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Abstract: It is shown how a chiral Wess-Zumino-Witten theory with globally
defined vertex operators and a one-to-one correspondence between fields and states
can be constructed. The Hubert space of this theory is the direct sum of ten-
sor products of representations of the chiral algebra and finite dimensional internal
parameter spaces. On this enlarged space there exists a natural action of Drinfeld's
quasi-quantum group AgJ, which commutes with the action of the chiral algebra and
plays the role of an internal symmetry algebra. The R matrix describes the braiding
of the chiral vertex operators and the coassociator Φ gives rise to a modification of
the duality property.

For generic q the quasi-quantum group is isomorphic to the coassociative quan-
tum group Uq(g) and thus the duality property of the chiral theory can be restored.
This construction has to be modified for the physically relevant case of integer
level. The quantum group has to be replaced by the corresponding truncated quasi-
quantum group, which is not coassociative because of the truncation. This exhibits
the truncated quantum group as the internal symmetry algebra of the chiral WZW
model, which therefore has only a modified duality property. The case of g = su{2)
is worked out in detail.

1. Introduction

A very important feature of two-dimensional conformal field theory is the fact that
the theory "factorises" into a holomorphic and an anti-holomorphic theory. These
two subtheories correspond essentially to the left- and right-movers of the original
classical theory and are analytic (anti-analytic) in the sense that all correlation
functions are meromorphic functions of the analytic (anti-analytic) parameters. Many
properties of conformal field theory can be studied separately for the two chiral
theories. This is of great importance as it allows the use of the powerful methods
of complex analysis for the analysis of conformal field theory.
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However, the process of breaking up a theory into the two chiral theories is not
very well understood. In particular, the naive chiral theory, i.e. the theory, in which
the Hubert space is just the direct sum of the chiral representation spaces, does not
possess globally defined vertex operators or a one-to-one correspondence between
vertex operators and states.

In this paper I want to show how to construct a chiral theory with a proper
Hubert space formulation for a WZW conformal field theory. The basic idea is to
use the Hubert space formulation of the whole theory and to restrict it to a chiral
subtheory by taking a suitable limit. This construction guarantees that the chiral
theory has a one-to-one correspondence of states and vertex operators and that the
chiral vertex operators are well-defined operators on the whole chiral Hubert space.
This Hubert space is larger than the "naive chiral Hubert space," i.e. the direct
sum of the irreducible representations of the chiral algebra, and is precisely the
Hubert space Moore and Reshetikhin [35] postulated some years ago. The additional
degrees of freedom keep track of the different "chiral vertex operators" of Moore
and Seiberg [36] and make sure that the vertex operators are well-defined on the
whole Hubert space. They furthermore retain sufficient information to reconstruct
the whole theory from its chiral subtheory.

On the additional degrees of freedom there is a natural action of the quasi-
quantum group AgJ of DrinfeΓd [13], which commutes with the chiral algebra.
Chiral vertex operators transform covariantly under the quasi-quantum group and
the braiding of the chiral vertex operators is described by the Z?-matrix, where
the deformation parameter h is related to the level of the affine algebra by
h = 2πi/(k + /z*) with h* the dual Coxeter number of g.

The symmetry algebra is only a quasi-Hopf algebra. This means that the algebra
is not coassociative, but only coassociative up to conjugation. The operator, by
which the two different actions on a triple tensor product have to be conjugated, is
called the coassociator Φ. It is an invertible element in the triple tensor product of
the quasi-Hopf algebra. The property of the quasi-quantum group to be only quasi-
coassociative leads to a modification of the duality property of the chiral vertex
operators: the two different ways of writing the operator product are related by the
action of Φ on the internal degrees of freedom.

For generic q the quasi-Hopf algebra is isomorphic to the (coassociative) quan-
tum group Uq(g). I can thus use this isomorphism to regard the internal parameter
spaces as representations spaces of this quantum group. The chiral vertex opera-
tors then satisfy the (unmodified) duality property and the chiral theory transforms
naturally under the action of the quantum group.

The above construction can be extended to the physically relevant case, where
k is an integer and q a root of unity. In this case one has to replace the quantum
group Uq(g) by the corresponding truncated quantum group. This is the so-called
"weak quasi-triangular quasi-Hopf algebra" canonically associated to Uq(g) and has
been studied in [31]. It is not a coassociative algebra, as the truncation breaks the
coassociativity. This exhibits the truncated quantum group as the internal symmetry
algebra of the chiral theory, which thus possesses only a modified duality property.

On the other hand, in contrast to the original quasi-quantum group AgJ, the
degree by which the truncated quantum group fails to be coassociative can be
easily determined. In particular, the Φ-map, which describes the non-coassociativity,
is trivial on all triple tensor products, which do not exhibit any truncation.

I would like to mention that the general structure has been conjectured among
others by [35, l,2]-for a historical review see for example [25]. There have been
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attempts to give a construction of the quantum group in conformal field theory in
[23,24] for the minimal models and in [39,40] for the WZW-models using the
Coulomb gas picture. However, in these formulations the quantum group generators
do not commute with the Virasoro algebra and the construction relies on a specific
realisation of the theory (which only exists for generic q).

The construction of the chiral theory (with internal degrees of freedom) was
inspired by the recent work of Chu and Goddard [4], in which chiral vertex operators
for su(n) at level 1 were constructed. However, applying my construction to the
free field realisation of the whole theory (for su{n) at level 1) does not reproduce
their chiral theory. Indeed, the internal degrees of freedom in my construction are
finite dimensional, whereas their internal parameter spaces are infinite dimensional.
On the other hand, their construction has the virtue of preserving the (unmodified)
duality property for the chiral theory.

