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Abstract: Let U be a basis representation of an irreducible unitary representation of
a nilpotent Lie group G in L2(Rk) and let dll denote the representation of the Lie
algebra g obtained by differentiation. If b\9...,bd is a basis of g and B} =
we consider the operators

j j

where C = (cυ) is a real symmetric strictly positive matrix and c, £ C. Then H
generates a continuous semigroup 5, holomorphic in the open right half-plane, with
a reduced kernel K defined by

(Szφ)(x) = J dy κz{x\ y) ψ(y) .

We prove Gaussian off-diagonal bounds and "exponential" on-diagonal bounds for
K. For example, if cι = 0 we establish that

|fc,(jc;;y)| g a{\ A zμίyme-> χte-d{χ',yf^\^Γλ

for all t > 0 and ε £ (0,1], where μ is the smallest eigenvalue of C, λ\ is the
smallest eigenvalue of H and d is a natural distance associated with the coefficients
C and the representation U. Bounds are also obtained for c z φ0 and complex t.
Alternatively, if H is self-adjoint then

\κz(x;y)\ ^ae-λ^Kcze-^Λ+MX)

for all z e C with Rez ^ 1, for some α G (0,2].

1 Permanent address: Department of Mathematics and Computing Science, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
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1. Introduction

The theory of strongly elliptic and subelliptic operators extends naturally from the
Euclidean space R^ to a general Lie group G (see, for example, [Rob, VSC]). In
particular every strongly elliptic operator has a representative affiliated with each
continuous Banach space representation U of the group. This representative is a
closable operator whose closure generates a continuous, holomorphic, semigroup S
with an action determined by an integral kernel K,

St = fdgKt(g)U(g),
G

where dg denotes left-invariant Haar measure. The kernel AT is a universal,
representation-independent, function whose smoothness and boundedness properties
have been examined in detail. The kernel satisfies Gaussian upper bounds and for
second-order operators with real coefficients it is positive and satisfies complemen-
tary Gaussian lower bounds. The derivation of good asymptotic estimates is, how-
ever, a more difficult and more specialized problem. The most detailed results have
been derived for Laplacians and sublaplacians on unimodular Lie groups whose
volume grows polynomially. In particular this includes all the nilpotent Lie groups.
But in this latter context there are many new, interesting, representation-dependent,
questions concerning the kernel.

The irreducible unitary representations of a d-dimensional, connected, sim-
ply connected, nilpotent Lie group G are described by Kirillov theory [Kir]. If
/ G g*, the dual of the Lie algebra g of G, and if m C g is a polarizing subalge-
bra of / then χ(εxpa) = exp(2πz7(#)) defines a one-dimensional representation of
M = exp m from which one can induce a unitary representation of G (see, for ex-
ample, [CoG]). Moreover, there is a one-to-one correspondence between the orbits
in g* under the coadjoint action of the group and the unitary dual of G. The induced
representations corresponding to the pair / and m can be explicitly constructed on
the space /^(R*), where k is the codimension of m in g, and other elements of g*
on the orbit of / and other polarizing subalgebras of / induce unitarily equivalent
representations of the group on L2(R*) We assume throughout that k ^ 1 since the
one-dimensional representations corresponding to the case k = 0 offer no problem.

Now if S is the semigroup generated by the closure of a strongly elliptic or
subelliptic operator in a unitary representation corresponding to / and m then the
action of S is given by an integral kernel K on Rk xΈLk,

(Stφ)(x) = Jdy κt(x; y) φ(y)
Rk

for all φ e L2(Rk). We refer to K as the reduced kernel. It is the central object of
study in the sequel. The description reduced kernel is used because K is obtained
from the universal kernel K by first identifying it with a function over R^ x R^
by use of the exponential map and then "integrating out" the surplus variables (see
[CoG] pp. 134-135). A key feature of this reduction process is that K is multiplied
by a complex-valued function prior to the integration. Therefore the reality and
positivity properties of K and K can be quite distinct. As an illustration let us
consider the connected simply connected three-dimensional Heisenberg group.

Let a\, a2, a3 be a basis of the Lie algebra g of the Heisenberg group G
satisfying [a\, a{[ = 03 with the other commutators zero. Then the standard ir-
reducible representation U of G on Z,2(R) is determined by exponentiation of
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the representation dU(a\) = —iP, dU(a2) = iQ, dU(a3) — il of the Lie algebra g,
where (Pf)(x) = if'(x) and (Qf)(x) = xf(x) for all / e CC°°(R) and x e R. The
Laplacίan corresponding to the standard basis a\, a2, a^ is represented by

H = - i d t / ί f l / ) 2 = P 2 + Q2 + / = --^7 + x 2 + / .

It is a positive self-adjoint operator and in addition is real, i.e., it leaves the real sub-
space of 1,2(R) invariant. If, however, one considers the Laplacians corresponding
to the one-parameter family of bases b\ = a\ + va2, b2 = a2, ̂ 3 = #3? with v G R,
then

Hv = -JzdUib,)2 =(P- vQf + Q2 +/ = - f J- + ivjĉ  +x2 +/

and //v,vφ0, is not real although it is still positive and Ho = H. In fact one has

Now the reduced kernel K corresponding to H is pointwise positive and is given
by Mehler's formula;

for all t > 0 and x j G R (see [Davl] Theorem 7.13). But then the kernel κγ

corresponding to Hv is given by

and for vφO this is complex-valued. This is somewhat surprising as the Hv are all
Laplacians, albeit defined with different bases, and hence the corresponding universal
kernels Kv are strictly positive and satisfy Gaussian lower bounds (see, for example,
[Rob] Sect. III.5). These observations clearly indicate that the analysis of the reduced
kernels is quite different from that of the universal kernels.

The Heisenberg group also indicates the possible asymptotic properties of re-
duced kernels. For example,

for all small t > 0 but

\κv

t(χ-χ)\~π-
χlle-χle-2t

for large t. Thus the kernel is fast decreasing on the diagonal and for large t the
decrease is of the form exp(—λ\t), where λ\ = 2 is the smallest eigenvalue of Hv.
Alternatively,

|<(x + y/2;x - y/2)\ - (4πtyι/2

e-
y2/{4t)e~tχ2

for all small t > 0 but

\κ](x Ί- y/2;x - y/2)\ - n-^e^^e-^e-^

for large t. Note that the Gaussian which dictates the off-diagonal decay for small t
has an exponent 1/4 which is identical to that of the universal kernel (see [KuS]).
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Our aim is to establish broadly similar asymptotic estimates for reduced ker-
nels for a general nilpotent group. The most precise results are for pure second-
order strongly elliptic operators with real symmetric coefficients but we also obtain
estimates for more general second-order operators and higher-order operators with
complex coefficients. There are two types of result which follow from two different
approaches.

The first approach concentrates on the small t behaviour and the off-diagonal
decay of the reduced kernel. It consists of extending the Nash inequality methods
of [Rob] and this involves tailoring the Nash inequalities to particular unitary repre-
sentations. This enables us to establish that the kernels of mth order strongly elliptic
operators have the expected singularity t~klm for small t > 0. Moreover, in the
case of second-order operators H with real principal coefficients one obtains Gaus-
sian bounds aεt~

k/2 exp(-d(x; y)2(4(l + ε)t)~ι) for all ε,t G (0,1]. (The distance d
appearing in the estimates is the natural distance in R^ determined by the operator
H in the particular representation.) If the operator also has real first-order coeffi-
cients these estimates can be extended to all / > 0 and one has an additional factor
exp(-/liθ? where λ\ is the smallest eigenvalue of H. Thus one obtains bounds
which closely approximate the optimal off-diagonal decay and incorporate the opti-
mal large t behaviour. Nevertheless, this approach gives no information about the
on-diagonal decrease properties of the kernel.

The second approach concentrates on the large t behaviour and the on-diagonal
properties. It consists of a blend of spectral theory and Sobolev inequalities and
applies to self-adjoint strongly elliptic or subelliptic operators of all orders. One
derives bounds on the reduced kernel with the optimal decay exρ(—λ\t) for large
t which are "exponentially" decreasing along the diagonal. Estimates of this type
have been previously obtained for Markov semigroups (see, for example, [Dav2],
Chapter 4) but the proofs depend heavily upon positivity arguments and hence are
not applicable in the current context.

2. Preliminaries

As a preliminary to the estimation of semigroup kernels we first recall some fur-
ther elements of Kirillov's theory of unitary representations and derive some useful
results on particular representations and equivalences. Secondly, we give a pre-
cise definition of the reduced kernels and derive some of their simplest properties.
Thirdly, we recall the definition of strongly elliptic operators and the associated
semigroup kernels. For the Kirillov theory we mostly adopt the notation and termi-
nology of Corwin and Greenleaf [CoG].

Let G be a connected, simply connected, <i-dimensional, nilpotent Lie group
with Lie algebra g and fix / G g*. Let m denote a polarizing subalgebra for /
of dimension dm and let M = exp(m) denote the corresponding subgroup of G.
Further let a\,...9adm9...,adm+k be a weak Malcev basis of g passing through
m, i.e., spanjαi,...,aj} is a subalgebra of g for all j ^ d — dm + k and m =
span{#i,.. ,,adm}. One can then define a one-dimensional representation of the sub-
group M by setting χ(expα) = exp(2πz7(α)) for each a G m and this representation
induces an irreducible unitary representation π = ind(M f G, χ) on the Hubert space
3t?π (see [CoG], Chapter 2). Explicitly, introduce a map γ : R* —> G by

γ(x) = γ(xu. . . , * * ) = exp(*iα</m+i) Qxp(xkadm+k).
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The homogeneous space M\G of right cosets of the subgroup M has a unique,
up to a positive constant, right invariant measure dg given by the image of the
Lebesgue measure of R^ under the analytic diffeomorphism x F-> Mγ(x). Next, let
J4fπ be the Hubert space of (equivalence classes) of Borel measurable functions
φ : G —* C such that

φ(mg) = χ(m)φ(g)

for all m G M and g G G and

/ dg\φ(g)\2 < oc .
M\G

Then (π(g)φ)(h) = φ(hg) defines a unitary representation of G in J^π, which is
irreducible.

