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Abstract: An example of a finite dimensional factorizable ribbon Hopf C-algebra is
given by a quotient H - uq(o) of the quantized universal enveloping algebra Uq($)
at a root of unity q of odd degree. The mapping class group M9)\ of a surface of
genus g with one hole projectively acts by automorphisms in the iί-module H*®9,
if H* is endowed with the coadjoint iί-module structure. There exists a projec-
tive representation of the mapping class group Mg^n of a surface of genus g with
n holes labeled by finite dimensional iJ-modules X\,..., Xn in the vector space
Hom#(Xi ® <8> Xn, H*®9). An invariant of closed oriented 3-manifolds is con-
structed. Modifications of these constructions for a class of ribbon Hopf algebras
satisfying weaker conditions than factorizability (including most of t/q(g) at roots of
unity q of even degree) are described.

After works of Moore and Seiberg [44], Witten [63], Reshetikhin and Turaev [51],
Walker [62], Kohno [22, 23] and Turaev [60] it became clear that any semisimple
abelian ribbon category with a finite number of simple objects satisfying some non-
degeneracy condition gives rise to projective representations of mapping class groups
of surfaces as well as to invariants of closed 3-manifolds. It was proposed in [38] to
get rid of semisimplicity and to extend so the class of categories which serve as the
set of labels for a modular functor.

In this article we describe (eventually non-semisimple) ribbon Hopf algebras H,
whose modules form a category with the required properties, thereby giving repre-
sentations of mapping class groups. These algebras are called 2-modular. All finite
dimensional factorizable ribbon Hopf algebras have those properties.

As a byproduct we obtain a projective representation of the mapping class group
Mgt\ of a surface of genus g with one hole in the vector space H*®9. If H* is
endowed with the coadjoint ff-module structure, M9i\ acts by automorphisms of
the if-module. For genus 1 and factorizable Hopf algebras this representation was
obtained by Majid and the author [40]. In the case of Drinfeld's doubles another
proof of modular relations for genus 1 was given by Kerler [16]. The projective
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representations of M\^\ thus obtained for finite dimensional H = uq(sl(2)) are very
close to those of Crivelli, Felder and Wieczerkowski [3], which come from conformal
field theories on the torus based on SU(2).

We describe also an intermediate class of categories and Hopf algebras between
factorizable and 2-modular ones. These categories and Hopf algebras are called 3-
modular and they give rise to invariants of closed oriented 3-manifolds. In the case
of semisimple factorizable categories this is the Reshetikhin-Turaev invariant [51].
In the case of Hopf algebras it turns out to be the Hennings' invariant [10] (in the
form of Kauffman and Radford [14]).

The results of the paper apply to both main known classes of ribbon categories:
semisimple ones and the categories of all modules over a ribbon Hopf algebra. For the
former we obtain already known results, the latter gives new representations. Although
the language of abelian tensor categories is the most suitable for our purposes, the
reader is advised to restrict consideration to the categories of modules.

Finite dimensional quotients uq($) of quantized universal enveloping algebras
Uq(&) at roots q of unity are studied as an example. We show that if the degree I of
the root q of unity is odd, the algebra is factorizable, if it is even, then uq(o) will be
2-modular or not, depending on arithmetical properties of q.

Conformal field theories is a powerful source of ribbon categories. Kazhdan and
Lusztig constructed non-trivial braided tensor subcategories in the category of modules
over an affine Lie algebra [15], motivated by CFT. These categories can be semisimple
as well as not. Furthermore, Gaberdiel [9] associates with each CFT a braided tensor
category, namely, the category of modules over the chiral symmetry algebra with a
non-standard tensor product. By the very nature of CFT one expects [44] appearance
of representations of mapping class groups (this is obvious for TQFT). It turns out
[38] that such representations can be constructed from ribbon categories even if they
are not describing the fusion in some CFT.

Turaev proved that in the semisimple case the modular functor extends to a TQFT
[60]. Moreover, he constructs the modular functor (that is, representations of mapping
class groups) as a part of a bigger functor (TQFT), assigning linear maps to 3-
cobordisms. In the non-semisimple case the word-by-word repetition of his approach
is impossible, which forces one to seek for a direct construction of the modular
functor as was done in [38]. Besides, some remnants of TQFT-structure survive in
non-semisimple case; this is under consideration now.

We recall basic facts about ribbon abelian categories in Sect. 1. The quantum
Fourier transform is discussed in Sect. 2. Ordinary ribbon Hopf algebras produce
braided Hopf algebras in Sect. 3. Representations of mapping class groups are de-
scribed in Sect. 4. New invariants of closed 3-manifolds are discussed in Sect. 5. We
construct finite dimensional ribbon Hopf algebras uq{$) in Appendix A and single out
factorizable and 3-modular ones in Appendix B.

Acknowledgement. I am grateful to R. R. Hall, T. H. Jackson and A. Sudbery for useful discussions of
number theory questions, which arose in this paper. I thank C. De Concini for discussions of 3-manifold
invariants and the structure of quantum groups at roots of unity. I am indebted to the referee for a useful
remark which simplified the proof of one of the theorems and for suggestions which improved the paper.
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1. Introduction

1.1. Notations and conventions, k denotes a field. In this paper a Hopf algebra means
a /c-bialgebra with an invertible antipode. Associative comultiplication is denoted
Ax = X(i)®X(2), counit is denoted by ε, antipode in Hopf algebras is denoted 7. If H
is a Hopf algebra, i/ o p denotes the same coalgebra H with opposite multiplication,
Hov denotes the same algebra H with the opposite comultiplication. The category of
ϋf-modules is denoted iί-Mod, and its subcategory of finite dimensional iί-modules is
denoted H -mod. In the particular case H = k we use k -Vect and k -vect respectively.
The category of iί-comodules is denoted H -Comod, and its subcategory of finite
dimensional if-comodules is denoted H -comod. The left adjoint action of x G H in
a Hopf algebra H means

where y G H.
Let X be an H-module, denote X* the space of linear functional on X. Denote by

X v and V X the two different structures of the H-module on X*, the former being
(h.ξ)(x) = ξh~\h).x), the latter being (h.ξ)(x) = ξ(^(h).x) for h G H, ξ G X*,
x G X. Iterating this definition we get X v v , V V X . Notice that ( V X) V and V ( X V )
are naturally identified with X, so we can use the general notation χ(mV\ rn G Z,
such that X ( ~ 2 V ) = V V X , X ( " l v ) = V X, X ( O v ) = X, X ( l v ) = X v , X ( 2 v ) = X v v ,
etc.

Q will denote a complex semi-simple Lie algebra of rank n with Borel and Cartan
subalgebras b+, b_, f). The root lattice, generated by the simple roots α i , . . . , an, will
be denoted Q. The weight lattice, generated by the fundamental weights ω\,... ,ωn

is denoted P. We write the group Q also in multiplicative notations Ka = a G Q,
using Ki = ai as generators. There is a perfect bilinear pairing

The Cartan matrix α?9 determines an inclusion

and the inner product

where di - 1,2,3.
q will denote an indeterminate or a primitive Ith root of unity q = ε G C. This root

of unity is assumed to satisfy ε 2 m ^ 1 for all 1 ^ m ^ max; di. Let lτ be the smallest
positive integers such that ε2dilt = 1. We use the following notations for g-numbers:

qn - 1 qn - q~n

(n)q = ϊ—-p [n]q = _ _! ,

n n

(n)9! = Π
m=l

^ ( β ) (resp. ^ ( 9 ) ) is a topological C[[/ι]]-algebra (resp. Q(g)-algebra), generated
by Hi (resp. Z ^ 1 ) , Eu Fiy the quantum group of Drinfeld [5] and Jimbo [11].
Equipped with the comultiplication
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(in Uh(o) Ki denotes ehd*H*) these algebras become Hopf algebras. Lusztig's divided
powers algebra Γ(#) [33] is a ^[^g-^-subalgebra of Uq($) generated by i^ ( r n ) =
E™/[m\qτ!, i^ ( m ) = F™/[m]qi! and some Laurent polynomials of Kι, where qι = qd%.

Choosing a reduced expression s^ Si2... SiN of the longest element WQ of the
Weyl group of g, we get a total ordering of the positive part Δ+ of the root system
Δ:

A l̂ ~~ ̂ Ϊ I j M2 ~ &i] ̂ 2? 5 MAΓ ~~ &1] "^Ϊ^V-I t-^jv

Following [20, 25, 33] introduce the corresponding root vectors in Γ(g)

Fjβk — 1i\ -Lik-ι£L/ik^ r βk ~ 1i\ ' -Lik-ιrik^

where Ti : Γ(Q) —>• Γ(Q) are Lusztig's automorphisms [33, 34]. In the products like
ΓL E™a w e always assume that a runs over Δ+ according to the above total order.
We use also qβk = qlk and lβk = lik.

An i^-matrix will be often denoted R = Y] • R'6 0 R'l.