It is a priori rather surprising that there should be two different chiral theories, as
the quantisation of a classical theory should be somehow unique. On the other hand,
this uniqueness property only applies to the whole theory and one would expect that
the corresponding reconstructed whole theories agree. Thus the two chiral theories
just appear to be two different factorisations of the same whole theory.

It is nevertheless quite remarkable that there exists a chiral theory with the
unmodified duality property for the level 1 sw(/2)-theories. However, for non-integer
quantum dimensions this is only possible if the internal degrees of freedom are
infinite-dimensional. Thus chiral theories with finite dimensional internal degrees of
freedom possess in general only a modified duality property.

Finally, I would like to mention that there have been attempts to reconstruct
the abstract internal symmetry algebra of a chiral conformal field theory from the
structural data of the chiral theory [32,43,17,41,38], generalising the approach
of Doplicher and Roberts [7] to the case of braid group statistics. This approach
has been successful in the sense that for every chiral conformal field theory a
weak quasi-quantum group can be found whose representation theory reproduces
the fusion structure of the chiral theory. However, it has been realised recently
[27,41] that the abstract internal symmetry algebra is not yet uniquely determined
by this condition alone, as there exists an infinite choice for the dimensionalities of
the representation spaces.

In the above construction of the chiral WZW-model, one of the possible ab-
stract internal symmetry algebras is naturally selected. In addition to satisfying all
conditions of an abstract internal symmetry algebra, it is also a subalgebra of the
symmetry algebra of the whole theory. The construction therefore seems to sug-
gest that the internal symmetry algebra of a chiral conformal field theory might
be uniquely determined by the whole conformal field theory, namely by the condi-
tion to be a subalgebra of the whole symmetry algebra. The different possible ab-
stract internal symmetry algebras would then also have a natural interpretation: they
would correspond to different whole conformal field theories which possess the same
chiral half.

The paper is organised as follows. In Sect. 2, the chiral theory is defined.
Section 3 contains a brief review of the quasi-Hopf algebra of DrinfeΓd, whose
appearance in the chiral theory is proven in Sect. 4. In the following section I
explain how the duality property of the chiral vertex operators can be restored
for generic k by transforming to the quantum group Uq(g). This is demonstrated
explicitly for the case of g = su(2). I then explain how the construction has to
be modified for roots of unity. In Sect. 6, I show how the original theory can be
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reconstructed from the chiral theory by some sort of gauging procedure. Section 7
contains some conclusions.

2. Construction of Chiral Vertex Operators

Let us start by establishing some notation. The physical Hubert space of the whole
(non-chiral) WZW-theory is the finite direct sum

>5f/, (2.1)

where Jf/(Jf/) are irreducible (not necessarily conjugate) representations of the
chiral algebra si {si). The two chiral algebras si and si commute and are both
isomorphic to the affine algebra g, generated by

VlJb

nλ = iffjc

m+n + \kmδm^nδ
ab . (2.2)

k{k) lies in the center of the algebra si {si) and both k and k take the same value
in all representations. The value of x = 2k/φ2 is called the level, where φ is a long
root of the Lie algebra g. It has to be an integer in a unitary theory. This restriction
can also be understood as a quantisation condition, if the WZW model is to be
regarded as the quantisation of a classical field theory (see (2.10) below).

I want to assume that there is a one-to-one correspondence between fields and
states (for the whole theory) and denote for a given ^ ψ G J f y ® ^ the cor-
responding field by φ{φ (&φ;z,z) : jήf —> Jf. I also assume, that if one specifies
the "source" and the "range" of the operator-i.e. if one considers only its pro-
jected parts-the operator φ(ψ 0 ψ',z9z) decouples into a sum of tensor products of
operators, each of which depends only on z and z, respectively, i.e.

[φ{φ 0 φ;z9z)(\χ)ι ® \χ)ι)]m = Σ ( W > * ) I*)/) ® ( ^ / G M ) \ΐ)ι) (2-3)
α

As an aside I would like to point out that (2.3) does not determine the opera-
tors V^{φ,z) and V^{φ,z) uniquely, as there is (at least) the freedom to redefine
for each α

V^(ψ,z):=λV:,(φ,z), f^,z):=l'lV^,z), (2.4)

where A is a non-zero complex number.

In general φ(φ ®ψ) does not decompose into such a sum of products and
thus the whole theory is not simply the product of the holomoφhic and the anti-
holomorphic theory. However, a chiral theory with a proper Hubert space formu-
lation can be defined, if one enlarges the (naive chiral) Hubert space. The internal
parameter spaces which are introduced in this way, keep track of the different "chi-
ral vertex operators" of [36] and retain all the necessary information to reconstruct
the original theory.

Each irreducible representation Jf) of si — g contains a subspace Wj of high-
est weight vectors (w.r.t. the Virasoro algebra), which forms a finite dimensional
(irreducible) representation of the Lie algebra g. This subspace can be interpreted
as the space of lowest energy states, as LQ is essentially the energy.
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The basic idea of the construction is to enlarge the naive chiral Hubert space
by these lowest energy states, i.e. to define the Hubert space of the holomorphic
chiral theory as

F , . (2.5)

On this chiral Hubert space one can then define globally well-defined chiral ver-
tex operators. These chiral vertex operators are in one-to-one correspondence with
vectors in J"fChir and thus depend on φ ® w e Jf) ® Wj. They can be defined as

^ Jfchir (2.6)

by setting

(\χ)ι®\ΰ)ι))m :=lim

(2.7)

where ϋ7- is the Z0-eigenvalue of the highest weight representation Wi of Jf7/. A
similar construction can be performed for the anti-holomorphic vertex operators.

