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Abstract: As for an elliptic /^-operator which satisfies the Yang-Baxter equation,
the incoming and outgoing intertwining vectors are constructed, and the vertex-IRF
correspondence for the elliptic i^-operator is obtained. The Boltzmann weights of the
corresponding IRF model satisfy the star-triangle relation. By means of these inter-
twining vectors, the factorized L-operators for the elliptic /^-operator are also con-
structed. The vertex-IRF correspondence and the factorized L-operators for Belavin's
/^-matrix are reproduced from those of the elliptic /^-operator.

0. Introduction

In [12,13,14] we have introduced an infinite-dimensional /^-matrix. It is a new
solution of the Yang-Baxter equation. By means of the Fourier transformation of the
i?-matrix, we defined an /^-operator acting on some function space. This ^-operator
also satisfies the Yang-Baxter equation. Since this operator is deeply linked to an-
alytic properties of an elliptic theta function, we call it the elliptic ί?-operator. We
have shown some properties satisfied by the elliptic i?-operator, for example, first in-
version relation, fusion procedure, etc. For the trigonometric degenerate case of the
elliptic /^-operator, we proved that the finite-dimensional, trigonometric i^-matrices
are constructed from the ^-operator through restricting the domain of the ^-operator
to some finite-dimensional subspaces. Recently Felder and Pasquier [4] showed
that Belavin's i?-matrix [3,11] can be obtained through restricting the domain
of a modified version of the elliptic ^-operator to a suitable finite-dimensional
subspace.

In [1], Baxter has introduced the intertwining vectors for the eight-vertex model.
Jimbo, Miwa and Okado [8] constructed the outgoing intertwining vectors between
Belavin's vertex model and the A^\ face model. We call this relation the vertex-
IRF correspondence for Belavin's i?-matrix. Hasegawa [6,7], Quano and Fujii [10]
defined the incoming intertwining vectors which are the dual vectors of the outgoing
intertwining vectors. Then they constructed the factorized L-operators for Belavin's
i^-matrix. The vertex-IRF correspondence plays a central role in their methods.
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The aim of this paper is to extend the result above to the elliptic i?-oρerator.
Our strategy to construct factorized Z-operators for the elliptic ^-operator is as

follows. At first we define incoming intertwining vectors φλ of the elliptic ^-operator
R(ξ) and establish a vertex-IRF correspondence. The vertex-IRF correspondence
plays the most important role in this paper. Next we find finite-dimensional sub-
spaces with the following property (cf. Theorem 1.3);

R(ξn)(Vk(ξι) ® Vk(ξ2 + μ)) C Vk(ξ2) 0 Vk(ξλ + μ) ,

where ξn := ζ\ — ζi. Then we define outgoing intertwining vectors φ\{ξ)κ

λ(z) G

Vk(ξ+ |A|k), which are the duals of Φχ\vk(ξ+\λ\ky Making use of the properties of
the incoming and outgoing intertwining vectors, we can easily construct factorized
L-operators.

This paper is organized as follows. In Sect. 1, we review the properties of the
elliptic ^-operator R(ξ) proved in [12,13,14,4]. In Sect. 2, we shall define in-

coming intertwining vectors φλ and Boltzmann weights W λ ξ V of an IRF
K

model. Then we have the vertex-IRF correspondence for the elliptic ^-operator
(Theorem 2.1).

Theorem 0.1 (Vertex-IRF Correspondence). For Λ,κ,v G Λ,

φλ ® φκR(ξ) =
κ'eΛ

λ ξ v
K

Φλ

Because the elliptic i?-operator satisfies the Yang-Baxter equation, we can show
that these Boltzmann weights satisfy the star-triangle relation. This IRF model can
be regarded as the limiting case n —> oo of the A^\ face model. In Sect. 3, making
use of the results obtained by Felder and Pasquier [4], we shall construct outgoing
intertwining vectors in the same way as [6,7,10]. We can consequently define
factorized L-operators L^(ξ) (Theorem 3.4).

Theorem 0.2 (Factorized L-operator). For ξuξ2 $Έ + Zτ,

In the last section, after stating the results obtained by Felder and Pasquier
[4] more precisely, we show that the vertex-IRF correspondence and the factorized
L-operators for the elliptic i?-operator imply those for Belavin's /^-matrix.