1.2. Ribbon abelian categories. Ribbon (also tortile [57]) category is the following
thing: a braided monoidal category W [12] with the tensor product 0, the associativity
α : X <g> (Y <g> Z) -> (X Θ Y) <8> Z, the braiding (commutativity) c\X®Y ^Y ®X
and a unit object /, such that W is rigid (for any object X ζ W there are dual
objects VX and X v with evaluations ev : WX ® X —> /, ev : X 0 X v —>• / and
coevaluations coev : / —» X (S) V X, coev : J —> X v (g) X) and possess a ribbon
twist z/. A ribbon twist [12, 50, 57] v - vx : X —> X is a self-adjoint (z/χv = i/ĵ )
functorial automorphism such that c2 = z/^1 0 ^y1 ° ^χ®y.

Moφhisms constructed from braidings and (co)evaluations are often described by
tangles. In conventions of [36] we denote

a morphism / : X —• Y

the braiding c:X®Y-^Y®X by

the inverse braiding c~λ \ X

the evaluation ev : X <g> X v —> fc
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the coevaluation coev : k —> Xw ® X by
X

Consistency of these notations is due to the functor Φ from the category of ^-colored
tangles to the category W itself [8].

In a ribbon category there are functorial isomorphisms [36]

X X X X

vv X

Q = u\ o v = u_\ o v : X —» X - 2 2 y - 1 - - , - 2 o z / : X

Changing the category W by an equivalent one, we can (and we will) assume that
V X = X v , X v v = V V X = X and w§ = u~

2 = iάx (see [36]).

Warning. In the category W - iJ-mod, where i J is a ribbon Hopf algebra, the
equation X v = V X is not satisfied, nevertheless X v is canonically isomorphic to
V X. We identify these modules via u\ : V X -* X v (see Sect. 3.2).

If in addition g^ is additive, it is /.-linear with k - End/. We assume in the
following that k is a field, in which each element has a square root. (In fact we need
a square root only for one element of k which depends on W.) In this paper W will be
a noetherian abelian category with finite dimensional k-vector spaces Hom^CA, B).
(One more technical condition: isomorphism classes in W form a set.) In such a case
there exists a coend F = J X 0 X v as an object of a cocompletion £> [36] of £P.
Recall that this coend can be defined via an exact sequence

(1.2.1) 0,

Lew

where /* : Bv —> A v is the transposed to a morphism / : A —> B. For a general
definition of a coend see [41].

F is a Hopf algebra in the category W (see [37, 40, 42]). The multiplication
: F <g) F -* F is described in [37] by any of the following £P-F-tangles

(1.2.2)

M v )

or L®C I 3 rnF

F
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L Ly M

(1.2.3)

M®L®(M®L)W

M L L v M v

The antipode 7^ : F —> F is given by

(1.2.4)

0

There is a Hopf pairing ω : F <g> F -> / [37],

F , F

(1.2.5)

such that

ω =

Ann ω = Annleft ω = Annright α; e

V.V. Lyubashenko

F®F

3 ™<F

The quotient f = F/ Anna; G ^ is also a Hopf algebra.

The morphisms called monodromies Ω\ = β ^ F : X (8) F —* X (8) F, β r = Ωr

FX

F&X-+F&X, Ω = ΩFjF : F <g> F -^ F 0 F 'are defined via tangles

, Ωr =

They project to f as morphisms

β z = β ^ > f : X <8> f-• X ® f, Ω

also called monodromies.

, β = β f > f : f ® f-» f <8>f
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1.3. 2-modular categories. The first modular axiom is [37]

(Ml) f is an object of W (and not only of a cocompletion W)
(more scrupulously, it means that there exists an exact sequence 0 —> Ann ω
f —> 0 in ff, where f is an object from W c W).

Being the coend J X 0 X v , the object F G W has an automorphism ι/0 1 α=
f v 0 1 (notations are from [37], see also Sect. 3.8.1). The second modular axiom
says [37]

(M2) z/0 l(Annα ) C Anno;

^ , T : f

def

(more scrupulously, there exist morphisms T' : Anno;
such that the diagram

Annω G f e

0

0

Anncj

Anno;

ι/0 1

0

commutes).
An equivalent form of (M2) is [37]
(M2;) There exists a morphism θ : / —• f such that for any X e W the ribbon

twist v : X —* X coincides with the composition

Definition 1.3.1. A noetherian abelian ribbon category W with finite dimensional k~
vector spaces of morphisms Hom^(A, B) is called 2-modular, if axioms (Ml), (M2)
are satisfied.

Here 2- refers to the dimension of a surface which will be the main application.
It was shown in [37] that in the case of a modular category there exists a morphism

μ : I —> f, which is the integral on the dual Hopf algebra v f ~ f, and

X x

= λ [>•

for some invertible constant λ G kx. The pair (μ, λ) is unique up to a sign. Morphisms

f • I f

c _

μ

f f

are inverse to each other. Morphisms S and T (defined via (M2)) yield a projective
representation of the mapping class group of a torus with one hole:
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(ST)3 = XS2, S2 = 7 f " \ TΊf = 7fT, 7 f

2 = v.

Here 7f : f —> f is the antipode of the Hopf algebra f, given by the same tangle as
(1.2.4).

2. Modular transformations in F

Here we reproduce results of [37] in special assumptions, which permit to prove more.
Let W be a 2-modular category. Fix a morphism a : / —> F such that

ηpoί = a: I -+ F and μ = ( / A F Λ f )

(if there is one). In this section we adopt the convention AB = A o B for the compo-
sition.

2.1. The quantum Fourier transform

Theorem 2.1.1 (cf. Theorem 6.2 [37]). For any X e W we have

a \ \ X

(2.1.1) v

a X

[V

a

(2.1.2)

X

- Λ - U

Notation. Let β : / —> F be an arbitrary morphism. Introduce morphisms F —» F

5T(/3) = (F ~ F ® J

graphically depicted as

F F

We shall use the shorthand S» = S±{β):F^>F (a sign is chosen arbitrarily) and

S+ = XS+(a), 5_ = \-ιS-(a).
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Proposition 2.1.2 (cf. Proposition 6.3 [37]). We have

In particular, S± commute with jp>

Theorem 2.1.3 (cf. Theorem 6.5 [37]). We have

Corollary 2.1.4. S_TS_ =T-ιS-T-\

Lemma 2.1.5 (cf. Lemma 6.7 [37]). There are identities

S*TSS+ = S*T, S*S+TS- = TS*,

S*T~ιS+S- = S*T'\ S*S-T~ιS+ = T~ιS*.

Lemma 2.1.6 (cf. Lemma 6.8 [37]). The morphism T commutes with S*S+ and S*S-.
We have

Corollary 2.1.7. The morphisms P\ = S-S+ and P2 = S+S- are projections such that
PιP2 = Pι andP2Pι = P2.

Proposition 2.1.8. The following kernels and images coincide

(2.1.3) Ker S+ = Ker 5 - = Ker Pλ = Ker P2 = Ker π = Ann ω,

(2.1.4) ImS + = Im6'_ = I m P 1 = I m P 2 .

In particular, P\ = P2.

Proof. We get by Corollary 2.1.7 KerS+ C Ker Pi, KerS_ C KerP2, Ker Pi =
KerP2. Lemma 2.1.6 gives Ker Pi C Ker S±, KerP 2 C KerS±. Therefore, Ker S+ =
KerS_ =KerPj = K e r P 2 .

Since
, Ann , Anno;

= 0

we have Ann ω C Ker S-. This identity also implies

^F®F -^F®F

- (F ^ t ~ f ® I f ®

« I ® f ~ f)

hence π 5 _ = Sπ. Thus, Ker(π5_) = Ker(5π) = Kerπ and Ker5_ C Kerπ = Annω,
whence Eq. (2.1.3) follows.

Proposition 2.1.2 implies Imί>_(α) = ImS+(α), so Im5_ = I m ^ . Corollary 2.1.7
gives that imS- D ImPi, Im5 + D ImP 2 . Since S-S+S- = S- and S+S-S+ = S+

by Lemma 2.1.6, we get Im5_ C ImPi, I m ^ C ImP 2 . Therefore, Eq. (2.1.4)
holds. D
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Notation. Denote P = Pi = P 2 = S+S- = S_S+.

Theorem 2.1.9. The morphίsms S+(a),S-(ά),T,'yF : F —> F commute with the
projection P : F —> F. The restrictions of S±(a) to KerP = Annω vanish. The
restrictions to Im P (which depends on a)

S = S_(α)|ImP, S-^S^α^p,

inverse to each other, are identified with S±ι : f —> f by an isomorphism I m P -̂ » f.
Therefore,

(2.1.5) (ST)3 = λS2, S2 = Ί~
λ

on Im P.

Proof Lemma 2.1.6 implies that T commutes with P and PS- = 5_ = 5_P,
P5+ = 5+ = 5+P. Proposition 2.1.2 implies Pηp - ΊFP Other statements follow by
Proposition 2.1.8, Corollary 2.1.4 and Proposition 2.1.2. D

A certain similarity of the properties of S with the properties of the ordinary
Fourier transform [39] suggests the name of quantum Fourier transform for this
morphism.