To prove that the above definition makes sense, I have to show that

l i m £ i / + i ' " i < w V^(w9z) \ΰ)ι e Wm . (2.8)

Because of the conformal invariance of the theory, the operator product expansion
is given by [22]

Va (w,z)\ύ)ι = Y\ zr+^m~^>~^ι\χ ) , (2.9)

where \χr) e J^m has conformal weight Δm + r . However, this already implies that
(2.8) is satisfied, as I project onto the lowest energy states by taking the limit

£ - > 0 .
This definition determines well-defined associative operators on 3tfc\άτ These

operators are in one-to-one correspondence with states in Jfchir They also satisfy
certain braid relations and possess a (modified) duality property, as shall be shown
in Sect. 4.

It cannot surprise that the properly defined chiral vertex operators depend on
these internal parameter spaces. To see this, recall that the WZW-model can be
understood as the quantisation of the classical field theory with action

= k\-^^Hg-ιdμg-^^g)d2x

1 1

where g \ Jί -+ G and l = 5 ' χ ] R , 38 is a three-dimensional manifold with
d& — Jί [5]. Writing x± — t ±x, the equations of motion are

which implies that g(x,t) factors into a left- and right-moving part

g(x9t) = u(x+)υ(x~). (2.12)
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However, this decomposition is only determined up to a constant group element, as
one can redefine

M - > κ λ , v-^h~lv, (2.13)

where h G G is arbitrary. Thus, in order to be able to reconstruct the whole theory
from its chiral components, one has to keep track of this ambiguity when defining
the chiral theory. Quasi-classically, one therefore expects that one has to retain
internal parameter spaces in the chiral theory, which are representations of the Lie
algebra g. The lowest energy vectors form indeed such spaces and the tensor product
of two such representations is just the usual ^-tensor product, as the comultiplication
of the affine algebra [20], restricted to the horizontal Lie algebra, is trivial.

In the (proper) quantum theory one retains the same degrees of freedom. How-
ever, these spaces become "quantised," as they should now be regarded as represen-
tation spaces of the quasitriangular quasi-Hopf algebra of DrinfeΓd AgJ [13]. This
is due to the fact that the vertex operators do not commute for finite k, but only
satisfy braid relations. I shall explain this in more detail in Sect. 4, after I have
recalled the definition of this quasi-quantum group. For the moment I only want to
point out that this quasi-Hopf algebra is (up to twisting) the unique quantisation of
the universal enveloping algebra U(g) [13] and that its appearance here is a typical
quantum effect, as only the lowest energy states are involved.

3. The Quasitriangular Quasi-Hopf Algebra Agf t

As an algebra, Afftt is the universal enveloping algebra U(g) of g. The comultipli-
cation is defined to be

Δ(ά) = fl(g)l + l l 0 α , (3.1)

the counίt ε(α) = 0, ε(l) = 1 and the antipode

S{a) = -a. (3.2)

The i?-matrix is given by

R = Δ{qc)(q-c ®q-c) = eτ: , (3.3)

where C is the quadratic Casimir of g

C = ΣtV, (3.4)
a

and / is twice the split Casimir, namely

C 0 1 L - l L Θ C , (3.5)

which satisfies m(t) = 2C, where m : U(g) x U(g) —• U(g) is the multiplication
map. q is a complex number and will turn out to be

(3.6)

i.e. h = j ^ , where h* is the dual Coxeter number of g. I have chosen the nor-

malisation Ύrτaτb — \δab, and hence the Casimir (3.4) is half the Casimir operator
of Drinfel'd [12].
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Agj is not a quantum group, but only a quasi-quantum group. By this one means
that there exists an invertible element Φ e U(g) 0 U(g) 0 U(g), Φ φ l 0 11 0 1,
such that

(id ®Δ)o Δ(a) = Φ(Δ 0 W) o zl(α)Φ"1 (3.7)

for all a E ί/(#). At first sight one might think that Afht is in fact a quantum
group, as the comultiplication is obviously coassociative and thus one might choose
Φ = t. However, the above i^-matrix (3.3) does not satisfy the consistency condition
necessary for an ordinary quantum group, namely

(Δ 0 id)(R) = Rn R23, (id 0 Δ)(R) = Ru Ru , (3.8)

but only the weaker condition

(Δ 0 id)(R) = Φ312 ̂ 13(Φl32)~^23 Φ , (3.9)

(id 0 Δ)(R) = (Φ23iΓlRnΦ2nR\2(Φ)~l . (3.10)

In order for the above to be a well-defined quasitriangular quasi-Hopf algebra,
these maps must in addition satisfy a number of consistency conditions. First of all,
R must be an ^-matrix, i.e.

A'(a) = RA(a)R~ι , (3.11)

where A' — A is the twisted comultiplication. Secondly, the counit must satisfy

(ε 0 id) o A = id = (id 0 ε) o A , (3.12)

and Φ must obey

(id 0 id 0 Λ)(Φ)(Λ 0 W 0 /d)(Φ) = ( 1 0 Φ)(/J 0 A 0 id)(Φ)(Φ ® t), (3.13)

lL (3.14)

Finally, in order to be a Hopf-algebra, the antipode must have the following prop-
erties: there exist algebra elements α and β, such that

(a)) = ε(a)β, (3.15)

where
(α) 0 zl ( 2 )(^). (3.16)

Furthermore, writing

Φ = Σ Φ(i) ® Φ(2) 0 Φ(3), Φ" 1 = Σ Φ(Ί{ ® Φ(̂ ) ® Φ(l) , (3-17)

5, α and β must satisfy

; ^ 5 ) = ll. (3.18)

