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Abstract: The spectrum of the kinematic dynamo operator for an ideally conducting
fluid and the spectrum of the corresponding group acting in the space of continuous
divergence free vector fields on a compact Riemannian manifold are described. We
prove that the spectrum of the kinematic dynamo operator is exactly one vertical
strip whose boundaries can be determined in terms of the Lyapunov-Oseledets ex-
ponents with respect to all ergodic measures for the Eulerian flow. Also, we prove
that the spectrum of the corresponding group is obtained from the spectrum of its
generator by exponentiation. In particular, the growth bound for the group coincides
with the spectral bound for the generator.

1. Introduction

In this paper we give a description of the spectrum of the kinematic dynamo operator
and of the corresponding group it generates for an ideally conducting fluid in the
space of continuous divergence free vector fields.

Consider a steady incompressible conducting fluid with Eulerian velocity v =
υ(x) for x G R 3 and let φ* denote the corresponding flow. The kinematic dynamo
equations for the induction of a magnetic field H by the flow has the following
form:

H = V x(vxH) + εAH, divH = 0, (1.1)

where ε = &e~ι, and Mem is the magnetic Reynolds number (see, e.g., [15, Ch. 6]).
The spectral properties of the kinematic dynamo operator Lι:, defined by (1.1),
have been a subject of intensive study, in particular, in connection with the famous
dynamo problem (see [1, 2, 3, 6, 16, 23] and references therein).

For the ideally conducting fluid, c = 0, these equations become:

H = -(u, V)H + (H, V)ι>, H(JC,0) - Ho(x), divH - 0 . (1.2)
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The last equation has [15] so-called Alfven solutions

H(x,0 = Dφ'iφ-'xyHiφ-'x,!)),

given by the group {etL}te^ with the generator L = Lo that acts by the rule

L : κι->(H,V)ι>-(i;,V)«. (1.3)

In the present paper the kinematic dynamo operator L is considered in the fol-
lowing well known context. Let υ denote a continuous divergence-free vector field
on a compact Riemannian manifold X without boundary, let φ* denote the flow
generated by v and let Dφ\x) denote its differential. Consider the group {etL}tej^
of push-forward operators generated by the Lie derivative L in the direction v. This
group acts on continuous sections of the tangent bundle &~X9 by the rule

(etLu)(x) = Dφ'iφ-'xMφ-'x), xeX, ί G R . (1.4)

We will consider the group {etL}te^ in the space CMD(X,^X) of the continuous
vector fields with zero divergence.

Operators of the form (1.4) belong to the class of weighted composition op-
erators. This class has been widely investigated in connection with hyperbolic dy-
namical systems since the celebrated paper by J. Mather [13], see also [7, 20], the
recent papers [4, 9, 10, 22] and the detailed bibliography in [12]. The spectral prop-
erties of these operators in spaces of continuous or /7-summable vector fields are
by now well understood. However, the investigation of their spectral properties in
the space of divergence-free vector fields was initiated recently by R. de la Llave.
His important work [21] inspired the present paper.

In Sect. 2 we prove the spectral mapping theorem in CND(X, &~X) for the
group {etL}te&, assuming that the aperiodic trajectories of φt are dense in X and
dimX ^ 3. Theorems of this type for continuous and for Zp-section spaces over fi-
nite dimensional manifolds were proved in [5, 8] while similar results for the inifinte
dimensional setting were obtained in [9, 10, 12].

The spectral mapping theorem states that the spectrum σ(etL) of etL can be
obtained from the spectrum of L by exponentiation. It shows, in particular, that
in the space of divergence-free vector fields the spectral bound of the generator L
coincides with the growth bound of the group, see also Remarks 2.9-2.11 below.

Our proof of the spectral mapping theorem in Sect. 2 exploits the fact (cf.
[13, 21]) that approximative eigenftmctions of the operator (1.4) can be "localized"
along trajectories of the flow. We also show that the spectrum of L is invariant
under vertical translations of the complex plane. The same idea can be used to ana-
lyze semigroups of weighted composition operators with general cocyles on Banach
spaces, see [11].

In Sect. 3, we show that, for dimX ^ 2, the spectrum σ(etL), ίφO in CND{X,
$~X) is exactly one annulus centered at the origin of the complex plane. Our
result generalizes a theorem in [21] where this fact was proved under the restriction
that the flow is Anosov with one-dimensional spectral foliations. The possibility of
relaxing the hypotheses of the theorem is discussed as an open problem in [21].
The relatively simple proofs of these facts in Sect. 3 can be read independently of
the more difficult proofs in Sect. 2.

By Mather's theory (see, e.g., [12, 13, 20]), the spectrum σ(etL) on the space
C(X,&~X) is generally the union of several disjoint annuli centered at the origin.
Passing to the space CND(X, $~X) dramatically changes the spectrum: the gaps, if
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any, between these annuli are filled. Also, using the Spectral Mapping Theorem, the
spectrum of L on CND(X, ^X) is exactly one vertical strip. Since Lv — 0, this strip
always contains /IR, and (1.2) does not have an exponential dichotomy. Moreover,
Eq. (1.2) in the space of divergence free vector fields (unlike the situation with
Anosov flows, cf. [20]), does not possess a nontrivial uniform exponential dichotomy
even after "moding out" the direction of the flow, see Remarks 3.7-3.8 below.

Using the results in [12], we give a description of the spectrum of L in terms of
the Lyapunov-Oseledets exponents over all ergodic measures on X, that is, we will
determine the boundaries of the spectrum of L via the Lyapunov exponents. This
description is related to a theorem by M. Vishik [23] that states the "fast" dynamo
action is impossible whenever all Lyapunov numbers are zero.

Finally, we remark that we actually prove more general results than those just
mentioned. In particular, we will only assume the operator L generates a Co -group
of weighted composition operators that preserves the set of divergence free vector
fields and has the form

( T t u ) ( x ) = Φ ( φ - t x 9 t ) u ( φ - t x ) , xeX, ί G R , (1.5)

where Φ(x,t) is a continuous cocyle over φι, that is for x G X and /, τ G IR one has
Φ(x,t -h τ) = Φ(φtx,τ)Φ(x,t) and Φ(x,0) = /. Throughout the paper we use M to
denote the generator of the group {P}9 P = etM. In particular, if Φ(x,t) = Dφ\x\
then (1.5) is the push-forward operator (1.4) and M — L is the Lie derivative.