1. Review of the Properties of an Elliptic /^-operator

In this section, we review the construction and the properties of an elliptic R-
operator [4,12,13,14]. We fix τ G (C such that Im τ > 0 and define an open subset
D c C b y

I m τ \
= jz G C;D= lz G <C;|Imz|

2 J '
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Let Y be a space of all functions / holomoφhic on D and such that

663

Similarly let
property

Now we define an elliptic /^-operator R(ξ) on Y®Ϋ". Let μ be a complex
number such that μ $Z + Έτ and let #i(z) = i?i(z,τ) be an elliptic theta function

be a space of all functions / holomorphic on D x D with the

/(zi + l,z2) = /(Z!,z2 + 1) = /(zi,z 2) Vz1?z2 G D .

= £exp

The elliptic theta function ϋ\(z) satisfies the following properties.

(1) ϋ\(z) is entire,

(3) ΰλ(z + τ) = - exp(-2π λ/
=Tz - π v ^

(4) ϋ\{z) has simple zeros at z G Z + Zτ,
(5) i?i(z) satisfies the three term equation (cf. [15] p. 461);

- y)

- z)

+ ΰι(x + z)ϋi(x - z)i?,

+ ϋi(x + w)ΰι(x - w)ΰ

= 0,

(6) M-z) = -i?!(z).

Definition 1.1 (Elliptic Λ-operator). For f e , we define

z2i : = z 2 — zi, ^ί(O) = ^ - ( z , τ ) | z = o
called a spectral parameter.

G C. The complex number ξ is

We set X = {(zi,z2) e D x D; z2\ £%}. By the property (4) of the elliptic theta
function ι?i(z), the function R(ξ)f has the singularities at the points (zi,z2) G X.
The lemma below tells us that all singularities are removable.

Lemma 1.1. There is a unique function F holomorphic on D x D and such that
F(zuz2) = (R(ξ)f)(zuz2) for (zuz2) e D x D\X.
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Proof. For (zuz2)eD x D\X and m G Z,

(R(ξ)f)(zuz2)

( Q ) / ( ) ϋ{-μ-m)-ϋx{-μ) ^ z2 - zλ - m

z2-zλ-m ϋx{z2X-m)

— z\—m V\(z2\—m)

-ξ-m)- 1?,(-<

z2-z\-m

f(zuz2 -/w)-.
z2-zx-m

Thus there is a function F continuous o n D x D and such that F(z\,z2) = (R(ξ)f)
(z\,z2) for (zi,z2) G D x Z)\X. In fact, we define

F(zuz2)

,^2), otherwise.

Making use of the Riemann removable singularity theorem (cf. [5]), this function
F is holomorphic on D x D. D

We also denote by R(ζ)f this holomorphic function F. It is easy to see that

Ui) =

for (zi,z2) £DxD. Hence Λ(ξ)/ ^ ^ Θ ^ for / G 'T&'T, and ̂ ( 0 is an operator
on i^(§i^ as a result.

Let Y&'V&'V be a space of all functions / on D x D x D and such that

/(zi + l,Z2,z3) = /(zi,z2 + l,z3) = /(zi,z2?z3 + 1) = /(zi,z2,z3) V zi,z2,z3 eD.

By the three term equation of τ?i(z) (the property (5)), we get the following theo-
rem.

Theorem 1.2 ([12,13,14]). R(ξ) satisfies the Yang-Baxter equation on

(1 ®Λ(ξi2))(Λ(£13)® 1)(1 ®Λ(ξ23)) - (Λ(ξ23)Θ 1)(1 (8>Λ(ξi3))(Λ(ίi2)®l),
(1.1)

where ξij = ξt - ξj.

For <J G C and « = 1,2,..., let Kw(ξ) be a space of all functions / holomorphic
on <C and such that

/ ( z + l ) = /(z),

/(z + τ) = (-l)"exp(2π>/=ϊ(£ - nz))/(z).
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It is well known that Vn(ξ) has dimension n. We easily see that

(1.2)
Z/nZ

is a basis of Vn(ξ). Here ϋ \a (z,τ) is a theta function with rational characteristics;

ϋ I 11 (z, τ) = £ expfπV^Tίm + α)2τ -f 2πv

/ΓT(m + a)(z + b)].
1°} mez

In [4] Felder and Pasquier show the following.

Theorem 1.3 ([4]). R{ξn){Vn(ξx) ® Vn(ξ2 + μ)) C FΛ(&) ® Vn{ξx + μ).

