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Abstract: In this article we consider the Schrδdinger operator in Rn,n ^ 3, with
electric and magnetic potentials which decay exponentially as \x\ —> oo. We show
that the scattering amplitude at fixed positive energy determines the electric potential
and the magnetic field.

1. Introduction

Consider the Schrδdinger equation in Rn, n ^ 3, with magnetic potential A(x)
(A\(x\... ,An(x)) and electric potential V(x)\

k > 0, or equivalently

— Δu — 2i^Aj(x)- h q(x)u = k u , (I 7)

where

r(χ) (2)
A7

We will assume that the potentials A and V are real-valued and exponentially
decreasing, i.e.

(3)
dxy

for 0 ^ |α| <£ P,0 ^ |jί| ^ P + 1, where P = « + 4. We consider the solutions of
(1) of the form

u = eikω ' x + v(x,ω,k), (4)
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where v is the outgoing solution of

n dv
-Av - 2iΣAj(x)— + (q(x) - k2)v = eίkω ' x

7=1 OXJ

- q(χ) (5)

obtained by the limiting absoφtion method. By this argument v exists and is unique
whenever k1 is not an embedded eigenvalue, and, combining Sect. 5 of Hormander
[4] with the proof of Theorem 3.3 of Agmon [1], one sees that (3) implies there
are no embedded eigenvalues. Representing υ in terms of the outgoing fundamental
solution of A + A;2, it follows that as oo,

ιk\x\ , χ /

fl(π ,ω,k)+0
M*l ' \\

(6)

where a(θ,ω,k) is defined to be the scattering amplitude. Our objective is to prove

Theorem 1. Fix k > 0. Then one can recover V(x) and the magnetic field B -
curl A from the scattering amplitude a(θ,ω,k),(θ,ω) £ Sn~l x Sn~l.

Note that, if A and A' satisfy (3) and curl A = curl A', then A' - A is the
gradient of function φ satisfying

(7)

To see that changing A to A' — A -f -^ does not change the scattering amplitude

note that, if one replaces u(x) by w(x) = u(x)e~ιφ(x\ then w(x) will satisfy

-
ox J

- — + iA(x)
cx

However, this does not change the scattering amplitude, since

O

_ ikω x , _
~~ '

+ 0

In this article as in [2] we will use h(ξ,kω,k), the Fourier transform of
— ( A + k2)v, to study the scattering amplitude. Since v is obtained by limiting
absoφtion,

I T h(ξ,kω,k)eιx'ς ^
v(x,ω,k)=—— j -γ-^— dξ, (8)

and, taking the asymptotics of (8) when θ — x/\x\ is fixed and |jt| —» oo, one obtains

= Cn,kh(kθ,ko},k),Cn,k = .
4π

(9)
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From (5) one sees that h satisfies

where

(11)

Note that (3) implies that qo(ξ-ζ,ζ) is analytic in ( ξ 9 ζ ) for |Im ξ\ < δ/2,
|Im ζ\ < δ/2. For fixed λ, the integral operator

is compact in the space H^N,Q < α < l , w — 1 < N < n + 4. Here //α?Λτ is the

weighted Holder space used in [2]: let \\f\\y,N = ||(1 + \ξ\2)mf\\*> where || ||a. is
the standard Holder norm, and define //«,# as me completion of C£°(Rn ) is || | |α ?N
Moreover, Γ; depends analytically on λ for Im A > 0 and extends continuously to
the positive real axis, λ > 0. In the same way that Theorem 5.2 of [4] showed that
the homogeneous equation corresponding to (5) had no nontrivial square-integrable
solutions, it can be used here to show the / + Tk2 has no nontrivial solutions in
H*,N(Rn )• Hence we see that the Fredholm operator / -f Tk2 is invertible on //α,/v
for k > 0. This will be useful in what follows.

In the case that the magnetic field B is small uniqueness results at fixed energy
have been obtained previously by Henkin and Novikov [6] and by Sun [9]. Re-
cently Nakamura, Sun and Uhlmann [5] obtained the uniqueness result analogous to
Theorem 1 for the Dirichlet to Neumann map. This implies Theorem 1 for magnetic
and electric potentials of compact support. In fact, when the magnetic and electric
potentials have compact support, as in [9], uniqueness for inverse scattering at fixed
energy and uniqueness for the Dirichlet-to-Neumann map inverse problem at fixed
energy are equivalent.

For potentials without compact support the previous work which influenced us
considerably was by Novikov [8]. He proved Theorem 1 in the case of zero magnetic
potential, and the methods of [8] could be used to give a different proof of some
of the results in Sect. 2.

Finally, we are deeply indebted to Adrian Nachman for calling our attention to
a serious error in the first version of Sect. 2.

2. Faddeev-Type Scattering Amplitudes

Following Faddeev [3] and Novikov-Khenkin [6], we introduce a new scattering
amplitude which will contain a large parameter. The later will be helpful in solving
the inverse scattering problem.

Let v be an arbitrary unit vector, |v| — 1, and Ev,σ(x) be the following funda-
mental solution to the equation (—A — k2)u — /:

1 eix ' ηdη



202 G. Eskin, J. Ralston

where ηv = η v and —k < σ < k. Comparing EVtff(x) with the fundamental solu-
tion

we have

f e « ' t o « / G > , (15)
kω v>σ

where dω is the area element of the unit sphere in Rn. Analogously to (10) consider
the following integral equation

" - C.O . (16),.... (2π)n RH η η- k2 + ιQ(ηv - σ)

Set

_

assuming that hv^σ(ξ,ζ,k) is the solution of (16). Then fv,σ(*> ί>^) is a solution
of the differential equation (5) for ζ — kω with asymptotics at infinity that can be
obtained by applying the stationary phase method to (17).