We also note that our technique can be applied to obtain similar results for the
space Li.

2. The Spectral Mapping Theorem

In this section we will prove the Spectral Mapping Theorem. Throughout the section
we suppose a smooth vector field v to be given on a compact Riemannian manifold
X without boundary, that υ is divergence free with respect to the Riemannian volume
and that the flow φt of υ statisfies the following standing hypotheses: the aperiodic
trajectories of φ* are dense in X and n = dimX ^ 3. Let M be the generator of the
group {P}ίe^ of weighted composition operators, as in (1.5), for some continuous
cocycle Φ(x, t) over φί. We will assume P is bounded on the space CND(X*^X)
of divergence free vector fields.

There are at least two choices for the space of continuous divergence free vector
fields depending on whether the divergence is understood in the classical sense or
in the sense of distributions. These spaces are defined, respectively, as follows:

C°ND(X,FX) = closure {/ G C°°(X, FX): div/ = 0} , (2.6)

= {/ G C(X,FX):f(f,&*dg)dμ = 0 V# G C°°(Z,1R)} .(2.7)
x

The closure in (2.6) is taken with respect to the sup-norm while the scalar product
( , ) and grad in (2.7) are taken with respect to a Riemannian metric and volume
on X. We note that the space Cλ

m(X,^X) is a closed subspace of C°m(X^X).
For a linear operator A in a Banach space E, we will sometimes use σ(A E) to

denote the spectrum of A on E and σap(A;E) to denote its approximate point
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spectrum. Since, as noted above,

cx

ND(x, zrx) c c°ND(x, FX) c C(x, zrx),

and since an ε-eigenfunction for T in CX

ND{X,3ΓX) is an ε-eigenfunction for T in
°% one has

C σap(Γ; C°ND(X9PX)) C σa p(Γ; C(X,FX)). (2.8)

Throughout the remainder of the paper the space C^o{X^X)) m^y be taken
to be either C0

ND(X,^X) or Cι

ND(X9^X).

Theorem 2.1 (Spectral Mapping Theorem). In the space of divergence-free vec-
tor fields CND(X,$~X) the spectrum G(M;CND(X,^~X)) is invariant under vertical
translations of the complex plane. Moreover, for each t φ 0,

σ(etM) = exptσ(M). (2.9)

Since the proof of Theorem 2.1 is quite technical, we pause to discuss our
strategy. Using standard facts from the theory of Co-semigroups and by rescal-
ing, we reduce the proof of Theorem 2.1 to the following main assertion (see our
Lemma 2.7 below): If 1 G σa p(Γ), T := T\ then 0 G σa p(M).

Our strategy for the proof of this main assertion develops some ideas of
J. Mather [13]. The fact that 1 G σa p(Γ) implies the existence of an ε-eigenfunction
u for T for every ε > 0. That is, for every ε > 0, there is a vector field u, with
unit norm such that ||7w — U\\ ^ ε. As in [13] and [21], the ε-eigenfunctions of
the operator T have a nice feature: they can be "localized" along the trajectories
of the flow. This means that for every N G N there exist a point x° G X, a small
neighborhood D of this point, and a vector field y with supp̂ y C U/L-w^'C^)'
such that | | j ; — Γy|| = O(l/Λ^)||jμ||. In fact, starting from a given ε-eigenfunction
u for T, define a "bump"-function α supported in D and let γ(J) = (N — \j\)/N.
The "localization" y is defined to vanish outside [jJ=_N φi(D\ and by y(x) —
γ(j)oc(φ-Jx)(Pu)(x) for x G ̂ (D) and \j\ <, N, equivalent^,

y(χ)= Σ y(j)(τJχu)(χ), xex.
j=-N

To prove the main assertion above, our purpose is to construct a vector field y
with zero divergence such that ||My|| = O(l/iV)||jv||. We start with a divergence-free
approximative eigenfunction u of T. Since the set of divergence free vector fields
is not closed under multiplication by ubump"-functions, we can not use Mather's
construction directly. Instead, we will construct a divergence free vector-field w,
supported in a small neighborhood D of a given point x° 6 l in Lemma 2.3. The
main part of this construction takes place in a special neighborhood D of x°, taken
to be a thin and long "ellipsoid" with the longest axis directed along u(x°). The
required vector field w is constructed in the form w(x) — oc(x)u(x°) + vt^(x), where
α is a "bump"-function, supported in D. The function α is chosen to have value
identically one on a second thin and long "ellipsoid" B contained in D. Some "fluid"
leaks from the neighborhood D, but this can be recycled within a slightly larger
neighborhood.
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The desired almost-eigenfunction y for M is given by the formula

oo

y ( χ ) = f γ ( t ) T ' w ( x ) d t , x e X ,
— oo

where, as above, y vanishes outside of [—N,N]. Direct calculation shows that

oo

(My)(x) = - J y\t)Ttw{x)dt, x G X .
— oo

Since suppw C D, the support of the integrand in each integral belongs to {t G IR:
\t\ g N and φfx G D}. To obtain the desired inequality, we estimate \\My\\ from
above and ||_y|| from below. This requires some estimates of the sojourn time of
the trajectory segment {φ\x)\ \t\ ^ N} in D and B. This is done in Lemma 2.5.

We start, for completeness, from the following simple lemma.

Lemma 2.2. If x° G X, then there is a coordinate chart at x°, with coordinate
functions (xi,...,xΛ), such that the local representation of the volume element on
X is just the usual volume dx\ Λ Λ dxn on IR'7. Moreover, if z G TxoX, then the
coordinates can be chosen so that the local representative of z is ||z||£)/3x2.

Proof. Let y\,...,yn denote local coordinates at x°. Clearly, there is a non-
vanishing density function p: 1R/7 —> IR such that volume element is given by
p(y\,..., yn)dy\ Λ Λ dyn. We seek new coordinates in the form

y\ = f(χu ,*/i), y2=χ2, , yn = *n,

where the volume element has the form

p(f(X\, ,Xn)>*2, - ,Xn)-ϊ-(x\> ,Xn)dX\ Λ Λ dxn .
OX\

There is a smooth function / , defined in a neighborhood of the origin in IR", such
that

The first condition together with the Implicit Function Theorem implies the change
of coordinates is invertible; the second condition ensures the volume element in the
new coordinates has the desired form.