The map (m,x) ^ m y(x) is a diffeomorphism from M x R ^ onto G and allows

one to define a unitary map J :L2(Rk) —> J^π by

for all m G M and X G R I One can then transfer the action π of G on Jf"π to a
unitary action £/ on L2(Rk) by use of J . This is the basis realization of π in [CoG],
p. 125. The resulting representation depends on the choice of Malcev basis but each
choice leads to a unitarily equivalent representation. An explicit description of the
representation U is as follows. Let E = (E\, E2) : G —* M x Rk be the inverse of
the map (m, x) H-> m y(x). Then

(U(g)φ)(x) = χ(E](γ(x)g))φ(E2(y(x)g)) (1)

for all g G G, φ G Z,2(R^) and almost all x G R .̂ Moreover, E\ and £2 are
polynomial maps. Note that U depends on the weak Malcev basis only through
sρan{αi,...,tf</m} and adm+u...9adm+k.

We begin by observing that the basis realization gives a simple result for the
action of the representation on the Lp-spaces associated with the representation
space.

Lemma 2.1. Let U be a basis realization on L2(Rk) of the induced representation
π. Then U extends to a continuous isometric representation on each of the spaces
Lp(Rk),pe [l,oo].

Proof For each g G G there is a polynomial σg : R* —» R and a polynomial diffeo-

morphism θg : R^ -> Rk such that

(U(g)φ)(x) = eισ^x)φ(θg(x)) (2)

for all φ G L2(Rk). This is just a restatement of (1). It is important that the Jacobian
of the transformation θg has modulus one, since U is unitary. Therefore

\\U(g)φ\\{ = fdx\φ(θg(x))\ = fdx\φ(x)\ =

for all φeLι(Rk)ΠL2(Rk). Similarly, \\U(g)φ\\oc = ||φ||oc for all φeL2(Rk)Π
Loo(R ). Hence U extends to a group of isometries on each of the Lp-spaces. Now
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continuity follows for φ G C£°(G) because

( \ υ p

\\U(g)φ-φ\\p ̂  ί ^dx\φ(θί)(x))-φ(x)\P\

ί V"
+ {^dx\eισ^)-\\P\φ(x)\Λ .

The continuity is verified using the properties of σ and θ together with the Lebesgue

dominated convergence theorem. Strong continuity on Lp(Rk),p G [1, oo), follows

by a density argument and weak* continuity on Loo(R^) follows by duality. D

In the subsequent proofs of kernel bounds some weak Malcev bases are more
suitable than others in the basis realizations. We initially establish Nash inequalities
for a basis realization of the representation associated with a weak Malcev basis
with the following ideal property:

[a,adm+j] £ s p & n { a \ , . . . , a d m + j - \ } f o r a l l α G g a n d y ' G { l , . . . , & } . ( 3 )

These inequalities are then instrumental in the derivation of bounds on the reduced
kernel in this particular realization of the unitary representation. Separate arguments
are necessary to extend the bounds to other realizations.

Lemma 2.2. There exists a weak Malcev basis passing through the polarizing
subalgebra m with the ideal property (3).

Proof One can easily construct a weak Malcev basis of m (see [CoG], Theorem
1.1.13(a)) and one has to extend this basis to a basis of g with the property (3).

Therefore, given a proper subalgebra ΐ) of g, one has to construct an element
a e g\ί) such that [g, a] C fj. Then ί)\ = span(ί), a) is a subalgebra of g with
dimί)i = 1 +dimt) and the lemma follows by induction. Let c£n\n G N, be the
decreasing central series of g, i.e., g(1) = g and g("+1) = [g, gM]. There exists
n eN such that g(/2+1) C ϊ) but g(/7) £ f). Let a e g(/l)\l) Then [g,α] C [g, g(w)] =
g ("+1) Cί). D

Thus for the given polarizing subalgebra m one can always find a weak Mal-
cev basis passing through m which has the ideal property (3). We next examine
the equivalence of two basis realizations corresponding to two weak Malcev bases
passing through the same polarizing subalgebra.

Lemma 2.3. Let a\,...,ddm,...,dd and ά\,...,άdm,...,άd be two weak Malcev
bases passing through m and U, £/, the corresponding basis realizations of the
induced representation in Z,2(R*). Then there exist a polynomial σ : R^ —> R, a
polynomial diffeomorphίsm θ : R^ —* R^ and a constant c > 0 such that the mod-
ulus of the Jacobian satisfies |detθ7(x)| = c1 for all I E R ^ and

U = VUV* ,

where V is the unitary map on Z,2(R*) defined by

(Vφ)(x) = ceiσ(x)φ(θ{x)).
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Proof. Define the maps γ : R* -> G, Eλ : G -> M, £ 2 : G -• R* and J : £2(R*) -> f̂π
as above with respect to the basis αi,...,α</ and the analogous maps y,E\ and £ 2

with respect to the basis ά\,...,άd. For the definition of J one has to be careful
since one can fix only once the measure on M\G. This we did via the bijection
x 1—> My(x). Therefore the image of Lebesgue measure under the map x κ+ My(x)
equals a positive constant times the measure dg on M\G. Hence there exists a
c > 0 such that

(Jφ)(my(x)) = cχ(m)φ(x)

defines a unitary map from L2(Rk) onto J^π.
One now easily verifies that V =J~ιJ intertwines the representations U and U

and V is unitary. Moreover,

(Vφ)(x) = (Jφ)(y(x)) = cχ(Eιy(x))φ(E2y(x)) = c ^ ^ φ C ^ ) ) ,

where θ = E2 oγ is a ploynomial from Rλ' into Rk and σ(x) = 2πl(exp~ιE\y(x))
is a second ploynomial. It remains to show that θ is a polynomial diffeomorphism
with a Jacobian whose modulus is equal to c2.

Define θ :Rk -^Rk by θ = E2oy. Then for all x e R* one has

and similarly θθ(x) = x, so θ is a polynomial diffeomorphism. Then x —•> det θ;(x)

and x H-+ det ^(^(x)) are polynomials and det θ(θ(x)) det β;(x) = det(θθ)/(x) = 1.
So det θr is constant and non-zero. Since V is unitary the absolute value of this
constant must be equal to c2. D

Next we give a more precise definition of the reduced kernels. Let π = ind(M f
G, χ) be the induced irreducible unitary representation on M"π described above. If
τ G £f(G) then the operator

π(τ) = Jdgτ(g)π(g)
G

is of trace class on J^π (see [CoG], Sect. 4.2). Moreover, in the basis realization U
of π on Z/2(R*) corresponding to /,m and a weak Malcev basis a\,...,ad passing
through m, the action of U(τ) is determined by an integral kernel κτ,

(U(τ)φ)(x)= fdyκτ(x;y)φ(y),
Rk

where κτ e ^(Rk x R*). Finally, κτ is given in terms of τ by the reduction formula

κτ(x; y) = Jdm χ(m) τ(y(x)~ιmy(y)) , (4)
M

where χ and y are the maps introduced earlier. This relation is of fundamental
importance in the sequel.

There are some simple relationships between the kernels corresponding to uni-
tarily equivalent representations. First we consider the relationship for kernels
corresponding to different basis realizations.

Lemma 2.4. Let U and U be two basis realizations on L2(Rk) of the induced
representation π, as in Lemma 2.3, and κτ and κτ the kernels corresponding to
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the two representations and τ G ̂ (G). Then

κτ(x; y) = c2ei{σ(x)-σ{y))κτ(θ(x); θ(y))

for all x j G R ,̂ where σ, θ, c are defined by Lemma 2.3.

Proof One has

Jdxf dyξ(x)κτ(x;y)ψ(y) = (ξ, U(τ)ψ) = (V*ξ,U(τ)V*ψ)
Rk Rk

= f dxf dy(V*ξ)(x)κτ(x;y)(V*φ)(y)
Rk Rk

for all ξ, φ eL2{Rk\ where

(V*ξ)(x) = c-ιe'iσiθ~l{x))ξ(θ~ι(x)).

Therefore, since c2 is the absolute value of the Jacobian of the transformation
x H^ θ(x) one immediately finds the desired relation between the two kernels. D

Secondly, we compare the kernels corresponding to shifts under the group. If
π is a unitary representation of G on J^π then for each h G G one has a unitarily
equivalent representation Uh given by Uh(g) = π(hgh~{) — π(h)π(g)π(h~]). More-
over, if π is the induced representation corresponding to / and m then π^ is the
induced representation corresponding to the images h and nt/, of / and m under the
coadjoint and adjoint action of the group, respectively. Furthermore, if U denotes
the basis realization of π on Z,2(R^) corresponding to a weak Malcev basis passing
through m then there is a realization Uh corresponding to the images of /, m and
the basis. But for each h G G there is a polynomial σ^ : R^ —>• R and a polynomial
diffeomorphism θh : R^ —» R^ such that

(U(h)φ)(x) = eiσ^x)φ(θh(x))

for all φ eL2(Rk). This is again a rephrasing of (1) and again the Jacobian of
the transformation θh has modulus one. Therefore, if κτ and κh

τ are the kernels
corresponding to U and Uh and τ G ̂ {G) then

κh

τ(x; y) = eι^x)-σ^y))κτ(θh(x); θh(y)) (5)

for all x, y eRk. This is the direct analogue of the conclusion of Lemma 2.4 for
the kernels corresponding to representations arising from different Malcev bases
passing through the same polarizing subalgebra. Nevertheless, unitary equivalence
of representations does not always imply that the kernels are related in the manner
of (5). There is a third form of unitary equivalence of induced representations for
which the relationship between the kernels is quite different.

