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Abstract: We prove a vanishing theorem for Lie algebra cohomology which consti-
tutes a loop group analogue of Kostant's Lie algebra version of the Borel-Weil-Bott
theorem. Consider a complex semi-simple Lie algebra g^ and an integrable, irre-
ducible, negative energy representation J f of Z,g<r. Given n distinct points zk in (C,
with a finite-dimensional irreducible representation Vk of g^ assigned to each, the
Lie algebra g<r[z] of g<r;-vaΓued polynomials acts on each V^ via evaluation at zk.
Then, the relative Lie algebra cohomology H* (gc[z]? 9<c; &? ® V\(z\) ® 0 Vn(zn))
is concentrated in one degree. As an application, based on an idea of G. Segal's,
we prove that a certain "homolorphic induction" map from representations of G to
representations of LG at a given level takes the ordinary tensor product into the
fusion product. This result had been conjectured by R. Bott.
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0. Introduction

Let G(c be a complex semi-simple Lie group with compact form G, and let B C Gc
be a Borel subgroup. The cohomology of G<c-equivariant holomorphic line bundles
over the flag manifold G^/B of G is given by the Borel-Weil-Bott theorem (BWB).
Loosely speaking, the theorem asserts that, for most of these line bundles, the coho-
mology is concentrated in one degree, where it forms an irreducible representation of
G(c, whereas for a special class of line bundles it vanishes altogether. This statement
extends to certain Gc-equivariant holomorphic vector bundles over the generalized
flag manifolds G<c/P, corresponding to the parabolic subgroups B c P C G<c All
such vector bundles are of the form G^ XpE, for some holomorphic representation
E of P9 and when E is irreducible, the generalized version of BWB says, again,
that the cohomology of this vector bundle lives (at most) in one degree and forms
an irreducible representation of G<c.

This paper is concerned with the problem of extending the BWB theorem to
certain loop groups - specifically, the groups LG and LG<£ of smooth maps from
the circle to a compact semi-simple1 Lie group G and to its complexification G<c. I
must mention at the outset, however, that a proper construction of the cohomology
of vector bundles over infinite-dimensional manifolds, such as are relevant to this
problem, has been elusive so far, and in this direction, the present paper offers no
contribution. Instead, the main result (Sect. 1.4. Theorem 0) is simply a statement
about Lie algebra cohomology, an extension of Kostant's Lie algebra version [K]
of the BWB theorem to the Lie algebra Lgc of LG&. Interestingly, this less am-
bitious theorem is powerful enough to solve one of the problems that motivated
the whole enterprise: it determines the fusion rules for the WZW model for G, in
a form that was conjectured by Bott. More precisely, we can show, following an
argument of G. Segal's, that a naturally defined "holomorphic induction" map from
the representations of G to representations of LG takes the ordinary tensor product
into the fusion product.

Let us now return to the story. A BWB theory for loop groups was first pro-
posed by G. Segal [P-S], in connection with their positive energy representations
(PERs). Regarding the circle as the boundary of the unit disk A C <C, the parabolic
subgroup relevant here is the group G^ of boundary-values of holomorphic maps
from A to G<£. (A Borel subgroup, which we shall make passing use of, is the

I shall only treat the simply connected case.



Lie Algebra Cohomology and Fusion Rules 267

subgroup of loops in G^ mapping 0 into the Borel subgroup B of G^.) We obtain
a homomorphism from G^ to Gς by evaluating holomorphic loops at the origin.
Every G<c-representation E becomes in this way a representation of G^, and we
can consider the associated vector bundle E := LG XGA E over the flag manifold
X = LGς/Gς. This vector bundle has no non-zero holomorphic sections, unless E
happens to contain the trivial representation, but if we twist E by sufficiently large
power ifΘ/ι of the fundamental line bundle2. S£ of LG, the resulting space of section
is an irreducible PER 3%Έth of LG at level h [P-S], whose space of lowest-energy
states is a G-representation isomorphic to E. (We shall say that J#Έ,h is induced
from E at level h.) Moreover, we can obtain in this way all PERs of LG. This is a
Borel-Weil theorem for LG. The "Bott part" of the theorem would additionally say
that, in general, the cohomology H*(X;E0 &®h) lives in at most one degree3; but
while its moral truth is not in doubt, we cannot properly state it, for want of a good
definition of higher cohomology. One must mention in this context that, if one is
willing to replace X by the thinner (but dense) algebraic variety Xalg, the union of
the Schubert cells in X, the full BWB theorem has been proved by Kumar4 [Ku].

This, however, is not the whole story, because the group G^ has some additional
irreducible finite-dimensional representations. Choosing n distinct points {z\,...,zn}
inside A, and assigning to each an irreducible representation Vk of G<c leads to an
irreducible representation of G^ on V\ <g) <S) Vn, if we let a holomorphic loop
act on each factor Vk by means of its value at z*. Denoting this representation by
V\(z\) 0 <8> Vn(zn), or V(z), one may enquire about the space of holomorphic
sections of the vector bundle V(z*) 0 ££®h over X.

The relevance of the space H°(X; V(z) <g> JS?ΘΛ), in connection with the Con-
formal Field theory notion of fusion, was pointed out by Segal. He observed that,
if the representations Vk are small enough to individually induce representations
j/jfk := 3tfvk{zk)jι of the loop group at level h, then the multiplicity of a given PER
Jf7 in H° is naturally equal5 to its multiplicity in the fusion product of the Jf^'s.
Based on this, he conjectured that

(a) the space H° itself is the fusion product of the Jf^'s.
In particular, it is a PER, and a finite sum of irreducibles. By analogy with the
BWB theorem, he also predicted that

(b) the higher cohomology Hq{X\ V(z) 0 i?Θ / z) vanishes.
In general, without any assumption on the Fj-'s, Hq should vanish, if not altogether,
in all but one degree.

As Segal observed, these two statements, if true, completely determine the fu-
sion product. Let us namely consider, with Bott, the holomorphic induction map 4
from G^ to LG<c at level h. We shall postpone its actual definition until Sect. 1.5,

2 Assuming that G is simple. In this case, the condition is λε tfmax ^ K where XE is the highest
weight of E and α m a x the the highest root of % In general, one must twist by powers of the basic
line bundles corresponding to the simple factors of G.

3 The degree can be specified in terms of h and the highest weight XE of E; in particular, it is
zero if h is large enough.

4 Kumar's version of BWB is not suited to deal with the issue of main concern in this paper,
namely fusion. This is because on the algebraic flag variety XaIg, there is no analogue of the
vector bundles (V\(z\) 0 ® Vn(zn) we shall consider next.

5 The identity comes from a natural isomorphism of vector spaces. One of them is
UomLG(J^;H°), but the other has not yet been defined (cf. Sect. 1.5 and Sect. 3.6). This leaves
us with the rather dim-witted expression "naturally equal."
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but let us mention that ih extends the correspondence E —» Jf̂ /*, described earlier,
assigning to any G<c-representation E the (expected) holomorphic Euler character-
istic χ(X;E®<S?m) of the bundle E 0 JS?®A-a virtual representation of LG at
level h. (By Kumar's previously quoted results, ih(E) is the Euler characteristic
χ (Xalg;Έ® ^®h). At any rate, when E is irreducible, ih{E) is either a signed ir-
reducible representation of LG at level //, or 0.) Based on Verlinde's prediction of
the fusion coefficients [V], Bott conjectured that the map ih should take the ordinary
tensor product of G-representations to the fusion product of their images.

Now if Segal's conjectures hold, then the fusion product Jfi 0 0 ffln is the

Euler characteristic χ(X\ V(z) 0 i?®A). We expect that

(c) unlike the cohomology groups, the Euler characteristic χ(X;\(z)(
does not change when the points z^ are all moved to the origin.
After all, we are continuously deforming the holomorphic structure of the bundle.
But χ(X; V(0) 0 £?®h) is what we previously called χ(X; Vλ 0 0 \ n 0 JS?®Λ),
which is by "definition" ih(V\ <S> 0 Vn). Hence the conclusion

(d) the fusion product Jfj 0 0 2tfn is ih{V\ 0 0 Kπ).

In this form, Segal's conjectures are still open, and I shall not address them
here. Instead, this paper is based on the simple observation (Sect. 1.5, Sect. 3.6)
that Segal's argument for determining fusion can be rewritten purely in terms of
Lie algebra cohomology. This is somewhat analogous to the fact that the usual BWB
theorem is equivalent to Kostant's Lie algebra cohomology reformulation. Let us
be more precise, and consider the space Γh of smooth sections of ^£®h over LG,
on which g£ acts by right translation. The Dolbeault complex for the holomorphic
vector bundle V(z*) 0 5£®h over X — LGς/G^ (which, as a smooth manifold, is
isomorphic to LG/G) is naturally isomorphic to the standard complex of relative
Lie algebra cohomology of the pair (gjpgc) with coefficients in Γh 0 V(z)

tf*(8c,βc; A ® V(z)) := Hom&c:(Λ*(4/Q€y,Γh ® V(z)).

If we had a "Peter-Weyl" theorem for LG and could factor the LG x LG-space Γh
as (a completion of) φ ^ ffl 0 Jf', with the sum ranging over all PERs Jf at level
h, it would follow that

\ V(z) 0 if®h) = 0 Jf 0&(&gc; V{z) &&').

This would prove conjecture (a). Unfortunately, no applicable version of the Peter-
Weyl statement seems to be true, and the above identity remains conjectural. How-
ever, we can prove the following:

(1) If one replaces H%X; V(z) 0 ϊe®h) with the space Θ ^ J f ® / / ?

(9c'9<c; V(z) ® ̂ X Segal's conjectures are true.
(2) This is sufficient to prove that the map 4 takes tensor products to fusion

products.

The idea of applying Lie algebra cohomology techniques to the study of fusion
is not new; such methods have been successfully used by Feigin and Fuchs, who in
[F-F] determined the fusion rules for g = SI2. But while their methods are, generally
speaking, more powerful than our custom-made approach, the form of their output
is less convenient, and it is unclear whether the higher-rank case could be handled
with comparable ease.

Shortly after this paper was completed, an article of G. Faltings appeared [F2],
in which the fusion rules for all classical groups and for Gι were determined by
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a somewhat bare-handed approach (but using results of Tsuchiya and Kanie [T-K],
and a "factorization theorem," needed to prove associativity of the fusion product).
The method of this paper is preferable, in the author's opinion, not only because it
works for all groups, but also because no calculation is needed to find the answer
(as can be seen from the five-line proof of Theorem 1 in Sect. 3.6). Associativity
of fusion also follows without any appeal to the "factorization theorem." True, the
technicalities needed to justify the steps corresponding to (a)-(d) are less pleasant
than the more elementary calculations of [F2], but they are related to the difficulties
of analysis on infinite-dimensional manifolds, and as such they are of some interest
in their own right. It should be mentioned, as this may not be evident, that in the
background of the proof is the geometry and analysis of the flag manifold LG/G.

I could not close this introduction without gratefully acknowledging some of the
numerous people I have fallen indebted to, mathematically or otherwise. Topping
the list are my co-advisors, Professor Graeme Segal and Professor Raoul Bott; this
work would not have come about without their support and mathematical insight.
It is fair to say that most things worth remembering in the present paper are due to
them. Any reader familiar with Segal's ideas on CFT will recognize his handprint
in the entire setup. Next in line is Professor Cliff Taubes, whose thoughts about
the geometry and analysis on loop groups gave me the first incentives to study
the topic. Numerous helpful suggestions were made by Dr. Antony Wassermann
(Cambridge). I must also thank Edward Frenkel for providing helpful answers and
references, Andras Szenes and Richard Wentworth for some helpful discussions,
and Sheldon Chang for raising a few important points.

This paper is essentially my Ph.D. thesis (Harvard, 1994). A portion of it
(essentially, Sect. 2) was written as an Master's thesis at Cambridge University.
This was supported by a Herschel Smith Fellowship and an ORS award. •

1. Preliminaries

1.1. The Borel-Weil-Bott Theorem. Let g be the Lie algebra of the compact,
simple, simply connected Lie group G and let t C g be a Cartan subalgebra. Choose
a positive root system Φ, let n C gc be the maximal nilpotent subalgebra spanned
by the root vectors {e_α |α G Φ} and B C G(c the Borel subgroup with Lie algebra
b = n θ t . We shall make use of the basic inner product on g, the unique ad-
invariant inner product in which the highest root αm a x has square-length 2; {ξa}
will denote an orthonormal basis of g in this inner product. Recall that a weight
of g - a character of the maximal torus T - is called singular if it is orthogonal to
one of the positive roots, regular otherwise, dominant if all inner products with
the positive roots are non-negative. A distinguished dominant regular weight is p,
the half-sum of the positive roots. Holomorphic Gc-equi variant line bundles over
the flag variety Y := Gς/B are all of the form Lχ ~ Gc x# (C;v, corresponding to
holomorphic characters λ of B, thus to weights of g. For instance, the canonical
bundle Kγ corresponds to (—2p). Denote by £(K) the number of positive roots
having a negative inner product with the regular weight /.6

6 / (/ ) is also the length of the unique Weyl group element taking λ to the positive Weyl
chamber. Recall that the simple Weyl reflections s^ - reflections about the hyperplanes orthogonal
to the simple roots α* - generate the action of the Weyl group of G on t, and that the Weyl
transforms of the positive chamber are disjoint and cover all the regular weights. The length of a
Weyl group element is the length of its shortest expression as a product of simple reflections.
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The cohomology of the L /s is given by the Borel-Weil-Bott theorem:

Theorem. ([B])
(a) If the shifted weight (λ + p) is regular, then Hq{Y,LA) = 0, except for

q = / ( / -f p). In that case, Hq is the irreducible representation of G whose p-
shifted highest weight is in the Weyl orbit of (λ + p);

(b) If(λ + ρ) is singular, then Hq(Y;Lλ) = 0 for all q. •

1.2. Generalized BWB: The Case of Maximal Parabolic Subgroups. Our approach
to the loop group theory is modeled on the BWB theorem for the generalized flag
manifolds Yp — Gς/P corresponding to parabolic subgroups P of G<c. Recall that the
generalized BWB theorem asserts that the cohomology H*(Yp;JL) lives in only one
degree, if the holomorphic bundle E comes from an irreducible representation E of
P. Of special interest for loop groups is the case of maximal parabolic subgroups7

and vanishing higher cohomology, which we now take a closer look at.
A parabolic subgroup P factors as a semidirect product R<^ x U of a complex

reductive subgroup i?<rj and a unipotent U. If E is irreducible, U acts trivially,
and so E is an irreducible representation of R<£. It can, therefore, be realized as
the space of holomorphic sections of an equivariant line bundle LA over the flag
manifold R<ε/(B ΓϊR<c) = P/B of the semi-simple part of R(c, for some dominant
character λ of B. The higher cohomology of Lχ over P/B vanishes, by the usual
BWB theorem. By considering the holomorphic fibration

P/B -* G£/B = Y

I
GC/P = YP

we can see that H*(YP;Έ) 9* H*(Ύ\Lλ). The BWB theorem for Y gives

Proposition 1.2.1. The bundle E has holomorphic sections if and only if λ is
dominant.