For the second statement of the lemma, note that the volume element is invariant
under a rigid rotation of Euclidean space. •

A coordinate chart, as in the lemma, is called adapted to the volume on X
and the vector z. Of course, in the adapted coordinates, the Riemannian metric will
not be the usual one, rather, it will have the form ]Γ 0//(xi,... ,xn)dxl 0 dxj, where
the components gυ form a positive definite symmetric matrix of smooth functions.
However, we make the following observation: if u = (wi,...,ww) is a vector field
defined in an adapted coordinate chart, then

div« = Σ ^ (2.10)
/=1 VXi

Suppose z G ̂ xoX is a tangent vector and let (x\,...9xn) denote local coordinates
at x° adapted to the volume on X and the vector z. If the adapted coordinate system
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is defined in a coordinate ball of diameter δ > 0 and if a, b G IR are such that
0 < a < b < (5/8, we define

A«,* = { ( * i , . . . , * „ ) : I*/1 ^ 4ft, y = 1,2, I*, I ^ a, y = 3,...,/i},

^ = {(*i,.. .,*,,): |x/| ^ a/2,j = 1,3,...,π, |x2 | ^

Note that the closure of Baj, is contained in Dajy. We say there is an (a,b)
divergence-free extension of the vector z at x° if there is a smooth bump-function
α: Rπ —>• [0,1] with α(x) = 1 for JC <E #α,/> and α(x) = 0 for x ^ Dab and a contin-
uously differentiable vector field wn with support in Da^ such that

i) The vector field w(x) := α(x)||z||^/&2 + wn(x) is divergence free and has
value I |z 115/3*2 m &a,b,

ii) There is a number C > 0 independent of α,6 such that ||wrt|| ^

Lemma 2.3. Every tangent vector on X has an (a,b) divergence-free extension.

Proof Let z £ έ?~xoX. We will first prove the lemma for the case n — 2. To construct
a vector field W with the required properties in the (xi,X2) coordinate plane, consider
the curves given by

ί i + ί! , ί l + ί 2 _ 2
4 % 4 ' α4 + M

Let p : R —> [0,1] denote a smooth function such that p(t) = 1 for / ίg 1, p(0 = 0
for t ^ 2, and \ρ'(t)\ ^ 3, f e IR. Also, define the sets

R={(Xi,x2):\x,\ ύ

' / 4 α ) 4 + $£ 2, x, ^

and the functions θ: IR2 -> IR, / : R 2 -»• IR and n± : IR -> IR by

^ _ 4 H Z "η+(τ)=-

The vector field w2 is defined in R by f(x\,X2)S/dx\9 in »S+ by
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in S~ by

and wι is defined to vanish on the complement of R U S+ U S~.
We will complete the proof for n = 2 by showing the vector field

W(x\,x2) := β(xi,x2)||z|| — + w2(*i,*2)

is the required extension of z.
A direct computation using (2.10) shows divW = 0 in the coordinate chart.

Also, using the definition of p, we see the support of W is in Dajb- To show W is
C1, just observe that w2 and each of its first partial derivatives is continuous on the
lines x\ — ±2 1 / 4 α and on the boundary of R U S+ U S~. (We remark that additional
smoothness can be obtained, if desired, by using the function x\)ak + x\jbk with k
a sufficiently large positive integer in place of the choice k — 4 used here.)

To obtain the required norm bound, let G(x\,...,xn) denote the matrix of the
components gtj of the Riemannian metric in the adapted coordinates. The square
of the norm of a vector V at x = (xi,... ,xn) is then given by (G(x)V, V). Thus, if
| |G| | denotes the supremum of the matrix norms over the points in the chart, we
have | | F | | ^ | | G | | | F | , where the single bars denote the usual norm in IRΛ Then,
for example, using the usual estimate for the integral in the definition of / , we
estimate the norm of W2 in R by

suP | |/(x,,x 2) | =S | | G | | ( 4 | | z | | 2 3 ^ > 4 ) 3 ( 2 1 / 4 α ) g C[a/b,

where the constant C\ does not depend on a or b. Similarly, we can estimate the
norm of w2 in S±. For example, in S+ we find the upper bound

||G||supto+((jE, -2ι'4a)4 +x4

2)\((2]/4b)6 + (2^4aff2 £ C2a/b .

To prove the lemma for the case n ^ 3, we will show how to extend the vector
field W defined above to a vector field on IRΛ with the required properties. To
do this, let χ: IR —• [0,1] denote a smooth "bump"-function such that χ(t) = 1 for
|f| ^ f and χ(t) = 0 for \t\ ^ a, and define

Ψ(x3,...9xn)=flχ(xj).

The required vector field w is given by

The fact that the new vector field w is continuously differentiable, agrees with
||z||3/cbc2 in Ba^, and is supported in Dab is clear. Also, since the range of Ψ is
the unit interval, the norm bound on wn is the same as the norm bound on w2.
To complete the proof we must show divw = 0. But, since the vector field w has
nonzero components only in the first two coordinate directions,

divw(xi,...,xπ) = Ψ(x3n...,xn)diγW(xux2) = 0,

as required. D
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To estimate the time that trajectories spend in a neighborhood of x°, we first
need the following observation.

Lemma 2.4. Suppose x° G X is not a periodic point for the vector field v with
flow φι. If N is a positive integer and 0 < s 5ί N, then there is a δ > 0 such that
every neighborhood D containing x°, with diamD ^ δ, has the following property:
ifxeD, then φιx 0 D for s ^ \t\ ̂  N.