I have given all these consistency conditions for completeness. In the following,
I shall not be concerned about the antipode-properties, as these do not seem to play
an important role in the present application. This is also justified by a theorem of
DrinfeΓd [13, Proposition 1.4], which - applied to the present situation-asserts, that
there exist α and β in AgJ, such that S defined by (3.2) satisfies (3.15,3.18).
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As far as I am aware of the literature there is no explicit formula for Φ. How-
ever, as in [13], one can define Φ implicitly as follows. Let φu i — 0, 1, 2, 3 be four
highest weight vectors in irreducible positive energy representations π ί5 i = 0, 1, 2, 3
of g. I want to consider the "chiral four point function"

WΨo(φx ®φ2® φ3;zuz2,z3) = lim z2

o

Δ°(V(ψo, zo)V(ψu zx)V{φ2, z2)V(φ3, z3))

= (φo, V{ψu zOV(φ2, z2)V(φi, z 3 ) ) . (3.19)

(In the following I shall sometimes suppress the φr or the z/-dependence of WψQ

in order to stress which dependence I have primarily in mind.) The function
Wψo(z\, z2, z3) satisfies the Knizhnik-Zamolodchikov equation [29],

T-Wφo(Ψ\ ®Ψ2®Ψ3',Z\,Z2,Z3)= - * Σ lJ—WΦ0(Φ\ ®ψ2®fo',Z\,Z2,Z3),
OZι jφt Zj — Zj

(3.20)

where h = ^ = j ^ and t\2 = t ® 1, t23 = 11 0 / and similarly for ^3. (Here,
i G {1, 2, 3} and the summation in (3.20) extends over j = 1, 2, 3. This equation
follows from the KZ-equation for the four point function by letting z0 —• 00 as
above.) These equations are consistent, as the curvature of the corresponding con-
nection is zero [29,13]. I can write the solution as

(Z, - Z 3 r * I 2 + ' l 3 + ' 2 3 ) G ( ^ ®ψ2®ψ3;X), (3.21)

where x is the anharmonic ratio

x = Z-^^. (3.22)
z\ - z 3

Then G has to satisfy the equation

^G(φ{ ®ψ2® fax) = -h ('-¥• + ̂ j ) G{xjjx ®ψ2® h x). (3.23)

As shall become clear from the analysis of Sect. 4 the different ways of brack-
eting a triple tensor product correspond to the different limits in which two of
the three points involved are made to coincide. Thus, in particular, the bracketing
((Ψ\ ® Ψ2) ® ψi) corresponds to the limit in which \z\ — z2\ <C \z2 — z3\, i.e. to the
limit x —» 0. In this limit, WψQ has the expansion

o

(3.24)
and thus G has the expansion

G(φλ ®φ2® φy,x) - x-^^ Wxφλ ®φ2® φ3). (3.25)

Expanding the right-hand-side in terms of the irreducible subrepresentations which
are contained in the tensor product φ\ 0 φ2, it can be rewritten as

l^p{φx®φ2®φ3), (3.26)
p

where Q is the value of the quadratic Casimir in the representation π,.
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Similarly, the bracketing (φ\ <&(φ2 ® ^3)) corresponds to \zι ~ z3\ <C \z\ — z$\
and thus to x —> 1. In this limit we have

WφQ(φι ® φ2 ® ψi zi) ~ (z2 - z a Γ * ' 2 3 ^ , - z 3 ) - A ( ^ 0

(3.27)
and thus

G(φx ®φ2® φ3;x) ~ (1 - * Γ Λ " ' 2 3 0 ^ O ( ^ 0 1A2 ® *A3) (3.28)

Again, the right-hand-side can be rewritten as

^o, r0Ai ®4>i®fo), (3.29)

where r parametrises the irreducible subrepresentations in the tensor product φ2 0

Obviously, there is some freedom in the normalisation of the four point func-
tions. However, once we have chosen a normalisation for say Wl , Wi is uniquely

determined by analytically continuing the solution corresponding to W^ . In partic-

ular, because of (3.20) and (3.23), we can find an invertible element

(3.30)

such that

WφQ(Ψ\ ®φ2®φ3)= Wψ0 (Φ(Φ\ ®φ2® Φ3)) (3.31)

independent of φ0 and zz . (Formally, one can write Φ as an ordered exponential
in the Lie algebra generators, integrating up (3.23).) Φ is invertible and it can be
shown-using conformal field theory arguments - that it satisfies all of the above
consistency conditions [13].

I would like to point out that for generic q the matrix elements of Φ can be
expressed in terms of the coupling constants of the theory. I shall use this fact
implicitly in Sect. 5.

4. The Role as Internal Symmetry

In Sect. 2, I have shown that the (holomorphic) chiral theory corresponding to a
WZW-model is given as

F / . (4.1)

The chiral algebra J / = g acts on Jf^r as

a^a®t (4.2)

and the vacuum representation is the summand in Jfchir corresponding to

<%?Ω®Ω. (4.3)

I would like to remark that the whole vertex operators corresponding to this repre-
sentation contain the holomorphic currents

J\z) - φ(Ja_xΩ® O z, z), (4.4)

as the right-hand-side is in fact independent of z. Thus the holomorphic currents do
belong to the (holomorphic) chiral theory.
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There is a natural action of the quasi-quantum group AQi t on this Hubert space,
given by

άι-+fl<g>ά, (4.5)

where a is regarded as an element of the horizontal Lie algebra g of the affine
algebra si — g. As mentioned before, the comultiplication formula [20] restricted
to this subalgebra is trivial and thus agrees with (3.1). Furthermore, the braiding of
the chiral vertex operators is described by the i?-matrix of the quasi-quantum group
and thus the universal enveloping algebra of the horizontal Lie algebra is A{U t rather
than U(g). To explain this in more detail, recall that the whole vertex operators
commute, i.e.