Its higher cohomology vanishes if and only if (λ + p) is dominant.

Splitting the Lie algebra r = g; 0 I of R into the semi-simple and abelian parts
decomposes the weight λ as λf + λ^, where λ' is the highest weight of E for
g', and λ1- is the character by which ϊ acts. When P is maximal parabolic, I is
1-dimensional and g' has rank exactly one less than g. More precisely, the simple
roots αi,...,α/_i of g; are all the simple roots of g, save one. The missing root α/
does not lie in ϊ, except in the uninteresting case when g7 is a summand in g, but
rather projects to a non-zero antidominant weight (—μ) of g7 (the inner products
oik ' &f &re non-positive).

Let β G ί be the element for which β α/ = 1 in the basic inner product; it is
the smallest integral character of I C t. Call the integer h = λ^/β the level of E.
We want to express, in terms of λ' and h, the condition that (A -f p) is dominant.
Note first that

λ is dominant <̂> λr is dominant, and λ' μ S h .

This translates the conditions λ α̂  ^ 0 and λ - α/ ^ 0. Further, let p' be the half-
sum of the positive roots of g'. Interestingly enough, p' is the projection of p on

Note that G^ is a maximal parabolic subgroup
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g', and so we may set p — p! = c β for some number c. We can reformulate
(1.2.1) as

Proposition 1.2.2. The bundle E has holomorphic sections iff λ' μ ^ h.
Its higher cohomology vanishes iff (λr + p') μ ^ h 4- c. •

It follows in particular, since μ is dominant, that only finitely many E's will
have holomorphic sections at a given level h.

1.3. Loop Groups. A representation of LG is of positive energy if it admits a con-
tinuous action of Sι, intertwining with the rotation of the loops, which decomposes
it into finite-dimensional eigenspaces; we require that only positive characters oc-
cur. The associated infinitesimal action is called the energy. One should recall [P-S]
that all non-trivial PERs of a loop group are projective, that is, representations of
a central extension of the loop group. They are also completely reducible, and the
irreducibles among them are representations of smooth S!-extensions of LG-re-
spectively, holomorphic (Cx-extensions of LG<£. If G is simply connected, as we
shall henceforth assume, LG and LGς admit universal smooth (resp. holomorphic)
central extensions LG and LG& by a (complex) torus whose rank is equal to the
number of simple factors in G. In particular, when G is simple8, the projective co-
cycle of an irreducible PER is determined by its level, an integral character h 6 Z
of the centre (Cx of LG<£. In addition, for one of the choices of the universal ex-
tension, only positive values of h can occur. The smooth (resp. holomorphic) line
bundle =£? over LG (resp. LG$;) associated to this universal central extension is
called the fundamental line bundle.

Definitions and Notation. Write c for the dual Coxeter number (p αm a x -f 1) of g.
Having fixed the level A, there is an "(A + c)-action" of the affine Weyl group Waff
on the Cartan subalgebra t e g . (We expect from the finite dimensional case that
a shifted action of Waff should be more relevant than the natural one, and this is
indeed the case. To avoid cumbersome wording later, we shall incorporate the shifts
in the present definitions.) This action is generated by the simple Weyl reflections
s\,... ,Sf about the hyperplanes orthogonal to the simple roots, and by the reflection
sy+i about the affine hyperplane {τ e t |αm a x(τ) = A + c}. These / + 1 hyperplanes
bound a simplex in t, the positive Weyl alcove, whose l^ptransforms, the Weyl
alcoves, form a tiling of t. Waβ acts simply transitively on the set of alcoves.

We shall call an irreducible representation V of G

- regular, if its p-shifted highest weight (λy + p) falls inside some Weyl alcove,
- singular otherwise;
- antidominant, if (λy + p) falls within, or on the boundary of the positive Weyl

alcove.

The length ί(V) of V is the least number of reflections needed to bring the p-
shifted highest weight (λy + p) in the closed positive Weyl alcove. Thus ί(V) = 0
if V is antidominant9. Two representations V and W shall be called affine-conjugate
at level h if their p-shifted highest weights are in the same orbit of the (A -f- c)-action
of Wφ

8 The latter is not a restriction, since a simply connected semi-simple group is a product of
simple factors. The non-simply connected case requires more discussion, though.

9 The length is truly relevant only if V is regular; in that case, ί(V) is also the length of the
unique affine Weyl group element bringing (λ -f p) within the positive alcove.
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Remark. The length of a representation and its affine-conjugacy class do not depend
on the choice of the positive root system. •

1.4. The Lie Algebra Statement. Let gc[z] be the Lie algebra of gc-valued polyno-
mials. Given n points z\,...,zn G C, with a representation Vk of G assigned to each,
9<Γ[z] acts on the tensor product V\ 0 0 Vn by means of the evaluations at the
points Zk. As before, we denote the resulting representation by V\(z\) 0 0 Vn(zn),
or Viz). If the factors Vk are irreducible, then so is V(z).

Pick an irreducible negative energy representation j f of Zg at level (—h), and
let jft denote its formal completion with respect to the energy grading (the direct
product of the energy eigenspaces). The central extension of LQ can be uniquely
trivialized over g<rj[z],

 a n d thus jft is a genuine representation of g<c[z] (though not of
its "thicker" version gjjl = Lie (G^)). It has the important property that it splits as a
direct product of its g-isotypical components, all of which are of finite-dimensional
type (cf. Sect. 3.1), and one can easily see that this property is shared by jt 0 V(z).
Denote by ^(g<rj[z],G) the category of complex representations of g<rj[z] satisfying
this condition. It is an abelian category with enough injectives, and the functor of
g<c[z]-invariants is left exact on it (cf. Appendix A). The corresponding right derived
functors, applied to an object M, are the relative Lie algebra cohomology groups
H* (g<C[z]>g;̂ 0 of the pair (g<c[z],g) with coefficients in M. The main theorem of
this paper determines this cohomology for M = ffl 0 V(z), after one final bit of
notation. Set

hq(M) := ά\mHq{...\ χ(M) = E ( " 1 ) ^ W(M).

The characteristic χ is defined only if the hq are finite and vanish for large q.
Finally, let E{ be the G-representation dual to the space of highest-energy states
in Jf.

Theorem 0. Assume that the points z^ are distinct and the representations Vk

are irreducible. Then, the relative Lie algebra cohomology //*(g<r[z]»g; $ 0

V(z)) is always finite-dimensional, and lives at most in one degree. Specifically,

(a) If n — 1, then hq — 0 for all q9 unless V\ and E{ are ajfine-conjugate at
level h. In that case,

1, for q = f(Vχ)

0 otherwise.

{Note that this can only happen if V\ is regular.)

(b) // all the Vk

9s are regular at level h, then hq(J& 0 V(z)) = 0 for
all q, except possibly for q = Σk^(Vk). It follows, for that value of q, that

^ V(z)) = (-1)* . χ(jp 0 V(z));
(bf) The Euler characteristic remains unchanged when all the points coalesce:

V{z)) = χ(3& 0 V{ϋ)). The latter can be computed from (a).
(c) In particular, when all the V^'s are antidominant regular at level h, then

V(z)) = 0forq>0, and

= X(^0(^10 0

(d) Finally, when one of the Vk's is singular, then hq = 0 for all q.
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The proof of Theorem 0 occupies most of this paper. Its relevance lies in the
connection between the space H° and the fusion operation, motivated by Conformal
Field Theory, which we now define.

7.5. Fusion as Holomorphic induction. Let A\,...,An b e a col lection of non-

overlapping disks inside A, centered at the points Zk, with parametrised bound-
aries S\,...,Sn. Let Σ = A\(A\ U U An\ and G£ be the group of holomorphic
maps from Σ to Gc, with smooth boundary-values. To each Sk, we assign a PER
JFk of the loop group L^G :— Map(^ G). (LG will continue to denote the group
Map(S; G).) The tensor product (Jf^)' 0 0 (Jfny of their duals is a projective
representation of G^. Given a PER Jf of LG, we are interested in the space of
G^-equivariant homomorphisms

Jf'). (1.5.1)

The question makes sense, because Hom( ) is a genuine representation of
G^. Indeed, at the Lie algebra level, the projective cocycle can be written as the
boundary integral

Λ - ω ( £ , ! ί ) = ^- J ξ dη + Σ ^ - J ξ - d η = ± J ξ d η ,
Z π dΔ k Z π Sk dΣ

and if ξ and η are holomorphic, this vanishes by Stokes' theorem. For the precise
definition of M ( | ), the topologies on the J%'s must be specified. Several natural
choices lead to the same spaces M, and we shall settle in the end for the algebraic
definition (Sect. 3.6), commonly used for its simplicity; but for the moment, we
make no restrictions.

The spaces (1.5.1) are the conformal blocks of the field theory associated to the
loop group LG at level h. Their knowledge can be used to predict the "physical"
evolution along the space-time Σ9 in which the n worlds S\,...,Sn "fuse together"
to the space S. This motivates the following definition of the fusion of the repre-
sentations JtfΊc along Σ:

; ^ ) . (1.5.2)

The sum is taken over all irreducible PERs Jf of LG at level h. Note that

(i) £ ( ^ 1 ? . . . , J θ is a PER of LG, and that
(ii) there exists a G|-equivariant map from Σ(J )fi,.. .,J^n) to the completed tensor
product J f i0 0 ^ . (Just take the trace over Jf.)

Moreover, Σ(...) is universal with these properties. In a sense, we could say that
it is the positive energy part of J f i0 • 0^fΛ.

The spaces M ( | ) have a very rich structure [S], but we shall only concentrate
on a very crude invariant, namely their dimensions10. Accordingly, let Ah be the
free abelian group based on the set B^ of PERs of LG at level h. The n-ary fusion
product is the ^-linear map from A^ x x Ah to A^ defined by

f Ί , . . . , ^ ) . (1.5.3)

They turn out to be finite-dimensional
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The idea of encoding the dimensions of the M's into this multiplicative structure
is due to E. Verlinde [V], and Ak, endowed with the binary fusion product, is
also known as the Verlinde algebra. It turns out that the multiplication is eas-
ily described. Following Bott [B2], define the "holomorphic induction" map from
representations of G to PERs of LG at level h by

ih(V) = (-l/{w)jew if V is regular

= 0 if V is singular ,

where, in the regular case, W is the unique antidomίnant affine-conjugate of V. As
an application of Theorem 0, we shall prove

Theorem 1. Bott's holomorphic induction map takes the tensor product in R(G)
into the fusion product on Ah'.

The proof is based on an argument of G. Segal's and the complete account is given
in Sect. 3.6. However, before closing this section, we would like to mention the
motivation for realising of fusion as a space of holomorphic sections (Conjecture
(a) of the Introduction).

Segal's basic assumption is that, in the above universal property-definition of the
fusion product, the positive energy condition (i) is superfluous11. In other words,
Σ(3#Ί9...,Jfn) can be simply defined as the ZG-representation satisfying, for any
representation jtif of LG, not necessarily of positive energy,

) (1.5.5)

Now the spaces J% can be individually realised as spaces of holomorphic sections
of J^Θ / ί 0 V#(zfc) over the flag varieties LkG^jG^. In somewhat dishonest, but
self-explanatory notation, we shall write this as

Correspondingly, the completed tensor product is realised as

Jf,® ®tfn = I n d t l i ; t : X " " x ^ G c ( Vx(zx) <g> •••(8i Vn{zn)). (1.5.6)
x xGc"

Segal observed (cf. 3.6.8) that the inclusion G^/G^ C Y\kLkG^IG^ of G£-
homogeneous spaces is really an isomorphism. Because of this, (1.5.6) becomes

J ® Vn(zn)) (1.5.7)

11 Dropping assumption (i) is closely related to associativity of fusion. If positivity needs not
be verified, an abstract nonsense argument allows one to factor the fusion product through any
closed loop between S and some of the S*'s.
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and by Frobenίus reciprocity,

HomGi (jfr jVΊ®.-. ®JtTn) = H o m G z ( ^ ; Ind J ( Vx(zx) ® • <g> Vn(zn)))
C (Γ u(£

£* UomGA(Jf; Fi(zi) ® ® Vn(zn)). (1.5.8)

But by Frobenius reciprocity again

G ( ; , ( l ) n ( π ) )

Si Hom i G c ( V ; I n d ^ ( Vx(z{) ® <g> K«(zH)

whence by definition, using our earlier notation, we would obtain

The expendability of the positive energy condition (i) in this approach to fusion is
an open question. But what we can and will extract from this is Eq. (1.5.8), which
will allow us in Sect. 3.6 to find fusion as a space of g^-invariants.

1.6. Outline of the Proof of Theorem 0. Even though the strategy is simple, the
detailed proof of Theorem 0 is quite long, and a brief outline containing the note-
worthy ideas should be welcome. The reader willing to believe all of the statements
in this section should be cautioned that the remainder of the paper, with the likely
exception of Sect. 3.6, where fusion is discussed, will be of little benefit.

The argument roughly follows the original proof of BWB. First, we establish
the antidominant case (c), using a positivity argument in a Hubert space version of
the Lie algebra cohomology complex. The general case is then deduced by means
of Bott's Reflection Lemma (Sect. 3.5). This last argument is quite standard; the
technical tool used is the Serre-Hochschild spectral sequence (see App. A).

Section 2 presents the Hubert space argument. We define in Sect. 2.1 a
distinguished hermitian structure on the Lie algebra cohomology complex
Hom g c (vl*(gc[z]/g(c);^(X) V(z)) (cf. App. A), related to the Kahler metric on
the flag variety X, determined by the hermitian curvature of S£. We then establish
on this Hubert space complex an identity of geometric origin, due to Nakano in
the context of vector bundles over Kahler manifolds, where it relates the (1,0) and
(0,1) Laplacians on Ωp'q. It reads, for us

a a* a*aa a* + a*a = D + (A + ic). deg - Σ θk(ξa)
a-k '

where D is a non-negative operator, "deg" is the degree on Λ*(...), θk is the action
of g on V/c and ad the action on /I*(...), while the HZk are the infinitesimal gener-
ators of the SL2(IR)-rotations of the unit disk about the points zk. When the F^'s
are antidominant, we show that Σ f l ^ ( ^ ) 0 a d ς f l ( o ) ^ (h + 2c— 1). If, addition-
ally, the points zk are inside the unit disk and near the boundary, Σk H~ι < 1 + β

(cf. Appendix C). These two inequalities prove the positivity of the d-Laplacian on
higher degree forms (Theorem 2.2.3).

