eichler-Selberg trace formula. In this way one can derive the following
theorem (cf. [23, pp. 100] for a complete proof):

Theorem (Dimension formula [23]). Let p : DSL(2,Z) — » GL(«, (C) be a represen-
tation with finite image and such that p((ε2id, ε)) = ε~2k iάfor all fourth roots of
unity c, and let k G \TL. Then the dimension of Mk(p) is given by the following
formula:

dimM^p) - dimS2-*(p) - ̂  n + ^ Re(eπι*/2tr p((S,

- Re(eπί(2A'+1)/6- =
3V3

e Λ,y (1 :§ y ^ «) #re complex numbers such that Q2πιλ/ runs through the

eigenvalues of p(T\ we use a(p) for the number of j such that Q2πιAi = 1, and we
use BI(JC) = x1 - 1/2 ifx e xf + TL with 0 < x' < 1, W BI(JC) = 0 for x integral.
Moreover, for τ G §, we wse ^/τ α«J \A + 1 f°r those square roots which have
positive real parts.

Remark. For k ^ 2 the theorem gives an explicit formula for dimMyt(p) since in
this case dim(S2-k(p)) = 0 (the components of a vector valued modular form are
ordinary modular forms on kerp, and there exist no nonzero modular forms of
negative weight and no cusp forms of weight 0).

For k — 1/2,3/2 and ker(p) D Γ(4m)fi it is still possible to give an explicit
formula for Mk(p) [23]. However, we do not need those dimension formulas in full
generality but need only the following consequence of them:

Supplement to the dimension formula [23]. Let p : DSL(2, TL} — > GL(n, C) be an
irreducible representation with Γ(4mγ C ker(p) for some integer m. Then one
has dim(Mι/2(p)) = 0, 1. Furthermore, if dim(Mι/2(p)) = 1 then the eigenvalues

of p(T) are of the form e2π/2^ with integers I.

Remark. A complete list of all those representations p for which (dimM^(p)) = 1
can be found in [23].

A proof of this supplement can be found in [23]. It uses a theorem of Serre-Stark
describing explicitly the modular forms of weight 1/2 on congruence subgroups.

4.3. Three Basic Lemmas on Representations #/SL(2,Z). In this section we will
prove some lemmas which are useful for identifying a given representation p of Γ
if one has certain information about p, which can e.g. be easily computed from the
central charge and the conformal dimensions of a rational model.

Assume that the conformal characters of a rational model are modular functions
on some a priori unknown congruence subgroup. Then the first step for determining
the representation p, given by the action of Γ on the conformal characters, consists
in finding a positive integer N such that p factors through Γ(N). The next theorem
tells us that the optimal choice of TV is given by the order of p(Γ).

Theorem (Factorization criterion). Let p : Γ — » GL(n, C) be a representation, and
let N > 0 be an integer. Assume that p(TN) = 1, and, if N > 5, that the kernel of
p is a congruence subgroup. Then p factors through a representation of Γ/Γ(N).



130 W. Eholzer, N.-P. Skoruppa

Proof. The kernel Γ' of p contains the normal hull in Γ of the subgroup generated
by TN . Call this normal hull A(N). By a result of [24] (but actually going back
to Fricke-Klein) one has A(N) = Γ(N) for N ^ 5. If N > 5 then by assumption
we have Γ' D Γ(Nf) for some integer N' . Thus Γ' contains A(N)Γ(NN'), which,
once more by [24], equals Γ(N).

By the last theorem the determination of the representation p associated to a
rational model with modular functions as conformal characters is reduced to the in-
vestigation of the finite list of irreducible representations of Γ/Γ(N) w SL(2, Z/Λ/Έ)
with some easily computable N. The following theorem, or rather its subsequent
corollary, allows to reduce this list dramatically.