2.2. 3-modular categories. Here 3- refers to applications to 3-manifolds. Recall that
μ : / —>• f is a two-sided integral and 7i?μ = μ. If F G ¥? (analogue of being finite
dimensional), then it has an invertible object of left integrals Int/ [37]. The canonical
projection π : F —* f sends Intj to Im μ.

Definition 2.2.1. A 3-modular category is a 2-modular category W with an additional
property

(M3) F e W and it has a two-sided integral σ : I —» F such that πσ = μ.

The assumption F G W is not needed in this paper and can be consistently
omitted. However, it holds in all known examples.

Proposition 2.2.1. Suppose (M3) holds. Then ηpσ = σ.

Proof. Clearly, ηpσ is another two-sided integral in F. Therefore, it must be propor-
tional to σ [37]. Projecting the equation jpσ = Cσ, C e kx, to f we get μ = η^μ = Cμ,
hence, C = 1. D

Definition 2.2.2. A perfect modular category is a 2-modular category with a condition
(PM) Annω = 0 (equivalently, π : F —> f is an isomorphism).

A perfect modular category is a particular case of a 3-modular category (and the
easiest to deal with). The reader is advised to assume W perfect for the first reading
whenever appropriate.

3. Ribbon and Braided Hopf Algebras

In this section we reformulate the results obtained in the abstract setting of ribbon
abelian categories in the case of the category of finite dimensional modules W - H-
mod over a Hopf algebra H. This job was already partially done by Majid and the
author [40], so we shall omit most of the proofs.
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3.1. Quasitriangular Hopf algebras. Let H be a Hopf A -algebra with an invertible
antipode. There are several (more or less equivalent) ways to make W - H-moά into
a braided category, if it permits this structure. We choose the most direct one. Assume
that H has an R-matrix, which is an element R e H <& H (algebraic tensor product!)
satisfying the relations of Drinfeld [5]

(Δ ® l)R = Rl3R2\ (1 0 Δ)R = Rl3Rn, Δ0?a = RΔ(a)R~ι

for any a G H, so (if, R) is quasitriangular.
For a finite dimensional iί-module V as for any vector space there is a canonical

linear map VQ : V —> F v v such that (v,y) = (y, VQ(V)) for υ eV, y eVy. Its square

gives VQ = (V —^ F v v —̂> y^ 4 v ) ) . On the other hand, in W as in any rigid braided

category there are morphisms u0 = (V ——> V V F ^ y(-4v)^ Composing them
we get linear bijections

They are decomposable into a product of the two bijections

Theorem 3.1.1 (Drinfeld [6]). The maps U\,u4,g are given by the action of the fol-
lowing elements:

R!', U4 - η1(R')R!t = j(u\)~I, g = u\U4.

The element g is grouplike (ε(g) = 1, Δg - g 0 g) and for any a G H we have
gag"1 - 74(α).

To find g we can use the following. Let h+ (resp. h_) be the minimal subspace of
H such that R e h+®H (resp. R e i /®h_). Then h+, h_ are Hopf subalgebras. The
finite dimensional subspace spanned by their products h = h+h_ coincides with h_h+,
therefore, h is also a Hopf subalgebra. Moreover, it is a minimal quasitriangular Hopf
subalgebra of (H,R) [45]. All elements u\,u4,g belong to h.

Pick a basis (α^) C h+ and a basis (bτ) C h_ for which R = Σiaί®bi Introduce
a non-degenerate pairing π : h_ 0 h + —> k, π(6^, a3) = <S*. Axioms of R-matrix imply
that π : h_ o p 0 h+ —> k is a Hopf pairing, i.e.

π(α6, c) = π(α, c(1))π(6, c(2)), π(α, cd) = π(αα), d)π(α(2), c).

Now construct the double D(h+) generated by its Hopf subalgebras h+,h_. The
natural projection j : D(h+) -^ h is a homomorphism of quasitriangular Hopf alge-
bras. Clearly, gn = 9h = j(gD(h+)) is the relationship between the elements g for the
three algebras. To find #D(h+) use the following

Theorem 3.1.2 (Drinfeld [6], Kauffman and Radford [13]). Let δ+ e h+, 6- G h_
be left integrals, that is, xδ± = ε(x)δ± for any x G h±. Then gD(h+) = a~ιa- for
grouplike elements (called moduli) a+ G h+, α_ G h_ such that

δ+y = π(α_, y)δ+ for any y G h+,

δ-y = π(y, a+)δ- for any y G h_.
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3.2. Ribbon Hopf algebras. Assume now that W = H-mod has a ribbon structure.
Then there is a morphism UQ2 = uZ\v - u\2v~x : V —> V V V for any finite dimen-
sional if-module V. One can prove that the map

commutes with all moφhisms and satisfies κχ®γ = KX ® κ,γ and κ2

x = gx. If H is
finite dimensional, we deduce that κ,γ is the action of a grouplike element K of H.

Definition 3.2.1 (comp. [50]). A ribbon Hopf algebra (if, R, K) is a quasitriangular
Hopf algebra (H, R) and a grouplike element K £ H such that

κ2 = #, κaκ~ι = 72(α)

/or αnv a £ H.

In the category of finite dimensional modules over a ribbon Hopf algebra we have
canonical isomorphisms UQ : V —> V v v , IAQ(^) = ^o(ftv) = ^oί^X w n i c n w e u s e t 0

identify these modules.
The following is essentially proved by Kauffman and Radford.

Theorem 3.2.1 (cf. [13]). If (if, R, K) is a ribbon Hopf algebra, then the category
H-mod is a ribbon braided category with the ribbon twist given by multiplication by
the central element

v = Ί\R')B!'κ-1 = R"Ί\R!)κ = R"κR' = R'κ'ιR".

The following holds

(3.2.1) ε(ι/)=l, 7θf) = *Λ Av = (R2lR12) v O v.

Remark 3.2.1. Definition 3.2.1 is equivalent to the definition of a ribbon Hopf algebra
of Reshetikhin and Turaev [50]. The element v~x was denoted υ in [50].

3.3. A braided Hopf algebra. Here we describe explicitly the braided Hopf algebra
F and its dual algebra U for the case of W - H-mod. Let if be a ribbon Hopf
algebra and let H° be its dual [58]. Assume that H has enough finite dimensional
modules, so that the pairing H (8) H° —> k is non-degenerate. Define the Hopf algebra
Fun = (if °)oP as H° with the opposite coproduct (note that usually the algebra of
functions is a subalgebra of if°, not of (if °)op). We have an equivalence of categories
W - H -mod ~ Fun -comod. The pairing (,) : if ® Fun -> k satisfies

(xjg) = {χ(i)J)(χ(2),g), (xyj) = (χJ(2))(yJo))

for x,y e H, f,g G Fun, where Δf = /Q) ® /(2) is the coproduct in Fun.

Consider linear maps %L : 1/ Θ Lw —> Fwn, la ® h ^ tLah, where tLα6 is the
matrix element of the if-module L with a basis (iα), that is, tLa

b is a linear function
on H given by (u, tLa

b) = (u.la,l
b) for u £ H. The maps i^ become homomoφhisms

of if-modules if Fim is given the coadjoint if-module structure

U>f= (w,/(l)7(/(3))>/(2)

for w G if,/ G Fwn. The vector space Fim with this if-module structure will be
denoted F.
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Theorem 3.3.1 (cf. [4, 54, 55, 64]). The family (iL : L 0 L v -> F ) L e r is a coend
of the bifunctor W x W°* -* W, (A, β ) ^ i 0 By, so we can write F = JL L 0 L v.
In other words, the sequence (1.2.1) is exact.

Being the coend, F is a Hopf algebra in the category W - Fun -Comod C H-
Mod (braided Hopf algebra), as we have seen in Sect. 1.2. The Hopf structure of F
described by tangles in [37] converts to the following. As the coalgebra F coincides
with Fun. The multiplication in F is expressed via the multiplication in Fun as

mF(f 0 g) =

9θ)Ί~l(9(\)))f(1)9(2)

by (1.2.2) and (1.2.3), where

The unit of F is the same as the unit of Fun. The antipode 7 F of F is expressed via
the antipode 7 of Fun:

for f £ F. The inverse antipode is

ΊF ( / ) = P(/(4)

All the structure maps Z\, ε, ra^, 7 F are homomoφhisms of iί-modules.

3.4. The dual braided Hopf algebra. In order to define a Hopf algebra dual to F we
shall not consider the rational part ° F of the i7-module * F of all linear functionals
on F. Instead we denote by U the iί-submodule H c *F. This amounts to consider
the adjoint action

ad a.x = α(

for a e H, x e U. Since * F is an algebra in the category iί-Mod (being dual to
the coalgebra F £ ff-Mod), so is U with the usual multiplication m of H. We want
to introduce a comultiplication V : U —>• U 0 C/ which would be dual to rap in the
proper sense:

<Vu, / (8) (/> = (w(1) 0 u{2\ f®g) = (u{2\ f) (u{l\g) = (u, mF(f 0 g))

for u G E/, /, g G F . By dualising the formulae for ra^ one arrives to the following

(3.4.1) Vu = zdR".u(2) 0 Λ'wd)

(3.4.2) = u(ι)Ί(R") 0 ad Rf .u{2).