Section 3 handles the "honest" Lie algebra cohomology with coefficients in the
formally completed representation Jf 0 V(z). The connection with Sect. 2 is made
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in Sect. 3.3, where we prove that every cohomology class in the formally completed
Lie algebra cohomology complex # has a representative in the Hubert space do-
main of the ^-operator. In other words, the obvious map from the cohomology of
the Hubert space complex to that of <€ is surjective. Under the extra assumption,
mentioned above, on the points z ,̂ case (c) of Theorem 0 now follows from the
Hubert space vanishing theorem.

The extra restriction on the position of the points z> makes little sense in the
algebraic setting, and indeed we remove it in Sect. 3.4. The basic tool is the ac-
tion of ^f of the Virasoro algebra, specifically of the parabolic subalgebra of
polynomial vector fields on C, which allows us to move the points Zk infinites-
imally. To summarize the argument, with a fashionable degree of overkill: the
spaces / / " ' ( g c ^ g J'f 0 V(z)) admit a finite-dimensional presentation (3.2.7), be-
cause of which they piece together to coherent Θ^n -modules over Cn. When they
are restricted to the complement Z(n) of all the diagonals, the Virasoro action can
be used to give these $z(«)-modules a ί^z^-module structure. By a well-known
theorem, they then form a vector bundle with a flat connection (the "Knizhnik-
Zamolodchikov connection"). In particular, their dimension is constant (and finite),
as long as the points z* are distinct.

Finally, the same finite-dimensional presentation shows that the Euler charac-
teristic χ(jfe (£) V(z)) is well defined and stays constant, even when some of the
points coalesce. This ends the proof of Theorem 0.

2. The Hubert Space Vanishing Theorem

We now prove that, in a Hubert space version of the relative Lie algebra coho-
mology complex ^*(g<c[z],<5<c;^0 V{z)\ the 3-Laplacian is strictly positive on
positive degree forms, if the representations Vk are antidominant, and the points zk

are near the boundary of the unit disk (Theorem 2.2.3).

2.0. Geometric Motivation: Nakano's Vanishing Theorem12. If L is a holomorphic
line bundle over the compact complex mainfold X, then, under the assumption that
L is positive, a well-known theorem of Kodaira guarantees the vanishing of higher
cohomology of the twist L ® K χ of L by the canonical bundle K^ of X. The proof
is surprisingly simple. Let, in the Kahler metric determined by the curvature of
L, D and D denote the Laplacians of the D- and 3-operators (coming from the
hermitian connection V = D -f d) on the (p,q) complex Ω M ( X ; L ) of L-valued
forms. They are related [S-S] by Nakano's identity D — D + (p + q) - ά\m(X). In
particular, restricting to the spaces Ωtυp^(X;h) of top holomorphic degree forms,
we have D = D + deg, with "deg" denoting the antiholomorphic degree13. There are
thus no L 0 Kχ-valued harmonic (0,q) forms in positive degree.

Kodaira's theorem was extended by Nakano to a class of hermitian holomorphic
vector bundles F satisfying a (rather strong) positivity condition. The hermitian
curvature <9p £ End(F) 0 Aι>](Ύχ) of F defines a hermitian form fF on the bundle
F(g)T x, by means of T¥(e 0 σ,f 0 τ) = ( e | Θ F ( τ , σ ) | / ) .

12 A good reference for this material is the book by [S-S].
13 Caution: Ω"Ψ'*(X;L) = Ω°>*(X;L 0 Kx) as ^-complexes and as hermitian spaces, but the

D-Laplacians on them, defined from the D-operators on the corresponding (/?,g)-complexes, are
not the same. We do require the operator D = DD* on Ω"φ'*(X;L).
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Definition 2.0.1. F is called Nakano-positive if 7p is positive-definite. •

This generalizes the usual notion of positivity for line bundles.
Using a Kahler metric on X and the isomorphism TV = (TV )ι it produces, we

may view 7p as a hermitian operator on F®(TVy. It has a natural multilinear
extension T$ to Ω r^'*(X;F) by

Tψ(κ • / ® τ 1 Λ Λτ ί ) = i{ TF(f 0 τ 1) Λ Λ τq +

τ1 Λ Λ Γ F ( / 0 τ ^ ) , (2.0.2)

where /c is a section of K^, / one of F, and the τk are (0,l)-forms. The (1,0) and
(0,1) Laplacians D and D of the hermitian connection, restricted to the complex
Ωt0P>*(X;F), are related by Nakano's identity

D = D + 7 ^ . (2.0.3)

When F is Nakano-positive, it easily follows that T$ is a positive operator on
positive-degree forms (cf. Remark 2.4.5). Because of Nakano's identity, there will
be no harmonic forms, and all higher cohomology of F (g) Kj must vanish.

The relevance of these ideas lies in the fact that, as we shall prove below, on
the flag variety X = LGς/G^ the vector bundle F = JS?®(*+2<0 ® V(z) is Nakano-
positive when the Fĵ 's are antidominant and the points z&, inside the unit disk, are
sufficiently far apart14. Further, the canonical bundle Kx turns out to be £?®(~2c\
in a very concrete sense: Nakano's identity (2.4.7) on a representation of level h
involves the curvature of JS?®(A+2<) (one should interpret this as ifΘ// = JS?®(Λ + 2 C)®

Kx). We "conclude" from here the vanishing of / / 9 ( I ; ^ ® V ( z ) ) for q > 0.
What we shall really deduce is the Hubert space vanishing theorem 2.2.3, and this
chapter is devoted to its proof.

2.1. The Setup. If h is a positive integer, there is a natural Hubert space structure
on an irreducible negative energy representation 2tf of LG at level (—h) [P-S, Ch.
11]. The space V(z) = V\ ® 0 Vn also has a hermitian structure, coming from
the G-invariant inner products on the factors. We define an inner product on the
Lie subalgebra g+ := Q)n>0 £<r(Ό of positive Fourier modes in Zgc by the formula

(ξa(m)\ξb(n)):=n'δm,n'δa,b. (2.1.1)

Under the isomorphism g + = g<r;[z]/Q<r> this corresponds to

(£k> = τ^—f^Aδr1 f o r £*7 ^(Γzπi Δ

We note in particular the invariance of this inner product under the geometric action
of 5Z/2(R) on the space of holomorphic functions on the unit disk A.

Remark. If g+, suitably completed, is regarded as the antiholomorphic tangent space
to the flag manifold LG^/G^ at the identity, (2.1.1) is the Kahler metric determined
by the hermitian curvature of 5£\ •

1 4 In the hyperbnolic metric. One can thus accommodate any number of points; but the minimum
hyperbolic distance between them increases with their number.
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Define now the Hubert space cohomology complex, mentioned in Sect. 1.6, as

V{z)) := JHilbert-Schmidt operators in

} (2.1.2)

the subspace of Hilbert-Schmidt operators in the standard complex of relative Lie al-
gebra cohomology of the pair (gc[z]/9<c) with coefficients in $ <g) V(z). The spaces
(2.1.2) are independent of z, but there is an explicit F-dependence in the coboundary
operator:

\ = Σ εa(-™) {R(ξa(m)) + ±*d'ξa{m)) + £ ^(-w) θΈ(ξa(m)). (2.1.3)

Here, εa(—m) is the operator of exterior multiplication by ξa(—m) G (9+)', R(ζa(in))
stands for the action on the factor Jf, ad* denotes the co-adjoint action of g+ on
(g+)r -or, rather, its multilinear extension to Hom g c (A*(g+);...); while in the
second term,

k

is the action of the loop ξa(m) e g+ on V\{z\) (8) ® Vn(zn); θk denotes the action
of gc on the factor Vk alone. For θ to be a sensible operator, the points must be
inside the unit disk.

2.2. Statement of the Vanishing Theorem. We now list the main properties of
the operator δj, including the vanishing theorem 2.2.3, the purpose of the present
chapter. The remaining sections, and some of the appendices, are devoted to the
proofs. We shall write d for \ in this section.

Proposition 2.2.1. If the points Zk are inside the unit disk,

(i) d is a densely defined, closable operator on ^^iib' w^n adjoint d , and d =

T = 0; _%

(ii) d + d is a self-adjoint operator with domain Dom(d) Π Dom(d );

(iii) Ker(3)/Ran(3)c = Ker(θ + d ), where Ran(δ)c is the closure of the range of

a
(In other words, the cohomology is represented by harmonic forms.)

Proof Parts (i) and (ii) will be covered in Sect. 2.3. Part (iii) is a general

consequence of our context: Ran(3)c C Ker(d),Ker(3 -f ~d ) = Ker(<3) Π Ker(δ ),

and

The operator d is quite well-behaved, but this is more difficult to prove:

Proposition 2.2.2. The range of d is closed. Equivalently, the essential spectrum
of~d + d is bounded away from zero. (We are, again, assuming that the points
Zk are inside the unit dish.) •

Proposition (2.2.2) implies that the cohomology of d is finite-dimensional, and
that the Euler characteristic doesn't depend on the points. We shall not use it in
this paper, and thus do not prove it here; the argument in the next section will go
by a different route. Finally, we state the main theorem of this section:
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Vanishing Theorem (2.2.3). Assume that
(a) The representations Vk are antidomίnant at level h;
(b) The points Zk are inside the unit disk, and sufficiently far apart in the

hyperbolic metric {e.g., near the boundary, but not near each other);

Then, there is no higher cohomology. Ran(δ) is dense in Ker(δ) in ^im^for q > 0.

Recall that (a) means λk α m a x ^ /z + 1 for the highest weights λk of the F^'s.
The proof of the vanishing theorem is contained in Sect. 2.4 and Sect. 2.5.

From (2.2.2) it follows that, in fact, Ran(δ) = Ker(δ); but we shall not require this
result.

2.3. Elementary Hilbert Space Properties. Using the energy gradings on Jf and
g+, we can split ^ l l b as an orthogonal sum of finite-dimensional negative energy
eigenspaces. By (2.1.3) and (2.1.4), we can write

dj = do+ Σ zf A-m, (23.1)

where ~dk,-m '-— Σεa(~m)' θk(ζa) The operator c^_w decreases the energy by
(—m), while do is simultaneously the energy-preserving component of dj, and the
δ-operator for z — 0. Clearly,

|z*Γ | |3*,_ m | | = O(μm), if μ = max{|Zίt|} . (2.3.2)

In particular, it follows that the difference δj = dj — do is a bounded operator as
long as the points z# are all inside the unit disk.

Also let <90 be the formal hermitian adjoint

-* °° / 1 \

do := Σ \R{Um)T + ,WUm))* εa(-mT , (2.3.3)

and d~ := d0 + δt. Note that only a finite number of terms survive when d0 acts
on a finite-energy form.

The operators do and d0 are block-diagonalized by the energy decomposition of

#Hiit>' a n c* a s s u c n m e y a r e φri t e w e ^ behaved.

Proposition 2.3.4.

(i) 3o extends naturally to a closed operator with domain

00} .

(ii) Its hermitian adjoint d0, a closed operator as well, has the domain

} .0 0

(iii) do -f d0 is a self-adjoint operator on the domain ^ Π ^ * , and is the closure

of the operator do + dQ, defined a priori on finite-energy forms.

(iv) Let Do := (d0 + % )2. Then t0 = (To f = 0 and Do = d0 d*0 + d*0 d0 .
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Proof. All the statements are obvious except (iii). The domain of the closure of

3 0 + ~d0

 i s

{φ = ΣΦ(-m) e Kύb\Σ\\(So + dl)Φ(-m)\\2 < 00} . (2.3.5)

But ||(5o + %)φ(-m)\\2 = \\d0φ(-m)\\2 + \\c%φ{~m)\\2, by (iv), and so (2.3.5) is
precisely ^ Γ Ί ^ * . •

Corollary 2.3.6. If all the points Zk are inside the unit disk, then

(i) 3f extends naturally to a closed operator with domain 2.

(ii) Its hermitian adjoint <9f, a closed operator as well, has the domain @*.

(iii) δ?+d? is a self-adjoint operator on the domain ^ Π ^ * , and is the closure

of δ? + d?, which is defined a priori only on finite-energy forms.

(iv) % = (dl)2 = 0 and •* := Θ? 4- %? = ~d?% + % ~d? .

Proof The differences δ?= d?— do and δt = d- — d0 are bounded, and thus (i),
(ii) and (iii) follow from the corresponding statements in Prop. 2.3.4. To give an

honest proof of (iv) from the formula d? = 0, which holds in the formally completed
complex Ή , one must show that the image δ?(φ) of a finite energy form φ lies
in the domains 2 and ^ * of ~d0 and d0 (so that the compositions ^o°δ^~do oδ?,
etc. make sense). We leave it to the patient reader to verify that the norm of
30 on energy eigenforms is polynomially bounded in the energy. To complete the
argument, one then observes that by (2.3.2), the pure energy modes of δ?(φ) have
exponentially decaying norms. •

2.4. Nakano's Identity. We now give a Lie algebra version of Nakano's identity.
The Laplacian D/ will be expressed in terms of the degree, of the operator T4

constructed from the curvature of the holomorphic vector bundle LG<£ XGA V(Z)
(Γ

(2.4.1-2.4.4), and of a non-negative operator D (2.4.6).
Let ΘE : Qc[z] —• End(£) be a finite-dimensional holomorphic representation of

9<C|>]J restricting to a skew-adjoint representation of g. (We shall shortly set E =
V(z\ thus ΘE — θ? as in 2.1.4, although the formula we prove holds for any E, at
least in a formal sense.) Using the standard real structure on Lcjc (in which the
loops mapping the unit circle into the skew-adjoint algebra g are purely imaginary),
we can extend the map ΘE by hermitian conjugation to a linear map ΘE : Qcfzz-1] —̂
End(£); in other words, we set θE(ξ z~p) := θE(ξ* zp)\ for p ^ 0 and ξ e gc
The failure of the extended map ΘE to be a representation can be measured by a
hermitian symmetric form on E ® gμΓ,

TE(e 0 σ, / 0 τ) := (e\[θE(τ\ θE(σ)] - θE([τ,σ])\f) (2.4.1)

for e,f G E and σ, τ G g+.

Remark. If we identify §7 = 0 w < o 9 c ( ^ ) and g+ = 0 m > o 9 c ( ^ ) with the (1,0)
and (0,1) parts of the complexified tangent space to X — LG^/G^ at the identity,
then the (l,l)-form ΘE G Hom(cμ <g> g+;End(£)) ̂  ΛλΛ (TιX)^Έnά(E), given by
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®E := Σ {[0E(Ca(-p)l ΘE (ξh(qϊ)] - ΘE ([ξa, ζb] (q - p))} 0 ξa(p) Λ ξb(-q)
μ,q>Q

(2.4.2)

is the curvature of the hermitian holomorphic vector bundle LGς xG,i E over .Y.