Now we shall find the relation between hv,σ(ξ,ζ,k) and h(ξ,ζ,k). Analogously
to (15) we have

1 f qo(ξ-η,η)hVtσ(η,ζ,k) = 1 f qp(ξ - η,η)hv,σ(η,ζ,k)

(2nγln η η - k2 + zΌ(^v - σ) η (2π)V/7 η η + k2 - iO Ά

ΐπkn~2

-7^-^Γ / ^o(ξ-*ω,tω)Av,σ(*ω,ζ,t)dω. (18)
(Zπ) kω v>σ

It follows from (16) and (18) that

(2πY , J

v^'v kω v:

Set

n,( " w*0rff? 9 (20)

and

i M^M^
v 7 (2π)V« fy η - k2 - iO '

That (10) has a unique solution is equivalent (cf. [2]) to the equality

I. (22)
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Since / + A(qQ) has an inverse, it follows from (22) that

(I+A(h))(I+A(q0))=I (23)

or equivalently

.n(2π)n £n η η - k2 — iQ

Applying I + A(h) to (19) and using (23) and (23'), we obtain (cf. [3] and [6],
formula (1.7)):

kω v>σ
h(ξ9kω,k)hv,σ(kω,ζ,k)dω. (24)

Since I + A(qo) is invertible, Eq. (24) has a unique solution for any h(ξ,ζ,k) if
and only if Eq. (16) has a unique solution. Indeed, if φ(ζ) is a solution of the
homogeneous equation corresponding to (16), i.e.

+ (2-)-" / - .dn = 0 , (25)
^η η - k2 + ιQ(ηv - σ)

then from (25) and (18) with hv replaced with φ we conclude that

RA? η η-K -iv (zπ) kω . v>σ

Applying (/ + A(h)) to both sides of this, we have

)rfω, (26)
π kω v > σ

i.e. φ restricted to \ξ\ = k solves the homogeneous equation corresponding to (24).
Conversely, suppose φ(ζ) is a nonzero solution of the preceding equation (26) on
the sphere of radius k. Then (26) extends φ to Rn, since h(ξ,kω,k) is defined for
ξ G Rn. Applying / -f A(q$) to both sides of (26), we see that φ satisfies (25).

Denote by Ev(x,z) the following function:

1 eix ' ndη

Note that Ev(x,z) is a fundamental solution for (—i j^ +^v) (— i-j^ +zv) — k2, i.e.

~ +zv

Note that the distribution [(η + zv) (η + zv) - k2]~} is not analytically dependent
on z for Im z > 0. This gives rise to the ^-equation in inverse scattering (see, for
example [6]).
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Denote by hv(ξ9ζ9k9z) the solution of the following integral equation:

= -q0(ξ-ζ,ζ+zv), z = iτ, τ > 0 . (27)

Let 7 "̂ denote the operator

= (2*)- /
R/I (f? + rrv) (77 + zτv) - k2

Then (27) can be written

[(/ + T^)hv](ξ) = -q»(ξ - ζ,ζ + /τv)

and

Λ v(ξ,C,Mτ) = -[(/ + 7ίτΓ
1?o( -ζ,ζ + /τv)](O,

provided (/ -f- Γ/τ )~! exists. The analyticity of hv in τ will be important for us.

Thus we need to study the analyticity of T ̂ f in τ when f(η) is analytic in a strip
|Im η\ < ε. We will use coordinates ηv = η v, ηf = η - ηvv, r=\η'\ and

-f z'τv) (fy + zτv) - k2) = 2μηv — 2μσ .

Hence, for \ηv\ > c\9 Re τ > 0 and |Imτ < ε\/2 the denominator in the integral

defining T^ does not vanish. Thus, choosing χ G C£°(R) such that χ ( s ) is sup-
ported in \s < 2ε\ and 1 — χ ( s ) is supported in s > ε\9 we have

r2 r«
(η H- /τv) . (17 + /τv) -

where [Fτ

(2)/](0 is analytic in (ξ,τ) in the set |Imξ| < 5, Re τ > 0 and
|Imτ| < ει/2.

In our coordinates we have

(f/ + zτv) (η + zτv) - k2 = (r - Vβ)(r + λ/5) ,

where B ~ k2 -f- (τ - z>7v)
2 Using τ = μ + zσ again, we have Re B = k2 + μ2 -

σ2 + 2<τj/v - ,̂ and Im 5 = 2μσ - 2μ^v. Hence for k2 > 8εf , Re B > k2/8 for

|^v| < 2ε\ and |Im τ| < ε\/2, and we fix \/B as the square root in the right half

plane. We wish to define V\ , and hence Γιτ , by analytic continuation from τ > 0.

When τ > 0, i.e. when μ > 0 and σ = 0, r — Λ/Z?ΦO for f / v Φ O , and we have sgn
(Im B) = -sgn f/ v . Therefore, we will deform the integration in r in
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into the upper half plane for ηv > 0 and into the lower half plane for ηv < 0. We
need to deform [0, oo) far enough that r — \fB will not vanish on the new contour
for τ in a complex neighborhood of [0, TO]. Note that for τ = μ + zσ,

= vV + A2 + 2i(σ - ηv)μ - (σ - ηv)
2

0((σ-ηv)
2).

Hence, for |σ| < ε\/2 and \ηv\ < 2ε\, we have |Re(\/# — \/μ2 + A2)| < Cε2 and

|Im Λ/S| < 5ει/2 + Cε2. We now fix ει > 0 such that Cε2 < λ/3,5ει/2 + Cε? <

ε/2 and 8ε? < k2. Then we may deform the r integration in Fτ / to the piecewise

linear curve Γ from 0 to k/2 to A/2 + z'ε/2 sgn ηv to Λ / A 2 + TQ + A/2 + /ε/2 sgn j/ v

to A/A2 -f τ0 + A/2 to oo. With this choice of Γ,r - \fE will not vanish on Γ for
\ηv\ < 2ε\, σ\ < ε\/2 and 0 ^ μ ^ TO. Thus we have proven:

Lemma 1. If f(ή) is analytic in |Im η\ < ε, satisfying \f(η)\ ^ C(l + l^l)"""1

for |Im η\ < ε, then [Γ/τ f ] ( ζ ) has an analytic extension from τ > 0 to the half
strip { ( ξ , τ ) : |Im ξ\ < δ - ε, Re τ > 0, |Im τ| < ει/2}.