Proof. Suppose the lemma is false and, for each positive integer k, let Dk denote
the ball centered at x° with radius l/k. For each k, there is some Xk G Dk and some
tk in the set J := {t : 0 < s ^ \t\ ̂  N) with φtk(xk) in Dk. Since J x D\ (for
D\ the closure of D\) is compact, there is a convergent subsequence of the pairs
(ίjb*Λ-) But? by the choice of £)*, the second component of this sequence converges
to x° and, by the compactness of J, the limit T of the first component satisfies
|Γ| ^ s > 0. The continuity of the flow ensures that φτ(x°) = x°, in contradiction
to the fact that x° is not periodic. D

Consider a vector field v on X tangent to the flow φ*. For each open set U c X,
each non-negative integer N and each point x G X, define

6>/v, </(*) := {ί e 1R: |ί| ^ M φ'x G C/} ,

mN,u(x) :=mes(ΘN,v(x)). (2.11)

Lemma 2.5. Suppose X has dimension n ^ 3. If ε > 0, then there is a constant
K > 0 swc/z /λtf/ /or each non-periodic point x° and positive integer N there is a
pair of numbers a,b such that ε > b > a > 0 and a/b ^ ε together with a pair of
open sets B,D at x° such that B C Bat and Dab C D, with the following property:
for each x G l ,

^ψl<K. (2.12)

Proof By Lemma 2.4, there is a neighborhood D at x° such that φιy 0 D when-
ever y eD and 1/2 ^ |ί| ^ 2N. Suppose K, a,b9 B, D, with D CD, are given so
that the inequality (2.12) holds for x G D. We claim that (2.12) holds for all
x G X. To see this, note first that, for y G A we have Θ^oiy) — @2N,D(y)- Thus,
by our definition, m^o(y) = M2N,D(y) If x G X and DΠ {φ'x : |ί| ^ iV} = 0,
then ra/v,£>(x) = 0 and (2.12) holds. Otherwise, fix y G Z) Π {0'x : |ί| ^ Λ }̂. Since
ΘN,D(X) C Θ1NiD{y\ we have

wiN,D\Xj =. niax W2Λ/ D\y)r==: niax wyy5D(JF) = K- * WΪN,D\X )?

as required.
To complete the proof, we will construct K,a,b,B,D so that (2.12) holds for

x G D. This will require several steps.

Step 1. We will work in an adapted coordinate system at x° with coordinate func-
tions (x\,...,xn). We will determine the required sets B,D for appropriate a,b in
the form

' x4 4 x4 ^

(b/lY h(a/2f+ - ^ - + Γ—J— < 1

v-4 X7n = ) x - "i _ι_ "z 4_ V__L_ < 1
N ' (Anbf (Anbf ' " s/1 ~
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If a < b, then, clearly, B C Ba, b and DQt b C D. We will show that there is a constant
K such that for some choice of a,b and a/b all sufficiently small, the inequality
(2.12) is valid for the corresponding set D.

We will use the following auxiliary constructions:
For each δ > 0, let Ss denote a section for v at the origin of the coordinate

system, that is, at x°, such that the Riemannian diameter diam^ < <5, and de-
fine Σs := {φισ : σ e Ss, \t\ ^ δ}. Consider the local representation of v given by
Σ"=i v,(x)d/dxj. By a rigid rotation, if necessary, we can and will arrange the
adapted coordinates so that υ\(0) — 0. Also, we define V by

and the number

ί (n Λ V/ 41
Ms := max < max ki(x)|, max Y\vUx) > .

{x£Σd xeΣό \/==3 ) J
If V(x°) = 0, then Hmδ-+oMδ -* 0. In case V(x°) = 0 and Mδ φO for every (5,

we will only consider a,b such that
Λ = * (M^) 1 / 2 . (2.13)

Of course, even under the restriction just imposed, a,b, a/b can each be chosen
arbitrary small. If F(x°)φθ or if V(x°) = 0 and Mδ = 0 for all sufficiently small
δ, we ignore this restriction.

Step 2. For each δ, Lemma 2.4 and the definition of Σs together imply there is an
open ball As C Σs at the origin such that, for each x G AS and for each time / with
\t\ > <5, the point φ*x is not in Σs. If <5 > 0 is given, choose a,b as required in
(2.13) and so small that D is in As. If x G D9 let x' denote the point on dD where the
segment of the trajectory {φ'x : \t\ ^ N} first enters D and let x" = φtDx' denote
the point of dD where the segment of the trajectory {φιx : |/| ^ N] last exits D.
Clearly, mNp{x) <; tD.

We use the Mean Value Theorem for integrals on the j t h component of the
vector filed v to obtain a point ξ-i G Σs such that

x'J = x'} + $v0x)dt = x'j + tDv0).
0

For each j — 1,...,/?, let ι>* = Vj(ξJ). Also, as an abbreviation, define αy = Anb for
y = 1,2 and αy = /2« for j = 3,...,«.

Since x' and x / ; both belong to dD, we have

and
i=l V α/

Using a standard inequality for the norm ||(yj)|| = (Σ I?/1 )'^4' w e ^n<^
I

4\ ]/4 / , f X 4 \ 1/4

1=] -(sen
-fe(?)T--
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This computation yields the estimate

/ , , * \ 4

^ 2 4 . (2.14)

Step 3. Consider the time tB when the segment of the trajectory {φ' c0 : \t\ ^ N}
first leaves D. Clearly, m^B(x°) ^ tB.

Recall that in our local coordinates, x° resides at the origin and define x =
φtβ(x°). As in Step 2, by the Mean Value Theorem, there is some ηJ G Σ$ such
that

f0 '

Define ΰj := VJ{Y^), the numbers βj — a/2 for j — l,3,...,w and β2 — b/2. Since
x G dB, we have

^. In accordance with the previous notation, we define

/=3 /=3

)4 S 2 1 6 π 4
We use (2.14)-(2.15) to obtain the estimate (tD/tB)

4 S 2 1 6π 4 d, where

d ; = ^ + (f »~2)4 + ^

We will show that for all sufficiently small δ > 0, there are some choices of
a,b such that d < 2. There are several cases.

Case 1. If F(JC°)Φ0, then \imδ^od = 4~4.
Case 2. If V(x°) — 0 and M ^ Ξ O for all sufficiently small δ, then, since

)
Case 3. Suppose F(JC°) = 0 and M^ΦO. However, note that we still have

* 0. Also, the restriction we imposed in (2.13) provides that

In this case, we have

Passing to the limit as δ —> 0, we see that the last expression converges to 1. D

We need the following elementary fact.

Lemma 2.6. Suppose A denotes an invertible bounded operator on a Banach space
E and let N G Z. If N ^ 2 and 1 G σap(A\ then there is a vector u G E with

\\E\\u\\E = 1 such that \\Aku\\E ^ 2 for each integer k with \k\ ^ N.
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Proof. Se t ε = { Y Λ = _ N \\Ak\\\ . S i n c e 1 G σap(A), t h e r e is s o m e H G £ w i t h

\\u\\E = 1 s u c h t h a t \\Au - u\\ ^ ε. A l s o , for 1 <; \k\ ̂  TV, n o t e t h a t

Ak-I= (kΣAn(A-I), k>0, Ak - I = - (Σ A{A - I\ k < V .