Theorem (^-Rationality of modular representations). Let k and N > 0 be integers,
let K = Q(e2π//w). Then the K-vector space Mf(Γ(N)) of all modular forms
on Γ(N) of weight k whose Fourier developments with respect to e2π/τ/yv have
coefficients in K is invariant under the action ( f , A ) \—> f \ k A of Γ.

Proof. Let j(τ) denote the usual y-function, which has Fourier coefficients in Z
and satisfies j ( A τ ) = j ( τ ) for all A G Γ. Assume that k is even. Then the map
/ ι-» f/j'V2 defines an injection of the A^-vector space M*(Γ(N)) into the field of
all modular functions on Γ(N) whose Fourier expansions have coefficients in K.
It clearly suffices to show that the latter field is invariant under Γ. A proof for
this can be found in [25, p. 140, Prop. 6.9 (1), Eq. (6.1.3)]. The case k odd can
be reduced to the case k even by considering the squares of the modular forms in
Mf(Γ(N)).

Corollary. Let p : Γ — ->• GL(ft, C) be a representation whose kernel contains Γ(N)
for some positive integer N, and let K — Q(e2πz/w). If, for some integer k,
there exists a nonzero element in Mk(p) whose Fourier development has Fourier
coefficients in Kn, then ρ(Γ) c GL(n,K).

Remark. If one assumes that a vector valued modular form is related (as explained
in Section 4.2) to the conformal characters of a rational model which are modular
functions on some congruence subgroup then obviously all the Fourier coefficients
are rational so that the corollary applies.

Proof. If F G Mk(p) has Fourier coefficients in Kn, then F\kA, by the preceding
theorem, has Fourier coefficients in Kn too for any A in Γ. From F\^A = p(A)F
we deduce that p(A) has entries in K.

4. 4. Proof of the Main Theorem. We will now prove our main theorem stated in
Sect. 4.1. Pick one of the central charges c in Table 1 or Table 2. Assume that
for some H C Hc containing 0 there exist functions ξc^ (h e H) which satisfy
the properties (1) to (5) of the Main Theorem. Let ξ denote the vector whose
components are the functions ξCth ordered with increasing h. Note that the /z-values
are pairwise different modulo 1. By (4) the ξCth are thus linearly independent. Hence,
we have a well-defined \H\ -dimensional representation p of the modular group if
we set ξ(Aτ) = p(A)ξ(τ) for A G Γ. Finally, recall that the Dedekind eta function
η is a modular form of weight 1/2 for DΓ, more precisely, that there exists a one-
dimensional representation θ of DΓ on the group of 24th roots of unity such that

For any half integer k G |Z such that

k ^ c/2
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we have F := η2kξ 6 Mk(p ® Θ2k\ as is immediate from property (3) and the
assumption that the ξc^ are holomorphic in the upper half plane. Let k be the
smallest possible half integer satisfying this inequality. The actual value is given in
Table 3 below.

We shall show that by property (1) to (5) the representation p is uniquely
determined (up to equivalence). Its precise description can be read oίf from the last
column of Table 3, respectively (notations will be explained below). In particular,
p has dimension equal to the cardinality of Hc, and hence we conclude H — Hc.
The Λ-values are pairwise incongruent modulo 1, i.e. p(T) has pairwise different
eigenvalues. Since p(T) is a diagonal matrix the representation p is thus unique up
to conjugacy by diagonal matrices.

Finally, the kernel of p is a congruence subgroup by property (1). In particular,
p 0 Θ2k has a finite image. Thus we can apply the dimension formulas stated in
Sect. 4.2. (For verifying the second assumption for the dimension formula note that
p is even and that Θ((ε2id,ε)) = η\±(ε2 id,ε)(τ)/η(τ) = ε~l for all ε4 = 1.) It will

turn out that Mk(p ® 02k) is one-dimensional. Thus, if there actually exist functions
ζc,h satisfying (1) to (5) then Mk(ρ 0 Θ2k) = C ξη2k . Since p is unique up to
conjugacy by diagonal matrices we conclude that ξ is unique up to multiplication
by such matrices, and this proves the theorem. We now give the details.