Let A^r denote the space of functions f(η), analytic on Sr = {η G C1 :
|Im ^| < r} and continuous on Sr, which satisfy

on ίSr. Atyr is a Banach space in the norm

\ η \ f \ f ( η ) \ .
s,

Proposition 1. For ε\ sufficiently small 7/τ is a family of compact operators on
^n+ι,<3/3> depending continuously on τ in the closed half strip D — {τ = μ + iσ :

o
μ = 0, \σ ^ βι/2} #fl£/ analytically on τ in Z), //Z£ interior of D.

Remark L The choice TV = n -f 1 is made simply to make the Banach spaces used
here compatible with those used in Sect. 3. The δ here is from (3).

Proof. For τ 6 D, T^0/ = Fτ

(1)/ -f Fτ

(2)/ by definition. Since r2 -f (ηv -f /τ)2 - A2

does not vanish for r G Γ and τ G D, the operator FT satisfies

S/f-2 R Γ 0 + M)

where the constant Cτ is uniformly bounded on compact subsets of D. By hypothesis
(3) for any δ' < δ,

\qo(ξ ~η,η + *τv)| ^ C t f d /(l + \ξ - η\Γ"~\l + W ) (30)
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for ξ G £<$/_£ and n £ *$ε> where again Cτ?y is uniformly bounded on compact subsets

of Zλ Since \f(η)\ ^ (1 + MΓ^Ίl/IUi , on &, the integrand in (29) is bounded
by

Since for any /? > 0,

(i + \ξ\nι + \ξ- η\rp(i + \n\Γ" zc((i + \ξ- η\rp

we conclude

£C\\f\\n+lte. (31)

Taking ε - δ/3 and <5' = 5*5/6, we have [Kτ

(1)/](ξ) analytic in %>. Thus for τ G D,

Fτ maps ^+1,3/3 into An+2,s/2 w^h norm uniformly bounded on compact subsets

of D. Hence Fτ

( l) is compact for τ G Zλ

In proving Lemma 1 we showed that for / G ΛH- 1,3/3, ITτ^/KO was analytic

in (£,τ) for τ G D and ξ G £5/2. Since the norm of Fτ

(1) as an operator on An+\ts/3

is uniformly bounded on compact subsets it follows by Cauchy's formula that Fτ

is an analytic family of operators for τ G D.
o ^ /2)

For τ G D the preceding arguments apply equally well to Fτ , and we may

c π °conclude that Γ/τ is an analytic family of compact operators in D. However, since

r - v o -η~σv,η + iμv)f(η + σv)

R« \η\2 - k2 - μ2 + 2iμηv

we need to show that F^+/σ extends continuously to μ = 0 from μ > 0. Since

f / v does not vanish on the support of (1 - χ(ηv + σ)) for |σ| < ει/2, we can again
deform the integration in r into Im r > 0 for ηv > 0 and into Im r < 0 for ηv < 0,
using the piecewise linear contour Γf connecting 0 to ε/2 + ίε/2 sgn 77 v to 3k/2 + zε/2
sgn ηv to 3A:/2 to CXD. Then for r G Γ7 and 0 rg μ ^ 81/2,

because r = (1 -f- /sgn fj v)ί on the first segment of Γf and r2 = 2/(sgn ηv)t2. Since
2 -f- \ηv - (sgn f/v)^!)" 1 is locally integrable with respect to \r\n~2d\r\dηv, we

may argue as follows. Removing small disks about (r,ηv) = (0, ±A:) in the integral

defining V^iσf, we get an operator to which our previous arguments apply. Since

this operator differs in norm from V^ισ by an amount which goes to zero with

the radius of disks, uniformly for 0 rg μ ^ ει/2, we conclude that V^+iσ extends
continuously to a compact operator on μ = 0. D
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In Sect. 3 we will show that 7 + 7fτ

υ is invertible on //o,n+ι f°r τ > 0. This

implies immediately that it is invertible on An+\^^9 since the null space of / -f Γ/τ

!)

on An+\^β is a subspace of its nullspace on //o,w+ι Therefore, by Proposition 1 the
(]} °

set Z where / -f Tjτ is not invertible is discrete in D and closed of measure zero in

D Π {Re τ — 0}. In particular, there is an open interval / = (#1,02) C (—ε\/29ε\/2)

such that / -f 7^ is invertible for τ = —ίσ,σ G /. Hence

exists for τ G Z)\Z and is analytic in ( ξ 9 ζ , τ ) on S^/2 x Sδ/2 x £)\Z.

Our goal is to recover hv(ξ9ζ9k,iτ) from the scattering data. To make the con-
nection with scattering data we will need to use τ = —iσ and identify hv with a
translate of A v, σ Since denominator (η + /τv) (77 -f /τv) — A:2 with τ = μ — ίσ goes
to jf η -f- 2σjf v -|- σ2 - A:2 as μ I 0, we can remove the contour deformation in the

definition of Fτ

(1)/ However, since the integration in r is deformed into the upper
half-plane when ηv > 0 and the lower half-plane when ηv < 0, we have

_

R,, η.η + 2σηv + σ2 - V + i

and for σ G I 9 h v ( ξ 9 ζ 9 k 9 σ ) is the unique solution in An+\^β to

= _ +

4- σ2 - A:2 + ιOf|v

Since the changes of variables η -^ η — σv, ξ —* ξ — σv and £ — > ζ — σv, transform
Eq. (32) to (16), we conclude that hv(ξ — σv, ζ — σv,k, σ) is the unique solution of
(16) in An+i^/τ and hence for σ G /,

A V ( £ - < T V , C-σv,t,α) = A v,σ(ξ,ζ,*). (33)

Therefore, assuming the results of Sect. 3, we have proven the following theo-
rem:

Theorem 2. The solution hv(ξ,ζ,k,iτ) of (27) exists for τ G Z>\Z and is analytic in
o

(ξ, C, τ) on 5^/3 x S<3/3 x (D\Z). TTze limiting values of hv(ξ9 ζ9k, /τ) w/zew τ — >• — /σ
satisfy (33), w/zere A V ) ( T (ξ,ζ,A:) w fAe solution of (16).