Remark 1.1. Let Ί ^ ~ be a space of all functions / holomorphic on D and such
that

We set Ψ"~®Ϋ"~ and V~(&ir~&ir~ in the same way as TΓ. Then we can define
the elliptic i?-operator ^((^) on ir~®ir~, which is the same as in Definition 1.1.
It is easy to see that R(ξ) on Ί^~<8)^~ satisfies the Yang-Baxter equation (1.1).

We denote V~(ξ) as a space of all functions / holomorphic on (C and such
that

We have

^ I 2 ) ( ^ ~ ( ^ i ) ® F-(ξ 2 + μ)) C V-(ξ2) 0 F - ( 6 + μ) .

A basis of V~(ξ) is as follows.

jez/nz

Remark 1.2. Let J b e a space of the meromorphic functions on (C2. Then we note
that the elliptic /^-operator R(ξ) can be regarded as an operator on Jt and satisfies
the Yang-Baxter equation (1.1).

2. Incoming Intertwining Vectors and Vertex-IRF Correspondence

In what follows μ e 1R\Z, and let A be a set of sequences λ — (λt) (i G TL) such
that

λij := λi ~ λj$ Z + Zμ V/φy € Z .

We take r e 1R such that r^ Q + Qμ, and set

ηi:=ir ( i G l ) .
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Then η = (ηt) G A. Hence, for any μ, the set A is not empty. For i G Έ, we define
the sequences ε, = (βij) (j G Έ), and for λ G A, let λ -f μεz denote the sequence

We note that λ 4- με, G A for all / G Έ by the definition of A

Definition 2.1 (Boltzmann Weight of the IRF Model). For λ, K, K', V G Λ, Boltzmann

„ r *' i
weights W \λ ξ v \ e <C of an interaction-round-a-face (IRF) ratfίfe/ are g/i eH

L K: J
as follows (cf. [1,6,7,8,10]). For /I G Λ, we put

λ 4- με.
W

λ 4-
2μεi

4-

λ 4-

με7-

4-

otherwise we set

W λ ξ
K

: = 0 .

Next we define incoming intertwining vectors of the elliptic i?-operator.

Definition 2.2 (Incoming Intertwining Vector). For λ,κ G Λ, define an incoming

intertwining vector φλ G 'V* as follows:

3ί G TL s.t. κ =

otherwise.

μεi

The incoming intertwining vectors are the Dirac delta functions essentially. By
Definition 1.1 we can get a vertex-IRF correspondence for the elliptic ^-operator.

Theorem 2.1 (Vertex-IRF Correspondence). For λ, κ9 v G Λ,

φK

λ®φV

κR(ξ) =
κ'eΛ

ξ v
K

C

φK

λ
(2.1)

where both sides are the operators

It is to be noted that, by Definition 2.1 and 2.2, both sides of Eq. (2.1) are zero
unless there exist ij G Έ such that K = λ 4- με/, v = λ 4- μ(εz 4- εy). The other cases
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are as follows:

R(ξ) =

667

Φx ΦΪ με'

for i+j.
Since satisfies the Yang-Baxter equation (1.1), we can show

Proposition 2.2. The Boltzmann weights of the IRF model satisfy the star-triangle
relation',

Σ w w

K

λ ξ2i

K

a.
λ ξn K'

K

W K'

i
β

ξv.
V

W
Γ β

y w A

y

ξ

X

12

K'
β (2.2)

for λ, K, v, oc,β,ye A.

Proof Unless there exist i9j,k G Έ such that K — λ + μεt, v = λ -f μ(ε, + εy) and
y = λ + μ(εz + εy + ε^), both sides of Eq. (2.2) are zero. Then we assume that

κ = λ + μεi9 v = λ + μ(ε, + ε, ), y = A H- μ(ε,

Moreover both sides of Eq. (2.2) are zero unless

α = λ + με/? A + μεy or A +

and

jS = A 4- μ(ε, + εy ), A + μ(ε/ + ε^) or A

so it suffices to show Eq. (2.2) in each case.
Since R(ξ) satisfies the Yang-Baxter equation (1.1),

εk)

?2, Z 3 ) .

Putting z\ — λf, Z2 = Ay + μ(5̂ y and z-^ — λΛ- μ(βik Λ- δjk) in the coefficient of
/(zi,Z2?z3)? we obtain Eq. (2.2) in the case α = A + με̂  and β = A + μ(ε; + εy).
We can prove the other cases in the similar way, so we omit the proof. D

Remark 2.1. We define an incoming intertwining vector φ} G (Ϋ"~)* in the same
way as Definition 2.2; for / G i^~,

κ (f(λi\
λf•= i ΛL 0, otherwise.
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In this case, we also get a vertex-IRF correspondence; for λ,κ,v e A,

K'

λ ξ V

K

-K -V

Φλ ® Φκf '

3. Outgoing Intertwining Vectors and Factorized L-operators

To begin with, we define outgoing intertwining vectors of the elliptic i?-operator
(cf. [6,7,10]).