Determination of the representation p. We first determine the equivalence class of
the representation p.

For an integer k' let /(&') be the lowest common denominator of the numbers
h - c/24 + k'/\2(h£ Hc\ i.e. let

/(£') = 12d/gcd(12d,..., I2nj + k'd,...),

where the rij/d denote the rational numbers h — c/24 (h G Hc) with integers rij,d.

Clearly, the order of (p 0 Θ2k )(T) divides /(&'). Let k' be the smallest nonnegative

integer such that / = /(&') is minimal, and set p = p ® Θ2k . The values of k1 and
/ are given in Table 3.

Table 3. Representations of Γ and weights related to certain rational models.

"^algebra

* (2)

^ (2, 2 )

τr(2,«7-5)

^σ,(2, 1 1 4 )

τTF 4(2,l2 6)

ιT'(2,4)

τT(2,6)

τT(2,8)

τT(2,4,6)

c

! 3 (2/»-^):

1 5̂ -
8
5
4
5
444

1 1
1420

17
3164

23
13
15

*

1

1 1
2

1
2

1
2

2

3

1

1

1

1

*' / β = p®ύ"'

1 ~^ mod 1 2 mg σ^;" <g> τ/2/

— 1 — q mod 3 16^ σj ® Z) 6̂

— 2^ mod 12 5^ σ^ ® σ^
4

10

6

2

10

1

5

5

1 1

17

23

360

P5

P5

Pπ

P17

P23

σ » ® D j ® Λ 2 ( l , - )

In Table 3 the integers /?, ^ and m are odd primes with q Φ /?, m
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Note that the k1 integral implies that p can be regarded as a representation of
Γ (rather than DSL(2,Z)). By property (1) its kernel is a congruence subgroup
(since it contains the intersection of two congruence subgroups, namely the kernels
of p and θ2). Thus we can apply the factorization criterion of Sect. 4.3 to conclude
that this kernel contains Γ(/). Note that here the assumption (1), namely that the
ξCίh, are invariant under a congruence subgroup, is crucial if / > 5. For / ^ 5, this
assumption is not necesssary, which explains the supplement to the main theorem.

We shall say that a representation of Γ is of level TV if its kernel contains Γ(N)
(here N is not assumed to be minimal). Since any representation of level TV factors
to a representation of

it has a unique decomposition as sum of irreducible level TV representations. Further-
more, there are only finitely many irreducible level TV representations, and each such
representation π has a unique product decomposition

* = Π V
Pλ\\N

with irreducible level pλ representations τyt. Here the product is to be taken over

all prime powers dividing TV and such that gcd(//,TV///) = 1. Finally, π λ(T) has

order dividing //, i.e. its eigenvalues are pλ roots of unity. Since any TVth root of
,th -^-x

unity ζ has a unique decomposition as a product of the pA roots of unity ζ ?Λ P

with integers xp such that ^jxp = 1 mod pλ

9 we conclude:

Lemma. Let ζj (I rg j ^ n — dimπ) be the eigenvalues of n(T). Then, for each

pλ\\N, the eigenvalues φl of π / ( T ) (counting multiplicities) are exactly those

*t*p
among the numbers ζf 0 ^ 7 ^ Ό which are not equal to 1.

The representation p in lines 1 to 4 of Table 3. First, we consider the rational
models corresponding to the first 4 rows of Table 3. By assumption h = 0 is in
//, i.e. μ — exp(2πz(— c/24 + &'/12)) is an eigenvalue of p(T). Let π be that irre-
ducible level / representation in the sum decomposition of p such that π(Γ) has
the eigenvalue μ. Since π is irreducible it has a decomposition as product of ir-
reducible representations π / as above. Since a is a primitive /th root of unity the

lemma implies that the πpλ are nontrivial.