The relation between ΘE and TE is given, as in Sect. 2.0, by

7Hβ 0 (7, / 0 τ) - (£?|6>£(τ,ϊτ)|/) , (2.4.3)

for <?, / G £ and σ, τ G cfjΓ. •

Assume that the form TE is bounded in the Kahler metric (2.1.1) on cj+. This
is certainly the case for E = V(z), because of the exponential decay (2.1.4) of the
Of (cw(m))'s. This form corresponds then to a bounded hermitian operator on E 0 g~JΓ.
Using the Hubert space isomorphism o^ = (cj+V, we shall view it instead as an op-
erator on Hom(c\+;E), extending to a multilinear operator T^ on Hom(/Γ($+);is):

(2.4.4)

for e eE and y',...,y/; G (cj+)'.

Remark 2.4.5. We have Γ̂ 1 ^ 0 if 7^ ^ 0. To see this, let Γ*(cj+) be the tensor
algebra of t}+, and notice that the same formula (2.4.4) can be used to define an
extension Tf of TE to Hom(Γ*(g_f); E). Then, Tf is a sum of non-negative oper-
ators, and restricts to Γ/1 on Hom(Λ*(#+);E). Similarly, if TE Ξg C for a constant
C, then T£ ^ C p on Hom(yl/:'(cj4.);£). •

When E = V{z), we shall give an explicit formula and an estimate for TE in
Sect. 2.5.

Finally, we define the operator D: #Hilb(<#' Θ V(z)) —> r^^ l ] b(-# 0 K(f)) by

Π := ^ (R(ξ(l(—m)) + flf(Cί/(—/«)) + adCf/(_m))

x (/?(cί/(-w)) + fλ-(cί/(-w))H-a4f/(_/M))* . (2.4.6)

As in (2.1.3), we have written R(.) for the action of cjcrt-^-1] o n '^' ^so^
θf(ζa(~nι)) = ~0z(£a(m)y> a s defined earlier, while ad^/(_/;i) stands for the co-
adjoint action of ξcl(—m), truncated to g+:

for η(—k) G (θ+)r (which means that η G (θc) ; and k > 0). One should note that

At least formally, D is a non-negative self-adjoint operator. One can check
directly that the finite-energy forms in ^ l ! b are in its Hubert space domain15.

b Notice that, aside from terms involving ίλ-( )̂  o n l y finitely many terms survive when the sum

(1.3.5) is applied to a finite-energy form. One then recalls the exponential decay 1.2.1 of the

energy modes of ϋf. The operators adj.- (_ / / / } are actually bounded on forms of given degree, while

the norm of R(ξa(—m)), on forms of fixed energy, increases as \fm. This last statement follows

from the identity R(ξa(-tn)Y R(ξa(-m)) = h m -\-R(ξcl(-m)) R(ξa(-m))*, where the last
term is bounded on forms of a given energy. The details of the calculation are best left to the

skeptical but patient reader.
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Fortunately, we do not need to construct by hand a non-negative self-adjoint exten-
sion of D; the following identity expresses D in terms of D and T4 .

Proposition 2.4.7. ("Nakano's Identity"). On « £ l l b ( ^ 0 C(z)\ we have

where "deg" is the degree operator on forms, and T4 given by (2.4.4), acts

trivially on the factor £?.

Proof. Appendix B.I.

2.5. Nakano Positivity. We are ready to prove the vanishing theorem (2.2.3).

Proposition 2.5.1. Let β < 1, and assume the representations Vk are antidomίnant
at level h. Then, if the points z^ G A are sufficiently far apart in the hyperbolic
metric on A,

^v(z) + (^ + 2c) > β .

Proof of the Vanishing Theorem 2.2.3. The previous proposition, coupled with

Remark (2.4.5), implies that Tά +(h + 2c) deg > β deg > 0 on positive-

degree forms. Nakano's identity shows that D > 0. •

Proof of Proposition 2.5.1. We give an explicit formula for Tγ^y For starters,

notice that
τv(z) = τV\(zι) H •" Tvn(zn) (2.5.2)

on Hom(g+; V(z)) = V\(z\) 0 0 Vn(zn) 0 (9+/, because in (2.4.1), we have
θz = θ\-\ -h θnr and θj commutes with θj for z'Φy. (In other words the cur-

vature Θγ{z) °f the bundle V(z) over LG^/G^ is the sum of the curvatures Θvk(zk)
of the factors Vk(zk); cf. 2.4.3.)

The operator Tvk(Zk) has a very simple form when z# = 0. Let HQ be the self-
adjoint infinitesimal generator of the rotation action on (g+)':

H0(ξa(-m)) := m ξa(-m) .

The resolvent H^1 is a compact positive operator, with spectrum {\/m}m>o.

Lemma 2.5.3.

a

Proof In short, the operator HQX compensates for the presence of the factor "m"
in the energy m directions in the metric (2.1.1) on X. The formal proof is by
direct verification. Using the Kahler metric, we identify (cj+)' with cjljl, and take
e 0 ξ(-p) and / 0 η(-q) in Vk(0) 0 g .̂ Then,
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since, at zk — 0, θk(ξ(m)) = 0 for mφO. But we have (with summation over a
implied)

(e\θk([η,ξ*])\f) = -<e|βt(

= -(e|0*(&.)(/)><K«>£]|'/> = (e\θk(ξa)(f))(ξ\[ξa,η]) .

Thus,

(-Jpλ/®^(-?)) = - V ί (Φk(ξa)(f)){ξ\[ξa,η])

= -l- (e\θk(ξa)(f))(ξ(-p)\[ξa,η](-<l))

Let now zk £ A be arbitrary, and pick a Mόbius transformation 0 G S
taking 0 to zk. In constructing the operator TE in Sect. 2.4, we have only used

- the Lie algebra structure of
- the real structure on Lg<c ,
- the Hubert space metric (2.1.1) on g+ = g^/gc •

These are all preserved by the geometric action of φ. Because φ* (F*(0)) = Vk{zk)
as g^-representations, it follows that we must have φ o Tvk(o) o φ~x — Tyk(Zk) Denot-
ing by HZk the infinίtestimal SZ,2(IR)-rc>tation φoH0oφ~ι about z^ we have proved
the following proposition.

Proposition 2.5.4. 7>(f.} - - Σta θk(ξa) ® ad^ ( 0 ) H~λ on Vt(zλ) ® ® F ^ ) 0

Proposition 2.5.5.

(i) Σ α θk(ζa) ® ad^α ^ (2A- 4- 2p) αm a x o« F^ (

(ii) For any ε > 0, we have ΣkH~ι < 1 4 ε if the points zk e A are sufficiently

far apart in the hyperbolic metric.

Proof Appendix C. •

End of proof of Proposition 2.5.1. Choose the points zk such that part (ii) in Prop.
2.5.5 holds with ε = (1 - β)/(h 4- 2c - 1). Recall also that c = p αm a x + 1. Then,

Ty(z) ~ ~ Σ θk(ζa) <8> zdξaio) ' HΓk = ~ Σ ( ^ + ̂ p) αm a x H~
k a ' k

- 1) . (1 4- ε ) = -(h + 2c - 1 ) - ( 1 - β)
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3. Lie Algebra Cohomology

In this chapter, we use the Hubert space vanishing theorem (2.2.3) to determine,
for a simple Lie algebra g, the relative Lie algebra cohomology

(3.0.1)

As in Sect. 1.4, ffl is a formally completed irreducible negative energy representa-
tion of Zg at level (—h) and the F^'s are irreducible representations of g, on which
g<C[z]? the Lie algebra of g-valued polynomials, acts via evaluation at the points zk.

In Sect. 3.1 we collect some useful properties of the representation <ffl\ they
are summarized in Prop. 3.1.5. Section 3.2 describes an injective resolution of ffl
and J"f 0 V(z) in the category ^(g<c[z],G) (Sect. 1.4). We use it to reduce the
calculation of the cohomology (3.0.1) to a finite-dimensional problem; this plays
an important, if somewhat technical role in Sect. 3.4, where, in order to conclude
that the dimensions hk are independent of the choice of distinct points zk e C,
we exponentiate the Virasoro action on //*. The finite-dimensional reduction also
shows, without using the Fredholm properties of d, that the Euler characteristic
χ(J4f (g) V(z)) does not depend on the points zk, whether they are distinct or not.
Section 3.3 contains the most important lemma of this chapter (Prop. 3.3.1), relating
the Hubert space theorem of Chapter 2 to the vanishing of the algebraic cohomology
discussed here. Section 3.5 describes the cohomology (3.0.1) in the general case,
with no restrictions on the representations V^. This is the "Bott" part of the Borel-
Weil-Bott theorem, and the argument is a Lie algebra translation of Bott's original
proof. Finally, in Sect. 3.6, as an application of this theorem, we determine of the
fusion rules on P 1 .

3J. The Formally Completed Representation Jt. Recall that G is a compact sim-
ply connected Lie group with Lie algebra g, while Gc and gc denote their com-
plexifications. For a (C-algebra A, we shall write GA or G(A), and g^ of §(A) for
the corresponding objects over A. We are especially interested in the cases A — Mx,
the germs of meromorphic functions at x on IP1, A — Θx, the subring of regular
functions, or, later, A = (C[z, (z - z\)~\.. .,(z - zn)~x\ the regular functions on a
punctured IP1. We shall, however, also keep the old notations LG<£ and G^ of
Sect. 1.

Take a disk A around a point x in a Riemann surface16. It corresponds to the
unit disk in C, for some local coordinate z on the surface, centered at x. Given an
antidominant regular representation E of G, the space of sections of the holomorphic
vector bundle

E(x) =

over the flag variety XΔ = LGς/G^ forms an irreducible PER of LG; but the topo-
logy on this space depends in a non-trivial manner on the choice of A.

Consider instead the formal completion jtfΈ, o r <$Έ(.x% of Sect. 1.4 - the di-
rect product of the (finite-dimensional) energy eigenspaces in jtfΈ. It is clearly
acted upon by the Lie algebra g ( ^ ) , since the finite principal part of a meromor-
phic loop will give a bounded downward energy shift. Unlike Jf^, the completion

Which in the end will be IP1, but we do not need this restriction for the moment.
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depends only on an infinitesimal neighbourhood of the point x, and not on
the choice of the local coordinate. This follows from the fact the group of germs
of holomorphic coordinate changes about x acts on J^(x) . Indeed, the Virasoro
generators {Lk\k ^ 0}, corresponding to holomorphic vector fields vanishing at x,
do not decrease the energy, and so their action on ^E{x) can be exponentiated. In
coordinate-invariant terms, 3&Έ{x) is topologised by the energy co-filtration, formed
by the spans of vectors of energy above given cutoffs17.

Remark 3.1.1. There is another way to understand this coordinate-independence,
and the following alternative description of Jf# will be helpful in Sect. 3.6. Let
χaig d e n o t e the algebraic flag manifold G(Jίx)/G(Θx). It is naturally contained in
XΛ as the union of the Schubert cells18 [P-S]. There is the natural co-filtration on
J^E by the kernels

j f j = {σ G 3tfΈ\σ vansihes on ^}

of the restriction maps to the Schubert cells {^}. The reader will not find it surpris-
ing to learn, nor hard to prove, that this is compatible with the energy co-filtration.
(Both are finite co-dimensional, and the rotation action stabilizes the Schubert cells.)
In other words,

& ( f ) (3.1.2)

with the corresponding topologies. This also shows that the group G(MX) acts
continuously on

Note. As a matter of fact, the restrictions 2^EI^E t o m e Schubert cells <€ are
isomorphic to the spaces of all sections of E(x) 0 £?®h over the corresponding
closed varieties, but this is not obvious. It follows essentially from Kumar's results
[Ku], which show that the restriction of holomorphic sections from larger to smaller
closed Schubert cells is surjective. •

Choose now n points zi, . . . ,zn G C, and assign to each an irreducible finite-
dimensional representation Vk of g<r;. The tensor product jfe 0 V(z) belongs to the
category ^(Q^^G) of g<c[z]-modules which are direct products of g-isotypical com-
ponents of finite-dimensional type. (A vector in a G-isotypical component of "large"
type must only have large energy modes because the energy eigenspaces are finite-
dimensional.) As explained in Appendix A, the relative Lie algebra cohomology

(3.1.3)

as a derived functor on ^ ( g c ^ G ) is then calculated by the standard complex

:= Homg

There is a natural finite co-dimensional co-filtration on ffi, coming from the degree
filtration on <C[z] and the energy co-filtration on Jf\ We shall write ^q when
thinking of ^q together with the inverse limit topology defined by this co-filtration.

17 Unlike the energy grading, this co-filtration is independent of the local coordinate.
18 One can see this by realizing Δ as the unit disk in P 1 and using the factorization theorem

[P-S, Ch. 8]. which allows one to write a loop λ e G(Jί\) as λ~ χ λ+, where λ+ G Θx, λ~ is
holomorphic on IP1 — [0] and χ : C x —>• Gc is a group homomorphism. It follows that λ~ is in
fact algebraic, and since λ ~ λ~ χ in Xalg, λ falls in some Schubert cell.
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The coboundary operator δ, given by formula (2.1.3) in Ch. 1, is continuous on $

(it does not increase the energy). Because ^ is an inverse limit of a system of

finite-dimensional spaces, d also has closed range.

We summarize our conclusions in a proposition.

Proposition 3.1.5.

(i) The formally completed space J ^ (x) is a continuous representation of the
Lie algebra Q>(Jix) and of the group G(Jίx)\

(ii) It can be realized as the space of holomorphic sections H°(G(Jίx)/G(Θx);

E ( x ) 0 ^®h\ with the Schubert cell co-filtration;

(iii) Jf := jf£(oo) and Jf ® V(z) are in the category ^(g<c[z],G);

(iv) The cohomology groups //*(g<c[z]?9(c;^ <8> V(z)) are computed by the stan-

dard complex (3.1.4). The ^-operator is continuous on %> , with closed range.

We append a technical remark which shall be used in Sect. 3.5:

(v) Let s be the subalgebra ofL§<£, isomorphic to shi^), spanned by {eamai(—l),
^αmax(0)> e-αmax0)} Then, ffl is s -integrable, and is the direct product of it
z-isotypical components.

Proof of (v). We must show that vectors in an s-isotypical component of "large"
type must only have energy components of large (negative) energy. Consider
the modified energy operator E := E + ^o<max(0). Because E and /Zαmax(0) can be
simultaneously diagonalized, we can see that

(a) E commutes with s and acts semisimply on J>f, with integral or half-integral
eigenvalues. Now, on an £-eigenspace, /zαmaχ(0) is> r°ughly, bounded by the square
root19 of ( - £ ) . It follows that

(b) the eigenvalues of E are bounded above and have finite multiplicity,
and also

(c) an ^-eigenvector for a large (negative) eigenvalue will only project to E-
eigencomponents of large (negative) Zi-value.