φ(φ 0 ψ;z,z) φ(χ Θ χ; ζ, ξ) = φ(χ Θ χ; ζ,ξ) φ(φ ® ψ;z,ϊ) (4.6)

upon analytic continuation of z and £, and correspondingly "anti-analytic continua-
tion" of z and ζ. 2 Since I have explicitly constructed chiral vertex operators as a
certain limit of whole vertex operators, I can calculate the braiding as follows:

Theorem 1. Upon anticlockwise analytic continuation of the left-hand side one has

Ω) = Σ Rΰ

ΰΫ*>V(χ ® w',ζ)V(ψ 0 v',z)(Ω 0 Ω),
vv V

π| (4.7)
where R^Ό,ϋ, is the matrix element of the R-matrix (3.3) with q = e^+^ and
the sum extends over a basis of the corresponding finite dimensional internal
parameter spaces.

Proof To calculate the braiding of the analytic continuation, consider the scalar
product with (φ ®ύ) £ Jf/ 0 W\. The correlation function of the corresponding
whole vertex operators satisfies

((φ ® M), φ(φ ® v;zj) φ(χ 0 w; ζ9 ζ)(Ω 0 β)> = (f - lΫι~A ^ ~Δ - Fφ z(z, ζ).

(4.8)

Upon anticlockwise analytic continuation of z around ζ (which corresponds to clock-
wise analytic continuation of f around ζ) we obtain

e-m{Δ^Δ C-Δ *)(ξ _ φ-Δ 5-Δ ̂ φ ^ ζ) ? ( 4 > 9 )

which must equal

(ξ-z)Z<-**-Z*Fχψ(ζ9z), (4.10)

as the whole vertex operators satisfy (4.6).

We obtain the correlation function of the corresponding chiral vertex operators
by multiplying the above expression with (ζ — z)~^Δι~Δ ϋ~Δ vi^-we do not have
to take the limit ζ —> f, as we have already projected onto the lowest Zo-
eigenspace by taking the scalar product. Thus the summand in the operator product

2 Because of (2.3) analytic and anti-analytic continuation is a well-defined concept for correlation
functions. The above assertion means that this is true for all correlation functions.
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expansion (of the two chiral vertex operators) corresponding to J*f/ 0 Wι exhibits
the braiding phase

eπι{Δ(-Ae-Δ,ϊ) < (4.11)

However, because of [20], the fusion of Wΰ and W^ is just the ordinary ten-
sor product, since the comultiplication is trivial. Thus, to pick out the sum-
mand ffi\ 0 fF/9 we only have to decompose the tensor product of W» and W$
into the direct sum of irreducible representations and project onto the summand
W\. However, by construction of the /^-matrix, the matrix element of R in this
subspace is exactly (4.11) and thus the theorem is proved. D

I would like to remark that the tensor product of Wβ and W^ contains in general
irreducible representations, which do not appear in_the tensor product of the corre-
sponding current algebra because of truncation. If W\ is such a representation, F ^ χ

in (4.8) is identically zero, as the φ's are vertex operators of a well-defined con-
formal field theory. Hence the operator product expansion of the two chiral vertex
operators does not contain the corresponding conformal family and in particular the
three-point-function of both sides of (4.7) vanishes identically. This also implies
that the R-maXήx given above is in general not uniquely determined.

The above theorem describes the braiding in a rather special case, namely when
the product of vertex operators acts on the vacuum. The general case can be derived
from this special case, once the duality properties of the chiral theory have been
established. In general, as we shall see, the chiral theory does not satisfy the duality
property of the whole theory

φ(φ 0 v;z9z) φ(χ 0 w; ζ,ζ) = φ(φ(φ ®v;z-ζ,Ξ- ζ)(χ 0 w); ζ,ζ), (4.12)

but only a modified version. (This is due to the fact that the different limit proce-
dures (in the definition of the chiral vertex operators) do not commute.) In particular,
this implies, that the braiding is not really local. Indeed, the braiding of two chiral
vertex operators will turn out to depend also on the state the product of vertex
operators is acting on (4.20).

The fact that the duality property has to be modified is intimately related to
the fact that the i?-matrix given above does not satisfy the quantum group con-
sistency condition (3.8), but only the weaker conditions (3.9,3.10). To complete
my argument that the universal enveloping algebra of the horizontal Lie algebra is
really AQyU I have to show that the chiral vertex operators satisfy a weaker duality
property related to Φ.

Theorem 2.

w), 0 ( φ <8> ΰ)

= Σ Φi?*%>V(ψ®ΰ',z)V(χ®w'9ζXφ®ΰ'), (4.13)

where Φv-Y£, -, are the matrix elements of Φ and the sum extends over a basis
of the finite dimensional internal parameter spaces.

Proof As above it is sufficient to consider the case, where we take the scalar
product with (ω <g)£) G Jf/ 0 W\. For the corresponding whole vertex operators we
have

((ω 0 x ) , φ(φ(φ ®v;z-ζ9z-ξ)(χ® w); ζ,ζ)(φ 0 M)>

Σ l J , ζ , O ) , (4.14)
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and

((ω®x%φ(ψ 0 v;z,z)φ(χ 0 w; ζ9ξ)(φ 0 ΰ))

r

where the indices p, p and r, r indicate the different conformal families, which
contribute in the t- and ^-channel, respectively. Equation (4.14) is defined for
|ζ| > \z-ζ\9 (4.15) for \z\ > \ζ\ and the right-hand sides of (4.14) and (4.15)
are the same analytic function in the four (independent) variables z,ζ,z and ζ. The
"equality" of (4.14) and (4.15) is the duality property of the whole theory (4.12),
which can be established from first principles using locality [22].