Since the unique solvability of (16) in ^Π+ι^/3 implies the unique solvability of
(24) in C(5/7~~1), we know that (24) has a unique solution for σ G /. Hence, know-

ing the scattering amplitude h(ξ9ζ9k) for \ξ\2 — \ζ\2 = k2, we can find h V ί f f ( ξ 9 ζ 9 k )

for \ξ\2 = \ζ\2 = k2 and σ G /, which translates (by (33)) to knowing hv(ξ,ζ,k,σ)

for |ξ + σv|2 = |C 4- σv|2 - A:2, for σ G /. Since hv(ξ,ζ,k,iτ) is analytic for (ξ,ζ,τ) G
o

^/3 x &/3 x (D\Z) with a continuous extension to 5^/3 x 5^/3 x (—//), we can de-
termine it on the variety

(ξ -f /τv) (ξ + /τv) = (ζ + /τv) (C + /τv) - k2

o

for (ξ,C,τ) £ S$β x S^/3 x (D\Z) by analytic continuation.
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Fix / G Rn,μ G Rn,n ^ 3, such that

/ v = 0, μ v = 0, / μ = 0, μ μ = 1, (34)

and put

z(j) = ι φ) = ίyj2 + -/ l-k*9 (35)

s ^ SQ, SQ large. We have that h v ( ξ ( s ) , ζ ( s ) , k , z ( s ) ) is analytic in s for s > ΛΌ and

(ξ(s) 4- ιφ)v) (ξ(s) + zφ)v) = (C(j) + ίφ)v) (ζ(s) + iφ)v) - £2 .

Hence /zv(£(,y)5 £(,?),&,z(,s)) is known for 5- > SQ.

Remark L In the case A(x) = 0 the operator T\τ has a small norm in H^n+\ (see
Proposition 4) when τ > 0 is large. Substituting ξ = ξ(s),ζ — ζ(s\z = z(s) = iτ(s)
in (27) and passing to the limit when s —> +00, we obtain that the integral in (27)
tends to zero, and we can recover

V(l)= lim h v ( ξ ( s ) 9 ζ ( s ) 9 k , z ( s ) ) .
s-^oo

Thus we obtain an alternate proof of R. Novikov's result [8].

3. Solution of an Integral Equation

In this section we set z = iτ and only consider τ real and positive.
In order to solve the integral equation (27) when τ is large and positive we will

pass to an equivalent differential equation. Let

..,(*,CΛZ) = (2πΓ"f ΛVy^Z)!Γ ,,dη, z = iτ, τ > 0 . (36)

Then vv satisfies the differential equation

[(-id/dx + zv)2 - k2 + 2A(x) (-id/dx + zv) 4- q(x)]υv

= -2(C + zv) - ^(Λ:)^ ' c - ^(jc)^ * c . (37)

Our strategy will be to construct solutions of the equation

[(-id/dx + zv)2 - k2 + 2A(x) - (-id/dx + zv) + q(x)]υ = f (377)

for all / in the Banach space H^n+\(Rn), where H^N(Rn) is defined as the closure

of CS°(Rn) in the norm, \\f\\^N = sup^l + \ ξ \ f \ f ( ξ ) \ , i.e. H<>ίN is the Fourier
transform of //o, N Then

- J ((-id/dx H-zv)2 - ^XΛ:)^-" ' ς"ί/JC
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will be a solution of (27) with the inhomogeneous term replaced by f(ξ), i.e.

+ „ ; , =

w (η + zv) - (η + zv) - k2

and we will shpw that h G //o,«+ι- Thus we can conclude that I + Γ/τ (see (28))

maps //o,«+ι onίo //o,«+ι f°r τ ̂  0. Since 7^ is also compact on //o,«+ι f°r τ > 0,

it follows that 7 + T^1* is invertible on //o,,7+ι for τ » 0, and (27) is uniquely
solvable in H^n+\, when τ is sufficiently large positive.

We will look for a solution of (37') in the form

( r \ f~> \-n Γ C * / , * * T /ιmφ, C,z) - (2π) J - — - - - — - — - - - - πdη , (39)
κ(ι,(ί?+zv) (η + zv)-k2

where z = /τ, τ > 0. Here g(.x, C,z) is the new unknown and g(η,ζ,z) is its Fourier
transform in the first variable. The factor c(x,η,z) will be chosen so that the ana-
logue of Eq. (27) for g will not have the unbounded terms in qQ(ξ — η,η +zv). For
this reason we choose c(x,η,z} as a solution of the transport equation

2A(x) (η+zv)χl(η,z)c = Q (40)

of the form c = Qxp(-ίχ\φ). Thus φ must satisfy

(/7+zv) - -=A(x) (η+zv), (407)
ox

and we choose

The function χ\(η,z) is (40) is a cutoff to a neighborhood of (η+zv) (77 +
zv) = k2. The cancellation of unbounded terms is not needed outside this neighbor-
hood, and it is convenient to have c = 1 there. We choose χ ( t ) G Cξ°(R) such that
χ ( t ) ^ 0,χ(0 = 1 on ί| < β/2 and χ(0 = 0 on |/| > e, and define

Since, setting ηv = η v,

\(η + zv) . (η + zv) - k2\ = ((\η\2 - τ2 - k2}2 + 4τ2^y/2 , (42)

it follows that on the support of χ\

and hence

7 |
2. (43)
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Setting ηf — η — (η v)v, (42) also implies that on the support of χ \ ,

2ε(|ί?'|2 + η2

v + τ2 + k2) ^ \\η' 2 + η2, - τ2 - k2\ + 2τ\ηv\ ,

and hence, using (43),

(1 + 2ε)tof ^ (1 - 2ε)(τ2 + k2) - (1 + 2ε)η2 -f 2τ|^v

^ (1 - 2ε)(τ/ + k1) + [2
1 -ε

1/2

Thus, choosing ε sufficiently small and TO sufficiently large, we have for τ ^ TO,

M / |2 (44)

on support χ \ .
We will need some detailed estimates on φ. The behavior of φ in the ^-variables

is strongly dependent on η. We introduce μ — η' l\r\'\, and use the orthogonal ex-
pansion x — x\v + X2μ +^j_, where x± is the projection of x on the orthogonal
complement of span {v, η}.