Let k\ and k2 be integers such that k\ ^ Aτ2, and we set k:~ (k\,k2) and

k = k2 - k\ + 1. For λ, K e A and kx ^ j ^ k2, we define φk(ξ)f e C by

)? := Φ'.

where |λ|k = Efi* 1^

Proposition 3.1. For λ £ Λ and ξ tfϊ Έ + Έτ, the k — by — k matrix

i is invertible.

Proof. Since

λ

+μει'J )k{ £ijzk2 = d i a S ( e x P πy/^Tkλkι, , exp πλ/

it suffices to prove

+ 0.

The Weyl-Kac denominator formula for Ak\ (cf. [9,7]) yields

det [ϋ 2 k
k

i=\

Here η(τ) is Dedekind's ^-function

πyfΛτ
η(τ) = exp-

12 fi (1 ~~
w=l
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Then we obtain

l j-h

669

det ( 7? \λ\k-kλi9kτ)

1 _ L
2 k

k
2

thereby completing the proof. D

The proposition above says that for λ, K G Λ, k\ S j S 2̂ and ξ £ Z + Zτ, there
exist φk(O;, ^ ^ which are characterized by the following duality relations;

(3.1)

and for K Φ λ + μεz (A:i ^ Vz ^ A:2) we set

Definition 3.1 (Outgoing Intertwining Vector). For A, K G A and ξ £ ΊL + Zτ, «w
outgoing intertwining vector φ^{ξ)κ

λ{z) e Vk(ξ + |A|k) o///ze elliptic R-operator is
defined as follows (cf (1.2)):

*ω := Σ

Equation (3.1) is equivalent to

μ|k - fe,

; + μ ε / = id on Vk(ξ

The outgoing intertwining vectors satisfy the following:

Proposition 3.2. For λ,κ,v G A and ξ\,ξι i TL + Zτ,

Proof By Definition 2.1 and 3.1, it suffices to show

λ + μ
λ ξu

λ + μ

(3.2)

K

λ ξU V
κf



670 Y. Shibukawa

for any λ G A and kλ <. Vι, j ^ k2. With the aid of Theorem 2.1 and Eq. (3.2), we
obtain for k\ ^ V#, b ^ k2,

/I + με,

ζn

Then

Σ

h

= Σ

w

t+εj)

λ + μεa

λ ξl2

λ + μεi
3/) /+μ(εα+ε6)

λ ζ\2

L /I + μsi

By virtue of Definition 3.1 and Theorem 1.3 we deduce

From Eq. (3.2), we are led to the desired result. D

For λ, K G A and ξ £ Έ -f Zτ, we define an operator

(4(£)5/)(z) := φk(ξfλ(z)φκ

λf ( / e f ) .

Theorem 2.1 and Proposition 3.2 say

Lemma 3.3. i w A, v e A and ξu ξ2 £ TL + Zτ,

\λ\k + μ)

^ by
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Proof. For / G T
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Σ
κ,κ'eΛ

Σ
κ'eλ

λ ξn v (Φλ®Φκ)f

We have thus proved the lemma. D

Now we are in the position to construct factorized I-operators for the elliptic
i?-operator. Let if be a space of all (C-valued functions on A, and let 'V&'Ψ (resp.
i^&i^) be a space of all functions g : D x Λ —• (C (resp. Λ x D —> (C) such that

G f (resp. g(λ, ) G f^) for any λ £ A. We define a factorized L-operator
1T01Γ as follows [2,6,7,10]. For g e Ϋ~®ir zxAξ^Έ + TLτ,

(Lk(ξ)g)(λ,z) := E (Z k(O;^( , *))(*) . (3.3)

For λ G Λ we set <5;v G ̂  as follows:

δ\κ) = δ λ ί C .

We note that TT = Y[κeA^δκ (cf. [6]). Then, for / G TΓ,

and Eq. (3.3) is hence equivalent to

We define 'V&'V&IV (resp. I^&I^&Ψ*) by a space of all functions g :
D x D x y l - ^ C (resp. / I X D X D ^ C ) such that g( , ,/ί) G Ί ^ Θ ^ (resp.
g(λ, , ) G i^®i^) for any λ e Λ. By means of Lemma 3.3, we immediately
obtain the following theorem.