To obtain the left-hand-side of (4.13) we have to take the limit (z — ζ) —> 0 and

ζ —> 0 in (4.14). Using the above equality this is the same as

Tp(ω9φ9χ9φ;z9ζ)hmζ p lim (z - 0 " w p Wx-β(z,ζ,0) . (4.16)
p ζ-^0 z-^ζ

In the notation of Sect. 3 we obtain thus

The right-hand-side of (4.13) is obtained by taking the limit ζ —> 0 and z —> 0
in (4.15). Using again the above equality, this is the same as

ω,ψ,χ, φ z,ζ) \hnz^+Λr-^ lim ?*+A*~*f ψ^-(£,ξ,0), (4.18)

and thus in the notation of Sect. 3 equals

ΣSr(ω,ιl/,χ,φ;z,OWlr-(v®w®ύ). (4.19)
r

For fixed z and ζ, the function (4.14) and (4.15) satisfies the KZ-equation for z
and ζ. Therefore, the two expressions (4.17) and (4.19) are related as in Sect. 3,
and thus, by definition of Φ, the theorem holds. D

Putting the information of Theorem 1 and Theorem 2 together, we can now
determine the braiding of two chiral vertex operators in the general case. One easily
finds that the anticlockwise analytic continuation of z around ζ on the left-hand-side
equals

V(φ®v9z)V(χ®w,ζKφ®ΰ)= Σ ^
vvW

U ύ ! ) 9 (4.20)

where (Φ2n RnΦ~λ )™?ιΰ, is the matrix element of the composition of the three
maps. Thus in particular the braiding of two chiral vertex operators also depends
on the state the operator product is acting on.

I have thus shown that the universal enveloping algebra of the anti-holomorphic
horizontal Lie algebra forms indeed AgJ. Its physical significance is that it plays the
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role of an internal symmetry for the chiral WZW-theory, as it satisfies the following
properties:

it commutes with the chiral algebra s$ — g, which can be interpreted to be some
sort of observable algebra,

it annihilates the vacuum Ω 0 Ω, as a Ω = 0 for all ά G g C J / ,

as a consequence of the comultiplication formula for the horizontal subalgebra
[20] chiral vertex operators transform covariantly under AQiU i.e.

άV(φ 0 w9z) = V(\l/®w9z)ά+ V(φ 0άw,z) for all a e g C J / , (4.21)

the braiding (Theorem 1) and the duality (Theorem 2) of the chiral vertex
operators are described by the R-matrix and Φ of AgJ, respectively.

The quasi-Hopf algebra is not coassociative and therefore the chiral vertex oper-
ators only satisfy a modified duality property. For generic q, the duality property of
the chiral vertex operators can be restored, using the isomorphism between Agtt and
the coassociative quantum group Uq{g). However, for the physically relevant case
of integer k this construction has to be modified. In particular, the duality property
of the chiral theory cannot be completely restored, as the quantum group has to
be replaced by the corresponding truncated quasi-quantum group. This seems to
indicate that a chiral theory possesses in general only a weaker version of duality.

5. The Quantum Group Uq{g)

It has been shown by DrinfeΓd [12], that the quasi-quantum group defined above
and the (well-known) quantum group Uq(g) are isomorphic for generic q, where
h and q are related as in Sect. 2,

q = e

h/2 = e ^ . (5.1)

Here I choose the conventions as in [33], i.e.

[Hi9X±J] = ±(oihaj)X±J, [X+i,X-j] = So* ' Γ V > ( 5 2 >

and

Aq(X±ι) = X±i <g> qΎ + q~Ύ ®X±ι. (5.3)

By this I mean that there exists an invertible map φ : Uq(g) —> Ag^u

φ = id{mod h) and an invertible element F G U(g) 0 U(g), F = I 0 1 (modΛ),
such that

FA(φ(a)) = (φ®φ)Aq(a)F (5.4)

for all a G Uq(g). Furthermore the i?-matrices are related by

(φ®φ)(Rq) = F'RF-ι

9 (5.5)

where Ff = F2\ in the usual notation, and

Φ9 = (1 0 I 0 1) = (1 0 F){ίd 0 A)(F) Φ((A 0 id){F))~\F 0 I ) " 1 . (5.6)
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In particular this implies that the quasi-quantum group with non-trivial Φ is in fact
isomorphic to a quantum group with Φq = t <g> 1 ® 1.

To be more specific I want to construct this isomorphism explicitly for the case
of su(2). I define the map (analogously to [6])

φ: Uq(su{2)) -> Asu{2U , (5.7)

by
φ(H)=H9 φ(X±)=X±P±, (5.8)

where

and

Here, j( j -+- 1) is the eigenvalue of the quadratic Casimir

l 2 l

+ ) , (5.11)

and m is the eigenvalue of ^H. Thus I can express j and m in terms of elements of
4ϊw(2),ί This map is well-defined for arbitrary q. For generic q it is also invertible.

Next I want to relate the action of the two algebras on tensor products. To this
end I define the map F

F\Vh® Vh -+ Vh ®q Vj2 (5.12)

by

(\j)^\J)) Σ Σ ( ^ Y X { j h \ ' \ J , m x + m2)q

m2) \jum\) ®q \J2,m'2) ,

(5.13)

where dJ

J[j2 are constants to be specified shortly, (j\j2m\m2\J,M) and {j\j2wi\m2\
J,M)q are the Clebsch-Gordon coefficients of su(2) and Uq(su(2)\ respectively, and
the subscript q of the tensor product indicates that it is to be regarded as a repre-
sentation of the quantum group via the action (φ 0 φ)Aq(a). Then, by construction,
F satisfies _ _

F A(φ(a)) = (φ <g> φ)Δq(a)F . (5.14)

Thus, I can use the Racah formula [34] for the Clebsch-Gordon coefficients of
su(2) and a similar formula for Uq(su(2)) [28] to rewrite (for generic q) F as
F € U(g)®U(g). F satisfies then by construction (5.4) and (5.5). Furthermore,
F is the identity modulo h, if dj]j2 —> 1 as k —» oo.