Hence, for \k\ ̂  TV, we have \\Aku - u\\ ^ Σy=-/v IM'II * IMW ~ u\\ ^ * a n d> a s a

result, |μλ'w|| ^ ||Λ*w - u\\ + ||u|| ^ 2. D

The main result of this section is the following lemma.

Lemma 2.7. Suppose etM = V is the group defined in (1.5) am/ dφze T :=Tι. If
1 £ σap(T\ C(X, 3~X)\ then σcψ(M;CND(X,^~X)) contains the imaginary axis of
the complex plane.

In accordance to (2.8) this lemma also shows that 1 £ σap(T, C^o(X,$~X)) im-
plies 0 G σap(M,CND(X,^X)) for both cases:

or

Proof Let ξ G 1R and let AT be defined as in Lemma 2.4. Also, for notational
convenience, define ω := l/(127cΓ).

Since 1 G σa p(Γ), Lemma 2.6 applied to the bounded linear operator T — Tx

ensures that, for each integer N ^ 2, there is some vector field u G C(X,&~X) such
that

( 2 1 6 )

^ 2 for |*| SN. (2.17)

Since {Γ} is a C0-semigroup, Γw -> u in C(X,^X) as ί -> 0. Thus, there is
a real number 5 with 0 < s ^ 2,/V such that

||7*M - M||C(Λ^jr) = ω f 0 Γ W ̂  *> ( 2 1 8 )

\e~ιζt - 1| ^ ω for \t\ ^ s. (2.19)

Also, there is a smooth function y: IR —> [0,1] such that:

y(0 = 0 for \t\^N, (2.20)

| , f o r ί G R , (2.21)

7 ( 0 = 1 for \t\^s. (2.22)

In view of (2.16), and the fact that the non-periodic points are dense in X, there
is a non-periodic point x° e X such that

H*°)ll ^\h\\C(χrrx) = \- (2-23)

Use Lemma 2.5 to find small a,b with small a/b, and neighborhoods D D B 3 jc°,
such that (2.12) holds. Moreover, in accordance with Lemma 2.4, we can choose
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a,b sufficiently small so that for D :—Dab, for s from (2.18)—(2.19) and with
c := max|,|<i | |Γ' | | we have

φιy & D for any y <E D provided s ^ \t\ ̂  IN (2.24)

and, for some constant C, the following inequalities:

- ω ' ( 2 2 5 )

max \\Φ(yJ)u(x°)\\ ^ 4c. (2.26)
eD\t\^N

For the last inequality, we use (2.17) to show that

max ||Φ(*0,Ow(*°)|| S max \\Φ(x,t)u(x)\\
\t\^N \t\<NeX

< max WΦiφ'x^Wφ'x)]] = max

< c m a x IIΓ^II < 2c.

Since Φ: (x,t) ι—> Φ(x,t) is uniformly continuous on the compact set X x [— N,N],
we have (2.26) for a sufficiently small neighborhood D of x°.

We use Lemma 2.3 with z = u(x°). After a rigid rotation, if necessary, we can
arrange the adapted coordinates so that the component of v(x°) in the direction of
the first coordinate vanishes. Then, for this choice of adapted coordinates, there is
a divergence-free vector field of the form

w(x) = φ)u(x°) + wn(x) (2.27)

with α and wn supported in D,

ύ C- . (2.28)
b

and α(x) = 1 for x £ Baj,.
Define the vector field y on X by

oo

y(x)= J e-iξty(t)T'w(x)dt.
— oo

We see that y has zero divergence (for this remember Tι preserves the divergence-
free vector fields). By easy computations with My — j^Tτy\τ=Q one has:

(Ί
T'wdt = iζy - J y'(t)e~iξtT'wdt.

τ=0

To complete the proof, we must show that iξ e σap(M\CND(X,3~Xy). This is an
immediate consequence of the following proposition: There is a number A > 0 that
does not depend on the choice of N such that

/ γ'(t)e-iξtT'wdt - jf\
C(x,.rx)
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To prove the proposition, ί i x i G l and note that
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\\My(x) - iξy(x)\\ =

where, by (2.20) and (2.21),

/ £Γ*y

= -f*(φ-'x)\\&(φ-'x,t)u(x°)\\dt9
-N

= -J\\Φ(φ-ίxj)\\\\wn(φ-tx)\\dt.
' -N

Since suppα C D and suppw^ C A the integrations I\ and h can be restricted to
ΘD(x) = ΘN,D(x), see the notation in (2.11). We use (2.26) to obtain:

max S —4c mNiD(x).

We use (2.25) and (2.28) to estimate I2:

h S ^ / ^

g — max
N \t\^N

C- mN,D(x) S —ωmN,D(x).
b N

We obtain the desired upper estimate from (2.29) and (2.30), namely,

Wy - iξy\\C{x,,rx) ^ T7 maxmN,D(x).
N

To determine the lower bound, we define

J3 =

and note that

j e-lξιγ(t)a(φ-'x0)u(x°)dt
-OO

oo

/ e-^yitMφ-'x^KFuXx0) - u(x°)]dt

-oo

oo

-oo

y\\c(x,rx) = \\y(χo)\\ ^J\-Ji-Jz*

Again, each integral is equal to its restriction to ΘD(XQ) — ΘNJ)(X°)
As in (2.30), we use (2.28) and (2.25) to estimate J3 from above:

J3ύ J | |(Γ f

WΛ)(jc°)||Λ
ΘD(x°)

(2.29)

(2.30)

(2.31)

(2.32)
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Next, we use (2.18) to estimate J2 from above. For this, note that from (2.24)
if t e ΘD(X°), then \t\ < s. Thus, we have

ΘD(x°)

Finally, we estimate J\ from below:

^ ωmNtD(x°). (2.33)

7, = \\u(x° J e-'ςty{t)a.(φ-'x°)dt ^ 7 , , - 7 , 2 , (2.34)

where

7,, =

7,2 =

-'x°)/
ΘD(x°)

y(t)a(φ-'x°)dt \\u(x°)\\ ,

J (e-ξ'-l)y(t)a(φ-'x°)dt \\u(x°

Since, by (2.24), φ'x° <£ D for s ^ |ί| ^ IN, Eq. (2.22) gives γ(t) = 1 for
t € <9β(x°). As α(x) = 1 for x £ B, we use (2.23) to compute the estimate:

(2.35)

Since ||M>°)|| S 1 and |;| ^ s for / e ΘD(x°\ the inequality (2.19) implies:

J\2 ύ J \e~ιξt - ^ ωmNtD(x°). (2.36)

The estimates (2.35),(2.36),(2.33),(2.32), and (2.12) together with the our
choice of ω — \/(\2K) give the following:

1

= 2Kfex"^L

1

By combining the estimate with (2.31), we have the desired result. D

We are now in a position to prove Theorem 2.1.