By the finiteness property (b), vectors of large s-type, which by (a) we may assume
to be ^-eigenvectors, can only appear at the large (negative) E eigenvalues. By
(b), they are combinations of large-eigenvalue ^-eigenvectors. •

3.2. A Generalized Bernstein-Gelfand-Gelfand Resolution ofj^0 V(z). In this
section we describe a "generalized BGG" resolution of M\ and of the twisted rep-
resentation Jti? 0 V(z\ by injective (gc[z],G)-modules. Such resolutions for highest
weight representations of Kac-Moody algebras are a well-known tool in cohomol-
ogy calculations [RC-W]. They reduce the calculation of //*(g<c[z], gc; ^ <8> V(z)) to
a finite-dimensional problem. In the one-point case, the BGG resolution determines
the cohomology completely (Corollary 3.2.7); but in the case of several points, a
direct solution of this finite-dimensional problem is not apparent20, and the only
proof of Theorem 3.1.3 that I know is the rather lengthy Hubert space argument
of Sect. 2 and Sect. 3.3-3.5. It should be noted that a direct proof of vanishing of

1 9 T h e Segal-Sugawara formula expresses L$, which differs from (—Is) by a constant, as a sum

of non-negat ive operators, including — 2ίh+o ' ^αmuχ(0) 2

2 0 Except for the simple case of g = su(2).
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higher cohomology in the complex (3.2.7) would give, together with Sect. 3.6, an
elementary determination of the fusion rules.

The basic central extension of the Lie algebra o>{Jtx) can be used to define, for
every h, the "universal enveloping algebra at level /z,"

χ) := tensor algebra of g ( ^ x ) , modulo the relations

{ξ®η-η®ξ = [ξ,η] + h ω(ξ9η)} .

Here, ω(ξ,η) — ^ fs ξ dη is the Lie algebra cocycle defining the basic central
extension. The extension can be trivialized uniquely over g($oo) and g<rj[Z], leading
to well-defined inclusions ί/(g<c[z]) C Uh(Q(Jfoo)) and t/(g(0oo)) C UhisϋJί <*>)).
Since a loop λ e g(^#oo) can be split as λ = λ+ + λ~, with λ+ G gc[z] and A" 6
g(^oo)> uniquely up to a constant, this implies the following, as an easy application
of the Poincare-Birkhoff-Witt theorem.

Lemma 3.2.1. As a left U{^[z])-module and right U

))^U(Q€[z]) (8) C/(g(0oo))

Let for now F be any representation of G and x a point in P1 . The space

ΓF(x) :=

where the subscript g($ x) indicates the g(ίPx)-equivariant linear homomorphisms for
the negative right multiplication action on Uh(§(<Jΐx)) and the obvious action on
F — F(x), is naturally a (g(^#x), G)-module. We shall only use the case x — oo and
write Γp for ΓF(oo); ΓF is, in particular a (gc[z],G!)-module. As a consequence of
Lemma 3.2.1, we have

Lemma 3.2.2. ΓF is an injective (g<c[z]5 G)-module.

Proof. We have to show that M \—> Hom9(C (M Γp) is an exact functor on the
category ^(gcjy^G). From Lemma 3.2.1, it follows that, as left [/(gc[z])-modules,

c ; ^ ) . (3.2.3)

But for a (g<r[z], G)-module M, we have

Homg(Γ[z] (M;ΓF) ^ Homg c [ z ] (M;Hom g c

and M ι-> Hom g c (M F) is an exact functor on ^(g(C[z],G). •

Corollary 3.2.4. With the tensor product action, ΓF 0 V\(z\) 0 0 Kπ(zπ) w
infective (g(C[z], G)-module.

Proof Identical to (3.2.2). •

Let K(F;h) denote the set of G-representations which are afrme-conjugate to F
at level h (relative to the (h + c)-action of the affine Weyl group on the weight
lattice of g).
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Proposition 3.2.5. (BGG resolution in ^(gcjφG)). Let F € R(G) be regular an-
tidomίnant. There exists a ^(Q(£[z],Gyinjective resolution of Jtfp , in which the
maps are §(Jioo)-module homomorphisms:

φ / > - (g> />-> (g) rF
F'£K{F;h) F'eK(F,h) F'eK{F,h)

ί{F')=\ /{F')=2 ίψ')=Z

Proof See [RC-W]. Sect. 8, for the proof of the dual statement. •

By tensoring (3.2.5) with V{z) = V\(zγ) ® <8> Vn(zn), we obtain

Corollary 3.2.6. The following is an injectiυe resolution of $w ® V(z) in

# F -> ΓF <g> K(z) -> φ Γ / Γ Θ ^ Z ) - ^ φ Γ F ® ^ ( z ) - * . . . .
F'eK{F,h) F'eK{F\h)

«F')=l aF')=2

Corollary 3.2.7. (i) The relative Lie algebra cohomology //*(gc[z]? 9<c; $ ® V(z))
is the cohomology of a finite-dimensional complex K*, where

κq = φ (r^F^ ^^f
F'eK(F h)

and the coboundary maps are polynomial functions of the z^s.
The Euler characteristic is thus independent of the points Zk, whether they are
distinct or not.
(ii) In particular, for n — 1, //^(g<c[2], g^; Jf7 0 V\(z\)) — 0 for all q unless V\ is
affine-conjugate to the representation Fι dual to F, in which case

Hq (gC [z], = C /or q =

Proof Part (i) follows from the last corollary and the fact that

One could produce an explicit formula for the coboundary maps in (3.2.5) and use it
to prove that the maps in Corollary 3.2.7 are polynomial in the z^'s. In truth, the only
relevant property of the δ's is that they give a finite energy shift: the corresponding
maps in (3.2.7) will then have a polynomial dependence in the z*'s, of total degree
no more than this energy shift. However, we know that after suitable normalization,
the energy on the ΓF is given by the Segal-Sugawara operator LQ; it will therefore
be preserved by the coboundary maps (3.2.5), which are Zg-homomorphisms. •

3.3. Hubert Space Representative. For the benefit of the reader, this paper's basic
policy is to relegate unpleasant formulae to the Appendixes. We have made an
exception for Proposition 3.3.1, proved below. It says that every formal cohomology
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class has a representative in the Hubert space domain of the δ-operator, and provides
the link with the Hubert space theory in Sect. 2.

We have proved (Theorem 2.2.3) that, if the Fjt's are antidominant and if the
points Zk are far apart, then, in the Hubert space complex ^ l l b of (2.1.3), the
range of d is dense in its kernel in positive degrees. We shall deduce from here,
at first the same assumptions, the vanishing of higher cohomology in the formally
completed complex ^ . Regarding the complex ^ together with its inverse limit
topology described in Sect. 3.1, recall from 3.1.5 that

(i) On *% , the operator d is continuous, with closed range;

(ii) The inclusion ^iib ^ ^ *s continuous.

If a positive degree cohomology class in <$ has a representative φ which happens

to lie in the Hubert space domain of ~d, then by Theorem (2.2.3), φ lies in the

^Hiib~cl°sure °f m e Hillbert space range of d. By (ii), φ then lies in the Φ -closure

of the ^ -range of 3, which according to (i) is the same as the ^ -range; but then,

φ represents 0 in cohomology. We therefore get a vanishing theorem in %> from

the following proposition:

Proposition 3.3.1. (Hubert Space Representative). As long as the points Zk are
inside the unit disk, every cohomology class in ^ has a representative in the
Hilbert space domain of d. In fact, there exists a representative φ whose energy
components ψ(N) satisfy

\\φ(N)\\ S o ( > l ) , and P(ιMΛO) || S o ( > ' )

for any r > μ — max{|z^|}. {Here, ψ may be a zero-form, and the representations
V/c are unrestricted.)

Proof We must make use of a new Hilbert space norm || | | n e w , finer than the
one defined in Sect. 2.1. Let g+ be the Lie subalgebra of positive modes in g<c[z]
We obtain the new norm from the old one by replacing the H\β inner product on
cj+ with the straight L2 norm, while the hermitian structures on J f and the PVs
are kept unchanged. Thus, for the functional ξa(-n) G (g+y, dual to ξa(n) in the
Fourier mode basis of g+, we have ||£α(-«)||new = 1> while | | ί f l ( - ^ ) | | 2 = l/n. Since
|| || S II Hnew, it suffices to prove (3.3.1) for || | | n e w .

Pick a form φ G Ker(<9) C ^ . To avoid spurious "—" signs in subscripts, we
change the sign of the energy grading to positive for the remainder of this section.
Recall from (2.3.1) and (2.3.2) that d = d0 + + dN + ..., with \dN\ = O(μN).
This, incidentally, is true both in the old and the new Hilbert space norm. Decom-
posing ψ as ψ = \j/\ + + ψN H , we get

~doφo = 0 ,

(3.3.2)
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Thus

S C μ H^-illnew+H hC μN~X l ^ i l U + C - μN | | ^ | | n c w . (3.3.3)

Now we replace φ by a representative of its class which lies in the kernel of 3 0 > n e w .
(This can be done recursively while preserving all the relations (3.3.2): at every
k, φk + doχk £ Ker(<30) for some χ^ of energy k, but then replacing φ by φ + dχ
keeps it in Ker(<3), does not change its class, and only affects components in energy
greater than k.) For such a φ9

) 1 7 2 ' / 2Po Mnew = (\\doMl™ + PiUw MlLw) 7 = < MBθ,new| M

The most we can say about the "old" do-Laplacian Do is that its essential spec-
trum is bounded away from zero (and even that is rather difficult to prove). But
the Laplacian D0,new is much better behaved: it is, essentially, the energy operator
on Φ , and has discrete, finit-multiplicity spectrum. More precisely, let E be the
(positive) energy operator on the factors i f and Λ*. Let also CQ be the eigen-
value of the Casimir operator of g on the ground states of Jf, and denote by A ̂
the Casimir operator acting on V = V\ 0 0 Vn. We have (cf. Appendix B.2,
Prop. B.2.5)

Lemma 3.3.4. On the Hubert space complex Homgc(yΓ(g+); Jf 0 V\ we have

•θ,new = (A + C) E + C0 - Δp ,

and thus (h + c) E+A ^ D0,new ύ (h + c) E + B

with the constants A and B depending only on the representations F*.

Combining (3.3.3) and (3.3.4), we obtain that, for large N,

or, setting xp = ||0>||new μ P,

K N-ι
Xj\J ^ = / / j X Ό ?

whence

N-\ / K \ 7V-1

P=O V \N J p=o

From here, it follows that, for some constant K',

" ^ Π (1 + 4:) * Σ ^ ^ ^ ' exp
p=0



Lie Algebra Cohomology and Fusion Rules 291

thus

XM S K' exp

and

ll^llnew S Kf - exp (2KVN\ . μN = o(rN) for r > μ ,

as promised.
The second inequality in (3.3.4) follows from the upper bound for Do new in

(3.3.1). •

To summarize, Chapter 2 and Proposition 3.3.1 together imply

Proposition 3.3.5. If the representations Vk are antidominant and the points zk

are inside the unit disk and near the boundary, but not near each other, then

Hq (flew, 9c; & ® F(*)) = 0 for q > 0. •

3.4. The Knizhnik-Zamolodchikov Connection. Now that any reference to Hubert
space has been removed, the restriction in (3.3.5) on the points zk makes little
sense, and we would like to replace it with the condition that the points should be
distinct. The idea is to move the points zk along the flow-lines of a holomorphic
vector field. The Lie algebra of polynomial vector fields on C acts naturally on gc[z]
by infinitesimal automorphism, and there exists an interwining action on Jf, given
by the Segal-Sugawara operators [P-S]; but these actions cannot be exponentiated21.
It turns out, however, that the induced action of a vector field φ on the cohomology
groups //*(g<c[z], g<c;^& V(z)) can be exponentiated to give isomorphisms

(Φ,)* : /Γ(gC[z], gc; & ® V(z)) ^ H*(Q€[Z], g^; Jf 0 V(Φt(z))), (3.4.1)

where Φt denotes the flow along φ at time t, and Φt(z) is the «-tuple (Φt(zt),...,Φt

(zn)) of images Φt(zk) of the points zk. All this holds assuming that / is smaller
than any of the exit times of the points z# under φ.

This all follows from the finite-dimensional presentation (3.2.7) of the spaces
^*(9c[z],gc;^?(X) V(z))\ the coboundary operators in the complex (3.2.5) are Lg-
module homomorphisms, and so they commute with the Virasoro action. The action
can be restricted to the finite-dimensional complex (3.2.7), where it must exponen-
tiate to give (3.4.1). To find the inverse, one just exponentiates (—φ).

Less obvious and more interesting is the fact that, after a slight modification,
the isomorphisms (3.4.1) will be unique, up to monodromy, on the configuration
space Z(n) of n distinct ordered points in C Since this is not a necessary part of
the proof, we pause for a moment to summarize the present state of the argument
before digressing any further on this topic.

Proposition 3.4.2.

(0) The Lie algebra cohomology //*(gc[z],g(c;^ Θ V(z)) is finite-dimen-
sional Its dimension is independent of the points z#, as long as they stay
distinct.

(1) The Euler characteristic χ(g<c[z]j9c; $ ® ^(^)) is independent of the points
zk e <C, distinct or not.

2 1 We can exponentiate the actions of LQ and L\, leading to affine coordinate changes on C, but
this is not sufficient if more than two points are to be moved.
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(2) In the one-point case, //*(gc[z],9c; ^ ® K(0)) = 0, except when $ is
induced from Vι\ in that case, Hq = C in degree q = {{V\ and Hq = 0 in all
other degrees.

(3) If the points are distinct and all the factors Vk are antidominant (i.e.
h αm a x ^ h+ I), all higher cohomology vanishes.

Parts (1), (2) and the first statement in (0) follow from Corollary 3.2.7. The second
statement in (0) follows from the preceding remarks. Part (3) is Proposition 3.3.8
plus Part (0). •

We will finish the proof of Theorem 0 in the next section. The remainder of this
section discusses the Knίzhnίk-Zamolodchikov connection on the bundle of spaces
H*(Q<C[Z],9C; $ ® V{z)) o v e r Z(n). It is not a necessary part of the proof, and the
reader may skip ahead to Sect. 3.5.

Consider the complex of trivial vector bundles over C", coming from Corollary
3.2.7:

K9 = Θ (F <8> Ki <g> • • - <8> Fπ) 9 . (3.4.5)
FβK(E,h)

As noted there, the coboundary operators are polynomial functions on <Cn. The

cohomology sheaves are coherent Θςn -modules, and their fibres are the spaces

#*(9<C[z]>9<c;^® V{z)). Now, the fibre of Kq at a point (zi,...,zΛ) is naturally

isomorphic to a corresponding sum of terms (JV (8) V(z))Q(Cw in (3.2.6). A polyno-

mial vector field φ = Σp=0 φpz
pjj^ on C gives rise to the field φz = Σ ί = i Φ(zk)j^~

on (Crt. We explicitly lift the action of φz to the bundles (ΓF 0 V(z)f^, and then
prove that, when restricted to Z(n), the liftings come from a flat connection.