If / G g* and nti, TΠ2 are two different polarizing subalgebras then the in-
duced representations %\ and π2 corresponding to (/, nti) and (/, τrt2) are uni-
tarily equivalent. But the connection between the reduced kernels κ\ and κτ

associated with a T G ̂ ( G ) and two weak Malcev bases is not generally of
the above form. For example, consider the case that mi and m2 have codimen-
sion one in g but mi Π nt2 has codimension two. Then one can choose ele-
ments a\,...,ad G g such that a\,...,ad-2,ad-\,ad is a weak Malcev basis passing
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through rrti, a\,...9ad-2, ad, &d-\ is a weak Malcev basis passing through rri2, and
l([ad-\, ad]) — 1. The corresponding unitarily equivalent representations U\ and U2

on L2(R) can then be expressed as

8
dUx (ad) = — + 2πil(ad), dUλ (ad-1) = -2πίx + 2πil(ad-1),

2(ad) = 2πix -f 2πil{ad), dU2{μd-\) — ̂ r + 2πil(ad-\) ,

and

for all a G span{«i,.. .,ad-2}. Now, however, the unitary equivalence of the rep-
resentations is given by Fourier transformation and the kernels are linked by the
relation

where 3F denotes the Fourier transform with respect to both variables.
Next we recall some basic properties of strongly elliptic operators on Lie groups

and the corresponding semigroups. We mostly follow the notation and terminology
of [Rob].

Each strongly elliptic operator on the J-dimensional Lie group G is defined in
terms of a basis b\,...,bd of the Lie algebra 9 and a form C, i.e., a family ca e C of
complex-valued coefficients indexed by a multi-index α = (oc\,...,ocd) with oίt G No
and |α| = αi + \- otd. The form C is called an mth order strongly elliptic form if
c% = 0 for |α| > m and the ellipticity constant

cΛ{iξf : ξ G Rd, \ξ\ =

is strictly positive. Given the basis and the strongly elliptic form one can define a
strongly elliptic element of the complex universal enveloping algebra © of g by

α:|α| ^ m

where Z?α = Z?̂ 1 ba/. There is a unique anti-automorphism a \-> a^ on (5 such
that x^ = —x for all x G Q and the image h^ of hm under this mapping is called the
formal adjoint of hm. It is a strongly elliptic element,

α : | α | 5Ξm

with coefficients cj uniquely determined by the cα and with c[ =~c^ if |α| = m.
Next let ($Γ, U, G) be a continuous representation of G on the Banach space ΘC

and let Bt = dU(bι) denote the generator of the one-parameter subgroup
i n (7(exp(—ίδ/)). Then there is a densely defined, closable, operator Hm on χ
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such that

Hm=dU(C)= Σ cα£α

α:|α| ^m

with Ba = 5"1 - ^ and £>(/4) is the common domain 9£m of all the B* with
α| = m. The formal adjoint H^ of Hm is defined in an analogous manner from h^.

These operators are called mth order strongly elliptic operators and the coefficients
ca with |α| = m are called the principal coefficients.

Second-order operators can be reexpressed in the form

d d

H2 = - Σ CtjAtAj + Σ CiAi + CQI ,
ι,j=\ i=\

where the matrix C — (ctj) of principal coefficients is strictly positive and symmet-
ric. The ellipticity constant is then identified as the smallest eigenvalue of C. In the
sequel we will consider second-order operators for which the principal coefficients
Cij are real.

The basic results we need are the following.
The closure Hm of the strongly elliptic operator Hm generates a continuous

semigroup S on 3£ with a universal kernel Kt £ £f(G) which depends only on
the basis b\,...9bd and the form C, i.e., St — U(Kt) with Kt independent of the
particular representation. The kernel satisfies Gaussian bounds of order m,

\K,(g)\ £ aΓ'"me0»e-«\<'\m'-ι)ιlίm-l) ,

where a, b > 0, ω ^ 0 and g \—> \g\ is a modulus on the group. The kernel is
positive if and only if the operator is of second-order with real coefficients. Finally,
the kernel K^ corresponding to the formal adjoint satisfies

where A is the modular function on G.
In fact there exists θ G (0, π/2] such that for any g e G the function t F-> Kt(g)

extends to a function which is holomorphic in the subsector { z G C : |argz| < θ}
of the right half plane and St = U(Kt) extends to a holomorphic semigroup on the
sector {z G C : |argz| < θ}. Note that this subsector is representation independent.
Moreover, θ = π/2 if the principal coefficients are real. The Gaussian bounds extend
to this universal subsector but the relation with the formal adjoint becomes

If the Lie group G is nilpotent then there are a number of properties of the semi-
group generated by the strongly elliptic operator in the irreducible representations
which follow from the general theory.

Let U be a basis realization on L2(Rk) of the induced representation π of the
nilpotent group and Kt the kernel corresponding to the strongly elliptic element hm

of (5. Since Kt e 6f(G) there is a reduced kernel κt e 6f(Rk x R*) defined by the
analogue of (4),

κt(x;y) = fdmχ(m)Kt(y(xΓιrny(y)). (6)
M
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Then the semigroup S corresponding to hm in the representation U on L2(Rk) is
given by

(Stφ)(x) = (U(Kt)φ)(x) = f dy κt(x; y) φ(y) .
R*

Note that as a consequence of Lemma 2.1 and the general theory of strongly elliptic

operators the semigroup S extends from L2(R ) to a continuous semigroup on each

of the spaces Lp(R ), p G [1, oo]. Moreover,

Hs,ll,_, s \\κ,\\u ii^Hoo-oo ύ p : / i t , = ρ:,ii,

and, by interpolation,

PP s \\κ,\U.
Since K is universal these bounds are representation independent.

Similar properties are true for complex t in the universal sector of holomorphy.
The reduced kernel is defined by (6),

κz(x; y) = jdm χ(m)Kz(y(x)~]my(y)),
M

and z H-> κz(x; y) remains holomorphic in the subsector. This follows from the Gaus-
sian bounds on K and the estimates of Lemma 4.2.3 in [CoG]. Combination of these
estimates with the Gaussian bounds guarantees that the integral relating K and K
is convergent uniformly on compact subsets of Rk xRk. The action of Sz is deter-
mined by κz within the universal subsector of holomorphy as a consequence of the
general theory. Now, however, one has

| |SZ | | ,_M S \\Kz\\n | | £ ! | o ™ ^ ll^fHi =

and interpolation gives

ii o M <- ii v \\χIP\\γ it 1- 1// 1

Again these bounds are representation independent.
We next establish that the Su t > 0, are compact operators on the Lp-spaces

and the semigroup generator has a compact resolvent on each of these spaces.

Theorem 2.5. Let I G g*, a\,... ,adm,.. .,adm+k a weak Malcev basis passing
through a polarizing subalgebra m of I and U the corresponding basis realiza-
tion on L,2(Rk). Next, let C be a strongly elliptic form of order m, p G [l,oo]
and Hm — dU(C) the corresponding strongly elliptic operator on Lp(Rk). Then
the spectrum of the closure of Hm is a countable discrete set with accumulation
point at infinity and each point in the spectrum corresponds to an eigenvalue
of finite multiplicity. Moreover, the spectrum and the eigenspaces are independent
of p.

Proof If t > 0 and p,q G [l,oo], then St is a continuous operator from Lp(R.k)
into Lq(Rk) since κt £ Sf(Rk xRk). So for all pe[l,oo] the operator S, =
St/3 ° ^ 3 o Stβ : Lp —> L2 —>• L2 —>• Lp is compact since Stβ = U{Ktβ) : L2 -^ L2 is
compact (see [CoG], Theorem 4.2.1).
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Next, if p G [l,oo) and λ > 0 is large enough then the integral

is norm convergent in 5£(LP\ so (λl + Hm)~{ is compact from Lp into Lp. By

duality, the resolvent operator (λl + Hm)~ι = ((λl + Hm)~1)* is also compact from
ZQO too ^oo The spectrum of Hm must have an accumulation point at infinity since
the representation space is infinite dimensional.

Finally, let φ G Lp be an eigenvector for the operator Hm on Lp with eigenvalue
λ. Then φ G £>°°(BQ = «^(R*), by [CoG] Theorem 4.1.l(i) and the Sobolev em-
bedding theorem. Hence φ G Lq, for all q G [l,oo] and i/φ = λφ in Z^. Thus the
spectra and eigenspaces are independent of p. D

In Sect. 5 we will derive some crude estimates on the growth behaviour of the
eigenvalues in order to establish bounds on the reduced kernel for large time.

3. Young and Nash Inequalities

Our aim is to derive bounds on the reduced semigroup kernel κt defined by (6)
in an arbitrary irreducible unitary representation of the group. We accomplish this
in two steps. First, we derive bounds with the correct singular structure for small
values of t. Secondly, by a separate argument, we establish bounds with the correct
asymptotic decrease for large t. The derivation of small t bounds on the universal
kernel K in [Rob], Chapter IV, via Nash inequalities extends to give the small
t bounds, but this extension requires a form of the Nash inequalities tailored to
the particular unitary representation. We begin by considering a particular basis
realization of the representation.

Let U be the basis realization of the nilpotent Lie group G corresponding to
a weak Malcev basis a\,...9adm,...,a<ιm+k passing through a polarizing subalgebra
m for an / G g*. If φ G Z,2(R*) and φ G L\(G;dg) one can define a convolution
product ψ *uφ by introducing

U(φ) = Jdgψ(g)U(g)9
G

and then setting
= U(ψ)φ.