The counit of [/ coincides with the counit of H. The operations ra, V, ε make [/ into
a braided Hopf algebra in iJ-Mod, the antipode ju : U —> U being

Ίu(u) = vκ-χ

Ί(R")Ί(u)R'

and the inverse antipode being

7^1(u) = R'κ-ιv-ιη(u)R" = η2(Rf)η~\u)Rn n'1^1.

This is the unique Hopf algebra structure dual to F on the H-module H.
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3.5. The algebra f. The algebra Fun* acts in every finite dimensional H-module
X. Consider special elements lγ(υ 0 w) G Fun* determined for any w G Wv,
v eV G iί-mod as the operators in X:

(3.5.1) lγ(υ<g)w)(x) = (ev(g)l)(l 0 c2)(υ 0 u> 0 x) = y^(t>,/

The subspace u spanned by lv (v 0 w) is contained in H and even in h, so it is finite
dimensional. As shown in [37] u is a braided Hopf subalgebra of °F, therefore, it is
closed under the operations of U and constitutes a finite dimensional braided Hopf
subalgebra of U.

The map

vew

factors through the coend (1.2.1), therefore, determines a map l~ : F —> U, which is
a homomorphism of Hopf algebras in iί-Mod [37]. The image of l~ is u. The form
ω : F 0 F —> k (1.2.5) can be presented as

ω(J ® tLa

b) = (Γ(f).la, lb) = (I-(/), tLa

b),

hence, Annleftα; = Ker/~. Therefore, the braided Hopf algebras f = F/ Annω and
u are isomorphic [37, Corollary 3.10]. Thus the first modular axiom (Ml) is always
satisfied for the considered algebras H.

By definition the subspace u C h is the minimal subspace such that Rl2R21 G
u 0 h. Since (7 0 j)(Rl2R21) = R2lRu, the minimal subspace B c h such that
Rl2R21 e h 0 B is 7(11). It does not coincide necessarily with u, for u is not an
ordinary Hopf subalgebra. Repeating the reasoning we get 72(u) = u and conclude
that RnR2X e 11 0 7(11). Similarly ( i ^ 1 2 ^ 2 1 ) - 1 G u 0 7(11).

3.6. 2-modular Hopf algebras. We already know by Eq. (3.5.1) the image

(3.6.1) Γ (/) = J2(Ί-
ι(Rfμ^ f)B!άB!!

for any / G F. Notice that 7 ~ 1 ( β ^ β < ) ® R'3R" G u 0 u. The pairing U ^ F M

U(&F —> k factorizes through a perfect pairing u 0 f —> k due to Ann l e f t ω = AnnΓ l g h t ω.

Therefore, an element x G H is representable in the form / " ( / ) for some / G f iff

x G u.

Theorem 3.6.1. A ribbon Hopf algebra (H, R, K) is 2-modular (that is, H-mod is
2-modular) if and only ifvEu, or equivalently, v~x G u.

Proof. If the axiom (M27) holds, then v = Z~(0(1)) for some θ : k -» f. Hence, v G u
by the above discussion.

If v G u, then for some / G f we have v = l~(f). Since v is central, the subspace
kv C u is a trivial ϋf-submodule. Hence, its preimage kf c f by an isomorphism
l~ : f —• u is also a trivial if-submodule. Now θ : k —• f, 1 1—• / is the homomorphism
required in the axiom (M2')

The condition v 0 l(Annc<;) C Anno; is equivalent to v~ι 0 l(Annα ) C Anno;
[37, Corollary 5.12]. Therefore, v G u if and only if z/"1 G u. D
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Corollary 3.6.2. If a ribbon Hopf algebra (iί, R, K,) is 2-modular, then K Eh. There-
fore, its minimal quasitrίangular subalgebra (h, R) equipped with n will be also a
2-modular ribbon Hopf algebra.

Remark 3.6.1. Let H be a ribbon Hopf algebra. The category ϋΓ-mod is perfect mod-
ular if and only if F = f, or equivalently, H = u, so H is called factorizable [49].

3.7. 3-modular Hopf algebras

Proposition 3.7.1. Let a G Fun be an element. Denote the corresponding linear
functional H —> k and the linear map k —>• Fun, 1 ι—> a, also by a. The following
conditions are equivalent:

(i) a : k —> F is a morphism of H-modules;
(ii) α ( i )7(α ( 3 )) ® a{2) = 1 <8> a;

(Hi) a(X(\)U^(X(2))) = ε(x)a(u)for any x, u e H;
(iv) a : U —> k is a morphism of H-modules;
(v) a{xy) = a(yη2(x))for any x,y e H.

Proof is a straightforward check and it is left to the reader.

Theorem 3.7.2. An element σ G F is a two-sided integral on the algebra U if and
only if the equivalent conditions (i)-(v) of Proposition 3.7.1 are satisfied and σ is a
left integral on the algebra H, that is, ( 1 0 σ)Δu = σ(u)for any u G H.

Proof Conditions (i) and (iv) are clearly necessary. Assume now that (iii) holds.
σ e F is a two-sided integral if and only if

(3.7.1) (σ 0 l)Vw = σ(u) = (1 Θ σ)Vu

for any u G U. Now we calculate

(σ <g> l)Vu = σ(ad R"'.u{2))R'TZ(1) = σ{u(2))ε(R")R'U(D =

(1 0 σ)Vu = uil)Ί{Rlf)σ^άRrMi2)) = u(1^(Rf/)€(Rf)a(u(2)) = u(1)σ(u(2))

by Eq. (3.4.1) and Eq. (3.4.2). Thus, both Eqs. (3.7.1) hold if one equation (l®σ)Δu =
σ(u) holds. D

Let the algebra F have a two-sided integral σ : / —> F. Then TΓ O σ : k —> f is
a two-sided integral, therefore it is proportional to μ. If the proportionality constant
does not vanish, then σ can be rescaled to satisfy π o σ = μ. Non-vanishing of π o σ
is equivalent to non-vanishing of l~(σ) G u or of 7"1(/~(σ)) G u. Formula (3.6.1)
gives

Ί-
1(Γ(σ)) = σ(Rl

iR'j)RΪR'J.

So we get

Theorem 3.7.3. A finite dimensional ribbon Hopf algebra (H, R, K) is 3-modular (that
is, H-mod is 3-modular) if and only if the following conditions hold:

(M2) v G u,
(M3) J(xy) = J(yΊ\x)), JUζR'jWRfj JO,

where f : H —* k is a left integral on the algebra H.
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The property f(xy) = f(yy2(x)) above is equivalent to unimodularity1 of H,
which means that each left integral A G H is a right integral as well. This follows
from the Radford's formula f(yy2(x)) = J(X(\)a(x(2))y) [46], where a G G(H*) is
the modulus relating left and right integrals for H.

Proposition 3.7.4. A factorizable ribbon Hopf algebra is unimodular.

Proof. This a corollary of the above theorem. Or, notice simply that in the factorizable
case the map l~ : F —> U - H is an isomorphism of algebras, preserving the counit,
and F is unimodular. D

For Drinfeld's doubles unimodularity was proven by Hennings [10] and Rad-
ford [45].

3.8. Some operators in F and U

3.8.1. 3-modular case. Assume that (H,R,κ) is 3-modular. We find explicitly the
linear maps 5, T : F —> F and their transposed maps tS,tT :U —> U.

Let y e H. There are maps F —> F9

F . F

1 = y r
F

The first is obtained as the projection of (y 0 l)(/α 0 lb) = (y, tLa

c)lc 0 lb in the form
y 0 KtLa

b) = (y,tLa

c)tLc

b. Therefore,

and similarly

The transposed operators in U are

u.\y (g) 1) = u

for any u G U. In particular, we have T = v 0 1 = 1 0 v and its transpose ιT

(3.8.1) T(f) = (i/, / ( 1 ) ) / ( 2 ) = /(1)<i/, / ( 2 )) for / G F,

(3.8.2) *T(w) = w = z/w for wei7 .