A priori it is not clear whether F satisfies (5.6). However, by Schur's lemma, F
can differ from the invertible element relating ASU(2\t and Uq(su(2)) (for generic q)
at most by a scalar function of q for each irreducible subrepresentation in the tensor
product of two (irreducible) representations. I can therefore choose the "coupling
constants" dJ

jχ /2 so that F satisfies (5.6).
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To fix these constants explicitly, I shall use results obtained from the Coulomb
gas representation of the su(2) conformal field theory [10,3,14,8,9]. In particular,
the coupling constants for the whole theory turn out to be [9]

(2/i + l)(2y 2 + l ) / .

(2,3 + 1) O l

(5.15)
where

(5.17)

The square root in (5.15) is a consequence of the normalisation convention of [11].

dJ?χj2 is the ^-dependent part and tends to 1 as k —> oo.

Using the explicit expression for the coupling constants of the whole theory,
we can calculate the analytic continuation of the left-hand-side of (4.13) and thus
determine the matrix elements of Φ. This fixes the constants dj ; in (5.13) to be
equal to (5.16).

I would like to point out that the results of the Coulomb gas representation
have only been derived for generic (irrational) k. On the other hand, the matrix
elements of the i?-matrix and the Φ-map of the quasi-quantum group ΛgJ depend
continuously on k. We shall use this argument below to show that the formula for
the constant dJ

J]j2 (for suitably restricted 71,72 and J) extends to the case of a root
of unity.

The above formula for φ is only invertible and F is only well defined on all
tensor products if q is generic. The breakdown of the formulae at a root of unity
is mirrored by the fact that the quantum group ceases to be semisimple at roots
of unity, as not all representations of the quantum group are completely reducible.
Thus, at a root of unity, the symmetry algebra will not be the original quantum
group, but only some modification.

In fact, at a root of unity, the quantum group has to be replaced by its trun-
cated version. By this I mean that one restricts the action of the quantum group
to the so-called physical representations and considers only the projection of the
tensor product onto its completely decomposable part. This truncated version of
the quantum group has been studied in [31], where it was called the canonically
associated "weak quasi-triangular quasi-Hopf algebra." It is important to note that
the truncation breaks the coassociativity and thus that the resulting algebra is only
a quasi-Hopf algebra. However, the corresponding Φ-map can be easily determined
(a formula is given in [31]) and it is trivial on all triple tensor products, which do
not exhibit any truncation3.

The physical representations are those which correspond to the unitary positive
energy representations of the affine algebra at level x = 2k/φ2. For su(2)9 x = k

3 It should be noted that the coassociator Φ of a weak quasi-quantum group is not invertible,
but rather possesses only a quasi-inverse. The same applies to the R matrix.
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and the unitary positive energy representations are characterised by j ^ k/2. It is
easy to see that φ is indeed invertible on these representations.

To project the tensor product of physical representations onto its completely
decomposable part one restricts the sum over J in (5.13) to J S k — j \ — J2-
This truncation is necessary to give a well-defined meaning to F, since [j\ + j 2 +
j + \]q\ = o for 7i + j 2 + J + 1 ^ k + 2 and the Clebsch-Gordon coefficient for
Uq(su(2)) becomes singular. The truncation is precisely the truncation of the fusion
rules of the corresponding WZW-model [44,19,18].4 On this truncated tensor prod-
uct the map F is invertible.

The modified maps do indeed relate the so truncated quasi-quantum group Agj
and the truncated quantum group. This follows from the fact that the matrix elements
of R and Φ and the map F depend continuously on k. Therefore on the truncated
tensor product the R matrix and the Φ map of the truncated quantum group agree
with the right-hand sides of (5.5) and (5.6). In particular, the constants dJ

JχJ2 are
still given by (5.16).

I can thus use these maps to regard the internal parameter spaces of the chiral
vertex operators as representation spaces of the quantum group. By this I mean that
I define new chiral vertex operators

(5.18)

whose action on a state in JffChir is given as

V«(ψ <8> w,z)(χ ® v) := £ ( F " 1 f/υ-, V(ψ ® w\z)(χ 0 ϋf), (5.19)

where F " 1 is the inverse of F on the truncated tensor product and V(ψ ®w\z)
is the original chiral vertex operator. Similarly, the original chiral vertex operators
can be expressed in terms of the new chiral vertex operators using F. It should
be noted that the two descriptions are indeed in one-to-one correspondence as the
Clebsch-Gordon series of the truncated tensor product and the fusion rules of the
WZW-model agree.

All arguments of the previous section can be easily adapted. Thus, in particular,
Theorem 1 and Theorem 2 hold, where R and Φ are now the i?-matrix and the
Φ-map of the truncated quantum group, and the covariance property (4.21) becomes

a Vq{m (8) w,z) = £ Vq(m (g) Δ(

q

ί)(a)w,z)Δf)(a) (5.20)

for all a G Uq(g), where I have adapted the notation

(5.21)

This exhibits the truncated quantum group as the internal symmetry algebra of the
WZW-model for integer k.