Recall the standard Segal-Sugawara operators on the generalized Verma modules
ΓF of Sect. 3.2:

LP = * , Σ UP ~ m)ξa(m) : . (3.4.6)

n

Their action commutes with the coboundary operators in the complexes (3.2.5) (and
(3.2.6)), since the latter are Lgc-equivariant. Define

0 = Σ </>&)£- +ΣΦP Lp-ι + Σ 0 ; ( * * ) r χ - * ( 3 A 7 )

k=\ Ozk p=0 k=\ n-JrC

Here, the first term gives the trivial action of φz on the trivial bundle Γp (8)
V\ (8) (8) Vn over Z(«), the L/s in the second sum act on the factor />, and
the numbers Ck are the eigenvalue of the Casimir operators on the F*'s.

Proposition 3.4.8. The lifting φz ^ φ determines a flat holomorphic connection
over Z(n) on the terms (F (8) V\ 0 0 J^) 9 o/ ί/ẑ  complex Kq, commuting with
the coboundary operators. Specifically, φ is the lift of φz by means of the G-
ίnvarίant connection V on V\ 0 (8) Vn given by

V=f:^-®dzk + —^— Σ ^ ' ~ & * θ,(ξa) ® θk(ξa). (3.4.9)
k=x ΰzk 2(h + c) lΦk Zj -zk
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Proof We already know that φ acts on the complex Γ . 0 V(z\ preserving the
coboundary operators. If R(ζ) denotes the total action on Γp 0 V(z) of a loop
ξ G 9c[z], one can check directly from (3.4.7) that [φ,R(ξ)] = R(φ(ξ)). It follows
that φ also preserves the subspace of g<qz]-invariant sections. Since the map φz ^ φ
gives a surjection of 3̂ onto the tangent space to Z(n) at any point, the connection
in question is uniquely determined, if it exists. In that case, flatness follows from
the fact that [</>, φ] — χ, for χ = [φ,ψ].

Finding φ explicitly on (F 0 V\ 0 0 Vn)
9 requires a moment's thought. To

sum it up, because F is the space of highest-energy vectors in ΓF, the action of Lp

is obtained, first by dropping all the terms in (3.4.6) which contain negative modes,
and then, since we are restricting to gc[z]-invariants, by evaluating the remainder
on V\{z\) 0 0 Vn(zn). The result is

where Θk designates the action of g on K*. We can rewrite it as

Summing over p as in (3.4.7) and cancelling the last term gives

and, as advertised, φ is the lifting to (F (g) Fi 0 0 Frt )
9 of φ2 via the con-

nection 3.4.9 on V[ 0 Θ Vn. The latter is the standard form of the Knizhnik-
Zamolodchikov connection. •

3.5. Bott Reflection, and End of Proof of Theorem 0. We now proceed to the
general case of Theorem 0. The argument is borrowed from Bott's original proof
[B] of the BWB theorem, and translated into Lie algebra cohomology; the basic
step is the Reflection Lemma (3.5.5) below.

We reduce the calculation of //*(gc[zj?9(c;^7(^) V\(z\) 0 0 Vn(zn)) to the
case where all the F^'s are antidominant by working on each factor separately.
Because the linear transformations z ^ az + b act on Jf', we may assume that
z\ = 0. (We also keep the assumptions of Theorem 0 that the Vk are irreducible
and the points zk are distinct.) Set V\ — F, λ\ = λ and denote jfe 0 F2(z2) 0 0
Vn(zn) by Jf^. Recall from Proposition (3.1.5) that the action of the constant
loops g C LQ on Jf® is integrable, and decomposes Jf7^ into the direct product of
isotypical components, and that the same holds for the subalgebra s C Igc spanned

Proposition 3.5.1. Assume that (λ + p) αm a x > h + c. Let μ + p = S/+i(^ + p)
(Recall from Sect. 0.3 that this equals (λ + p) + ( A + l - λ α m a x ) α m a x ). If
(μ + p) is a regular weight of g, let V' be the representation of G whose p-
shifted highest weight (λr + p) is in the Weyl orbit of (μ + p), and let L be the
length of the Weyl group element w taking the former to the latter. Then,
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(a) Ifμ + p is singular, H« (gC[z], g<c; ̂ ® ® V(0)) = 0, Qrfq);

(b) Ifμ + p is regular, H« ( ) (

(Λ w /rarί 0/ ίAe statement that the LHS is 0 w/ze« q ^ L.)

Remark 3.5.2. We have t(V) = t(V') + L+\. Since the length of F' is strictly
less than that of V, repeated application of (3.5.1) results either in a singular
(μ + p) (if V was singular), or else in a final antidominant V'. By applying this
procedure to all the factors Vk and using Proposition (3.4.2), we obtain a proof of
Theorem 0. •

Proof of Proposition 3.5.1. The ideal g+ C g<rj[z] of positive is a complement of
gc, and thus

H* (gc[z],9c;^® ® ^(0)) - [/ί*(g+; J f Θ ) ® K] G .

The proposition then follows from the next two lemmas, which are simple applica-
tions of the Hochschild-Serre spectral sequence. Let 9 1 + = n + ( 0 ) θ g + , where n +

is the nilpotent subalgebra spanned by the positive22 root vectors in g<c.

Lemma 3.5.4. We have

and
[ F ' ] G ι/(/x + p) is

= 0 if(μ + p)is singular .

Lemma 3.5.5 (Bott Reflection). 7/*Λ, α m a x > h + 1,

where, as in Proposition 3.5.1,

μ = s t + ι ( λ + p)-p = λ + ( h + l - λ α m a x ) α m

Just as before, it is part of the second statement in (3.5.4) that the LHS cohomology
vanishes in degree less than L, resp. in degree less than 1 in (3.5.5).

Proof of (3.5.4). The E^q term in the Serre-Hochschild spectral sequence for the
pair (9 t + , g + ) is Hp(n+;Hq(§+; Jf7®)). The complex is the direct product of its
Γ-isotypical components; for it is the direct product of its G-isotypical parts, and
high Γ-weights only appear in large G-representations. The cohomology can thus
be calculated in every character of T separately. However, by Kostant's version of
BWB [K], we must have, for any23 representation E of G,

[HL(n+, E) (g) <C_/έ]
T ^ (E <g> V'f, if μ is regular,

22 It is the complex conjugate of the ni lpotent usual ly considered (for instance, in B W B ) in the
given posit ive root system.

23 A n y finite-dimensional representation, to be pedantic, but this certainly extends to our case,
where E, as always, will be the direct product of isotypical c o m p o n e n t s of finite-dimensional type.
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and
[Hp(n+, E) (8) C_μ] = 0 for pφL, or when μ is singular .

Thus in the regular case, E%q = [ / / % ; / ® ) 0 F ' ] G , whereas Eξ'q = 0 if
pή^L. The spectral sequence must then collapse at E2, and thus

In the singular case, E-i = 0. The first statement is proved in the same manner. •

Proof of 3.5.5. Let u be the subspace of 91+ which complements the one-
dimensional subalgebra (C e_α m a x(l) (in the natural basis of Fourier modes, root
vectors, .. .)• u is an ideal in 91+, and the quotient 91 + /u is isomorphic to the max-
imal nilpotent subalgebra m := <C e_α m a x(l) of s. The above collapsing argument,
applied to the spectral sequence of the pair (9 l + ,u) , shows that

C-λ]
T<* [Hι (m / ^ C u J f^)) ®C-λ]

T , (3.5.60

[ ) C _ / i ] Γ ^ [H° (m H^iμ Jir®)) ®C-μ]
T . (3.5.6")

The fact that the cohomology of m is confined to the indicated degrees, and the
equality of the right hand-sides, are consequences of the BWB theorem for the Lie
algebra s = shi^)', but some further comment is necessary in order to see this.
We note the fact that the restrictions to the subalgebra (C /zαmax(0) of the actions
on ^ 0 of gc[z] and 5 will differ by a character, because of the projective nature
of the representation. Specifically, consider the twist

//«->(u;.^®)®C-/,-c<max/2 (3-5.7)

with the obvious actions of m and T. It is this twisted action, and not the original
one, which extends compatibly to an action of s.

Let λ" be a character of T, and set k = λ" α m a x - 1. We have defined k so
that we have

(-λ" + * α m a x ) αm a x = λ" - αm a x - 2 . (3.5.8)

For an integrable representation E of s, carrying a compatible action of T, we then
have

[Hι(m;E)®(E_λ,,] <* [H°(m;E) ® Cλ,,+k . αmax] . (3.5.9)

(We are forced to write this well-known identity in a rather unnatural way so as
not to interfere with the action of the subalgebra of t orthogonal to hamax.) Let

v - \ h " - h

A ~~ 2 ' α m a x ? ^ ~" ̂  ~ 2 ' α m a x '

Taking (3.5.7) as our space E, we have

[/Γ(m;£)®(C_;,]Γ^ [H* (m;H«-ι(μ;Jίr®)) ®C-λ]
T (3.5.10)

and correspondingly for μ. But note that

-λ" -f k - α m a x = -λ + - α m a x + (λ α m a x - h - 1) α m a x

h „
= -μ + - - α m a x = -μ ,
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and the Reflection Lemma follows now from (3.5.9) and (3.5.10). Note also that
the condition λ αm a x > h + 1 corresponds to λ" αm a x > 1, which ensures that the
cohomology (3.5.10) is confined to degree 1. (Correspondingly, the μ-cohomology
will live in degree 0.) •

3.6. Application: The Fusion Rules. Recall some definitions from Sect. 1.5: R(G) is
the representation ring of G, while Λh is the free abelian group based on the set Bh

of irreducible positive energy representations of the loop group LG at level h. We
shall take the representations in Bh to consist of finite-energy vectors; their linear
duals will then be formally complete representations, as in Sect. 3.1. Also recall
Bott's holomorphic induction map (1.5.4) 4 : R(G) —> Ah. As one might expect, it
has an elegant expression in Lie algebra cohomology terms.

Proposition 3.6.1. For a general, not necessarily irreducible representation E of
G, we have

ih(E) =

Proof. This is a consequence of part (a) of Theorem 0. •

Remark 3.6.2. Given the level h, the Kac character formula [P-S, Sect. 14] assigns
to every weight λ of g a formal character χκ(λ) in i?(G)[[w]] - a representation of
G x Sι with finite-dimensional S^-eigenspaces. (Sι represents the energy action.) If
λβ is the highest weight of is, one can show that the Kac character χκ(λε) is the
character of the representation ih(E) in (3.6.1). •

We shall use the following definition of fusion [T-Y]. Pick n + 1 points
z0, z\,...,zn e F 1 . Let K denote the ring of rotational functions on F 1 whose only
poles are at the points {zu}. The group Gk is naturally contained in the prod-
uct G(JίZQ) x x G(JiZfl). In keeping with the previous sections, we shall take
z0 = oo. This is not a restriction, because of the 5X2(C)-invariance of the construc-
tion below.

Given PERs J^, Jf i,..., JT„ of LG, set

# ^ ^ for k ^ 1 ,

where J^1 is the formally completed dual of ffl and V^ is the space of ground
states of Jfyt (Thus JfΌ is based on the dual of the space of ground states of ffl.)
The energy co-filtrations on the spaces Jf^k) and J f lead to a co-filtration on

Jfo(oc) 0 Θ jftn(zn). Its formal completion J^0(oo) 0 ® Jfπ(zn) thereunder is
aprojective representation of G(JίZQ) x x G(JίZn), which restricts in a unique
way to a genuine representation of the subgroup Gκ. (GK is connected, and the
projective cocycle on the associated Lie algebra §κ is trivial; in addition g^ admits
no non-trivial characters.) The spaces of invariants (cf. 1.5.1)

) ^ (3.6.3)

are therefore well-defined, and we are interested in their dimensions, which we
encode in the π-ary fusion product <g>(_,...,_), an π-linear operation from A^ x
••• xAh to ΛA:

Definition 3.6.4. ®(JT,,..., j f Λ ) := 0 / dimM(^f | J f i , . . . ,^ f Λ ) .
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For the last definition to make sense, the dimensions of the Λf ( |) 's must be fi-
nite and independent of the choice of points z#. This follows from the following
observation of G. Segal's, which relates the fusion coefficients to the Lie algebra
invariants discussed earlier.

Lemma 3.6.5. (G. Segal). One has a natural isomorphism

Remark. Recalling that jfe^Zk) is a submodule of Γγk{zk) — Homg(#2 )
(t/λ(g(^ z*)); Vk(zk)), the natural map from left to right is the restriction to
1 <8> • - • 0 1 € Uh(β(J(2ι)) ® (8) f / A ( g ( ^ J ) . •

Corollary 3.6.6. W7/A Jf ' denoting the formally completed dual of ffl, we have

dimM ( V ^ , . . . , Jfw) = A

Remark. Corollary 3.6.6 does contain the statement that G<c[z]-invariants and g<r[z]-
invariants are the same. This follows from the connectedness of G (cf. [F]).

Proof of (3.6.5). The lemma admits a Lie algebra proof, using the complete re-
ducibility of Jf, but the following geometric argument is more appealing. Let us
use the realization of Jf^fe) as the space of holomorphic sections of the vec-
tor bundle V* = G(JfZ/c) x G ( ^ ) Vk{zk\ twisted by J ^ Θ \ as in Prop. 3.1.5, part
ii. The left-hand side of (3.6.5) is the space of left G(X)-invariant sections over
Π L i G{JίZk )/G(ΘZk) of the vector bundle

> ® (Vπ <g> ̂ Θ / 2 ) . (3.6.7)

7^ abusively denotes the trivial vector bundle with fibre j f ? . ) As we shall see
momentarily, we have

Π G(JiZk)/G(ΘZk) * G(K)/G(€[z]) (3.6.8)

as left G(AΓ)-spaces, with the obvious action of G(K) on the spaces G(JίZk )/G(ΘZk).
Equation (3.6.8) then identifies the left G(^)-invariant sections of the vector bundle
(3.6.7) with the G((C[z])-invariants in its fibre at the identity coset. But the latter
is precisely

To see (3.6.8), note first that the obvious map goes from right to left. Con-
versely, a point (g\,...,gn) in the left-hand space can be viewed as a set of holo-
morphic Gc-valued transition functions on punctured disks about the z#'s, modulo
local holomorphic gauge transformations. In other words, it determines a holomor-
phic (thus algebraic) G<£-bundle over P 1 , together with a meromorphic section 1,
with poles only at the z*'s. This bundle, when restricted to <C = P^jO}, must admit
an algebraic section σ, unique up to right multiplication by G<c[z]. We then have
σ = 1 μ, with μ G Gκ, and μ gives the desired representative of (g\,...,gn) on
the right-hand side.