Similarly other maps are constructed by projection:

Ωr. X 0 F -> X 0 F

(3.8.3)

1 I am grateful to the referee for this remark.
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Ωr:F®X

(3.8.4) Ωr(f

Ω : F 0 F -> F®F

(3.8.5) β(ft (g) /) = 5^(7-
1(/ζ i

Ω~ι :

(3.8.6) β " 1

Assume according to (M3) that σ G F is a two-sided integral with π o σ - μ.
Then

5_(σ) :F -> F

5_(σ

(3.8.7)

(3.8.8) = ^ { 7 ~ ]

*SL(σ) : U -> t/

(3.8.9)

(3.8.10)

5+(σ) : F

S+(σ)(f)

(3.8.11)

(3.8.12)
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t o f~-\ . TT v TT

hj

(3.8.14)

(3.8.15)

We know by Theorem 2.1.9 that P = S+(σ)SL(σ) is a projection in F with
KerP = Anna;. Therefore,

is a projection in U with Im*P = u.
Let us determine now the normalization for the integral σ. Using the pairing

(,) : U 0 F —>• /c one computes

( l , 7 - 1 5 + ( σ ) 2 ( l ) ) = ε ( P ( l ) ) = ε ( l ) = l ,

since 1 - P( l) G Anno; C Kerε. On the other hand

so we have to satisfy ε(£S'+(σ)2(l)) = 1. Using Eq. (3.8.13) twice we get

Therefore, σ is normalized so that

(3.8.16) (σ®σ)(RnR2l)= 1.

3.8.2. 2-modular case. Let us assume less now, namely, that (H, R, K) is 2-modular.
Then the formulae (3.8.3)-(3.8.12), (3.8.14), (3.8.15) with F replaced by f, U replaced
by u and σ replaced by μ £ f or μ : u —> k give the correct operators Ωι

Xΐ, ΩfX,

(Ωtit)
±ι, S = 5_(μ) : f -* f, S~{ = S+(μ) : f -^ f, *5 : u -> u and t 5 ~ 1 :'u ->' u.

Notice that

Σ 2 " ' ; ^ 1 2 1 ^ 1 2 )- 1 G u ® u.

To determine the normalisation constant for μ we use Eq. (3.8.9). As above, using
the perfect pairing (,) : u 0 f —• k we get

hence,
(/i

In 3-modular case we can use either this formula or Eq. (3.8.16) in the form
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Proposition 3.8.1. Let (H, i?, K) be a 2-modular Hopf algebra. Then

λ = μ(z/), λ" 1 = μ(^~ 1).

Moreover, if{H, R, K) is 3-modular, then

(3.8.17) Ή+ίσXi^ 1) = \±lv*1, *S_(σ)(i/±1) = λ± 1ι/^1,

A = σ(V), λ" 1 = σίz/"1).

The perfect modular case was considered in [40]. When H is a Drinfeld's double
one can compute λ via contraction of the moduli (see Kerler [16]).

Proof. Both cases being similar, we prove the second statement. Equations (2.1.1),
(2.1.2) mean that for any iί-module X and any vector X E I ,

(ε <g> l)Ωr(T±ι(σ) ® x) = λ±ιv*ιx.

Using Eqs. (3.8.1) and (3.8.4) we get

(ε ® l)Ωr(T±ι(σ) <8> x) = (ε <g> l)Ωr({u±ι, σ

= tS-(σ)(v±1)x.

Therefore, tS-(σ)(v±ι) = λ^v^1. Applying ηu we get the same result for tS+(σ).
Applying ε to Eq. (3.8.17) we get σ{v±x) = λ^1 by Eq. (3.2.1). D

4. Representations of mapping class groups

According to [38] for any 2-modular category W there are projective representations
of mapping class groups of g^-labled surfaces in vector spaces Hom^(—, —). Here
we pay attention mainly to the categories W = iί-mod, where H is a 2-modular
Hopf algebra, and we describe the representations explicitly. In the particular case
of closed surfaces or surfaces with one hole these representations are closely related
to the representations of mapping class groups in a category of tangles obtained by
Matveev and Polyak [43].

By a labeled surface we shall understand the following: a compact oriented surface
with a labeling of boundary circles L : πo(ΘΣ) —» Ob W, % ι-> Xi and with a
chosen point xz on iih boundary circle, i.e. a section x : π${dΣ) —•*• dΣ of the
projection dΣ -^ πo(dΣ) is fixed. By a homeomorphism of labeled surfaces we
mean an orientation and labeling preserving homeomorphism, which sends the set
of chosen points to itself. A mapping class group MCG(Σ) is defined as the group
of homeomorphisms Σ —> Σ modulo isotopy equivalence relation. An isotopy is
supposed not to move the chosen points.

We use the convention AB - A- B - B o A in this section.
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4.1. A central extension of the category of surfaces. Projective representations of
the mapping class groups are constructed in [38] as follows. The category Surf of
labeled surfaces and their homeomorphisms is embedded (non-canonically) into a
category ON of oriented nets, which are a sort of labeled oriented graphs with l-,2-,
or 3-valent vertices. Morphisms of ON are generated by natural maps of graphs and
some extra generators called fusing, braiding, twists and switches. In particular, the
homeomorphisms 5, T : ΊΓ2 —> ΊΓ2 of the torus go to generators £, T in ON. The
generators of ON are subject to several relations, including

(4.1.1) (STf = S2.

A central extension EN of the category ON is defined [38] by adding one more
generator C commuting with other generators and deforming the relation (4.1.1) to

(ST)3 = CS2.

Lift the central extension to Surf as in the diagram

1 > 7L > ESurf > Surf > 1

1 > 7L > EN — J — > ON > 1

The meaning of this diagram is the following. Objects of ESurf are objects of
Surf. For any two homeomorphic surfaces Σ\, Σ2 G Ob Surf let ESurf (Σ\, Σ2) be
determined as a central extension of Surf(Σ\,Σ2) as in pull-back

ESurf{ΣuΣ2) > Surf(ΣuΣ2) > 1

1 > 7L > EN(φ(Σι),φ(Σ2)) —J—> ON{φ(Σx),φ{Σ2)) > 1

1

Simply set ESurf (ΣUΣ2) = j (φ(Surf(ΣuΣ2))) and set ESurf(ΣuΣ2) empty if
Σ\ and Σ2 are not homeomorphic in Surf.

The central extension ESurf of the groupoid Surf (as any other central extension
by Έ) can be described by a cohomology class in H2(Surf, Έ) uniquely up to equiva-
lence of categories. Namely, choose arbitrarily a lifting / E ESurf for any morphism
/ G Surf and for any composable /, g £ Surf set #(/, g) = m if f~ι{fg)g~ι = Cm.
For any f.g^he Surf such that fg and gh exist we have

θ(f, 9) + θ(fg, h) = 0(/, gh) + θ(g, h).

Restricting to f,g e MCG(Σ) we get a 2-cocycle θ e Z2(MCG(Σ),%\ whose
cohomology class [θ] G H2{MCG{Σ),Έ) does not depend on the lifting.

A functor EN —>• /c-vect sending C to λ G kx was constructed in [38]. So
a summary of this work can be given by the following commutative diagram of
functors

Zf :ESurf > EN > k -vect

•1
Surf —2—> ON
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Any section of the projection p would give a projective representation Z : Surf —* k~
vect satisfying Z(fg) = θ(f,g)Z(f)Z(g) for any composable /, g e Surf with a
2-cocycle θ.

Here we shall describe the projective representation of M'gn = MCG(Σg^n) in
Z(Σgin) = Hom(Xi <g> . . . ® X n , f^ 5 ) for various genera g and number of holes
n. The group Mgn depends on coincidence of labels X\,...,Xn. To describe the
representations uniformly we allow for homeomorphisms which do not preserve the
labels, obtaining a larger group M9in D Mgn. It has a projection p : M9yn —> 6 n to
the symmetric group. We represent elements h G M9in by operators

Z(h) : Hom(X! ® . . . <8> X n , f®*) -> Hom(X p W _ 1 ( 1 ) <g>... ® X p W - i ( n ) , f®»)

satisfying Z(hf) = XkZ(h)Z(f) for some k G Z.

The reader might want to consider W - iί-mod as the category of labels (set
I -km this case), although the results are valid for an arbitrary 2-modular category

4.2. Sphere. Consider a sphere ΣΌ,n with n disks removed, boundary circles are la-
beled by X\, X2,..., Xn The mapping class group M 0 ? n is generated by the braiding
homeomorphisms ωι interchanging the 2th and i + l s t holes and the inverse Dehn twists
Rz performed in a collar neighbourhood of the i th boundary circle. The relations

RiRj — RjRτ, oJiRi — Ri+ιtdi, ωιRi+\ = RiUJi,

ωiRj = RjUJi if j η^i^i v 1,

ujiϋjj = ϋjjϋJi if \i — j\ > 1,

ωxω2 .. ωl_x... ω2ωx = R~2, (ωx . . . ω n _ 0 n = R~1 . . . Ή " 1 .

are defining relations of Mo,n.
The group Mo,n is represented in

by the operators

Z(ωi) = Hom(l (8) c X t + 1 , X t (8) 1, /),

This is a usual representation not only projective.
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Fig. 1.