Having specified F explicitly, I can also calculate the braiding matrix for all
vertex operators. As an example, let us consider the braiding matrix of two spin-^
vertex operators. In the usual notation for chiral vertex operators introduced in [36],

4 For the case of su(n), this follows already from the fact that there is only one associative
fusion ring, which is a certain truncation of the Clebsch-Gordon series of the corresponding
Lie algebra [26].
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the braiding matrix is given for 0 < j < | as

(5.22)

and for j = 0 or j = | as

i i π . r l i

2 •

Here

is the braiding matrix of Uq(su(2)) and

£ / ± = r f j ^ . (5.25)

The diagonal matrices in (5.22) relate the coupling constants of the original chiral
theory and the new chiral theory. The explicit form follows directly from (5.13).
Equation (5.23) is just a phase, as only the vacuum representation in the tensor
product of the two spin-| representations contributes.

The expressions agree with the result given in [42]. This is immediate for (5.23).
For the case of (5.22) this follows from

d-
( 5 2 6 )

where γ± is defined in [42, p. 349].

6. Reconstruction

In Sect. 2, I explained how the chiral subtheory corresponding to a WZW conformal
field theory can be constructed. The chiral Hubert space, which was obtained in this
way, is larger than the direct sum of the representations of the chiral algebra, and
similarly-as there exists a correspondence between vertex operators and states-the
chiral vertex operators depend on internal degrees of freedom.

In this section I want to describe how one can reconstruct the original confor-
mal field theory from its chiral subtheory. I will show that there exists some sort
of "identity operator" (related to the diagonal theory, i.e. to the theory where Jf/
is conjugate to Jf/), the action of which on a chiral theory reconstructs the corre-
sponding original theory. At first this might seem a bit surprising, as naively, the
whole theory should be obtained by putting together the holomorphic and the anti-
holomorphic theory. However, as I have defined the (holomorphic) chiral subtheory
to contain the zero modes of the anti-holomorphic representation spaces, it already
retains sufficient information about the original theory.
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As a rough analogy this is similar to the process of reconstructing a component
of a (multi-component) group from a single point is this component and the action
of the identity component of the group.

To explain this in more detail, recall that for a given affine algebra there
always exists a modular invariant diagonal theory, which is the unique WZW-theory
corresponding to the simply connected group [21,15,16,30]. This theory plays the
role of the identity operator, and we denote the (anti-holomorphic) chiral theory
corresponding to this theory as

^° = Θt/m®5fm\ (6.1)
m

where the Um are representations spaces of the corresponding quantum group Uq(g).

By construction, the subspace of lowest energy vectors in J^m is conjugate to Um

as a representation of Uq(g).
Consider now a (not necessarily diagonal) WZW-model corresponding to the

same affine algebra gk. We denote the Hubert space of this theory by

^ / , (6.2)
/

and the corresponding (holomorphic) chiral theory by

^chir = Θ ^ / < S ) F / . (6.3)

We want to reconstruct the original theory Jf from its chiral subtheory Jfchir To
this end we consider the product space

/ / ® F / ® ί / f f l ® ^ , (6.4)
I m

on which there is a natural action of the quantum group Uq(g\ given by

Uq(g) 3 ^ Σ ^ tf\ά) ® Δq

2\a) ® 11 , (6.5)

where we have used the same notation as in (5.21). We can reconstruct the original
Hubert space Jf by restricting the product space 3^ to the subspace, which is
invariant under the action of the quantum group Uq(g) (6.5). It is easy to see that
this space has the right size.

To reconstruct the original vertex operator corresponding to φ 0 φ G Jtfj Θ J ^ ,
we consider the tensor product of vertex operators

Vq{φ <g> w,z) 0 Vq(w <g> ψ,z) , (6.6)

where w G WJ9 w G Ur(j) and we regard φ as an element of ^r(jy Here, r(j) is

defined by the condition that 34?r(J) is the (unique) representation isomorphic to

J^j. Then Wj and Ur(j) are conjugate representations of the quantum group. These

tensor products act naturally on Jf. Furthermore, there exists a unique (up to scalar
multiple) linear combination of these tensor products of vertex operators, which
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leaves the subspace ffi of J"f invariant. (In fact, this linear combination corresponds
to the unique vacuum vector in the tensor product of the two L^(g)-representations.)
We reconstruct the whole vertex operator by restricting the action of this linear
combination to the subspace Jf.

This determines the vertex operators up to scalar multiples, which can be ab-
sorbed into the normalisation of the fields. For generic q, the reconstructed theory
satisfies the unmodified duality property, is local and therefore agrees with the
original theory. This remains true in the truncated case. It should be noted that
the construction preserves the one-to-one correspondence between states and vertex
operators at all stages.

7. Conclusions

In this paper I have explained how a chiral theory with a proper Hubert space for-
mulation can be defined for the WZW conformal field theory. The Hubert space of
the (holomorphic) chiral theory is larger than the direct sum of the chiral represen-
tations spaces, the extra degrees of freedom being the lowest energy states of the
anti-holomorphic representation spaces. I have shown that there is a natural action
of the truncated quantum group Uq(g) on these internal degrees of freedom, such
that the truncated quantum group plays the role of an internal symmetry algebra for
the chiral theory (for integer k). As a consequence of the truncation, the truncated
quantum group is only quasi-coassociative and the chiral theory possesses only a
modified duality property. The original theory can be recovered from the chiral
theory by some sort of gauging procedure.

The construction of the internal symmetry algebra is explicit and explains the
significance of the quantum group symmetry independent of any specific construc-
tion of the theory. It has furthermore the virtue-in contrast to some earlier at-
tempts - of fixing the ^-parameter in terms of the level of g.

It should be possible to generalise the construction to arbitrary conformal field
theories. In the general case the role of the internal parameter spaces is played by
the "special subspaces," recently introduced by Nahm [37]. (For the WZW-models
these spaces are just the lowest energy states). This should provide a constructive
way of finding the internal symmetry of a conformal field theory; details remain to
be worked out.
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