The minimal dimension of a nontrivial irreducible level pλ representation is 2,
3 or (p — l)/2 accordingly if pA equals 8, 16 or is an odd prime [26, p. 521 if] .
Hence we have the inequalities

'(P- !)(?- 0/2 for row 1

^ , (m - l ) ( ( q - l)/Λ for row 2
d l m π^3(<7-l)/2 for row 3 '

. q — 1 for row 4

For rows 1 , 3 and 4 the right-hand side equals the cardinality of Hc respectively. In
these cases we thus conclude that p — π is irreducible, that it is equal to a product
of nontrivial level pλ representations with minimal dimensions, and, in particular,
that H = Hc.
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For row 2 the right-hand side is smaller than the cardinality of Hc. However,
here we can sharpen the above inequality: First we note that the level p represen-
tations of dimension (p - l)/2 have parity (-l)ί/7+1)//2, whence the product of the
corresponding level m and q representations has parity (-l)^-1)/^ Qn the other
hand any irreducible subrepresentation of p has the same parity as p, i.e. the parity

(-1)A =(-l)(^+1)/2 Hence π cannot equal a product of two nontrivial level m
and q representations of minimal dimension. The dimension of the second smallest
nontrivial irreducible level p representations is (p + l)/2. Under each of these rep-
resentations T affords eigenvalue 1. Since T under p aίfords no mίh root of unity
as an eigenvalue, we conclude that π cannot be equal to a product of a (q + 1 )/2
dimensional level q, and a (m — 1 )/2 dimensional level m representation. Thus,

dim π ^ (m + 1 )(q - 1 )/4 .

The right-hand side equals \HC , and we conclude as above that H = Hc, that p
is irreducible, and that p equals a product of an irreducible (q - 1 )/2 dimensional
level q and an irreducible (m + I )/2 dimensional level m representation.

To identify p it thus remains to examine the nontrivial level p'* representations
with small dimensions (cf. [26, p. 52Iff]).

Let pλ = p be an odd prime. There exist exactly two irreducible level p repre-
sentations with dimension (p — l)/2. The image of T under these representations
has exactly the eigenvalues exp(2π/εjc2//>) (1 ^ x :g (p - l)/2), where for one of
them ε is a quadratic residue modulo p, and a quadratic non-residue for the other
one [26]. Call these representations accordingly σκ

p. Similarly there exist exactly 2
irreducible level p representations with dimension (p + l)/2, denoted by τκ

p (with
ε being a quadratic residue or non-residue modulo p). The eigenvalues of τκ

p(T)

are exp(2πto2/^) (0 ^ x ^ (p ~ l)/2).
Let p/- = 8. There exist exactly 4 irreducible two dimensional level 8 repre-

sentations which we denote by Dg (x being an integer modulo 4). The eigen-
values of the image of T under the representation D% are exp(2π/(l + 2#)/8) and
exp(2π/(7 + 2jc)/8).

Let pλ = 16. There are 16 irreducible three dimensional level 16 represen-
tations. These can be distinguished by their eigenvalues of the image of T.
In particular, there are four of these representations, denoted by D\6 (;tmod4),
where the image of T has the eigenvalues exp(2π/(2;t + 3)/8), exp(2π/(3.x — 6)/16),
exp(2π/(3* + 2)/16).

Summarizing we find p = σ^Θσ^0Dg 8 , =σ^(g>τ^, =σ^0D^6 or

= σ^®σ5 5 ' respectively, with suitable numbers, np,.... The latter can be easily
determined using the lemma and the description of Hc in Table 1. The resulting
values are given in Table 3.

The representation p in lines 5 to 9 of Table 3 . We now consider the rational
models corresponding to rows 5 to 9 of Table 3. Here the level of p is a prime /,
the dimension of p is ^ / - 1, and the eigenvalues of p(T) are pairwise different
primitive /th roots of unity.

We show that p is irreducible with dimension / — 1. Assume that p is reducible
or has dimension < ( / — ! ) . The only irreducible level / representations with di-
mension < (/ — 1) for which the image of T does not afford eigenvalue 1 are the σjί.