4.3. Torus. Consider a torus Σ\jn with n disks removed, boundary circles are labeled
by X\, X2,. , Xn The mapping class group M\,n is generated by the homeomor-
phisms S, T = Tws, Ri, a>j = Tw~x Tw$, where the cycles 7^ separate j — 1st and

j t h holes as shown at Fig. 1, and the braiding homeomorphisms ωι interchanging the
i th and i + 1st holes. Denote bj = S~ιdjS and for j < k denote

1

7̂'fc = (α;fc-iα;A;-2 . ωj)(ωkωk-\... cjj+i)... (ωn-ιωn-2 . . . ωn+j-k)

c+n-l ^jX^j-fc+n+l^j-fc+n . . . (

The relations

(ST) = 5 , 5 = B12B23B34 .. .Bn-\inR^ ...R~,

S-ιbjS = bdajlbj\ T~xa^T = ah T~ιbάT = 6^-,

ϋύiRj = Rjϋύi for j y i, i + 1,

α iu j = Lϋjϋύi for |i — j | > 2,

= b\ = 1, CLjdk — &k(ijϊ bjbk = 6^1

aklbjlbkCLkb3bk

ι = Bjk for j < fc,

are defining relations of M J ? n ([44], extending [1]).
Set

Z(Σhn) = . . . (8) X n , f),

. . . (8) X n , 5),
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Z(CLj) = (Hθm(Xi ® . . . ® Xj-i ® X , ® . .

Xn ® ...

'j ® . . . ® X n ) , f )

j ® . . . ® Xn, *))

Here 5 and T in the right-hand side mean 5 : f -> f, Γ : f - > f described in Sect. 2.1.
Equation (2.1.5) implies that

(Z(S)Z(T))3 = XZ(S)2.

Moreover, the above is a protective representation of M\^n [38].
Notice that in the particular case n = 0 we have

Z(Sf = 1 : Hom(J, f) -* Hom(/, f)

since 5 4 = i/"1 :f-^f.

Remark 4.3.1. The map Z(6j) = Z(5)~ 1Z(α J)Z(5) has another presentation, which
is an important part of the proof [38]. Consider for simplicity the case n = 2. Introduce
a map B2 as the composition

Hom(Xj ® X 2 , F ) H ° m ( C X 2 ' X p F ) ) Hom(X 2 ® * i , F )

^ !, X2

y 0 / AT ® ΛΓV)

/

/ V V V V / '

- ^ Hom(Xi 0 X 2

V V , F) —>• Hom(Xi ® X2, F).

It covers Z(62) in the sense that the diagram

(4.3.1) I

is commutative. Notice that in the perfect modular case F = f and Z(62) simply equals
B2.

If ^ is semisimple, the vertical arrows in (4.3.1) are surjective. The same holds
if W - iί-mod for finite dimensional H and one of the iί-modules X\ or X2 is
projective (then Xγ 0 X2 is also protective). In these assumptions we can represent
B2 in a different way as a composition of bijections
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~ Hom(X2

fN,P

~ / Hom(X2

N

Hom(X2 0 (X\

AT, P)

r
f Hom(Xi 0 (X2

, F).

Knowing Z(b2) by (4.3.1) for projective X\ or X2, one recovers this map for arbitrary
X\,Xi using short projective resolutions. In the calculations above we used

Lemma 4.3.1 ([38]). Let F : W -> fc-Vect, G :

j

/

F(X) 0 Hom(X, B) -> F(B),

Hom(S, X)

are isomorphisms of vector spaces.

G(B),

/c-Vect be functors. Then

®f^ F(f).v

> G(f).v

4.4. Closed surfaces and surfaces with one hole

4.4.1. Surfaces with one hole. Let Σ = Σ9jι be a surface of genus g with one disk
removed and the boundary labeled by an if-module X. Lickorish [29] proved that its
mapping class group Mg^ is generated by inverse Dehn twists in a neighbourhood
of the following cycles: α^, £>&, dk, e-k (β\ - d\- e{) (see Fig. 2). These Dehn twists
are denoted by the same letters as cycles. Wajnryb [61] found a system of defining
relations for M9j\. An equivalent system of relations is the following:

(A) CLibτai = bidibi, aι+\biai+\ = bτai+\bi, dibιdτ = bidibi, eibτeτ - b^ibi and all
other pairs of generators commute.

(B) (aφιa2)
4 =

Fig. 2.
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(C) ekGk = Gkdk, where Gk = bkak ... b\aιaλb\ . . . akbk.
(D) Jkdk+\ = dkJk, where Jk = bkakak+ιbkbk+ιak+\a^ b^ dkbkakbk-χdk-\

%UκWκιKz%<l

(E) hbx

 ιaλ

 la^1bl

 ιhb\a2(i\b\d2 =

h = 6^"1α^"1

, where

To construct Z(Σ) we follow the recipe of [38]. First of all we choose an oriented
net (roughly this is an oriented graph, for precise definition see [38]) which encodes
the structure of the surface. Several graphs can be chosen, for instance, Figs. 3-5.

L2

C2 c3

Fig. 3.

Fig. 4.

La-2 - 1

X

X

D2 DQ

Λ2

E2

Fig. 5.

They are all isomoφhic in the category of oriented nets [38]. Next step is to compute
the functor W°v —> /c-vect corresponding to these graphs, obtained by taking coends
over internal edges. The functor is obtained in different forms, which are isomoφhic
due to associativity isomoφhisms in W. By Lemma 4.3.1 we find that to Fig. 3
corresponds
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/

0 Hom(Ly 0 Dg, Dg) 0 . . . 0 Hom(L2 (8) A , A ) 0 Hom(C2 0 A , P i ) ~

/

Di,Li

Hom(X, Lg 0 L^_i 0 . . . 0 L2 0 C2)
 V

Hom(X2, D2 0 v A ) 0 Hom(C2, A 0 v A ) ~

- /(4.4.1) - / Hom(X, (Dg 0 £>/) 0 . . . 0 (D2 0 P 2

V ) 0 ( A 0 A v ) )

To Fig. 4 corresponds

/ Hom(C2 0 DuDχ) 0 Hom(A 0 E2, C2) 0 Hom(C3, D2 0 £ 2 ) 0 ..

P g _ i 0 Eg-.{) 0 H o m ( ^ 0 £?p, Cg) 0 Hom(X, D 5 0 Eg)

~ / Hom(C2, £>i 0 D i v ) 0 Hom(C3, A 0 A v 0 C2) 0 . . . 0

, P^_i 0 A,_i V Θ C»-i) ® Hom(X, D^ 0 D ^ v 0 Cg) ~

(4.4.2) - / Hom(X, (Dg 0 D^ v ) 0 . . . 0 ( A 0 A V ) 0 Φ i 0 A V ) )

To Fig. 5 corresponds

/

At,Dt,Et

/

£

Hom(£2 0 Dγ, A2) 0 Hom(A 0 A2, D{) 0 Hom(E3, A3 0 £?2) 0

, ̂  0 Eg)

Hom(E2 0 A , A v 0 A ) 0 Hom(E3, A
v 0 A 0 E2) 0 ..

0 Hom(Eg, Dg

y 0 ZVi ® ^ - 1 )

(4.4.3) ~ / Hom(X, (Dg 0 Dg

y) 0 . . . 0 ( A 0 A v ) 0 ( A 0 A v ) )

If X is projective this space is

The same answer will be obtained if we calculate the coend in the category of left
exact functors Wop —> fc-vect. The final step is taking a quotient and setting
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The generators akldk)ek of M9i\ are represented by applying a ribbon twist to
internal variables Ak,Dk,Ek. Thus from any presentation (4.4.1)-(4.4.3) we get

(4.4.4) Z(dk) = Hom(X, f®9~k 0 T 0 f®*"1).

From the third presentation (4.4.3) we get that ak acts by applying a ribbon twist to
Dk

v 0 Dk-u which induces Γ 0 T β : F 0 F -> F 0 F. Hence,

(4.4.5) Z(αfc) = Hom(X, f®*"* 0 (Γ 0 T Ω) 0 f®fe-2).

From the second presentation (4.4.2) we get that ek acts by applying a ribbon twist
to Dk

w 0 Cfe or, equivalently, to Dk

y 0 Dk^{ 0 Dk^x

y 0 . . . 0 A 0 £>iv. This
induces Ωr T 0 z/: F 0 F ^ " 1 -^ F 0 F® f c~ ι, hence,

(4.4.6) Z(efc) = H o m ^ f ® * - * 0 i7 f^ fc_,) • Hom(X,f®^ f c 0 Γ

Finally, 6̂  is conjugate to d^ by a homeomorphism of the type S, and we set

(4.4.7) Zφk) = Hom(X,f®^~fc 0 STS~ι ®f®k~ι).

As shown in [38] these operators define a projective representation Mg^χ
PGL(Z(Σg^\)) with the 2-cocycle whose values are powers of λ. Therefore, this rep-
resentation is induced by a projective representation z : M9)\ ® / {

αfc i—> f05"*5 0 (T 0 T β ) 0 f®k~2

bk i—> f®9~k 0 1 ® * 1

e/c π - ^ f®9~k Θ ( β f > f c - , Γ 0 I/,®*-,).

Indeed, set X = f®9 and apply both parts of relations (A)-(E) to the vector iάχ G
Z{ΣgΛ).