Proposition 2. Assume that B(x) is a vector-valued function satisfying (3) and
define

Then for (η,z) G supp χι,τ ^ TO β ί̂/ |α -f \β\ ̂  P in (3f) one has

(45)

Proof By contour integration one computes

Thus

1

'\xι - (ηv + z)x2

,^ Hhzv) - —

and, using (37), for α| ^ P,

. I | f j + zv|
dy .

(46)

(47)

Since (43) and (44) imply that

\\η'\y} - (ηv+z)yj\ = ((\rf\yi - ηvy2)
2 + τ2y2)]

^ Cτ(y\ + ylΫ12 = Cτ\y\, (48)
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it follows from (43) and (47) that

211

8χβ ^"' ' -

for |α| ^ P, where Cα is independent of 77 and z.

To estimate 77 derivatives of ψ we first observe that (48) implies

Sηj \\η'\y\ -0/v +

Thus, differentiating (46),

, C , |*(* - .

(to'h-tav

bl
C

τ^

— - j;2μ)

c -|ι.
τ

Repeating the same argument and noting that d\Ύ\/dηy(\η' y\ - (ηv +z)_y2) l is
homogeneous of degree — 1 in y for any 7, one concludes

< (49)

for |α| + |j?| ^ P and τ g; TO on the support of χ\. D

To study φ in (41) we will use Proposition 2. We introduce
. 1 .

w = x\ — (ηv-\-z)\η \ X2 and w = y\ — (ηv + z)\η

and observe that

1 1 N (ΛΛ/Ϋ (w'}N+]

i (50)

Then we can write (46) with 5 replaced by ^4/z in the form

A(yιv + y2μ (η + zv)
(51)

Using (50) to expand (51), the remainder term in (50) contributes a term to φ of
the form

1 1 r BN(x - yiv - y2μ9η9z) (η + zv) ̂

where BN(x,η,z) = (xi - (^v -f-z)|?/| 1x2)
7V+1^(^) satisfies (3) uniformly in (η,z)

on the support of χ\ for τ ^ TO. The other terms in (50) contribute terms to φ of
the form
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Thus we see that for any N ^ 0, when (77,z) is in the support of χ\ and τ ^ TO,

N-\

φ= ^ w~kbk(x±,η,z) + w~NbN , (52)
k=\

where ψ = b^ satisfies (45) and bk(x±,η,z) is exponentially decreasing in JC_L
together with its derivatives up to order P uniformly in (η,z).

Substituting (39) into (37') and using (40), we obtain

C(x,D,z)g+Tlg + T2g+T3g = f, (53)

where

(—11A — 4-
ΓT Λί^\ — fl^\-n Γ v ex ~

and C(jc,Z),z) is a pseudo-differential operator with symbol c(x,η,z).
In Sects. 4 and 5 we will need uniform estimates on the norms of the operators

e-ix ζηelx ζj = I j 2 j3 5 and e-« - CCβά c since multiplication by eιx ' ζ is not

bounded on //o,/v (for N > 0) and ζ —» cχo, these estimates do not follow from
estimates on the norms of the 7},y = 1,2,3 and C on //o,w To prove what we will
use later efficiently we are going to equip //o,w with a family of norms, \\ \\ζίN

so that estimates in these norms uniform in ζ will imply the needed estimates for
Sects. 4 and 5. We will refer to //0,/v with the norm \\ \\ζ^ as "//£#."

Proposition 3. Let Hζ,N(Rn) be the closure of C%°(Rn) in the norm \\f\\ι,N =

supR,ί(l -h \ζ — ζ\)N\f(ζ)\ Then C(x,D,z) is inυertible as an operator on //c>+ι
(Rn) for τ sufficiently large.

Proof Our approach here will be to show that C(x,D) and the operator C(-1)(jc,D)
with the reciprocal symbol eιχιφ are bounded on H^n+\. Then the composition
formula for pseudo-differential operators and Proposition 2 will be used to show

C ( - 1 } C=/ + Γ, (54)

where the norm of T on H^n+\ goes to zero as τ —•> oo uniformly in ζ.
The proof that C and C^-1) are uniformly bounded on H^n+\ uses only (52).

Expanding c(x,η,z} = exp(-/φχι) in a Taylor series in φχ\, it is clear that c - 1
also has an expansion of the form (52) for τ ^ TO- A linear transformation of Rn

takes w in (52) to the standard complex variable z = s 4- it. Hence analytic functions
of w are annihilated by the pull-back of d/dz under this transformation which is
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W = K<4 + Ofv+z) | ι/ 'Γ 1 ^) From (52) we have \\(d^/dxΛ)dc/d^\\L^H} ^ C

for |α| < P uniformly on support χ\ for τ > τ0. Thus setting VQ = dc/dw,

η'\ ξ \ ) } is continuous, tending to zero as \x\ —» 0. Since c is bounded, we con-

\ΌQ(ξ9η9z)\ ^ C(l + \ξ\ΓP+l (55)

Thus, since P^n + 2, the inverse Fourier transform of Vo(ξ)(ξ2 -f (ηv +z)

I^Γ ^ι)-1 is continuous, tend
elude (by Liouville's theorem)

φ,f/,z)= l+(2π)"\

?7^nM'-^^. (56)

Using (55) and (56), given C(x9D9z)g = h9 we have, setting c j = c - 1,

A(0 - g ( ξ ) + / Cϊ(ξ - η,η,z)g(η)dη ,
R"

where cι(ξ,^, ζ) has support in the support of χ\ and satisfies

|c,(ξ,»y,z)| ^ C|^|(l + IclΓ"-1^ (η + zv)\~} . (57)