Theorem 1 ("The Fusion Rules"). Holomorphic induction is a ring homomorphism.
More precisely,
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(a) the fusion operation ®(_,...,__) comes from a commutative and associative
multiplication ®,

(b) ih : (Z?(G),(g)) —> (̂ /,, ®) w α surjective ring homomorphism. For Vk G
= 1,...,«, we

Remark. It is a consequence of our statement that the kernel of the map 4 is an
ideal in R(G). This could also be proved directly from the Weyl-Kac character
formula.

Proof. ® {ih(Vx),... ih( Vn)) - φ Jf dimM (Jf | tf\,..., JTW) (by definition)

Jf . h° (π1 0 V(zγj (Segal's Lemma)

'f χ (jtf" 0 F(z )^ (Vanishing theorem)

= Θ ^ X (^l® ^(0)) (Rigidity of χ)

S> 0 KΛ) . • (Proposition 3.6.1)

Appendix A. Lie Algebra Cohomology and the Hochschild-Serre
Spectral Sequence

In this section we recall a number of basic facts about Lie algebra cohomology
used in this paper.

1. Lie Algebra Cohomology. Let 9 be a finite or infinite-dimensional Lie algebra
over a ground field k, which we take to be IR or C. The category ^(g) of all repre-
sentations of g over k is an abelian category with enough injectives. (It is the same
as the category of £/(g)-modules.) The fixed point functor, taking a representation
V of g to the space V9 of g-invariant vectors, is left exact, and its right derived
functors, applied to V, are the Lie algebra cohomology groups //*(g; V).

The trivial g-module k has a canonical free resolution in

0 <- k <- £/(g) ^- £/(g) ® ̂ ( g ) *- £/(g) ® yl2(g) ^- [/(g) ® yl3(g) ^ .
(A. 1.1)

If g is the Lie algebra of a Lie group G, the dual resolution

0 -»it -> Hom(C/(g); i ) -> Hom(ί/(g) 0 yl !(g); i )

-> Hom(C/(g) 0 ^ 2 (g) ; k)^>>. (A.1.17)

is the De Rham complex of forms with formal power series coefficients at the
identity of G. The resolution A. 1.1 leads to a ^(g)-injective resolution for any

v e ^(g),

0 _ V - Hom*(I/(g); F) - HomA(C/(g)® Λ'(g); F)

-» Homt (£/(g) ® /I2(g); F) -» • • . (A.1.2)
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(The g-module structure on Hom^ (£/(g) <£> Λ*(g); V) comes from left multiplication
on £/(g) and from the natural action on V.)

Applying the functor of g-invariants to (A. 1.2) gives a resolution of cohomology
known as the standard complex of Lie algebra cohomology:

0 — * F-^Hom^/lVg) ; V) - ^ H o m * (Λ2(g); V)

3 ( g ) ; K ) - ^ . . . (A. 1.3)

In a basis {y }̂ of g, the coboundary operator d is explicitly given by

S = Σ U(7k) ® ε(/) + \ε{yk) ad Λ , (A.1.4)

where {yk} is the dual basis of g', ε denotes exterior multiplication on Λ*(g) and
R is the action of g on V.

There is a natural action of g on the spaces Hom(/l*(g); V\ obtained from
the ad-action on g and the natural action on V. This action commutes with the
9-operator. However, the induced action on the cohomology spaces is trivial: the
action of yeg can also be expressed as the (super Commutator of d with the interior
multiplication ι(γ).

2. Relative Lie Algebra Cohomology. Let now ί) be a subalgebra of g. Suppose that
f) is the Lie algebra of a connected Lie group //, which we assume to be reductive.
We also assume that g splits into finite-dimensional integrable ί)-modules under
the restricted ad-action. The category ^(g) contains the full subcategory ^(Q,H)
of modules which split as a direct product24 of their I)-isotypical components, all
of which are of finite-dimensional //-type. #(g, H) is also an abelian category
with enough injectives. The functor of g-invariants is again left exact, and its right
derived functors are the relative Lie algebra cohomology groups //*(g,rj; V) of the
pair (g, f)). Every V G ̂ (g,//) has a canonical injective resolution

0 _> v -> H o m ^ C g ) ; V) -+ H o m ^ ^ g ) 0 A1 (g/ή); V)

which is a subcomplex of (A. 1.2). "Hom^" refers to the action of I) by negative
right multiplication on £/(g), by "ad" on g/ί) and by restriction of the g-action on V.

Again, applying the left exact functor of g-invariants leads to a standard complex

0 _> V-^Uom{)(Aι (g/ί)); V) - ^ H o m ^ ^ 2 (g/^); V)

- ^ H o m ^ C g / f O K ) - ^ - - - . (A.2.2)

It is a subcomplex of (A. 1.3), and its cohomology is the relative Lie algebra coho-
mology //*(g, I); V).

3. The Case when i) is Complemented. Suppose that ϊ) c g has a complement p
which is an ideal in g; g then splits as a semidirect sum g = ί) φ p of p by ί). For
a ^(g,//)-module F, there is a natural isomorphism

2 4 It is more common to require a direct sum, rather than product, decomposition, but this suits
our examples better. The important property of ^(g,//) is that any exact sequence in it is split as
a sequence of ί)-modules.
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of the space //*(g, f); V) with the space of//-invariant vectors in //*(p; V). This is
because the standard relative complex (A.2.2) for the pair (g,ϊ)) is the //-invariant
part of the standard complex (A. 1.3) for p, and the splitting into //-isotypical
factors ensures that the cohomology can be calculated in every isotypical component
separately.

4. Hochschild-Serre Spectral Sequence. Let now p be an ideal in g. Given a
representation V of g, there exists a spectral sequence converging to //*(g; V),
whose E2 term is H* (g/p;//*(p; F)).(g acts on V, and acts compatibly on p by
infinitesimal automorphisms; thus it acts on //*(p;F), and the subalgebra p acts
trivially.) The existence of such a spectral sequence springs from the fact that
the functor of g-invariants can be expressed as the composition of p-invariants and
g/p-invariants. We can be slightly more specific. The g-invariant projection g —-> g/p
leads to a dual inclusion g' D (g/p)', which can be thought of as a g-invariant two-
step filtration of g'. This naturally leads to a filtration of Hom(vl*(g); V), whose
associated graded module is

Hom(Λ* (g/p) <g> Λ*(φ); V) * Hom(Λ* (g/p) ;Hom(/l*(p); V)) . (A.4.1)

This filtration has finite length if p has finite codimension in g.
From this filtration of the standard cohomology complex, one proceeds in the

usual manner to set up a spectral converging to //*(g; V), the Hochschild-Serre
spectral sequence. A direct verification shows that the first differential S\ of the
coboundary operator dQ can be identified with the coboundary operator dp of p
acting on Hom(/l*(p); V) (the p-action on Λ*(g/p) is trivial), while the second
differential δ2 agrees with δ g / p , acting on Hom(Λ* (g/p);//* (Λ*(p); V)). Thus
E^q — Hp (§/p;Hq(p; F)), and in a given cohomology degree d, the sequence
collapses after at most d steps. Its stable limit is Gr(//*(g; F)), the graded vector
space associated to the filtration induced on the cohomology groups //*(g; V).

Appendix B. Two Useful Identities

B.I. Nakano's Identity. There are to my knowledge two proofs of Nakano's identity
(2.4.7),

• = • - (h + 2c) q - T4 on ^ q .

They are both based on classical finite-dimensional arguments, and use the Kahler
differential calculus o n l = LG/G. The extraneous ingredient, in one proof, is the
"anomalous" behaviour (B.I .11) of the differential d in the semi-infinite cohomology
of Zgc This proof is easily packaged as a Lie algebra argument and I shall present it
below. The other proof is a direct differential-geometric calculation of the Laplacians
on X. I do not have a good Lie algebra cohomology translation for it, but I should
mention that the calculations involve the Ricci curvature of the Kahler metric on X.
The latter was determined by Freed [Fr] to be 2c ω. This expresses the fact that
the canonical bundle of X is J£®(~2c\ and is the geometric counterpart of the extra
cocycle 2c ω appearing in the square of the semi-infinite differential (B.I. 10).

Proof of Nakano's Identity. The proof is broken down in the simple steps (i)-(ix);
most noteworthy are the Kahler identities (B.I.6). Let

V(z)) := Homg | > ( g + ) ; Jf ® V(z) 0 Λ*(gϊ)] , (B.I.I)
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where, as before, g+ = 0 ^ > o 9 c ( ^ ) The spaces Hom[Ag($+);Ap(g^)] should be
viewed as exterior powers of the dual of Lgc/gc near the top exterior power

()

As pre-Hilbert spaces. (g+)' and cfjΓ are isomorphic, by means of the Kahler met-
ric (2.1.1). Denote this isomorphism, and its multilinear extension to the exterior
algebras Λ* ((9+)') and Λ*(cμ), by "*" ("Hodge star"); note that * 2 = 1. Also
let ^Hiίb^ b e t n e s P a c e o f Hilbert-Schmidt operators in B.I. 1 (cf. 2.1.2). All the
operators considered in this section are at least densely defined on ^ΰύb**-

The vector space isomorphisms

(a) 9 + = £g<r/g<c[z], (b) g+=£g<r/g<c[z-i] ( B . I . 2 )

give an action of g+ on (g~jΓ) and one of (gμΓ) on g+. We already have the ad-actions
of these Lie algebras on themselves; we shall use the notation

ad*, to denote the actions of g+ and (cμΓ) on Hom(... ;/Γ(g^Γ))

ad*, to denote the actions of g+ and (ĝ jl) on Hom(/l*(g^Γ);...)

Also, define

sa(n) := interior25 multiplication by ξa(n) G (gT)' on #*•*

and recall that Θ? represents the actions of g+ and cμ" on V(z). These actions allow

us to regard the spaces ^ΰύb*1 a s e i m e r

(a) the (Hubert space completed) g-invariant part of the standard complex of
Lie algebra cohomology of g+, with coefficients in Jf ® V(z) 0 Λp(c^), with the
coboundary operator given by

_ 1
dz = Σ A - Z I I ) R(ξa(m) + adξβ(w) + -ad^ (

m = l V Z "
(B.1.3.a)

(b) the (Hubert space completed) g-invariant part of the standard complex of Lie
algebra homology of §7, with coefficients in Hom[/l^(g+); $ 0 V(zΊ]'-> the boundary
operator is given by

oo / 1 \ oo

A- = Σ R{U-m) + adι

u_m) + -iάu-m) εa(m) + £ θz~(ξa(-m)) • εa(m) .
m=\ \ z / m=\

(B.1.3.b)

Remark B.I.4. We have g+ = g<r[Z]/g«r, hence a natural inclusion

<T * = Honig ( ^ ( g + ) ; -W ® V(z)

CHom(yl '?(g c w );Jf Θ/ l " (g7)®F(z)) . (B.I.5)

It is exterior multiplication if we think of elements of (B.I. 1) as semi-infinite forms.
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In (a),^~ p ' * may also be conceived as the complex of relative Lie algebra co-

homology of the pair (g<c[z]> g<r); the coboundary operator d? of (B.1.3.a) is then
# ^

obtained as the restriction of an operator d? on Hom(/l*(g(Γj[Z] );...)• <3f *s given
by the same formula (B.I.3.a), except that the summation is extended to m = 0,
and ad* is the co-adjoint action of g<c[z] on (cjctz])'- The operator Z)z-, on the other
hand, extends naturally to Hom(yl*(g(C[z]);...)-with the summation still restricted
to m > 0-provided ad*, in (B.1.2), is modified to denote the action of gljΓ on
gĉ -j = Lg<c/g+. We shall use these extended operators below. •

# β ^

As in Sect. 2.3, write d? = do + fe ΰ? — ̂ z + ̂ z an<^ D? = DQ + δ?, where the 0-part
^

of the differentials is contained in the δ's. Observe that do, d0 and Do preserve the
total energy grading on #*•*, while the energy modes of δ? and δ? have exponential
decay. This can be used to prove that the compositions and commutators below are
densely defined, and justifies the formal identities we shall derive.
We make note of the following easily verified facts:

(i) f^Hiib'^) ~ (^Hiib'^)> m e c o m P ^ e χ discussed in Chap. 2.

(ϋ) Dt = *δf*, and d? = *DZ-* .

(iii) Let D := [D& Dt] = D?Dt + DtD?. Then, D, restricted to # 0 '* , is the operator
D defined in (2.4.6).
Consider now the standard Kάhler operators on ^

L := multiplication by the Kahler form i ω = i Σn>o a

n ' εa(n) Λ εa(—n);
Λ:=L*;
H:=(p-q) on <e~™.

They satisfy the U2 commutation relations
(iv) [Λ, L] = H, [H, Λ] = 2Λ, [H, L] = - 2 1 , _
and thus generate an action of ύ2 on ^*'*. Notice that A annihilates g+, and
Ή1*1 = g+ Θ (g+)? is isotypical to the standard 2-dimensional representation of 6Ϊ2.
The action on ̂ *'* (which is the exterior algebra of # 1 > ι ) is, therefore, integrable.
The actions of these operators on a vector φ 0 φ G ĝ jΓ θ (g+) f, written in column
form with φ as the top entry, are explicitly given by the matrices

^ A( Λ H(

We can conclude from here that

(v) e x p ί - ( Λ - Z ) ) =i\P+«\ * .

Because the Kahler form is closed, we also have

(vi) [L, Dvecz] = [I, d?} - 0,

whereas, by considering the degrees,

(vi') [H9 A-] = I>z, [H, 3/] = \.

Corollary B.1.6. ("The Kahler Identities").

D% = i [A, ~d?}, and % = (-i) - [A9 D£.

Proof. The commutation action of Z, A and // on D? (resp. 3f) generates a space
of operators on #*'*. Because of (vi) and (vi;), this must be isomorphic to the 2-
dimensional representation of si 2: the latter is the only integrable $12 -representation



Lie Algebra Cohomology and Fusion Rules 303

generated by an L-invariant vector of //-weight 1. But, in the 2-dimensional repre-
sentation, the L-invariant vectors v satisfy

Using (v) and (ii), and observing that Z)z- decreases p by 1, while δf increases q
by 1, we obtain the Kahler identities.