Proof. It is well-known (see, e.g., [19]) that the Spectral Inclusion Theorem

σ(etM) D expto-(M), (2.37)

holds for any Co-semigroup. Also, the spectral mapping theorem is true for the
point and residual spectrum. Therefore, to prove (2.9) one needs to show that,
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in Cm{X,FX\

σap(etM) Cexp ίσa p(M), / + 0.

Fix μ = \μ\eι() G σap(etM Cm{X^X)\ T h e n μ = etλ for λ = \\n\μ\ + if. Con-

sider the cocycle Φ(x,t) = e~tλΦ(x,t\ and the group { f ' } , Γ ' = e/Λ*, defined by

Φ(JC,0 as in (1.5). Then μ G σap(etM ,CND(X,3TX)) implies that 1 G α a p ( ^ ;

CND(X9^X)\ By (2.8) and Lemma 2.7, we have 0 G σap(M;CND(X9^X)). But,

since M = M - λ, this implies A G σap(M CND{X>&~X))
To prove that σ(M) is invariant under the translations along the imaginary axis,

we fix λ G σa p(M) and ξ G IR. By the Spectral Inclusion Theorem for t = 1 we

have 1 G σ a p(eM), also, M = M — λ. By Lemma 2.7, one has iξ G σa p(M) and, as
a result, λ + iξ G σap(AdΓ). D

We will use notations

s(A) := supίRez: z G <τ(Λ)} and ω(A) := lim r ^ n l l ^ l l

for the spectral bound of a generator 4̂ and the growth bound of a Co-semigroup
{etA}, respectively. Note [19], that for an arbitrary Co-semigroup {etA} one has
.s (^) ^ ω(A), but, generally, s(A)ή=ω(A). The Spectral Mapping Theorem, however,
gives for the group of weighted composition operators the following fact.

Corollary 2.8. In the space of continuous divergence free vector fields the spectral
bound and the growth bound are equal: s(M) — ω(M).

Remark. 2.9. Consider the kinematic dynamo operator Lε = L + εΔ with ε > 0
(see (1.1)). This is an elliptic operator, it generates an analytic semigroup, and the
spectral mapping theorem σ(etLl) — {0} = β / σ ( I ί ) is valid [19] for this semigroup.
Hence, s(Lι:) = ω(LE) for ε > 0. For Lo — L, Corollary 2.8 shows that this equality
is also valid for ε = 0.

Remark. 2.10. M. Vishik [23] has shown that limsup^o co(LG) S co(Lo). In view
of Remark 2.9, this theorem can be reformulated as lim supε_>o s(LE) ^ s(£o) We
stress that the last assertion does not involve the construction of the group {etLv}; it
is given in the terms of generators only. See Remark 3.9 below for the connection
of this assertion to the "fasf'-dynamo problem. Our formulation suggests that the
validity of the assertion lim supc_+o s(Le) = S(LQ ) can be approached as a problem
from the theory of singular perturbations for the generators of Co-semigroups.

Remark. 2.11. The Spectral Mapping Theorem for semigroups of weighted compo-
sition operators does not hold without the assumption that aperiodic trajectories are
dense in X (see [5,12] for examples). However, in the space C(X,$~X) (and L2,
see [5,12]), this assumption is not required to prove the following Annular Hull
Theorem:

expίσ(M) C σ(etM) C J^(expίσ(M)), f+ 0, (2.38)

where 3tf( ) is the union of the circles centered at origin, that intersect the set
( ). We conjecture the assertion (2.38) is valid in CND(X,^~X). Note that the
equality s{M) — ω(M) is an immediate consequence of (2.38).
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3. Description of the Spectrum

In this section we will describe the spectrum σ(etM) in the space CND(X>^~X) under
the assumptions of the previous section: X is a compact Riemannian manifold with
dimX ^ 3 and the divergence-free vector field v on X generates the flow φ* whose
aperiodic points are dense in X. However, in fact, all the results of this section are
valid provided dimX ^ 2.

By Theorem 2.1 it suffices to determine σ{etM) for a single value of t, say for
t = 1. As a notational convenience, we define the bounded operator T in C(X9£~X)
by T = eM. For example, if M — L is the Lie derivative in the direction v, then,
for x G X,

(Tu)(x) = Dφ(φ~ιx)u(φ~ιx).

Also, we let T^o '•— T\CJMD(X,^~X) denote the restriction of T to the subspace

We will prove that σ{TND,C^o{X^X)) is exactly one annulus, centered at the
origin whose inner and outer boundaries are the boundaries of σ(T, C(X, $~X)).
The proof is based on the following simple idea. We will show that both spec-
tra are rotationally invariant and the approximate point spectra of T and T^o
coincide. Under the assumption that in the space of divergence-free vector fields

~X)) has a gap, we will extend the Riesz projection for TND from
to C(X,&~X). To construct this extension, we will approximate a con-

tinuous vector field by a linear combination of locally supported divergence-free vec-
tor fields. The Riesz projection for TND can be applied to each such divergence-free
vector field and this extension turns out to be a Riesz projection for T in C(X,&~X).
By Mather's theory this Riesz projection will be an operator of multiplication by a
continuous matrix-valued function. This multiplication must preserve C^D(X^X\ a
contradiction.

To approximate a continuous vector field by a linear combination of locally
supported divergence-free vector fields, we will need the following restricted form
of Lemma 2.3:

Lemma 3.1. If x° e X is a non-periodic point of v and if z G ̂ ~xoX, then, for
each pair B,D of sufficiently small neighborhoods with DDB3X°, there is a
coordinate chart with coordinate functions (x\,...,xn) at x° containing D and a
vector field f 6 CND(X,^~X) with supp/ C D such that the local representative
off in B is given by the constant vector field J X ^ ^ J - whose components, z;,
are the components of the local representative of the vector z.