Hence

sup(l + \ξ - C|)Λ+1 |Λ(OI ^ (1 + sup / (1 + |ξ - ζ|r+1 \ c λ ( ξ - ^,^,z)|
c ς,ς Rn

(l + |»ί- CIΓ"-' ^)sup(l + \ξ~ ζ\f+l\g(ξ)\ ,
ζ

and the boundness of C(x,D,z) on Hζtn+\(Rn) uniformly in (C,z) for τ ^ τ0 fol-
lows from (57) and the estimate

^ C((l + |ξ - ^IΓ"-1 + ( 1 H - h - CIΓ"'1 ) (58)

To see that C is invertible on //ζ,Λ+ι when τ is large, we recall that the
integral remainder formula for Taylor series implies that the symbol of
C(-l\x,D,z)C(x,D,z)-I is given by

r(X9η,z)= Σ(2πΓ Λ / ί}e^ ' ζ^τ(x9η + tζ)ζff dt
|α| = l R" \0 0?ί

The analogue of (57) for dc~l/dη*9 |α| = 1, is

We can now apply the argument, used above to show that C(x9D,z) is bounded on
H^n+\9 to R(x,D9z). The superpositions in ζ and τ produce no new difficulties and
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the factor of 1/τ in the estimate for dc~}/dηa above makes ||^(jc,Z))|| go to zero as
τ —> oo. Thus C is invertible for τ sufficiently large. D

Proposition 4. The norms of the operators Γι(τ), Γ2(τ) and Γ3(τ) on H^n+\(Rn)
tend to zero as τ —> oo uniformly in ζ.

Proof. Let fk(ξ - η,η,z) be the kernel of the Fourier transform of Tk, k — 1,2,3,
i.e.

Tkβ(ζ}= ffk(ξ-η,η,z)g(η)dη.

In order to show that the norm of Tk on H^n+\(Rn), is arbitrarily small for τ large
uniformly in ζ, it suffices to prove that

sup /(I + \ξ - ζ\)"+ί\fk(ξ - η,η,z)\(l + \η - C|)-"-' dη ^ - log τ . (59)
c,C 1R" τ

On the support of 1 - χλ we have \(η + zv) - (η +zv) - *2| ̂  f (|^|2 + τ2 + k2).
Hence

- η,η,z)\ £ C(l + \ξ- η\Γn~ ^ -(1

and (59) for £ = 3 follows from (58).
To estimate T\ we note that (42) implies that for all (?f,z),

+ zv) (f, + zv) - Λ 2 | ^ (||f,|2 - (τ2 + k2)\ + 2τ\ηv\)

= \(\\n\ - (τ2 + *2) ! / 2HM + (τ2 + *2)'/2| + 2τ|ί?v|)

(60)

Since c — 1 has an expansion of the form (52), qc and Λ J^ satisfy (3) with
constants uniform in (η,z) for τ > TQ. Thus, from (58) and (60),

sup /(I + \ξ - ζ\γ+l\fι(ξ - η,η,z)\(\ + \η- ζlΓ"'1 dη
c,C »"
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Setting R = (τ2 + £2)1/2, η = Rζ and /(C) - ((|C| - I)2 + C2,)1/2 in the last line
of (61), this gives

sup
c,C

"-1 dη

g - sup /(I + |ξ -

< c

sup (
ξ /(O<eo

Here εo is any fixed constant, and we assume εo -C 1. Since τ ~ 7^ for τ > TO, it
suffices to show

/

τ"-} sup / (1 + τ\ξ - ClΓ
ζ /(O<eo

for τ > τ0 to conclude that (59) holds for A: = 1.
To prove (62) we note first that when \ξf < \,

< C (62)

where CQ = min/(Q<eo \ζ — ζ\ > 0, and (62) holds.

To establish (62) for \ξr\ > ^ we will use spherical coordinates in the hyper-

plane ζ v = 0 with r = \ζ'\ and polar angle θ = cos"^-^ ϊfπ ). Then we have

dζ — rn~2drdωdζv, where dω is the volume form on Sn~2, and we also have

|C - ξ\ = (r2 - 2|ξ'|r cos θ + |ξf + (Cv - ξ v)

Likewise, there is c > 0 such that

(63)

t c((r- l ) 2 - h C ; ) 7 (64)

Now we consider v = (r — l ,ζ v ) and ι;0 = (\ξf\ cosθ — l ,ξ v ) as vectors in ,R2 and
use || || to denote the norm on R2. From (63) and (64) we have

drdζrdω .
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We split the integral over R2 x Sn~2 into an integral over {ζ : | |u| | ^ ||ι; — ι;0||}
in which we replace ||ι;|| by ||ι; - VQ\\ and an integral over {ζ : \\v\\ < \\v — VQ\\} in
which we replace \\v — VQ\\ by ||z;||. Since the two integrands that are produced this
way differ only by a translation in the (r,ζv)-plane, we have the estimate

'(/(OΓX

f (l+τ(u+\sinθ\)Γn~ldudω

ooπ/2

^ Cf f(\+τ(u + θ
0 0

and, setting τu — r, τθ = s, we have

/(O<fio ° °

Thus, since the integral is finite, we have (62), and (59) holds for k = 1, in the
stronger form

C
sup f (1 + \ξ — ζ\)n+{\T\(ξ — η,η,z)\(l -f \η — ζ\)~n~ dη ^ — . (64')

From (56) one sees that

\Δc(ξ-η,η)\ £

and hence

\f2(ξ-η,η,z)\ ^
\(ξ-η) (η + zv)\(η + zv) (η + zv) - k2\ '

and by the reasoning that leads to (61), we have (note P ^ n -f 4 is needed):

sup / (1 + \ξ - ζ\)n+l\T2(ξ - η,η,z)\(l + \η- ζ\Γ"'1 dη
c,C R"

—— . (65)