Theorem 3.4 (Factorized L-operator). For ζ\9ξ2 ί- % + %τ>

are ίήe operators 'V&

Remark 3.1. In the same way as this section, we can construct factorized L-operators
for R(ξ) on T T - ^ T T " by using FΛ"(O instead of Fn(ξ) (cf. Remark 1.1 and 2.1).
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In this case, outgoing intertwining vectors are characterized by the following duality
relation:

Here, for λ9κ e Λ, h <± j <L k2, we define φk(ξ)f e € as follows (cf.
Remark 1.1):

_.. / Γ 1 j-h Ί \

/ZT(^+ l)z) .

4. Vertex-IRF Correspondence and Factorized L-operators
for Belavin's /^-matrix

In this section, we apply Theorem 2.1 to the /^-matrix obtained through restricting
the domain of the elliptic i?-operator to some finite-dimensional subspace. Then
we will show that the vertex-IRJF correspondence for Belavin's /^-matrix proved by
Baxter [1], Jimbo, Miwa and Okado [8] is obtained from Theorem 2.1. Moreover
we will construct the factorized L-operators for Belavin's i?-matrix obtained by
Hasegawa [6], Quano and Fujii [10]. First let us state the results proved by Felder
and Pasquier [4] more precisely.

For k — 1,2,..., let Vk(ζ) be a space of entire functions / of one variable such
that

f(z + τ) = (-l/exp(-2πΛ/^T(^ - ξ +

We note that Vk(ξ) c ^ if k is even and that Vk(ξ) c V~ if k is odd. In the same
fashion as Theorem 1.3 and Remark 1.1, we obtain

+ μ)) C Vk(ξi)

The space Vk(ζ) is of A: dimensions and a basis is given by

{ej(ξ)(z) := ΰ \j 7 * ] (ξ - kz,kτ)}jeΣ/kπ .

For k — 1,2,..., define a translation operator Tk(ξ) on the space of all holomoφhic
functions on C [4] by

(Tk(ξ)f)(z) ;=

Tk(ξ) maps isomorphically V^ := Vk(0) onto ^t(ξ). We modify the elliptic
^-operator as
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We note that ^(£12) is determined by the difference ξn In fact,

+ 7>zl ~ 7

Felder and Pasquier prove

Theorem 4.1 ([4]). Rk(ζ) preserves Vk 0 Vk and obeys the Yang-Baxter equation
(1.1).

Let {ej}Jez/kπ C Vk be the dual basis of {ej := e ;(0)} C Vk;

e'iej) = δtj .

Now we define an operator Rk(ζ)* on Vk (8) Vk , the transpose of Rk(ζ) on F̂  0 j ^ .

® ea).

Proposition 4.2 (cf. [4]). The R-matrix Rk(ξ)* is Belavin's R-matrix up to
constant.

Proof. Let A and B be operators on the space of all holomorphic functions on
C as

(Bf)(z) = -exp (iπV^Λ (z + ̂ ) ) / (z + | ) .

The space F̂  is invariant under the actions of A and B. In fact, 4̂ and B are
expressed on Vk as

- βj exp

Bej = eJ+ι .

We define operators A* and B* on F̂  to be the transposes of A and B on F ,̂
respectively;

To prove this proposition, it is enough to show the following [3,6,7].

(1) Rk(ζ)* is an entire End(F/ (g> F/)-valued function in ξ.

(2)&k(ξ) χ®x=x®x&k(ξ)* x=A*,B*.

(3) Rk{ξ + 1)* = (1 ®A*y1Rk(ξ)*(A* ® 1) x (-1).

(4) Rk(ξ + τ)* = (1 ® B*)-'Rk(ξ)*{B* ® 1) x (-exp2π^/=T(ξ + | - £))-».
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The operator Rk(ξ) on Vk 0 Vk has the properties below, which imply the properties
(2), (3), (4), and (5) above, respectively.

(2) Rk(ξ)x ® x = x ® xRk(ξ) x=A9B.

(3) Rk(ξ + 1) = (1 ®A)Rk(ξ)(A 0 I ) " 1 x (-1).

(Λ) Rk(ξ + τ) = (1 ® B)Rk(ξ)(B ® iyι x (- exp2πv

/zT(ξ + f - f))" 1 .

(5) 4 ( 0 ) = t?ί(0)id.