By a theorem of Mather [13] (see also [5,12]), the spectrum oap{T) in
C(X,$~X) is invariant with respect to rotations about the origin in the complex
plane. As a corollary of Theorem 2.1 we have the following two assertions. We
note, that these two assertions were also proved in [21].

Corollary 3.2. OCIP(TND\CND(X,^X)) is rotationally invariant.

Corollary 3.3. σcψ(T;C(X^X)) = σap(TND;CND(X,^X)).

Proof In view of (2.8) and the fact that the spectra T^o and T are rotationally
invariant, the assertion will be proved as soon as we show the following propo-
sition: If 1 G σ^{T\C{X,3TX)\ then 1 G σap(TND;CND(X9^X)). By the Spectral
Inclusion Theorem (2.37), to prove this proposition it is enough to show that



Spectrum of Kinematic Dynamo Operator 395

0 e σap(MND\CND(X^X)) provided 1 G σa p(Γ) in C{X9^X)). This is done in
Lemma 2.7. D

In accordance with [13] (see also [5,12]), the set σ(T;C(X^X)) generally
consists of several disjoint annυli centered at the origin. Let r_ (resp., r + ) de-
note the radius of the inner most (resp., outer most) circle in σ(T;C(X,^~X)). By
Corollary 3.3, we have σ(TND,CND(X,^X)) C {z : r_ ^ \z\ ̂  r + }. We will show
the set O{TJMO,C^D{X,^X)) is exactly this annulus. This is the content of the next
theorem.

Theorem 3.4. The spectrum σ{TND,CND{X,3ΓX)) of T in CND(X,^X) is the an-
nulus {z : r_ ^ \z\ ̂  r + }.

Proof. Suppose the theorem is not true, then there is a gap in the spectrum σ(TND)
in C/VD(^C<^0 Without loss of generality, we can assume there is an annulus
{z : ri ^ |z| ^ r2} in the resolvent set of TND containing the unit circle T and
r_ ^ r\ < 1 < Γ2 ̂  r+. In this case, there is a Riesz projection P = P^o for the
operator TND in C^D(X,,TX) corresponding to the part of σ(TND,CND(X,^FX)) that
lies inside of the unit discD. In addition, there are positive constants C\,C2 such
that

\\Tnf\\c{x,rx) ύ CrfWfWaxsx), « e N } , (3.39)

T-nf\\c(x,rx) ̂  C2r-n\\f\\c^rx), «EN}. (3.40)

We will construct a projection έP in C(X,£~X) that commutes with T and has
the following additional properties:

C D, σ([Γ|Im(/ - ^)]'\C(X^X)) C D .

In other words, the operator T is hyperbolic in C(X,^X), that is,

and 2? is the Riesz projection for T in C{X9FX). It follows, see [13] and [12],
that the projection 2P has a form 0*f(x) = Pc(x)f(x\ where Pc : X —» proj ( ^ X )
is a continuous projection-valued function.

Note, that 2P = PND on CND(X9^X). Hence, ^ maps CND{X9^X) into itself.
We claim that this implies 0* is either the identity or the zero operator, in contra-
diction to the fact that T is hyperbolic. To prove the claim, consider local (adapted)
coordinates (x\9...9xn) so that the divergence operator is given as in (2.10). The
projection ?? is represented by a matrix valued function with components ^ ( x ) .
For each divergence-free vector field u9 we then have

ij dxi ; ' υ dXf '

For each point x in the coordinate chart and each index pair ij with /φy', there is a
divergence-free vector field u such that u(x) = 0 and duj(x)/dxι = διj9 where δtj is
Kronecker's delta. With this choice of w, (3.41) shows Φlf = 0 for iφj. Using that
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fact that 0> is a projection, we have 2P(3P - /) = 0 and it follows that each diagonal
element, ^//(x), is either zero or one. Since 0* preserves all divergence-free vector
fields, it is easy to see that all diagonal elements must then be equal and 2P is as
required in the coordinate chart. The desired result follows by continuity and the
connectivity of X.

We will construct the required projection @> in the space C(X,3ΓX).

Step 1. We introduce "step-functions" in C(X,&~X).
Since X is compact, there is a partition of unity {pk}£=\ with K < oo, that

is, for each integer 0 < k ^ K, the function pk : X —> [0,1] is continuous, and for
each x G X,

Σ Pk(x) = 1 , (3-42)
k=\

US UPPP/ ) * 0 (3-43)

In particular, there is some Xk G s u p p p ^ l j ^ suppp/ such that Pk(xk) — l
For each set of vectors u\,...,uκ, the vector field

K

k=\

is continuous, and ||g||cvcrjo = suP£llw&||. Indeed, if \\uk'\\ = supk\\uk\\9 we can use
(3.43) to choose xo such that p^( χo) = 1 for some x0 G supppk'\Uk£kf suppp^.
Then,

IMI ^ ll^o)|| =

On the other hand, using (3.42),

Ml = m ax ΣPk(x)\Wk\\ ^
k

It is also easy to see that the set (5 of all such "step-functions" g = Σk Pk Uk

is dense in

Step 2. We will define 9 for g G ©.
Suppose ^ = Σk Pkuk € ® Without loss of generality we can assume the par-

tition of unity is so fine that Lemma 3.1 is applicable for each k. By this lemma,
for each k, there is a section fk G CND(X, ZΓX) such that fk(x) = "A- for x G suppp^
and ||/*He = ||w*||. Then, for each x eX,

g(χ) = Σpk(χ)fk(χ% fkecND(x,FX). (3.44)

k

We define ^ # and &g as follows:

= Σ Pk(x) (Pfk)(x\ Άg{x) = Σ P*(^)[(/ - ^)ΛK^) > (3.45)
A: A:

where P = PND is the Riesz projection for J/VD in CND(X*^~X) Formally, the de-
composition g — 0>g -f Jgf, depends upon the choice of /*. However, we will show
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that, in fact, the definition (3.45) does not depend on this choice and that & is
a bounded linear operator on (δ. Once this is proved, the unique bounded linear
extension of & to C{X,3~X) is the desired projection.

Step 3. Define

F+ := {/ G C(X9ΓX): lim | | r / | | - 0} ,
n—»oo

F_ := {/ e C{X,3ΓX): lim ||Γ-"/|| = 0} .
Λ—+00

We will show that F+ (Ί F__ == 0.
Clearly, F± are linear (not necessarily closed) subspaces in C(X9^X).