Setting R = (τ2 + A:2)1/2, β = τ(τ2 + £2Γ'/2, η = Rζ and /(C) = ((|C| - I)2 + ζ?,)1/2,
(65) becomes

sup / (1 + \ξ - ζ|)"+I \T2(ξ - η,η,z)\(l + \η- ClΓ""' dη
c,C R"
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Since β -* 1 as τ —> oo and βR = τ, to show ||Γ2|| —» 0 as τ —> oc, it suffices to
show for τ > TO that

When 1(0 > SQ, the integrand in (66) is essentially the same as the one we

isidered for T\: note that (ξ
that 1(0 < εo < 1. We have
considered for T\: note that (ξ - ζ) ζ = \ζ - ξ/2\2 - \ξ/2\z. Thus we again assume

(((ξ - 0 O2 + (ξv - Cv)2)1 / 2 > \(\(ζ - 0 Cl + |£v - C v l

Again using the coordinates r = \ζ'\,θ — cos~'(C'/|ζ' <f/|<f I), we nave

and

(((ξ - ζ) ζ)2 + (ξv - ζv)
2)'/2 £ c((r - |r cosθ)2

in the notation used earlier. Thus, using (64), for \ξ' ^ 1/2,

= cv -

f V 1 ~t~ i |ς — ±\} 11, j ας < ,. y i -r C Q C J

:)

j

<(!o (((ξ - ζ) O2 + (£v - Cv) 2)'/ 2/(C) = /(0

J

<£0 Ik - »o|| ||»||

and, since \ξ'\ ^ 1/2 implies ||i;0|| ^ ^, this is bounded by Cτ~n~l. Hence we may
assume that \ξ'\ > 1/2, and in this case (63) implies

sn v _
~ ] '

Since (64) implies ||ι;|| < CQ when /(ζ) < ε0, we see that contribution to /i from
integration over {θ : \\VQ(Θ\\ ^ ^} is bounded by Cτ~n~l. Thus we may replace the

domain of integration in I\ by {/(C) < ε0} Π {| |uo|| < 5}-
At this point the argument used for T\ leads to divergent integrals, and we need

to use the fact that the factors in the denominator only vanish simultaneously when
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= 1. To bound /i, we set z = (\\v0(Θ)\\~l)v. Then

(1+τls inθl)-"- 1

f dzdω

o

i
-> s

^ Cτ
2~n

πτ/2

0

πτ/2

0

. (67)

If 1/2 ̂  |cf ^ 1, then 1 - |£'|cos)8/τ| ^ ^^2τ~2 with c0 independent of |^|.
Hence, in this case I\ ^ cτ 2 ~ w logτ for τ large. If \ξ'\ > 1, then 1 - |^|cos0 = 0
has a unique solution ΘQ in the interval [0, π/2] and we have

with 0 < GO < 1 and CQ independent of \ξ'\. Thus

where ^o — ^^o Thus for τ > 1.

- |<f |cos -|max{log2, -

^ Iog2 + 21ogτ - 21ogc0 + 2(- log \β - β0\)+ . (68)

Combining (68) with (67) we see that /i ^ Cτ2 w logτ for τ large in this case
also. Thus (66) holds and the proof of Proposition 4 is complete. D

It follows from Propositions 3 and 4 that for τ > 0 there exists a unique solution
g in //o,«+i of the integral equation (53), given by

g (69)

where Γ is the operator in (54). Thus f, given by (39) with this choice of g, is
a solution of (37') Thus to complete the proof that (27) has a unique solution in

n) when τ ^> 0, we need only show that h given by

h(x) = ((-id/dx+zv)2 -

is in //O,Λ+I From (39) we see that

A = C0 + Γ2# + S# ,
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where Γ2 is the operator in (53) and

= fI2A(X^ (70)V ; £„ (η+zv).(η+zv)-k2

by (40). From (70) one sees that S is an operator of the same type as T\ in (53)
with an additional factor of η + zv in the numerator. However, since we showed that
the norm of T\ on //ζ j/2+ι was O(τ~] ) uniformly in ζ for τ -» oo, and \η -f zv| ^ cτ
on support χ\ (see (43)), it follows that S is bounded on Hζtn+\9 uniformly in (C, τ)
for τ > TQ. This completes the verification that hv(ξ,ζ,k,iτ) G H^n+\.

4. Recovering the Magnetic Field

Proposition 5. Let hv(ξ9ζ9k,z) be the unique solution of (27) in //o,«+i /#r τ ^> 0,
feί gv(x9ζ9k9z) be the unique solution in H^n+\ of (53) w//Λ / = —(#(*) +

ζ) for τ > 0. Γλen

Av(ξ,C,*^) = Λ(^CΛ^) (71)

when (ξ + zv) (ξ + z

Proof. We have

hv(η,ζ,k,z)e'* '< r , ^ n \-« Γvr(x,ζ,k,z) = (2π) J - — - — - - — - - — -r
^a (η + zv) (η + zv) - k2

,,,„,_„ Γ c(x,η,z)gv(η,ζ,k,z)ea ' "dη
= (2π) /„ (

As we observed earlier c\ — c(x,η,z) — 1 has an expansion of the form (52) for
τ > TO. Thus, as in the proof of the bound on T2 in Proposition 4, we see that

.C.*.z) = (2,)
(η+zv) - (η + zv)-k2

belongs to //o,«+ι as a function of ζ, and hence is continuous in ξ. Since the Fourier
transform of (72) gives (a.e. in ξ)

(ξ -f- zv) (ξ + zv) - k2 (ξ + zv) (ξ + zv) - k2

where hγ and gv are also continuous in ξ9 (71) follows immediately. D
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By Proposition 1 and the discussion following it we can recover hv(ξ(s),ζ(s),k,
z(s)) from the scattering amplitude h(kΘ,kω,k). Recall (see (34), (35)) that given
the orthogonal frame {v,μ, /} with |μ| = |v| = 1,

ξ(s)= -/ + J j u ,

ζ(s) = ~l + sμ,

z(s) = iτ(s) = i^s2 + \l\2/4-k2 (73)

for s > SQ. Since ( ξ ( s ) + z(s)v) ( ξ ( s ) + z(s)v) - k2 = 0, it follows from Proposi-
tion 5 that h(kθ,kω,k) determines gv(ξ(s),ζ(s),k,z(s)) for s > SQ.