The aim of this section is to establish a version of Young's inequality for this
product whenever the weak Malcev basis has the ideal property (3). Therefore
we introduce the space S£q with q G [l,oo] as the set of (equivalence classes of)
measurable functions ψ over ΈLdm x R^ for which the norm |||ιAIII^ is finite where

(
= J dw[Jdx\φ(β(w)y(x))\

for q G [l,oo),
= J dwess sup \φ(β(w)y(x))\

k
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and β : R "̂1 —> M is the map

β(wx,..., wdm ) = exp (wγaλ) exp (wdmadm).

Note that the product *(/ and the spaces 5£ q^ g φ l all depend on the choice of
basis. Only the space 5£\ is independent of the basis since S£\ = L\(G).

Proposition 3.1. Let «],. . ., adm,..., adm+k be a weak Malceυ basis passing through
m which has the ideal property (3). If p,q,r G [l,oo] and 1 + \jr = \/p -f \jq
then φ *uφ G Lr(R^

\\Φ*Uψ\\r S \\ψ\\p\\\ψ\\\q

for all φ G Lp(Rk) Π L2(Rk) and φe^qD L\(G). Hence the map (φ,φ) \

x L/?(R/r) into Lr(Rk), which we will still denote by *^, and
Π J^i) x (Lp(R ) ΠZ/2(R )) into Lr(R ) can be extended to a map from

\\ψ*uφ\\r ύ

for all ψ G Lp(Rk) and φ G ^q.

Remark 3.2. The inequalities of the proposition correspond to the classical Young
inequalities when G = Rk and U is the action by translation.

The proof of the proposition relies on a combinatorial result for products of
exponentials, an interpolation property of the spaces 5£q and adaptation of the
interpolation proof of the classical Young inequalities.

Lemma 3.3. Let a\,...,adm,...,adm+ic be a weak Malcev basis passing through m

which has the ideal property (3). If w G R '̂" and x,y£Rk then there exist an

m(= mWfX,y) G M and a z(= zWiX>y) G R^ such that

y(x)β(w)y(y) =

Moreover, there exist polynomials p\,...,Pk-\ such that

Zk = yk• + *k 9

Zk-2 = yk-2

z\ = y\ +χ\

where the p; only depend on the indicated variables.

Proof. By using the Baker-Campbell-Hausdorff formula one can reexpress the prod-
uct y(x) β(w)y(y) as a single exponential and then separate the terms starting with
Zfr,Zfc_i,... . It follows from this process and the ideal property (3) of the Malcev
basis that the product can be expressed in the desired form. D

The most important implication of the lemma for the subsequent calculations is
summarized in the following corollary.
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Corollary 3.4. If zw^y is defined by Lemma 3.3, then the maps χ\-^zw^y and

y ^ zw,x,y from Rk into Rk are bίjections and have Jacobίan one.

Proof The Jacobi matrices are triangular and the diagonal elements are all equal
to one. Therefore the determinants have value one. D

Lemma 3.5. Let p\,pi,q\,q2 G [l,oo]. If T is a linear operator from the space

5£Pχ Π S£Pl to the space Lqι(Rk)ΠLq2(Rk) and

then T extends to a bounded linear operator from 5£ PΊ to Lqy{Rk) with norm less

than or equal to Mx ~
ΊM\, where

= (i - y)Pϊι + ΊPΪ\ q;1 = 0 - y)q^x +

and γ e [0,1].

This is just a variant of the Riesz-Thorin interpolation theorem which is established
by a slight modification of the arguments used to prove the classical version.

Now we are prepared to prove the proposition.

Proof of Proposition 3.1. First, consider the case p = q = r = 1. Let φ G L\(Rk) Π

L2(Rk) and φ G L\(G). Since £/ extends to an isometric continuous representation

on L\(Rk) one has

\\φ*uφ\\\ = \\U(ψ)φ\\\ <; ||ιA||i||φ||i (7)

Since S£\ = L\{G) and \\\Φ\\\\ = \\φ\\\ this establishes the special case of the desired
result.

Secondly, we consider the case p = 1 and q — r = oo. Let φ G l i ( R ) Π L2(R )
and ^ G if i (Ί ifoo. Then it follows from (1) that

(U(φ)φ)(x) = j dwfdyφ(β(w)γ(y))(U(β(w)y(y))φ)(x)

= J dwJdyφ(β(w)γ(y))χ(mWiXiy)φ(zWiXiy),

where we have used the notation of Lemma 3.3 in the last step. Therefore

(φ*uφ)(x)= f dw Jdy φ(β(w)y(y))χ(mw^y)φ(zw^y),
Rdm Rk

and hence

\(φ*uφ){x)\ ^ / dwfdy\ψ(β(w)y(y))\ • \φ(zw,x<y)\ . (8)
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Therefore

\\Φ*uφ\\co ύ sup J dwfdy\φ(β(w)y(y))\ \φ(zw,x,y)\
xeRkRdm R*

S sup / dwfdy sup \φ(β(w)y(y'))\ \φ(zw^y)\
x£RkR(ίm R* y/<ERk

= / dwfdz sup W/?(w)y(/))| |φ(z)|

HII /ΊIUM!., (9)

where the third step uses a change of variables y ι-> zw^y and Corollary 3.4.
Thirdly, we inteφolate between the estimates (7) and (9).

The estimate (7) states that for φ e Lι(Rk) ΠL2(Rk) the linear operator Tψ

defined by

Tφφ = φ

is bounded from <£\ to L\(Rk) and

WIΦWU

Similarly, (9) states that the operator Tφ is bounded from g\ Π if oo to
and

Halloo ίk

to Lq(Rk) for each q e [l,oo] and

Therefore it follows from Lemma 3.5 that Tφ extends to a bounded operator from

^ I H I I inf i l l , . (10)

Fourthly, the Holder inequality gives

\\Ψ*uφ\\oo ύ sup / dwjdy\φ(β(w)y(y))\ • \φ(zWΛy)\
x€RkRclm Rk

^ sup J dwlfdy\φ(β(w)y(y))\Λ ( Jdy\φ(zw^y)Λ
χeRkRdm \Rk ) \Rk )

for all φ e Lr(Rk) Γ)L2(Rk) and φ e ^ q C\Lλ whenever \/q + 1/r = 1. Then by a
change of variables one obtains the bounds

||<A*^l|oo ^ IMIrllMH*. ( i i )

Therefore if Uψ is defined as an operator from Lr(Rk) Π L2(Rk) to Loo(R*) by

Uψφ = φ*uφ

for ψ e ifq then (10), together with (11), gives bounds

\\uΦφ\\q^\\\n\q\\ψh'
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Hence Uφ extends to a bounded linear operator from Lp.,(Rk) to Lq,,(Rk) where

p~ι = yr~x + (1 - y), q~x = (1 — y)q~x and y G [0,1]. Moreover,

\\Ψ*uφ\\qv = \\Uφφ\\qr S\\\Φ\\\q\\φ\\P7

by the usual Riesz-Thorin theorem. But 1 -f g^1 = q~x + p^x and hence one ob-
tains the desired result. D

The version of Young's inequalities given in Proposition 3.1 can be used to
derive Nash inequalities by the arguments of [Rob], Chapter III, Sect. 3.

Let Z>i,...,Z^/ be an algebraic basis of g, Bt = dU(bj) the representatives on

L2(Rk) and L'2.n(Rk) the corresponding C-subspaces (see [Rob], Sect. IV.4). So

Lf

2.JRk)= Π D(Bh'"Bύ'

Next let p denote the subelliptic distance associated with the basis and | |' the
corresponding modulus, i.e., \g\f = ρ(g e) (see [Rob], Sect. IV.4). If α : [0,1] —> G
is an absolutely continuous path from the identity e to g with tangents in the space
spanned by b\^...,b^ι then there are αz G /.^([0,1]) such that

at / = 1

for all ^ G C°°(G), where JBZ is the left invariant vector field on G corresponding
to the direction bj. We define

1 /' V2

where the infimum is over all possible paths. Therefore

1 d'

((/ - U(g)φ)(x) = fdtΣoti(t)(U(oc(t))Biφ)(x)
0 i=l

for all φ G CC°°(RA') and consequently

||(7 - U(g))φ\\2 g Jdt ί Σ>(0 2 ] ί Σll^φllij

Optimizing this last estimate over the possible paths α one deduces that

| | ( / - U(g))φ\\2 £ I f l f l ' ί J
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Therefore if φ £ L\{G) is a positive function with \\φ\\\ = 1 one has

e V/2

||(7 - U(φ))φ\\2 S Jdgφ(g)\g\' lΣ\\B,φ\\lj (12)

This bound together with Young's inequality now gives the Nash inequality.

Proposition 3.6. Let a\,... ,adm,.. -^dm+k be a weak Maleev basis passing through
m which has the ideal property (3). For each positive φ G L\{G) with \\φ\\\ = 1
and each algebraic basis b\,...,bdr of g,

("' V/2

1Mb ύ Jdgφ(g)\g\' ί Σ\\BM\l j + llh/ΊIHMii (13)

for all φ e L'2.ι(Rk)nLι(Rk). In particular

(14)

for each ε > 0 where φε denotes a non-zero, positive, integrable, function with

support in the ball B'ε = {g e G : \g\f < ε}.