4.4.2. Closed surfaces. Now let Σ9$ be a closed surface of genus g. The mapping
class group M9$ is the quotient of Mg^\ by two extra relations [61]:

(F) Hg = 1 , where Hk = bgag . . . b2(i2b\a\a\b\a2b2 agbgdgeg.
(G) dg = eg .

Set ZίΣ^o) = Hom(C,f®5) and define Z(ak\ Z{bk\ Z(dk\ Z{ek) by Eqs. (4.4.4)-
(4.4.7) with X = C. We get a projective representation M^o -> PGL(Z(Σg^)) [38].

4.4.3. Exercises. The reader might want to check some of the above results straight-
forwardly. Several exercises will help in doing this. They present minor generaliza-
tions of some of the quoted results and specify the power of λ involved in relations.

Easy exercise 1. All maps z(at), z(dj), z(ek) : f®9 -* f®9 commute. z(bt) commutes
with all maps except z(az), z(aί+\\ z{d%\ z{c{). Also z(dι)z(bι)z(dι) = z(bi)z(di)z(bt)
(see relation (A)).
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Exercise 2. For any Y G W we have

Ω\γ S~ι 0 i/y β£y

= XiT^s^T'1) 0 y ί ? ^ . (S~ιτ-1) ® y : f 0 y -> f 0 y,

i7y5f z/y (E)^"1 β(, f

= λy <8) ( Γ - 1 ^ - ^ " 1 ) β^ j f y (8> ( S - 1 ! 1 - 1 ) : y 0 f -> y 0 f.

Easy exercise 3. Deduce from the previous exercise that z(ai)zφi)z(aτ) = z(bι)z(ai)
zφiX z(ai+ι)z(bi)z(ai+ι) = zφi)z(ai+ι)zφi), z{ei)zφi)z(eι) = zφi)z(ei)zφi) (see
relation (A)).

Exercise 4. For any Y G W we have

(yγ ®S~ι- Ωι

Yίf = vγ <8> f ιv®f: y (8) f -* y 0 f.

What does it mean for Y = /?

Easy exercise 5. Deduce from the previous exercise that

(relation (B)).

Exercise 6. For any F G ^ w e have

(T- 1 ^- 1 ) 0 y β £ y (S~ιτs) 0 y (β^y)" 1 osτ) 0 y

Exercise 7. Deduce from the previous exercise that z(e2) = z(G2)z(d2)z(G2)~ι,

where z(G2) *= zφ2)z(a2)z(dι)
2z(a2)zφ2).

Easy exercise 8. Show that

Z(dg) = Z(eg) : ^ ^

4.5. General case. Let £ ^ n be a surface of genus g with n disks removed, boundary
circles are labeled by X\,... ,Xn. Figure 6 suggests an embedding Σg^

 c-^ Σg,n>
which induces a homomorphism Mg^ —»• Mg^n. The mapping class group M ^ n is
generated by images ak,bk,dk, e^ of generators of MP ji, the braidings α;̂ , the twists
Ri, new generators 5/, which are homeomorphisms of the type S inside the T 2 — D2

region Fι and identity outside, and inverse Dehn twists tj^ in tubular neighbourhood
of the cycles tj^ This is not a minimal system of generators, since Sk can be expressed
through bk and dk. All of these generators are easily representable.

Set

Z(Σg,n) =

Z(ak) = Hom(X! 0 . . . 0 X n , f®^"fc 0 (T 0 T Ω) 0 f® fc"2),
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Fig. 6.

Z(dk) =

Z(e f c) =

Z(cji) = Hom(Xi (8)...

Set Z(tjyk) to be the composition

Hom(Xi

Hom(Xi

-, Γ

^"^ (8> f (8) f®^" 1

j , f®9~k 0 f <8)

n Θ . . . 0 v X 3 + 1 ) l

Hom(Xi (8)... (8) X

Then the above is a projective representation of M9yn [38].

I don't know any defining system of relations of Mg,n. Perhaps, it was never
written explicitly. Proof of the result [38] used the exact sequence [1, 56]

Bg,n M9,n

Bg,n Bg,g,n

1,

1,

where Bg,n is the braid group of a surface of genus g, whose presentation was given
by Scott [56].
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5. Invariants of closed 3-manifolds

I have nothing to add to the method of obtaining invariants of closed 3-manifolds
via Kirby calculus invented by Reshetikhin and Turaev [51]. It was used afterwards
by many authors including Lickorish [30, 31], Kirby and Melvin [19]. Turaev [60]
has shown that a semisimple modular category serves well to define a 3-manifold
invariant. In this paper I propose to use (eventually non-semisimple) 3-modular cat-
egories W as the starting data for the method. When W = H-moά this invariant
coincides with the one defined by Hennings [10] translated to an unoriented setting
by Kauffman and Radford [14].

5.1. 3-manifolds from links in S3. It is well known that any closed connected oriented
3-manifold can be obtained via surgery along a framed tame link in S3 [28]. Namely,
given a framed tame link L = L\ U L2 U U Lm C S3 = dB4 we construct a
compact oriented 4-manifold WL glueing m 2-handles D2 x D2 (D2 is a disk) to the
ball B4 along closed tubular neighbourhoods Ut c S3 of L{. The part of the boundary
Sι x D2 = dD2 x D2 of the ith 2-handle is identified with Ui ~ U x D2 so that
the linking number of Sι x 1 C dD2 x dD2 with Li coincides with the self-linking
number of Li. The boundary ML = OWL is an oriented compact closed connected
3-manifold.

Kirby proved [17] that two manifolds ML and ML> obtained by surgery from two
framed links L,U c S3 are homeomorphic iff the link V can be obtained from L
by a finite sequence of transformations, which we call Kirby moves:

1. The elimination or insertion of an unknotted component labeled ± 1 , unlinked with
other components.

2. The band (or handle slide) move - making a connected sum of one of the com-
ponents L% with a parallel copy Lj of another component L3.

Fenn and Rourke [7] proved a similar result with a subset of transformations intro-
duced by Kirby, which we call Kirby-Fenn-Rourke moves (see Figs. 7-8). Therefore,
to give an invariant τ(M) e k for 3-manifolds M = ML amounts to give an invariant
τ(L) for framed links L in S3, which would not change under Kirby or Kirby-Fenn-
Rourke moves. We may and we shall consider framed links in M? instead of S3.

5.2. An invariant determined by a 3-modular category. Let W be a 3-modular cate-
gory. The reader might want to assume that ¥? = iJ-mod for simplicity. First of all
we construct an invariant of framed links in M3.

Fig. 7. Fig. 8.
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Let L be a framed tame link in M3. It can be deformed to a smooth link so that its
projection p(L) to the standard plane M2 is a smooth generic link diagram DL and the
normal vector field on Li determining the framing is parallel to M2. Choose a straight
line M1 in M2 so that DL lies in one half-plane with respect to this line (we shall draw
it as a lower half-plane). Choose a point ê  e Li for each i and connect it in M3 with
a point Xi of E 1 by a curve 7$, which projects to the lower half-plane. We assume
p(7i) smooth and transversal to p(Li) in the point pfe). Make it generic, so that
Xi 7̂  Xj and the curves jj don't intersect each other and L except at the ends. Draw
the corresponding plane diagram DL assigning necessary signs of overcrossing or
undercrossing to each double point of the projection to IR2. Duplicate the projections
of the curves 7^ replacing them by two parallel curves 72~ and 7+ (e.g. parts of the
boundary of a small neighbourhood V$ of p(7i)). Remove the connected component
of Li U Vi containing e*. The result will be a diagram of a tangle looking like Fig. 9.
Make this diagram into a ^-tangle TL [37] assigning a color Xi e Ob £P to the point
x; and X^v to the point x[ and inserting to 7^ such a morphism it2^ : Xi —• 2

α G Z, as consistency requires. The tangle TL represents a morphism in W

Fix all objects X%,XiW except for i = j and vary X3,X3

W. We see that the
following diagram commutes for any morphism f :Yj —* Zj E W:

Xy

Indeed, insert a morphism / to a point of 7^ in Fig. 9 and push it along the curve

through all crossings. It will appear on 7+ as /*.
Commutativity of the above diagram means that Φ{TL\ . . . ) factorizes through the

canonical mappings iχj : Xj 0 XjV —> F on the j t h place (compare with (1.2.1)).
Therefore, it defines a morphism

Φ(TL) : F ® m -> /.

Fig. 9.
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Take an invariant element of F, that is, a morphism a : I —> F € W. Define a
number in k

φ{TL, a): / = I®m ^ > F ® m - ^ H I.

Proposition 5.2.1. Assume that 7F(OO = ot. Then the number Φ{TL,OL) e k depends
only on L and a and not on choices made in constructing TL.

Notation. τ(L, a) = φ(TL, a).