The proof is quite straightforward, so we omit it.

To prove (1), it suffices to show that Rk(ξ) is an entire End(^
function in ξ. Let us introduce another basis of Vk (cf. [4]);

^)-valued

In the same way as [4], we can calculate the matrix coefficients of Rk(ζ) on Vk 0 Vk

with respect to the basis {ey 0 ej} and can check that all matrix coefficients are
entire in ξ. This completes the proof. D

For λ,ιc £ A, we put φ(ξ)« := φλ

κ oTk(ξ + |A|k - kμ)\Ϋk Since

0,

1 _ L
2 k

k
2

(ξ - kλhkτ) ^ 3ί ̂

otherwise ,

we get

k-\ _λ

7=0

ί To \
u

' I _ I

. 2

- kμ)(ej)e>

^ 3/ ̂

otherwise.

Hence the vector φ{ζ)κ

λ is nothing but the outgoing intertwining vector of Belavin's
7?-matrix [6,7], which was first discovered by Baxter [1], Jimbo, Miwa and
Okado [8].

On the other hand, we put

W λ ξ v := W V ξ λ

K

and then Theorem 2.1 and Remark 2.1 lead us to
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Theorem 4.3 (Vertex-IRF Correspondence for Belavin's ^-matrix [1,8]). For λ,κ,
v G Λ,

K 1
λ ξn v .

Next we construct the factorized Z-operators for Belavin's 7?-matrix proved by
Hasegawa [6], Quano and Fujii [10]. To begin with, we introduce outgoing inter-
twining vectors in Vk(ζ) in the same fashion as Definition 3.1. In the sequel, we fix
k\,k2 G % such that k = k2 — k\ + 1 and assume that λ,κ,v e Λ and the ξ,ξ\,ξ2 £
Έ + Έτ.

For k\ S j S k2, we define φk(ξ)f € <C by

and also define ψk(ζ)fj £ & by the following duality relations (cf. Proposition 3.1):

ί l-ki λj

l^i=kι

(Pv\ζ)χ ΨkKζ)λi = Oji .

For κή=λ + μsi (k\ ^ Vz ^ i 2 ) we set

Φk(ί)ϊ y := 0 .

Outgoing intertwining vectors ψk{ξ)κ

λ{z) G Vk(ξ + |/l|k) of the elliptic
i?-operator are defined as

,(ξ + μ| k χ z ) .

Then we define the operators Ly{ζ)\ as follows:

L){z) := φk(ξ)t(z)φK

λf

where / G y if k is even and / G ir~ if k is odd. In the same way as Sect. 3,
these operators satisfy (cf. Lemma 3.3)

We put

Z k (O" := Tk{ξ + |κ | k - kμ)-ιLk (ξ - kμ)λ

κTk(ξ + |ιc|k - kμ)\^ ,

and denote its transpose as Lγ(ξ)κ

λ : Vk —> Vk . Thus, for Belavin's i^-matrix Rk(ξ)*,

M l l = Σ Ki&l ® 1*^)1 Rk(ξn)* •
KEΛ
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We define an operator l£(ξ) : Ϋl 0 iV -» IT 0 V* by

The theorem below tells us that the operator Lk(ξ) is the factorized Z-operator
for Belavin's ^-matrix, which were first constructed by Hasegawa [6], Quano and
Fujii [10].

Theorem 4.4 (Factorized L-operator for Belavin's i?-matrix). For ζ\,ζι £ Z + Έτ,

^ 2 ) * ) ( I k ( i i ) ® 1)(1 ®Ll(ξ2)) = (tk(ξ2) ® 1)(1 £ &

57'ίfos1 are ί/*e operators Ϋζ 0 ί̂ * 0 #^ —> #"
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Note added in proof. We have two remarks about the incoming and outgoing intertwining vectors.

(1) We can add one more parameter to the incoming intertwining vector φλ in Definition 2.2.
For α € 1R, we set

ί f(λi + α)> 3i e % s t. κ = λ + μεi9

Φλ(*)f : = 1 , .
^ 0, otherwise .

These incoming intertwining vectors also satisfy the vertex-IRF correspondence (Theorem 2.1).
Making use of the incoming intertwining vectors φλ(a) instead of φλ, we can construct the
factorized L-operators (Theorem 3.4).

(2) By means of the Weyl-Kac denominator formula (cf. Proposition 3.1), we obtain the
explicit form of the outgoing intertwining vector in Definition 3.1. For k\ S i S h,
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