Thus there are only two possibilities: (a) p = σ] or (b) p = σ] 0 σf. For / = 5,17
the representations σ'j have parity -1, whereas p has parity +1, a contradiction.
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For / = 11,23 we note that ξη2 is an element of M\(p 0 Θ2~2k'\ We shall show

in a moment that the dimension of M\(σ] 0 Θ2~2k ) is 0, which gives the desired
contradiction (to recognize the contradiction in case (b) note that the "functor"
p F-» Mk(p) respects direct sums).

Since the dimension formula gives explicit dimensions only for k φ 1 we cannot

apply it directly for calculating the dimension of M — M\(σ^ 0 02~2^ ). For / = \\

we note that η2M is a subspace of M2(σJ 0 04-u ) τo the latter we can apply the
dimension formula, and find (using trσJCS) = 0, trσ^ST) = — 1) that its dimension

is 0. For / = 23 and ε = 1 we consider M^/2(σ] 0 Θ3~2k ) which contains ηM. We
find that its dimension equals

dimSl/2(σ-1 0r(3-2*'}) ^ dimM1/2(σ/-
1 0r(3-2^}),

which equals 0 by the supplement in Sect. 4.2 (for applying the supplement note that

σ/"1 0 θ~^~2k ) has a kernel containing Γ(23 24)* and represents T with eigen-
values exp(2π/(-24x2 -f 17 23)/23 24)). Finally, by the dimension formula we
find

AimMλ(σγl 0 Θ2~2k') = dimSι(σ] 0 e~(2-2k'}),

and the right-hand side equals 0 since dim$3/2(0] 0 θ~^~2k ^ = 0 by the supple-
ment.

Thus, p is irreducible of dimension / - 1, which implies in particular H = Hc.
There exist exactly (/ — l)/2 irreducible level / representations of dimension / — 1
[27, p. 228]. We now use property (5) of the main theorem, which implies that the

Fourier coefficients of ξ η2k are rational. Hence, by the corollary in Sect. 4.3 we
find that p takes values in GL(/ — l,K) with K being the field of /th roots of unity.
There is exactly one irreducible level / representation of dimension / — 1 whose
character takes values in K [27, p. 228]; denote it by pi. Then p — pi.

The representation p in line 10 of Table 3. Finally, we consider the last rational
model of Table 3. Here p has level 360 = 8 5 9. The eigenvalue of p(T)
corresponding to h — 0 is a primitive 360th root of unity. Hence by the lemma
there exists an irreducible subrepresentation π of p which factors as a product of
nontrivial irreducible representations of level 8,5 and 9, respectively. The minimal
dimension of an irreducible nontrivial level 8,5 or 9 representation is 2,2 and 4,
respectively [26, p. 521]. Thus dimπ ^ 16 = \HC\9 and hence H = Hc and p = π.
The eigenvalues of p(T) can be read off from Table 2. Using the lemma and the
representations D\ and σb

5 introduced above, we find

p = D% 0 σ\ 0 R

for an irreducible level 9 representation R with dimension 4, which represents T
with eigenvalues exp(2πό;2) (1 ^ x ^ 4), and is odd. Looking up [26] we find that
there is exactly one such representation, following [26] we denote it by R2(l,-).

Computation of dimensions. It remains to show d — dimM^p 0 Θ2k~2k ) ^ 1. For
the first 4 rows of Table 3 this follows from the supplement in Sect. 4.2 and the
irreducibility of p (in fact it can be shown that d = 1 [23]). For row 5 and 6 we
find d — 1 by the dimension formula and using t r p ι ( S ) = 0, t r p ι ( S T ) = I (valid
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for arbitrary primes /). For the remaining cases (where k — 1) we multiply M\(p 0

02-2k ) by 77 for obtaining d' — dimM^^β Θ Θ3~2k ) as an upper bound for d.
Again, using the dimension formula and its supplement we find d' = 1.

This concludes the proof of the main theorem. D
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