Proof First, one has the obvious identity

and since U(φ)φ = φ *υφ the initial statement of the proposition follows from
Proposition 3.1 and (12). The second statement is an immediate consequence of
choosing φ = ιAe/lll*Aε|lli D

The Nash inequalities (13) can in principle be optimized by minimizing the
right-hand side with respect to the choice of φ. The most practical way of tack-
ling this problem appears to be through optimization of (14) with respect to ε
and with φε a characteristic function. But this requires an efficient bound on
ε ^ HlXεllb/IIIXεlllij where χε is the characteristic function of the ball B'ε. The L\-
norm j | |χ f i | | | i can be easily estimated because

The main problem is to estimate | | |χ ε | | |2. This is straightforward if b\,...,bdι is a
vector space basis of g. Then the corresponding modulus \g\' equals the full modulus
\g\ and the image of g ι—> \g\ under the exponential map is locally equivalent to the
Euclidean norm on R^. Hence one has bounds

for some α > 0 and all ε 6 (0,1]. Since one also has estimates | | |&| | | i ^ u'εd for
small ε, with d = dm + k the dimension of the group, this gives bounds

WfcllMllfcllli ύ ™~kl1 (15)

on the ratio which are valid for all ε G (0,1],
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For an algebraic basis bi,...,b^i the | | | χ ε | | | i es t imates are clear s ince one has
est imates

a~hD' g \B'ε\ <, OLED'

for ε G (0,1] and

OL~hD ^ \B'ε\ ̂  a{ε
D

for ε Ξ> 1, for appropriate α,αi > 0. The two dimensions D' and D are usually
distinct and D' — D if and only if G is stratified and b\,...,bjf spans the first
subspace in its grading (see [VSC], Remark IV.5.9). The estimation of the L2-norm
is more difficult.

It is possible to make a crude estimate of Mfollh f° r small ε by remarking
that there is a compact subset of R^ which contains the support of the images of
χε,ε G (0,1] under the exponential map. Therefore

for all ε G (0,1] and a suitable α2 ^ 0. But a more precise estimate requires more
detailed information on the relationship between the Malcev basis a\,...,ad and the
algebraic basis b\,...,b^. For example, if G is stratified, b\,...,bd' is a basis for
the first subspace of its grading and each αz is a commutator in the bj, then one
can find good bounds on | | |χ c | | |2.

Our inability to establish good estimates on | | |χ c | | |2 limits the usefulness of the
Nash inequalities for subelliptic operators. Nevertheless, the small ε estimates (15)
yield inequalities which can be usefully applied to the analysis of strongly elliptic
operators.

Let b\,...,bd be a vector space basis of 9. Then combination of (14) and (15)
gives bounds

for all φ e L2;\(Rk)ΠL\(Rk) and all ε G (0,1]. But if one introduces the norms

on Z,2;i(R*) with ye (0,1] one then has bounds

valid for all ε G (0,1] and for ε ^ 1/y. But these bounds can be simply modified
to hold for all ε > 0 and then optimized over ε.

Corollary 3.7. Let a\,...,adm,...,adm+k be a weak Malcev basis passing through
m with the ideal property (3) and let b\9...,bd a vector space basis for g. Then
there is an a > 0 such that
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for all ψ G L2-\ ΠL], all ε > 0 and all y G (0,1]. Consequently, there is an OL\ > 0
such that

\\φ\\i ^

for all φ G L2,\ Π L\ and all y G (0,1].

Remark 3.8. The above Nash inequalities are expressed, or are expressable, in terms
of the C^seminorms Λ^,i, or the Cι-norms || ||2,i used in [Rob]. Similar results
can, however, be formulated with the Cn-seminorms and Cn -norms by the use of
embedding properties. In particular for each n G {2,3,...} there is an αn > 0 such
that

N2;l(φ) S sn-ιN2.n(φ) + ocn8-]\\φ\\2

for all φ G L2-n and all c G (0,1] (see [Rob], Lemma III.3.3). Similarly,

for all φ G L2^n and all ε > 0.
In the sequel we need a variation of the above results which is formulated in

terms of a second representation U° of G associated with U. The action of U is
given by (1) which can be reformulated with the notation of (2) as

and then the action of U° is defined by

It then follows as for U that U° is an isometric continuous representation on Lp(Rk)
for p G [l,oo]. Note that if b G g and B = dU(b) then

k δω

with Xn and Y real polynomials. Hence if B° — dU°{b) one has

(Bφ)(x)=i:Xn(x)%x),
n=\ Oxn

i.e., B° is the principal part of the first-order partial differential operator B.
Now if one defines a convolution product φ *Voφ by setting

φ*uoφ = U°(φ)φ,

then the generalized Young inequality is again valid.

Proposition 3.9. Let a\,..., adm9. •.,o,dm+k be a weak Malcev basis passing through
m which has the ideal property (3). If p,q,r G [l,oo] and 1 + \jr = l/p+ l/q
then (φ, ψ)^φ *ί/oφ from {^q Π if i) x (Lp(Rk) Π L2(Rk)) into Lr(Rk) extends
to a map from ££q x ^^(R^) into Lr(Rk) which satisfies

\\Ψ*uoφ\\r ύ \\φ\\,

for all φ 6 LJRk) and ψ e £Cq.
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Proof The proof is very similar to that for the representation U but the starting
point is now the identity

(U°(φ)φ)(x) = / dwfdyψ(β(w)γ(y))φ(zw,x<y),

which then gives

\(U°(ψ)φ)(x)\ S J dwjdy\ψ(β(w)y(y))\ • | φ ( z w ) |

in direct analogy with (8). The point is that the phase which distinguishes between
the action of U and U° plays no role in this estimate or in the subsequent estimates
that are essential in the proof. D

One can now derive a version of the Nash inequalities suited to the seminorms
associated with the operators Bf = dU°(bj). One has

id N
 x'2

\\(I-U°(φ))φ\\2 ^Jdgψ(g)\g\
G \i=\

in direct analogy with (12). Therefore if

d

with y £ (0,1] one obtains the following version of Corollary 3.7.

Corollary 3.10. Let a\,...,adm9...,adm+k be a weak Malcev basis passing through
m with the ideal property (3) and let b\,...,bd a vector space basis for g. Then
there is an α > 0 such that

for all φ £ L2-\ ΠL\, all ε > 0 and all y e (0,1]. Consequently, there is an a\ > 0
such that

\\φ\\i = β i ί ^ i ί ^ O / ί y l M l i ) ) + 2 ^ I I Φ I I I

for all φ e L2;i Π L\ and all y e (0,1].

The proof is a repetition of the previous arguments but with Proposition 3.1
replaced by Proposition 3.9.

4. Kernel Bounds: Small t

In this section we use the Nash inequalities to obtain bounds on the, reduced kernel
κt associated with the strongly elliptic semigroup St. Since the Nash inequalities are
established for weak Malcev bases with the ideal property (3) we first derive kernel
bounds in a representation realized with respect to such a basis. Subsequently we
remove the ideal property by making a unitary transformation.

Our arguments are based on the Davies perturbation method as described in
[Rob] Sect. IV.2. A complication occurs, however, since the present operators are
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in general not real. Therefore we have to work on the complex Lp(Rk) spaces. One
cannot restrict attention to the subspaces spanned by the real-valued functions as
in [Rob].

Let U be a basis realization on /^(R ) of the induced representation π and
b\,...,bd a (vector space) basis of the Lie algebra g. If Bj — dU(bj) for j e
{1,...,J}, then

(Bjφ)(x) = £ Xjn(χ)^(χ) + iYj(χ) ψ(χ)

with Xjn and Yj real polynomials. Moreover, if U° is the representation of G defined
at the end of Sect. 3, then B° = dU°(bj) is the principal part of Bj, i.e.,

k Λ

(5>)(x)=E^(x)^(x).

n=\ Cxn

Next, if C = (cψ) is a real, symmetric, strictly positive-definite matrix we define

d

DC = {Φ e C™(Rk):ψ real valued and £ clJ(By)(x)(By)(x) ^ 1

for a l l x G R ^ } ,

and then the distance du,c '• R^ x R^ -^ [0, oo) is introduced by

y) = sup \ψ(x) - φ(y)\ .

The first theorem of this section gives kernel bounds for second-order operators

H = -Σc,jBiBj + ΣciBi

with the matrix C as principal coefficients and with real first-order coefficients Q.
The large time behaviour of the bounds is governed by the smallest eigenvalue λ\
of the self-adjoint principal part

of H acting on L2(Rk), i.e.,

λx = τrύn{(φ,HQφ) : φ e ^(Rk) and | |φ | | 2 = 1}

= min{(φ,Hφ) : φ € &(Rk) and | |φ | | 2 = 1} .

Note that λ\ > 0 since k ̂  1. Indeed if λ\ = 0 then the corresponding normalized
eigenfunction ψ\ would satisfy

Σcij(BιφuBJφι) = 0



496 A.F.M. ter Elst, D.W. Robinson

and, since C is strictly positive, Biψ\ = 0 for all i G {1,...,</}. But this implies
that U(g)φ\ — φ\ for all g G G which is impossible since U is irreducible and
non-trivial. Further note that λ\ is a unitary invariant, i.e., if U and U are unitarily
equivalent representations, with H,H the corresponding strongly elliptic operators
and λ\,λ\ the lowest eigenvalues then λ\ = λ\. This invariance will play a minor
role in the following proof.

Theorem 4.1. Let I G g*, a\,...,adm,...,adm+k be a weak Malcev basis passing
through a polarizing subalgebra m 0/ / and U the corresponding basis realization
in L2(Rk). Let H be a second-order operator associated with the real, symmetric,
strictly positive-definite matrix C — ( Q 7 ) , the first-order coefficients C ; G R and
the basis b\,...,bd of g. Further let κt denote the corresponding reduced kernel
Then there exists an a > 0, independent of the coefficients (C, c), such that

\κt(x;y)\ ^ a(lΛεμtykί2e-λιtmf exp(p2(l + ε)t - p(dσc(x;y) - vt))

uniformly for all / > 0 , x j G R έ and ε G (0,1], where μ is the lowest eigenvalue
ofQ

λι = min{(φ,Hφ) : φ G S?(Rk) and \\φ\\2 = 1}

and v = \c\μ~111 with \c\ the l2-norm of the first-order coefficients.
Therefore if djj^c(x',y) ύ vt then

\κt(x;y)\ ^a

and if dUiC(x;y) ^ vt then

\κt{χ y)\ S a(\ΛεμtΓk/2e-λ

for all ε G (0,1].