Assume / G F+ Π F_ and / φ 0. We have

lim l i r /H = lim max||Φ(x,«)/(x)|| = 0 .

«—> ± o o «—>±oo x

In particular, there is some x° G X such that / ( x ° ) φ θ and

sup\\Φ(x°,n)f(x°)\\ < o o .

This implies (see [5] or [14]) that ΊΓ C σcψ(T,C(X,$~X)). Thus, by Corollary 3.3,
we have T C σap(T^D9CND(X9^X)) But, this contradicts our assumption that TND

is hyperbolic in CND{X,3ΓX).

Step 4. We show that 0* and Ά are well-defined on ©.
Suppose g — Y^pkUk G (5 and, for each A:, the section /* is chosen as in (3.44).

Also, define g+ := ^ and gι_ := Ig. We will show g± € F±.
Indeed, as Pfk G ImP, using the inequality (3.39), we have

\\τ VII =

In particular, Iimn_>oo||Γ
/Igf+|| = 0 and g+ G F+. Similarly, using (3.40), we have

c(x,.rx)

n(I — P)fk\\c(χyrx)
k

,—n I
^ ) - C2||/ -

This implies \\T~ng_\ 0 as n —> oo and q~ G F-.
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By Step 3, we have F+Γ)F^ = { 0 } . Hence, g±, in the decomposition g —
g+ -f Q- with g± E F±, are uniquely defined. If particular, the definition of &g and
Άg in (3.45) does not depend on the choice of /*.

Step 5. We extend & and J from © to C(X,FX).
From the calculations in Step 4 with C\ := Ci| |P| | and C2 := C2 | |/ - P | | , we

have, for n £ N, that

\\rg+\\c s crf\\g\\, ||7-vilc ^ ^" l^ l l .

These inequalities, for n = 0, show that ^ and J2 are bounded on (5. To complete
the proof we will show these operators are linear on (5.

Indeed, for
<0 7 0

g = Σpιui a n d g = Έpjΰj

there are fnfjE CND(X,^~X) such that g = X)p, // and g = Σ(>jfj W e define

/Z7 = /• and jj7 = ^ for / = 1,..., /0, 7 = 1,... ,70, and use (3.42) to obtain:

g = ^ ptp ftu g = ^^ PiPfi '

Then, (3.45) gives:

U

as required. D

From this theorem and Theorem 2.1 we conclude that the spectrum σ(M) in the
space CND(X,&~X) of divergence-free vector fields is exactly one vertical strip:

Corollary 3.5. σ(M\CND(X,$~X)) = {z: lnr_ £Ξ Rez ^ lnr+}.

Our next goal is to characterize the spectra O(TND\CUD(X^X)) and σ(MND;
CND(X,$~X)) via the exact Lyapunov exponents for the cocycle Φ(x,t) with re-
spect to the set of (//-ergodic measures v 6 l . Recall that, by the Multiplicative
Ergodic Theorem [17], for each ergodic measure v G ^ , there exists a set Xγ cX
with v(Xv) = 1 such that for each x G Xv and u G 3~XX there exist exact Lyapunov
exponents

1
λv(x9u) = lim - ln||Φ(x,ί)«|| (3.46)

For each v, there may exist n' = n'(v) ^ n different Lyapunov exponents; we will

denote them by λ\ > λ2

v > • > λ" .

Corollary 3.6. The boundary circles of the spectrum G(TND\C^D{X,^X)) and the
spectrum σ(M^o;C^o(X,^'X)) are given by

lnr + = sup{A|,: v G $}, lnr_ = inf{A^ : v G $} .

measures v+ α^J v_ α«J ^xαc7 Lyapunov exponents λγ+(x+,u+) and
/ V _(JC_,M_), i wcA //zβί //ẑ  sup βWί/ inf above are attained.
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Proof. For the boundaries r± of the spectrum σ(T;C(X,#~X)) in C(X,3ΓX) these
formulas were obtained in [12] (see also [18]). D

Remark. 3.7. The absence of nontrivial spectral components of σ(L) for the space
CND(XI^X) leads to the following observation. Consider a situation when L acts
in the space C(X,$~X). After some inessential modifications, we can obtain a di-
chotomic (no spectrum on zΊR) operator L. For example, starting with an Anosov
flow, as usual in Mather's theory, such an operator can be obtained by "moding
out" the direction of the flow.

We note that "moding out" the direction of the flow does not change σ(L).
The reason is that the spectrum of L on the direct sum of the quotient space
CND(X,17~X/[V]) and the space of sections generated by v is the union of the re-
spective spectra. An element of the second space must be a divergence-free vector
field of the form av where α is a function on the manifold. This implies gradα = 0
so that α is constant along the trajectories of v. But, then Lav = 0 and the spectrum
of L on this subspace is {0}. Since G{L^D\C^O{X^X)) is invariant with respect
to vertical translations in the complex plane, the entire imaginary axis must be in
σ(LND,CND{X,3~X)). All the points except the origin must then be in the spectrum
of L restricted to the quotient space. But the spectrum of L is closed, thus the
origin is already in the spectrum on the quotient. In particular, the spectrum of the
quotient is the same as the spectrum on the original space.

Going back to the kinematic dynamo equations (1.1), we make the following
concluding remark.

Remark. 3.8. Recall (see, e.g., [1,2,3]) that the kinematic dynamo is called "fast"
provided l imsup M O O ω(Lκ) is positive. M. Vishik [23] gave the following sufficient
condition for the non-existence of a fast kinematic dynamo: Define the Lyapunov
numbers

1
λ(x, u) — lim sup - \n\\Dφ (x)u\\ .

t—>oo t

If
sup{ΐ(x,u): x eX,u e <TX} <; 0 , (3.47)

then there is no fast kinematic dynamo. The fact that the spectral bound ω(L) is
less than or equal to the supremum in (3.47), see Remark 2.10, is used in [23].
Therefore, in view of [23], our Corollary 3.6 gives an alternate form of the sufficient
condition for no fast kinematic dynamo.

Acknowledgement. We thank Misha Vishik for several very helpful conversations.

Note added in proof. Conjecture 2.38 in Remark 2.11 is proved in the paper "The Annular Hull
Theorems for the Kinematic Dynamo Operator for an Ideally Conducting Fluid" by C. Chicone,
Y. Latushkin and S. Montgomery-Smith, submitted.
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