Alternatively, but more painfully, one can verify the Kahler identities directly

from the formulas for D? and 3f. •

We can finally prove Nakano's identity. Namely,

D = [Dι, D}} = i [Dr, [Λ, d?]] = i [[£>* Λ], ty + i [Λ, [D£, d?}}

= [dl, 3?] + i [Λ, [Dlt h]]=Ώ+i- [Λ, [Df, δz-]], (B.I.7)

and Nakano's identity follows from the following two relations:

(vii) [A-, 4-] = (h + 2c) • ω + 6> f ( f ), and

(viii) [i-Λ,θf(2l]=-T^)on^",
where, as in (2.4.2),

#%-)••= Σ {[θz(ξa(.-p)),θz-(ξb(q))]
p,q>0

-θz<[ξa, ξb\ iq - P))} ® Z"(P) Λ εb(-q) (B.1.8)

is the hermitian curvature of the holomorphic vector bundle V(z) over the flag
variety X = LG/G. (viii) is a direct consequence of the relations [A, εa(n)] =
- i εa(-n)\ [A, εa(-n)] = - i . εβ(w)*, and the definition of T$. We shall jus-
tify (vii) in a moment, but note that its right-hand side is the curvature of
j£?®(Λ+2c) 0 γ(z). Geometrically speaking, it follows that we are studying sections
of g?®(h+lc) <g) V(z) 0 Kx. Algebraically, we know we are working at high h. The
shift if^(~2 c) in the level represents the canonical bundle of X.

Relation (B.I.7) now becomes, on %>^q,

i (A + 2c) [i4,(-i) - L] + i [Λ, ΘΫ] = D - (A + 2c) q - T$ ,

which is Nakano's Identity (2.4.7). •

Finally, let us prove (vii). We go from ^*-* to the larger space (B.I.5), on

which 3f extends (cf. Remark B.I.4) to the differential

%•= Σ U(ξa(m)) + ad'ia(m) + UdUm) + θziξa(m))) • εa(-m)

for the Lie algebra cohomology of gc[z] with coefficients in Hom(Λ^(g+);
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^

We first observe that Θ p,=>Λ comes from the differences δ^ — D^ — DQ and δ - =

[ & Σ θ,(ξa(-

Σ [ΘAξa(-p)),θz<ξb(q))]®εa(p)/\εb(-q),
>0,q^0

a,b

Σ θf («<,(-/>)) [A/>X ad{4(ί)] Λ e*(-ϊ)
0^0
a,b

Σ
>q^.0;a, b

D0,

a.b

= Σ p)) ε\p)Λ g Z ) (-^

and adding up the three r.h.s. terms gives
Last, we must show that on ^*'*

ω (B.I.9)

Note that Z)o and 30 no longer involve an action on the factor V\ they are the Lie

algebra differentials with coefficients in Hom(^(g<rj[z]);^), resp. in Jf7 (

Thus in particular, DQ = (δ0)
2 = 0.

Let ad denote the action of LQ(£ on the space of semi-infinite exterior forms
). It is a projective25 action of level (-2c). The space

V, equipped with the operator

:= Σ (B.I.10)

can be regarded as (a completion of) the complex of semi-infinite cohomology of

Lg<r; with coefficients in #t (cf. [Fe], [F-G-Z]) (tensored with the irrelevant factor

V). The operators Do and dQ add up to d; in addition, we note that [δ0, ̂ o] = d2.
Consequently, (B.I.9) is equivalent to

d2 = ω, (B.I.11)

but this identity is well-known ([Fe, F-G-Z]): the term h ω stems from the pro-

jective cocycle of jfe, while the contribution 2c ω comes from the corresponding

cocycle of the ad action on semi-infinite forms. •

25 The phase is pinned down by requiring that it should restrict to non-projective actions of g^]
and 9(rj[z-i]
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B.2. The "new" Laplacian Ώ^new . We now bring the argument of Chapter 2 to a
close by proving Lemma 3.3.4. This we accomplish by a direct calculation of the
Laplacian Do, new This is not very illuminating; a closely related, but more tasteful
calculation was done by Taubes [Ta], who determined the spectrum of a Dirac
operator on the line bundle $£®h over LG, restricted to a domain of the form Jf <g)
(spinors on Lg) (ours is the Dirac operator δ 0 + ~d0 on LG/G); this was the source
of moral strength behind the following pages of formulae.

In the remainder of this section, only the "new" hermitian metric || | | n e w of
Sect. 3.3 will be considered: we thus work in the Hubert space completion of
the g-invariant vectors in J f 0 V <S> Λ* (g+), where, as before, g+ = 0 ^ g(w),
but now {ζa(—n)}n>o is an orthonormal basis of g+. ({ζa} is an orthonormal
basis of g for the basic inner product.) The unitary structures of Jf and V are
unchanged.

Notation:

Ra,m — the action of ζa(
m) o n &? \

εa(—n) = exterior multiplication by ξa(—n) on Λ* (g+)

Aa,m = the co-adjoint action of ξa(m) on (Lgc)^ truncated to (g+)/;that is ,

[ 0, otherwise .

We denote the multilinear extension of Λa^m to /I* ((g+y) by the same symbol
A

Notice that Ra^ = —Ra,~m and Aa m* = —Aa%-m. For two indices a and b of the
basis of g, we also let

R[a,b],n := the action of [ξaΛb\(n) on Jf .

In the same vein we shall use the notations ε^b\—n) and A\μ,b\n- We thus have

A bί λΊ (ε^b\m-n\
a,m, εΛ-n)\ = <

[ 0, otherwise .

Let also

Δw := the Casimir operator — - J2b ξ£ acting on a representation W of g ,

Co := the eigenvalue of the Casimir on the space of zero-energy states of Jf7,

E := the sign-adjusted (i.e. positive) energy operator on Jtf 0 A* ((g+)') .
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We shall also write d, d and D for the operators do, d0 n e w and Do, new = [d, d ]•
Then,

(Summation over repeated Lie algebra indices is implied here and in all that fol-
lows.)

As can be seen from (B.2.1), d and d act trivially on the factor V = V\ Θ 0

Fn. The only role of V is to select the G-isotypical components of Jf 0 Λ*((g+y)

which "contribute" to the domain #* = [Jf ® F(0) (g) ^l^(gV)]9-

Proposition (B.2.2).

D = (A + c) ^ + co + - Σ ( ^ o + 4 o ) 2 =(h + c) - E + co- A? .
1 b

The first identity holds on all of Jf7 0 V ® /I* ((g+y); /Â  second only holds on
^-invariant forms.

Proof We first check (B.2.2) on zero-forms. For φ e 2tf ® K, we have

Σ ξa(-p)ξa(p)Φ
p=\

E(φ) + co ψ- Ajr(Ψ) (B.2.3)

However, on zero-forms, Δ#> — ~~\ ' Σz?(^,o +^z?,o)2

5 verifying (B.2.2). To set-
tle the general case, we need to show that the operator D — (h + c) - E — Co —
I Σ&^6 0 commutes with all exterior multiplications εa(—m). Noting that
[E, εa(-m)] = m - εa(-m) and that

\ Σ{[ba\) Z + W M ] ( 0 )

= - c ε f l(-m) + εb(-m) - I[β,6],o ,

it suffices, in order to prove the proposition, to verify the following identity:

[D, εa(-m)} =(A + c) m ε\-m) - c εa(-m)+ Σεb(-m) L [ β f H 0 . (B.2.4)

Proof of Identity (B.2.4).Ψe have

[[3, 3*]/(-m)] = [δ, [a*,εα(-
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Now
_ 1 rn—\

[d,εa(-m)} =-Σ Λ-n)Λeίb>a\n-m).

Noting the "classical" relations [d,εa(—w)*] = La^m, \d ,εa(—m)\ —L^m = Z α > _ m ,

we get:

* 1
1 rn-\ p_^_ -i l m—\

,[d,f(-m)]\=-Σ

1 m~l r, Γ, 1Ί 1 m~l r, -,
_ sr^ Plb,[b,a\\(_ \ >ς~̂  p[^al(n

I m~\

X Σ A-Ό

(m - 1) ε β(-m) - "Σ eb(-n) ^ ^ n - ™ ( B 2 5)
n=\

CXJ CXJ

= Σ A - " ) [Λβ>-m,J?fc.Λ] + Σ ε[α 6 1 (-« - m) «*,«
w = l n = l

1 oo 1 oo

+ r Σ e[fl *](-» - w) Ab,n + - Σ A"") [Λ-»,A
^ w = l z n=\

oo oo

= h - m - εa(-m) + ^ β (-«) R[a,bln-m ~ Σ ε (-« ~
Λ = 1 n=\

oo 1 oo1 1 oo

o Σ β ("«) A[atbln-m - - Σ εΛ-n - m) A[a,bln
2 Z l

n=\

m / I \
= h m ' εa(-m) + Σ εb(~n) ' R[a,b],n-m + 7:A[a,bln-m

w=l \ l )

I oo

z n=\

By direct inspection,

{ ' 0, if p > n ov p ^ n — m

-ε[a^d]\n -m- p), otherwise
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whence

[Λ,-™,Aι«] -Aa,bln-m = ~ Σ ε[β'[M]](/I - m - p) £*(-/>)* ,
p—n—m+l

I oo

X Σ A ~ Ό ' ([Λ,-m,A«] -A[a,b},n-m)

= ~ £ Σ εb(-n)Λε[aΛb'd]\n-m-p)-εd(-Pγ

£ n—\ p=n~m+\

1 oo p+m—\

= χ Σ Σ εb(-n)Λεla'[b'd]](n-m-p).εd(-pY
^ p=\ n=p

1 oo p+m— 1

= ό Σ Σ e[* rf](-«)Λc[β i ] (»-«-p) ed(-/»r
1 oo p+m — 1

= Λ Σ Σ ^"(Λ-M-^Λlί^H).^)*
^ p—1 «=/?

1 oo m—\

= -, Σ Σ εr^(«-/«)Λε^(-«-/>) /(-/,)•
1 m—1 1 m

= - o Σ e[α'"](« - «) A - = - o Σ ε[a i ] (-«) Λ«- m

We therefore have

n m

— /2 YYΪ * ε i —wi i ~τ~ / ε ( — n )

n=\

1 1

2 ' 2
m

= A - m εα(-w) + Σ Λ - Ό ha.b\n-m -> (B.2.6)

and from (B.2.5) and (B.2.6) we obtain

[D, εfl(-m)] = (A + c) - /w ε\-m) - c εβ(-m) + εb(-m) I k H 0 ,

which concludes the proof of the identity B.2.4 and therefore of Proposition B.2.2.

Appendix C. Two Useful Inequalities

This appendix is devoted to the proof of Proposition 2.5.5 of Chap. 2:

Proposition (Chap. 2,2.5.5).

(0 Σ α @k(ζa) 0 ad^α ^ (λk -\- 2p) ' ccmax on Vk 0 ίsc)*;
(ii) For every ε > 0, we have ΣkH~ι < 1 + ε if the points zk e A are sufficiently
far apart in the hyperbolic metric.
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Proof of (i). We show, more generally, that for two representations E and F of
g, with highest weights λE and λF, we have

Σ ξa ® ξa ^ -WmM(λF) • (λE + 2P) , (C.I)
a

where wmax is the longest element of the Weyl group. Note that —wmax(λF) is the
highest weight of Fι. With E = Vk and F — (gc)', we obtain, as desired,

Σξ«®ξa ^«max - (λk + 2P) .
a

Note. Relation C.I is not the best possible estimate. Rahter, the best bound is

-Wmax(ΛF) λE + (λE + λF) p - SUp ((λE + Wmax(λF)) ' w(p)) ,

from which we get C.I by setting w = 1. •

Denote by Ay the Casimir operator of g acting on a representation V. Then,

Σ £a ® ξa = -AE®F + AE®\ + \®AF
a

= -ΔE®F + ^{λE + pf + ^{λF + pf - p2 .

Substituting this in C.I reduces the latter to

ΔE®F ύ £ β (λE + wm a x(λF) + pf - - p 2 .

In other words, for the highest weight λ of any sub-representation of E ®F9 we
need to have

{λE + wmUλF) + PΫ ύ{λ + pf , (C.2)

Let C be the positive Weyl chamber in t, and denote by K the cone dual to C.
It is spanned by the positive roots in t. For an element a e C, let CW(a) denote
the convex hull of the Weyl transforms of α. It is the intersection of the Weyl
transforms of the shifted cones α — K.

Now the representation Vχ of highest weight λ occurs in E 0 F iff E occurs in
Vχ <g)F''. But, since all the highest weights in the tensor product Vχ ® F ' fall within
the shifted convex hull —wmSiX(λF) + CW(λ), the latter can only happen if

But then, as we shall explain, it follows that

(λE + wm a x(AF))2 ^ λ\ and (λE + w m a x α F ) ) - p Sλ- p, (C.3)

whence we deduce (C.2). The first inequality is obvious, the second follows from
the fact that p is dominant and (λ - λE - wmBX(λF)) G K. •

Proof of (ii). Given a positive integer N, denote by Sk the span of eigen-
vectors corresponding to the eigenvalues 1, 1/2,...,1/Λf of H~]. Denoting by So
the orthocomplement of the sum of the spaces iŜ , we have a decomposition

g+ = So Θ Si θ Θ SΛ . ( c 4 )



310 C. Teleman

(Vectors in different 5^'s are linearly independent, since their analytic continuations
outside the unit disk have poles at the distinct points (z^)" 1.) Somewhat abusively,
g+ stands for its own Hubert space completion. I claim that, in the limit when
the points move far apart, the decomposition C.4 becomes nearly orthogonal. More
precisely:

Claim. Given any δ > 0, the inner product of any two unit vectors in different Si's
is less than δ, if the points are far apart in the hyperbolic metric.

Granting this for a moment, pick v = VQ 0 Θ vn £ g+. We have

k=l

But we also have

k=\

Σ i
k=lj=O \k=\

Σlkl
k

Σ -
k=Uj=O

1/2

for some δ' depending on δ, because HZk

ι(vk) £ Sk, Hz

l(vk)\\ ^

mixed inner products are negligible, by our claim. In addition,

||? and the

n

Σ .
k=l,f=O

+k

Vn \\v\\

because

H~ι(υj)\\ < δ • \\vj\\ + i

as can be seen by decomposing vj into its 5^-component and complementary com-
ponent. This proves (ii), if Λf is chosen large enough and δ' small enough.

Proof of the Claim. Because the S '̂s are finite-dimensional, and because of the
iSZ2(ΪR)-invariance, we only need to show that two given eigenvectors for H^λ and
H~{ become orthogonal when z^ approaches the boundary. In geometric terms, this
means that the function zp'/\fp is nearly orthogonal, in the inner product 2.1.1, to
the transform φq of zq/-s/q under an element φ of-SZ2(1R) taking 0 to z*. But φq,
restricted to the unit circle, is a function with values in the unit circle in (C, nearly
equal to 1 everywhere except in a small neighbourhood of z*, where it quickly winds
q times around 0. Its L2 inner product with a positive Fourier mode is, therefore,
vanishingly small in the limit when zk approaches the boundary. It follows that

2πi . zp-χdz-*O.
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