This result is the direct analogue of Theorem IV.2.2 for the universal kernel
given in [Rob]. The proof is very similar although the complex structure introduces
added complications.

These bounds on the reduced kernel give the optimal ^-singularity for small t
and the correct asymptotic behaviour for large t. In particular

lim -Γιlog\κt(x;y)\ ^ λx .

In addition the bounds give

\\m-t\og\κt{x\y)\ ^ du,c(x;y)2/4 ,

which is the optimal bound in the relative variable. (It is likely that both these
bounds are identities.)

The principal weakness of the kernel bounds is that they fail to reflect the
expected exponential decrease of the kernel on the diagonal. This will be established
in the next section by an alternative set of bounds.

Proof We begin by assuming that the weak Malcev basis has the ideal property (3).
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Let ψeDc. For p e R define the operator Up on L2(Rk) by (Upφ)(x) =

e~p^x)φ(x) and the semigroup Sp by Sf — UpStU~x. Then the infinitesimal gener-

ator of Sp is the operator Hp = UPHU~X. Note that UpBjU~xφ = Biψ + ι/̂ φ for

all φ G ̂ ( R ^ ) , where ψi = 7?7°̂ .

Let p G R, φ G L2(Rk) and set ^ = Sfφ for all / > 0. Then for all / > 0 one
has

a ιι 11 o

d

= -2Re Σ dj((Bi ~ pψt)φtΛBj + pΦj)ψt) -
l

d d
2 Σ Cijiφiψt^φjψt) -ipΣ

Uj=\ ι=\

(Here we have used the estimate

l ι

which is valid for all φ G L2(Rk).) Hence by integration one finds

\\S?\\2^2 ύ e<p2-λι+Mυ)t (16)

for all t > 0.

Next we estimate ||5f ||2-*oo. Let p e R and φ G Π ^ L I ^ P τ h e n Ψt = S?φ G

^ ( R * ) C Π ^ = i ^ τ h u s if /̂  ^ 2 is an even integer,

= -2/7Re E

-2/>pRe Σ
i,7=l

Σci(φί)ψtP~\ψιφt). (17)
/ = 1 i = l

We estimate the six terms separately. Using the identity Bi(φ\jj) — ψB°φ +

zι/A, together with the fact that £7° is a derivation, one obtains for the first term
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where χ = (φtB°λφt,...,φtB°dφt). The key point is that the second term is purely
imaginary since B° is a real differential operator. Moreover, \φt\

2p~4B°\φt\
2 is real.

Hence using the identity \ 2
p

γj = B\φ(\
2= Bj\φ(\

2 one deduces that

= -P(P - υ Σ

- 1) Σ c^

- -4/T - 2p Σ Cij( BιΨί, \ BjΨt)

= - BιΨt, \φt\P-] BjΨt)

because p ^ 2.
Next we consider the second order terms on the right-hand side of (17) which

are proportional to p. One has

2p pRe ΐψp~ ,Bj<pt) Re

Therefore choosing ε = (2|p|) one finds

pRe

Alternatively,

<; 2
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Hence estimating as before

d

499

2p ^ 2ε(p -

έ ^(

Therefore choosing δ = (2|p|) ι and ε = (2(p • one concludes that

1.7=1

" 2" lp Σ dy( W * Bi<pt9 \φt\
p-χBjφt)

The fourth term on the right-hand side of (17) is straightforwardly estimated,

2pp2

Re Σ cϋ(Φίψf'ψtp ,ψjψt) ύ 2pp2\\φf\\l •

For the fifth term we use the skew-adjointness of B, and B° to deduce that

Σ
ι = l

d

ι=\

d

i=\

d

i=\

d

i=\

ιφu φt) .

Therefore one concludes that

d

i=\
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d

i=\
= 2p pΣc,(\φt\

p,ψi\φ,\p)
1 = 1

Adding all these terms one derives the differential inequality

= -
ιj=\

Bιφt,\φt\P'λBjΨt)

(4p2p2+2p\p\v)\\φp\\2

l P2 + 2p\p\v)\\φf\\\ . (18)

Now using ||φf H2 = \\<Pt\$p one obtains

^\\φι\\2p g -K2p)-]

at
tWl;2" Σ + (2pp2 + \p\υ)\\φt\\2p . (19)

Finally, in terms of the norm Γ^.γ introduced in Sect. 3,

jt\\ψt\\lp g - +(2Pp
2 y2μ(2PΓ

ι)\\φt\\2p .

This differential inequality is the same as inequality (IV.2.12) in [Rob], if one
takes | |C| | = 1 in [Rob]. The important feature of the remaining part of the proof is
the use of the Nash inequalities of Corollary 3.10 to estimate the terms in the sum.
These estimates are in terms of Z^-, andZ 2 -, norms of l^l^. But |||<jί>rÎ IIi = WψtWp
and Ill^/I^ll^ = llφ/ll^ Therefore one can use the induction proof on pp. 262-264
in [Rob], starting from the Z2-estimate (16), to deduce bounds on ||Sf ||2->oo These
bounds are the direct analogue of the bounds on p. 264 of [Rob],

l|£/Ίl2-+oo S

and are valid for all t > 0,p G R,y G (0,1] and ε e (0,1] with the values of a
and b dependent only on the group, the basis b\9...,bd and the constant α in
the Nash inequality Corollary 3.10. Now if εμt ^ 1 set γ = 1 and if εμt Ξ> 1 set
y = (&μt)~χl2. Then, with redefined values of a and ε, one obtains bounds

HS/ΊI2-00 ύ a{\ Λ

for all t > 0,p G R and ε e (0,1]. But by duality

II o P 11 II o p

II\ II ! 2 11̂

(20)

1
N2—00 -

Hence one obtains bounds

for all t > 0,p G R and ε G (0,1] and again a redefined value of a. Consequently

\κt(x\y)\ S a{\
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for all / > 0 and x,y G R^. The value of a now depends on the group, the dimension
k, the basis b\,...,bd and the constant α in the Nash inequality Corollary 3.10, but
is independent of the coefficients of H and of ε G (0,1]. Minimizing over φ G DQ
one deduces that

(x;y)\ ^ a(l A

This proves the first part of the theorem if the weak Malcev basis has the ideal
property (3). We next remove this condition. By Lemma 2.2 there exists a weak
Malcev basis ά\,...,άdm-\-k passing through m which has the ideal property. Let c
and σ be as in Lemma 2.3 and let κt and κt be the two associated reduced kernels.
Then it follows from the Gaussian bounds for κt and Lemma 2.4 that

S c2a(\

\κt(χ;y)\ =

Hence it remains to prove that dy c(θ(x); θ(y)) = d^cixi y)-

Now let V be the unitary map as in Lemma 2.3. Further let φ G C£°(Rk) and
set Ψ = φ o θ. Then (V*Ψ)(x) = c-χe-ισ{x)φ(x). So

\x)) = (VBtV*Ψ)(θ-\x)) = ceiσ(x)(BiV*Ψ)(x)

for all x G R .̂ Hence (B°Ψ)(θ~ι(x)) = (B°ψ)(x) and B°Ψ = (Bfφ) o 0. From this
identity one easily derives the transformation formula for the distances and the proof
of the first part of the theorem is complete. The second part follows by minimizing
over p. D

There is another description of the distance dutc which allows one to reformulate
the statement of the theorem in a more geometric manner.

Each B° is a vector field on R*. But the algebra generated by the Bι consists
of all differential operators with polynomial coefficients, ([CoG] Theorem 4.1.1(i)),
and the differential operator d/dxj has no constant term. It follows that the vector
fields B°λ,...,B°d generate the tangent space at any point of R .̂ We now define
a geometric distance on R^ as in [NSW]. For δ > 0 let C(δ) be the set of all
absolutely continuous functions γ : [0,1] —• G which satisfy the differential equation

i(t)= Σ
7(0

almost everywhere, with

d

for all t G [0,1], where C denotes the matrix of coefficients. Then define the distance
dy c(x; y) between two elements x9 y G R^ by

dfjC(x\y) = mϊ{δ > 0 : 3yec(δ)[y(0) =x and ?(!) = y]} .



502 A.F.M. ter Elst, D.W. Robinson

The distance dfj c induces the Euclidean topology on R^.

Lemma 4.2. The distances dy, c and dfj c are equal

Proof. Let x, y G Rk,φ G Dc,δ > 0 and y G C(δ) with y(0) =x and y(l) = y.
Write

d

ι=\

with

<δ2

for almost every ί G [0,1].
Now denote the inner product on R^ by ), the norm by | |, set

[(B°φ)(z)] = {{B\xjj\z\...χBQ

dφ){z)) e Rd for all z E R* and [y(t)] = (yι(t),...,

γd(t)). Then

Jdtξ-Mγ(t))
0 dt

1 d

JdtΣ'
0 ι=\

S J d t \ c - ι / 2 [ y ( t ) ] \ \ c ι / 2 [ ( B ° φ ) ( y ( t ) ) ] \ ύ f d t δ . \ = δ.
0 0

Therefore dυχ(x\y) S dfjC(x;y).

Alternatively, fix xo.yo ^ Rk and let n = dfj c (x 0 ; 7o) + 1. Define φΛ : R —> R
by

\x\ if |JC| ^ /i,

φn{x) = { In - if ^ < |JC| ^ 2« ,

if |JC| > In .

Then φβ G Q(R) and \φn(x) - φn(y)\ Ik \x - y\ for all x,yeR. Define χn :

R* -> R by χn(x) = Φ«(4 c (x;7o)). Then χπ G CC(R^) and |χ«(xi) - χ«(x2)| S

dy c(x\\X2) for all xi,^2 £ R

Next we regularize χ«. Fix a positive τ G C(?°(R ) with integral equal to one.