To recover the magnetic field we can begin with representation for gv given
by (69) with / = -(q(x) + 2(£ + zv) - Λ(jc))exp(ύ; - C), take the Fourier trans-
form in x, evaluate at ξ = ξ(s), ζ — ζ(s), z — z(s) as in (73), divide by z(s)
and take the limit as s — >• cχo. Since the norms of T,T\,T2 and T^ on H^s^n+\

go to zero and T^T||/||^),«+I is bounded as s — > oo, it follows that h(kθ,kω,k)

determines

s °° RΛ R" Z(S)

χ e-ix (ξ(s)-η)+ιχ\(η,z(s))φ(x,η+z(s)v)j ^χ

Replacing η - ζ(s) by η, (74) becomes

. j.

. (75)

By (73) ξ(s) — ζ(s) = I and lims^00(ζ(s) + z(s)v)/z(s) = v - iμ. Also (see defini-
tion of χ} before (42))

lim
S-+00

Finally

lim φ(x, η + ζ(s) + z(s)v) = lim (2π)
z^ - (η + £(s) -h z(^)v)

= (2π)-β ; ete . { Ξ
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Hence the limit in (75) equals

/ = ~2(2πΓnf I e~lX ' I+ίφ(x>μ+iv}+ix ' "(v - iμ) - A(η)dηdx
R" R"

- 2z / e~ix ' M<f>(*#+™\μ + z v) . A(x)dx . (77)
R'7

Comparing (76) with (40'), we see that

dφ
(μ + zv) - -f = (μ + zv) A(x),

ox

and hence, using the coordinates (x\,X2,x~L) introduced before Proposition 2, we
have

(/ (^Γ+/2~

We have

- lim

by Green's theorem with x\ = r cosθ and X2 — r sinθ. Returning to the expansion
(52) for φ, we have

9 = 7Γ-' - — f2πιx\ -

Thus

lim

+ y2μ+x±) (μ + iv)dyλdy2 ,
R2

and

/ = 2i J e I J A(y\v + y2μ + x ) (μ -f- iv)dy\dy2 1 ίfo
R-2 ViR2 /

- 2z^(/) (μ H- zv) .

Since μ and v are a general orthonormal pair perpendicular to /, we conclude that

for all / G RnJ determines A(l) - ( A ( l ) /)// |/ | 2 . In other words / determines A
modulo the gradient of

p(X) = (2π)-"/ e" *iA(l) l/\l\2dl = -J-'(V A), (78)

and hence / determines curl A.
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5. Recovering the Electric Potential

To recover V(x) we need to compute the next term in the asymptotic expan-
sion of (69) which yielded (74) as the leading term. We have determined A(x)
modulo the gradient of a function of the form (78). Hence, we may assume
that we know the scattering data for the problem with the A(x) here and q —
q' = A A — i V A, since the scattering data only depends on the magnetic field
B = cuήA. This scattering data determines the Fourier transform of the solution
g0 of (53) with / = /o Ξ -(?' + 2(ζ + zv) - Λ(*))exp(ά - ζ) on the set (ξ,ζ,z) =
( ξ ( s ) 9 ζ ( s ) 9 z ( s ) ) given by (73). Among the operators in (69) only T\ is changed
when we replaced g by go, and we denote the new operator by T\$. Thus, sub-
tracting the representation (69) for g$ from the representation (69) for g, we
may assume that we know the Fourier transform on the curve ( ξ ( s ) 9 ζ ( s ) , z ( s ) )
of

(/ + (/ + τrlc(-{\τ, + τ2 + r3)Γ1(/ + τrlc(~l\f - /o)

-(/ + (/ + τr{c(-{\τλ + τ2 + 73 ))-'(/ + τγl&-λ\τλ - r,,0))

•(/ + (/ + TΓlC(~l\T^ + T2 + T OΓV + TT'C^Vo . (79)

Taking the limit in the Fourier transform of (79) at ( ξ ( s ) 9 ζ ( s ) 9 z ( s ) ) as s — -> oc,
we recover

lim (2πΓΛ/ / - V(η - ^))β-
α (^)-f')+ί'^

s^°° R" R«

- lim ̂ (^-^(Γ! - TltQ)C(-l)fQ)(ξ(s)9ζ(s)9z(s)) =Jι -J2 .
5— >OO

By the same computation that derived (77) from (75), we have

(80)

To compute /2 we argue as follows. T\ — T\$ = VCL, where L multiplies the
Fourier transform by ((η + zv) (η +zv) — k2)~~l. Since [F, C] goes to zero and
C(-1)C goes to the identity as s — » cχo, we can conclude that



Inverse Scattering Problem for the Schrόdinger Equation with Magnetic Potential 223

Replacing δ by δ + ζ(s) and η by η + ζ(s\ and arguing as before (recall (ζ(s)
z(s)v) (CO) H-z(s)v) = A:2), we have

'ix (δ-η}+iφ(x,μ+ivί+ίv}dδdxdη

=(2πΓ" f ί -

Proceeding as before with x\ — x v and X2 = x μ,

and by Green's theorem

I e~l(

R2

= lim

2π

Since

+ / ^("2COS "+"1 Sln 0)Λ(sin 0 + i cos θ)
o

x (c(R cosθ, R sinθ,χ-L,μ + iv) - l)dθ

(x .
cos 0 — z sin θ + Q

(81)

the second integral in the limit in (81) goes to zero as R goes to infinity when
(7/1,7/2)4=0. The first integral just goes to the Fourier transform of c ~ 1 in (x\9X2)
multiplied by (7/2 + H/I ) = (μ + /v) η. Thus

J2 = -fe~ίy ' lV(y)(eiφ(y^iv} - \)dy .

Thus J\ — J2 = — ίwji e~ιy ' lV(y)dy. Since / is arbitrary, we have determined the
Fourier transform of V and the proof is complete.
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