For m G N define τm G C^°(R^) by τm(x) = mkτ(m~xx) and ι//nm : R^ —• R by

Here * is the convolution on the commutative group R^. Then φnm G C ^ ί R ).
Moreover one has

lim φnm(xo) = φn{dfj c(xo; yo)) = dfj c (x 0 ; yo)
m—KX) ' '

For all i G {l,...,ί/}, x <ΞRk and t > 0 one has
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Since the representation V on Loo(Rk) defined by (Vtω){x) = ω(cxp(—tB°)(x)) is

weakly* continuous it follows that χn is in the domain of the operator Bf, viewed

as an operator on Loo(R*) Next we argue that YfιJ=x Cij(B°χn)(x)(B°χn)(x) ^ 1

for all i G R l One has for all x G Rk:

W=1

= sup (ξ,C^2[(B°χn)(x)]) = sup C 1 ^ . [(B°χn)(x)] .
ξeRd kΊ=i
|c|=i

Now for all ί > 0 the path y(s) = exp(>ίC1/2ξ £°)(x) is a C°°-path from x to
exp(ΪC1/2ξ £°)(x) and [y(s)] = tCι/2ξ for all s. So

(W^LC-1^)]) = (tcι/2ξ9c-ιtcι'2ξ) = t2,

and hence y G C(0 Therefore rf^c(exp(ίC1/2^ 5°)(JC);JC) S t and C1/2(^
[(B°χn) (x)] ^ 1 by an estimate as we used above for the proof that χn is diflfer-
entiable.

Next, note that the representation V leaves C£°(Rk) invariant. For all / G

£i(R*) and ω e CC°°(R^) define

F = {φ e D(B?) : ( / , ( £ » * ψ) = (ώ * /,^°ιA)} ,

where ώ(x) = ω(-x). Then C^°(Rk) C F and F is weakly* closed in Z)(5Z°), so
F = D(Bf). Therefore

B?(ω *ψ) = (B?ω) * φ = ω * Bc

t>

for all ^ G Z)(5f). In particular:

and for all x G R* one obtains

I Σ cij{B°ιφnm){x){B°jφnm){x) I = |C1 / 2[(£°ιKm)(x)]|

)(x)]) = sup(τw * (ξ,Cι/2[B°χm]))(x)
|chl

^ ^ l l l l o o ^ 1 .

Hence φnm G D c and dfjC(x0\yQ) ^ ^cC^o yo). •

It follows from the general theory of strongly elliptic operators that the semi-
group generated by a closed strongly elliptic operator with real principal coefficients
is holomorphic in the open right half-plane. Then, by the discussion in Sect. 3, the
corresponding reduced kernel extends to a function which is analytic in the half-
plane. Therefore it is of interest to examine bounds on the kernel for complex t.
This is particularly simple if there are no first-order terms, i.e., if c, = 0. In this
case the bounds of Theorem 4.1 give

\κt(x;y)\ S a(l A εμtyk/2e-;^Qxp(-duχ(x;y)2(4(l + ε)ty{)

for all t > 0 and ε G (0,1]. These bounds have the following analogue.



504 A.F.M. ter Elst, D.W. Robinson

Corollary 4.3. Let I G g*, a\,. ..,adm,.. .,adm+k be a weak Malcev basis passing
through a polarizing subalgebra m of I and U the corresponding basis realiza-
tion in Z,2(R*) Let H be a pure second-order operator associated with the real,
symmetric, strictly positive-definite matrix C — (c^ ), and the basis b\,...,bd of
g. Further let K denote the corresponding reduced kernel. Then there exists an
a > 0, independent of the coefficients C, such that

\κz(x;y)\ S a(ε cos θyk/2(l Λ εμRQz)-k/2e~λ* R e z

x exp(-^,c(x;7)2Re(4(l + φ ) " 1 )

for all z G C with Rez > 0 and all ε G (0,1], where θ — argz.

Proof. We adapt the general reasoning of Davies [Dav2], Lemma 3.4.6 and Theorem
3.4.8.

First remark that if z — t + is then

| | 5 z | | i _ 2 = | |^ | | i->2 = \\St\\2->oo = ||Sk||2-oo

because H is self-adjoint on L2(Rk). Therefore

Hence, by (20) with p = 0 and ε = 1, one has bounds

\*z(x;y)\ S ll*l|i-oo ύ a(l Λ μty^e'^ ,

w i t h a redef ined v a l u e o f a, for all z e C w i t h ί = R e z > 0. T h e n s ince ( l Λ ί ) ^
(1 — e~*) th i s g ives

\κz(x;y)\ ^a{\-e-^γkβe-h^

Alternatively, one can rephrase the bounds of Theorem 4.1 as

|ιc,(*;;y)| g a(\ - e'^y^e'^U

uniformly for all t > 0 and ε G (0,1].

Next for fixed x,y G R^,ε G (0,1] and φ G (0,π/2) define the analytic function
F in the open right half-plane by

where bφ — (4(1 -f ε)sinφ)~ 1 . Then

\F(t)\ ^ a

for all / > 0. Now it follows from a Duhamel estimate that

|1 -e~se'l(P\ S \se-ιφ\f dλ\e-λse~lψ\ = sf dλe-^cosφ

o o

for all s > 0. Hence

< a{\ - e

) ~ k > 2
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Moreover, if θ G [0, φ] then

\F(teiθ)\ ^ a(cosθ)-k/2eb*>dv>c(χ'>yft 2

Therefore the Phragmen-Lindelof theorem implies that

\F(z)\ S c ( k / 2

for all z with argz G [0, φ], for a suitable c > 0, depending only on β. Similar
reasoning leads to an identical bound for z with argz G [—φ,0]. But since

one concludes that

\κz(x;y)\ g c(cosφ

for all z = teι° G C with |argz| ^ φ. Now, however, 1 - e~Rcz g |1 - e~z\ for all
z £ C with Rez > 0, by the triangle inequality. In addition 1 Λ t ^
(1 - e-χy\\ - <?-') for all ί > 0. Therefore

\κz(x\y)\ g c(cosφΓ* / 2(l Λ β μ R e z Γ ^ Γ ^ 1 1 6 ^ - * ^ . ^ ^ 2 ' " 1 8 1 ^ - 1 ^

for all z = te'() G C with |argz| g φ.
Next for z <E C with Rez > 0 and ImzΦO choose φ G (0,π/2) such that

εtanφ = tan |θ | . Then sin(φ - \θ\)(ύnφ)~λ — (1 - ε)cosθ and cosφ = ε(ε2 +
tan2fl)~1/2 ^ εcosθ, so

|κ:z(x;jμ)| ^ c ( ε c o s 0 Γ ^ 2 ( l Λ β μ R e z ) - * / 2 ^ .

Finally, set δ = 2ε(l - ε ) " 1 so that (1 + ε)(l - ε)" 1 = (1 + <5). Then ε = δ(2 +
^ ) - J ^ (5/3 for 5 G (0,1] and

for all z G C with Rez > 0 and 0 = argz and for all <5 G (0,1]. Thus the statement
of the corollary is established by a change of notation. D

The estimates of Theorem 4.1 depend critically on the reality of the principal
coefficients (cυ) but less critically on the reality of the first-order coefficients ct.
One can adapt the foregoing arguments to bound the reduced kernels associated
with second-order operators with complex-valued c, at the cost of forfeiting control
over the large / behaviour.

Corollary 4.4. Let I G 9*,fli,...,<z</m,...,0</m+jfc be a weak Malcev basis passing
through a polarizing subalgebra m of I and U the corresponding basis realization
in Li(R ). Let H be a second-order operator associated with the real symmetric
matrix of principal coefficients C = (cυ), the first-order coefficients cx G C and
the basis b\,...,bd of g. Further let κt denote the corresponding reduced kernel
Then for all ε G (0,1] there exists an aε > 0 and ωε ^ 0 such that

\κt(x;y)\ S aεΓ
k/2eωtte-^c(χ;2ι

uniformly for all t > 0 and x, y G R .̂
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Proof. The proof is an elaboration of the proof of Theorem 4.1. We briefly comment
on the extra features.

First, in the calculation of d\\φt\\l/dt one has additional terms

Xλ =

But these can be handled by (ε,ε~ ̂ -estimates. For example, one readily finds that

Σ^ Ψ Σ \\Bi(pt\\2

2 + ε-lv2\\φt\\2

2 + 2\p\v\\φt\\2

2

Therefore choosing ε — 2 and using the previous estimates one finds that

\\\\2

and then, by integration,

HS/Ί 2-.2 ^

for all / > 0 and p G R.

Similar modifications are necessary for the estimation of

has additional terms

Wx = -2 Σ

t. Now one

2=1

Hence

2=1

g εpt Σ ^

= P Σ ^ (

if one chooses ε = v~ι. Finally, one obtains a differential inequality which differs
from the earlier one for pure second-order operators only in the terms proportional
to ||(jί>ί||2/7 Now one deduces that

%Jt

\\ψι\\% ^

instead of the inequality (18) and

j t \ \ φ ι \ \ 2 p S ~ Σ \\B°\φ,\p\\22 \p\v + v2/2)\\φt\\2p
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which is the direct analogue of (19). The coefficient 2pρ2 is replaced by 2pp2 -f-
\p\v -f v1 /I. Hence the bounds on the reduced kernel become

κ t ( x \ y ) \ < a ( > t - k / 2

e ( 2 ι 2

uniformly for all p, t,ε > 0 where w = v/2. Hence minimizing over p, replacing 2ε
by ε and redefining aE gives the desired bounds. D

There is also an analogue of Corollary 4.5 for operators with real principal
coefficients and purely imaginary first-order coefficients. The resulting H is still
self-adjoint on /^(R^) ar*d hence one has bounds

for all z £ C with t = Rez > 0. Thus it follows from Corollary 4.4 that one has
bounds

\κ2(x;y)\ SaΓ^e"*

for all z G C with t = Re z > 0 uniformly for x, y £ RA. Now the arguments of
Davies [Dav2], Sect. 3.4, apply directly to give the analogue of Corollary 4.3.

Corollary 4.5. Let I £ g*, a\,...,adm,.. ,adm+k be a weak Malceυ basis passing
through a polarizing subalgebra m of I and U the corresponding basis realization
in L2(R ). Let H be a second-order operator associated with the real, symmetric,
strictly positive-definite matrix C = (c/y), the imaginary first-order coefficients C(
and the basis b\,...,bd of g. Further let κt denote the corresponding reduced ker-
nel. Then for all ε £ (0,1], there exists an aε > 0, independent of the coefficients
C, and an ωE ^ 0 such that

for all z £ C with Rez > 0, where θ = argz.

Finally we note that for strongly elliptic operators of order m > 2 the method
of this section does not work. The first problem is that there is no description of
higher order strongly elliptic operators in terms of positivity of a matrix of principal
coefficients. This can be bypassed by using the method of Sect. III.4 in [Rob]. But
then one encounters mth order derivatives on the functions φ used in the perturbation
argument. One could define inductively D\ = A/,c and

Dn = {φeDn^:BfφeDn^ for all / e {l,..

for all n ^ 2 and
dn(x;y)= sup \φ(x) - φ(y)\ .

Then it is readily verified that dn is non-degenerate and is a distance on R .̂ One can
then obtain Gaussian type bounds for the reduced kernel of the semigroup generated
by an mth order operator with the distance on R* equal to dm. In the situation of
Sect. III.4 of [Rob] the corresponding distances d\,d2>... are all equivalent (see
pp. 200-203), but in the present setting with the irreducible unitary representations
the distance dm is not equivalent to d\ = du,c — dfj c if m is large, in general.
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One can prove bounds on the reduced kernels corresponding to mth order oper-
ators by exploiting the Nash inequalities Corollary 3.7 as in [Rob] Chapter III and
one obtains that

for some a > 0 and ω G R, valid for all t > 0. If the strongly elliptic operator is
self-adjoint, with smallest eigenvalue λ\ then ||5ί||2->2 = e~Aχt by spectral theory.
So using the decomposition St — S\ o St-2 ° S\ : L\ —> L2 —> L2 —» Zoo one deduces
that

for some a > 0, valid for all t > 0.
The same situation occurs if one attempts to derive Gaussian bounds for the

higher order derivatives of the reduced kernel, even for second order operators. We
are only able to derive Gaussian bounds in terms of the distance du,c for the first-
order derivatives of the reduced kernels of semigroups generated by second-order
operators:

\(BiKt)(x;y)\ g at^M)l2e-bd^^y)2t-χ

uniformly for all i G {l,...,k},t G (0,1] and x,y G R .̂ Since we are not able to
prove higher order kernel bounds with the distance d^c we omit the proof.

5. Kernel Bounds: Large t

In this section we use spectral theory in combination with embedding arguments to
establish bounds on the reduced kernel κt associated with the semigroup S generated
by an mth order, formally self-adjoint operator. The arguments apply equally well to
strongly elliptic operators or subelliptic operators. Self-adjointness is the important
characteristic. There are two main features of these bounds. First, they still give
the optimal decrease, Qxp(-λ\t), as a function of t. Secondly, they establish that
the kernel is "exponentially" decreasing on the diagonal. The earlier bounds did not
give any estimate on the decrease of the kernel along the diagonal.

Let U be the basis realization of the nilpotent Lie group G corresponding to a
weak Malcev basis a\,...,fl</m,...,adm+k passing through a polarizing subalgebra m
for an / G g* and let C be a strongly elliptic, formally self-adjoint, mth order form.
Set H — dU(C) and let K be the corresponding reduced kernel. It follows from
the general theory of elliptic operators that H is self-adjoint on L2(Rk). Moreover,
it follows from Kirillov theory that the kernel κt belongs to the Schwartz space
<Sf(Rk x R*). Therefore the self-adjoint semigroup S generated by H is trace class
and H has compact resolvent (see Theorem 2.5). Now we exploit these spectral
properties to derive bounds on κt.

Since κt belongs to the Schwartz space £f(Rk x R*) it is polynomial decreasing,
together with all its derivatives. But more is true, the kernel is "exponentially"
decreasing.

Theorem 5.1. Let U be the basis realization in L2(Rk) of the nilpotent Lie group
corresponding to I G 9* and a weak Malcev basis passing through a polarizing
subalgebra m of I. Further, let K be the reduced semigroup kernel corresponding to
a self-adjoint, mth order, strongly elliptic operator H. Then there exist α G [2,00)
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and b > 0 such that for all z G C with t = Rez > 0 and all multi-indices β and
y there exists Cβ^t > 0 such that

uniformly for α ί / x j G R , where λ\ denotes the smallest eigenvalue of the oper-
ator H. Moreover, the constants c^ΊΛ can be chosen such that

ι ι t < OO

for all β and γ.

Proof Let λ\ ^ λ2 ^ .. denote the eigenvalues of the operator //, repeated ac-
cording to multiplicity and let φ\9φ2>... be a corresponding orthonormal basis of
eigenfunctions. Then φ} G D°°(H) = 5^(R^) for all j . We obtain bounds on κt by
examining the spectral decomposition

κz{x\y) = YJe-^φj{x)φj{y) (21)
7 = 1

of the semigroup Sz generated by H. This series converges in the L2 -sense, by
general theory, but we will establish that the convergence is uniform. The estimates
we obtain will even demonstrate that it converges in the Z^-sense for all p G [l,oo].

Let Pj and Qj, j G {l,...,k}9 be the self-adjoint operators on /^(R*) such that
(Pjf)(x) = idjf(x) and (g//)(x) - xjf(x) for all / G £?(Rk) and x G R .̂ There
exists, by [CoG] Theorem 4.1.1, an « G N such that each Pj and Qj is a linear
combination of monomials of order at most n in the Bi on the Schwartz space.
Hence, by [Rob] Corollary 1.6.7, there exists c ^ 1 such that D(Hn) C D(H0) and

\\H0φ\\2

2 ^

for all φ G D(Hn\ where

7 = 1

So HQ S c(H2n + / ) . Let N(λ) and N0(λ) denote the number of eigenvalues of H
and HQ which are less than or equal to λ, counted according to their multiplicity.
Then it follows from the minimax theorem that

N(λ) g N0((c(λ2n + 1))1 / 2) S N0(2cλn)

for all λ ^ max(|/li|, 1). One can easily estimate No and one has No(λ) ^ ((λ -
\)/2f for all λ ^ 1. So N(λ) ̂  ckλkn if λ ^ max(|Ai|,l). Then j ^ N(λj) ^
ckλjn and hence

λj ^ (c-^) 1 / ( / : / 7 ) (22)

for all j G N with /ly ̂  max(|Λi|, 1).
Alternatively, there exists c > 0 such that c||//<p|| ^ ||^owr^ll f o r a 1 1 Φ G

D(H™r), where r is the rank of the Lie algebra g. Then

N(λ) ^ iV0(c1/(
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for all λ sufficiently large. Hence

\λj\ ύ bfr

for some b > 0, first for all sufficiently large j , but then by increasing b, if
necessary, for all ' G N .

Next we consider bounds on the eigenfunctions ψj. If T\,...9Tq are operators

in L2(Rk) and λ > 0 then we define the Gevrey space Gχ(T\9...,Tq) by

Gλ(Ά,...,Tq)= {JGλ.s(Tu...,Tq),

where Gλ;s(Tu...,Tq) is the normed space of all φ G Π^LoΓ\n,...,ιpe{\,...,q}
D(Th '''

Tip) such that

sup sup (^ίVHV ^ll <°°

Using the eigenvalue estimates one deduces

Wψjh = \λj\p ^ {bjmrγ = bp((jι/{2kn))p)2kmnr

< bp(^XI{lkn)p\Ϋkmnr = e

2kmnrixl{2hiλ

uniformly for all p G N o and j G N, so ψj G G2kmnr,b(H), with norm bounded by

e2kmnrjl^u"\ I t m e n f o n o w s from [E1R], Theorem 6.1, that

G2kmnr{.H) — G2knr(B\, ...,Bd)C G2kn2r(P\,. . ., Pfc> β i , . . ., Qk ) = ^α,'.'.'.','α '

where α = 2 ^ 2 r and 5̂ ;; ̂  denotes the GeΓfand-Shilov space on R^ (see [GeS]
Chapter IV). Now each function ψ G S%'"''% is infinitely differentiable and there exists
b1 > 0 (depending on φ) such that for every multi-index β there exists cf > 0 such
that

uniformly for all x G R^. So

l/α-&,|x|

for some constants bj.Cβ^ > 0. But if one traces the various constants then it
follows that bj depends only on b since each ψj G Gnb(H) and Cβj can be estimated
by a function which depends linearly on the norm of ψj in the space Gnb(H). So

Cβ,j S Cβe2kmnrj n for some Cβ, independent of j . Thus

for some constant Z?o > 0, uniformly for all multi-indices β, all j G N and x G R .
It now easily follows that for all multi-indices β, y the series

converges by the estimates (22) and that
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with t — Rez and

Cβ.y^CβCyΣe-V'-We*""-;11™ <oo.
7 = 1

Note that sup,^ CβiΊit < oo. D

The foregoing estimates establish that the spectral decomposition (21) of the

semigroup generated by H is uniformly convergent. But as the estimates also give

an exponentially decreasing bound it follows that the series is Lp-convergent for all

p. This is a direct consequence of the Lebesgue dominated convergence theorem.

Note that uniform convergence can also be deduced from cross-norm estimates on

the semigroup by arguments similar to those on p. 247 of [Rob].
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