Proof. Since the source of a is a unit object, we can change all overcrossings with
7j to undercrossings and vice versa without changing the value of φ(TL,a). Since all
tensor factors in a ® m coincide, the result does not depend on the order of Xj = 7j(l)
on the line. Indeed, an interchange of the two neighbour ends x% and Xj is equivalent
to adding a crossing which is interpreted a s c : / Θ / — > / ( g ) / , and this is an identity
morphism.

The tangent vector p(7i)'(0) can be chosen normal to p(Li) at the point pfe).
The following diagram explains that the change from one normal vector to another
is equivalent to composing a with ηp or 7^* on the ,7 th place (Fig. 10). Since
a = jpla the resulting Φ(TL,OL) will not change.

*i *ί xi xί

Fig. 10.

Also the value of φ(TLia) does not depend on the choice of e .̂ Indeed, make
βi slide along Li and deform 7; simultaneously. This isotopy will not change
Φ(TL Xx,..., Xm) and a forteriori φ(TL, α).

Therefore, </>(TL, OL) depends only on the plane diagram DL and a. It is invariant
under the three Reidemeister moves performed on DL, namely, Ω2, Ω3 [47] and

J71F

Indeed, these moves are local, and we can always choose the points e% e Li outside
the changed pieces, hence, the corresponding moves for ^-tangles apply without
changing the morphism Φ(TL',X\ , . . . , Xm) For the ΩIF move notice that u\ : X —>
Xvv (resp. u^2 : X —> V V X ) in the left (resp. right) hand side will be accompanied
by a power of ufa. Thus, invariance under 4?1F follows from the equation

UQ2U\ = v = v^u\2 : X ^ X.

Since the set of equivalence classes of plane diagrams under 4?IF, Ω2, Ω3 is the
same as the set of equivalence classes of framed links in M3 ([36] after [47]), we
deduce that </>(TL, a) depends only on L and a. D
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5.2.1. A 3-manifold invariant. By the very definition of a 3-modular category W
the Hopf algebra F e W has a two-sided integral σ : / —> F. In the following we
shall consider the link invariant τ(L, σ) = 0 ( 7 L , σ).

Denote by s(L) the signature of the intersection form in H2(WL;W), where WL
is the 4-manifold obtained by surgery along L and ML = ΘWL It is the same as the
signature of the linking matrix of L [18].

Theorem 5.2.2. The number

is an invariant of 3-manifolds, that is, it depends only on the homeomorphism class of
ML.

Proof Equations (2.1.1), (2.1.2) show that application of one of the Kirby-Fenn-
Rourke moves multiplies τ(L,σ) by λ±ι. Simultaneously s(L) increases by ± 1 . D

It is worth understanding why T{ML) is invariant under Kirby moves. The answer
is because σ is an integral in F. Graphically this property is expressed by the following
equation

(5.2.1)

F F
Here the multiplication morphism ξ is determined from the commutative diagram

X 0 Y 0 Yv 0 X v

4
(X 0 y> 0 (X 0 y) v F

Let us give another proof of Theorem 5.2.2, using only the Kirby moves. For
particular categories related with SL(2) this was done by Lickorish [32] through a
different approach. Choose a pair of components Li,Lj in L and perform a Kirby
band move as shown at Fig. 11. The points a € Li and b e Lj become "connected"
by a double line β. Take the point b as ej and choose η3 so that τJ (O) pointed out
in the direction of /?. Duplicate all 7^ as required by the recipe. Since the curves
Lj and a new-made part of L\ go parallelly, we can insert the morphism ξ to this
^-F-tangle without changing the morphism . . . 0 X 0 Xw 0 . . . 0 F 0 —>feit
represents (see Fig. 12). In the vicinity of e3 the picture looks like the left-hand side
of Eq. (5.2.1). Therefore we can change it to the right-hand side without changing
τ(L',σ). The resulting tangle at Fig. 13 is isotopic to the initial one, so its value
τ(L',σ) equals to τ(L,σ). Finally, the signature s(L) will not change under Kirby
band move [18], whence Theorem 5.2.2 follows.
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Xi X{ Xj Xj

Fig. 11.

x. x!
I I

x. x!
J J

Fig. 12. Fig. 13.

5.3. Lens spaces. We calculate as an example the invariant r for lens spaces L(p, q).
Consider the n-component chain link L c S3 and the value of its invariant

(5.3.1)

\

The surgery at L gives the lens space L(p, q), where prime to each other p, q
satisfy

v 1

1

α2

a
(see Rolfsen [52]). The right-hand side of Eq. (5.3.1) can be presented through the
maps 5, T : F -> F as
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τ(L, σ) = £(TanSTan-] 5 . . . Ta2STa] 5(1))

= (l,TanSTan-iS...Ta2STaιS(l))

./<,

The last formula uses only the maps *T, *S = *S_(σ) in [7, determined by Eqs. (3.8.2)
and (3.8.9). We can also use *5+(σ) (see Eq. (3.8.13)) instead of tS.

In the particular case n = 1, a\ - 0 we get τ(L, σ) = ε(/i) = / ' l , which vanishes
for all uς(g), hence, τ{S2 x 5 1) = 0. This contrasts sharply with the case of a perfect
modular semisimple W, where ε(μ) = y^Γ\(dim^ X^)2 is invertible (see [35, 60]).
Here X^ runs over the set of isomoφhism classes of simple objects of W. Their
categorical dimensions

v e v

are real numbers if the ground field is End/ = C [35], so ε(μ) is positive.
Finally, s(L) is the signature of the linking matrix

1 α 2 1

1 '•.

0

\

1
1 αn_! 1

1 aj

which gives τ(L(jp, q)).

5.4. The Hennings invariant. Let H be a finite dimensional 3-modular Hopf algebra
(see Theorem 3.7.3). Construct a 3-manifold invariant r(M) taking the 3-modular
category W = H -mod as data. Calculating r(L, σ) for some linkL we get an expres-
sion involving fi-matrices (as many as there are crossings in DL), elements σ and
the powers of K (as many as there are components in L) under the sign of counit.
It turns out that the result of calculation coincides with the Hennings invariant [10]
defined in an unoriented setting by Kauffman and Radford [14] up to change of con-
ventions. Indeed, the calculation of τ(L, σ) can be performed using the graphical rules
of Hennings-Kauffman-Radford as follows:
- change all crossings in DL to the composite of jR-matrix and the permutation

Ί(R')

- add to each component such a power of the morphism u^ = v$ - K, = K VQ or its

inverse uΰ2 = frΓ2 ft"1
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vl =

that after cancellations of ^Q'S with v0

 2 ' s the diagram becomes a disjoint union of
unknots;
- slide all elements put on the diagram to the left of the chosen points e* via the rule

x

Now each component looks like:

X\
Xn.

with x\,..., xn G if attached to it, and its contribution is

ε(xn...xι (8) l(σ)) = ε((xn . . . x b σ(i))σ(2)) = (xn . . . xi, σ)

(see Sect. 3.8.1). We can view σ as the left integral σ : H -^ k on the algebra H. So

r ( L , σ ) = ] P σ ( x n . .. X i ) .

where the arguments are either powers of K or come from ^-matrices acted upon by
some powers of the antipode. This is the knot invariant used in the definition of the
Hennings invariant [10] up to change of the sign of the braiding.

A. Quantum groups

A.I. R-matrices for quantum groups

Theorem A.I.I ([20, 21, 26]). The expression R = RR e Uh(Q)®Uh(Q) is an R-
matrix in the topological Hopf algebra Uh(&), where

(A.1.1) R= J ] ejφq-i((qβ - q^Eβ ® Fβ),

β€(βu...,βN)

where qp = eh^^/2 and (Cij) is the inverse matrix to (φα^).

Proposition A.1.2 (cf. [59]). The Cartan part of the R-matrix, R e Uh(1))®Uh0))
satisfies

=F{® K~\
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Consider an embedding of Hopf algebras Uq{%) c-> Uh(Q)®(C[[h]]C[h~ι, h]], Kτ ι—>
ehdίH% with respect to a field extension Q(<?) <-> C[h~\ h]]9 q κ+ th. The image of
Lusztig's divided power algebra Γ(Q) is contained in Uh(g). Let

Uh(Q)a = {xe

be natural gradings, aeQ. Note that Γ(g)α c Uh(g)a. We have R,Re ΠaeQ+

(Uh(b+r®Uh(b-Γa). Denote R = ΣaeQ+ Ra, then Ra G Uh(b+)a Θ ^ h ( b - Γ β .

Combining Theorem A. 1.1 and Proposition A. 1.2 we get

Proposition A.1.3 (cf. [59]). In Uh(Q)®3 (or Uh($f2) the following equations are
satisfied:

(A. 1.2) (Δ 0 l)R = R13 Σ K.a 0 Ra,

Ra ® ifα,
Q+

(A. 1.4) Z\opx β = ,R Ax,

~ o o

where x G t/fcCg) ««J the new coproduct Ax = RΔxR~ satisfies

= Hi (g> 1 + 1 <g> H^ ΔEi = ̂ 0 ^ + 1 ® ^ , 4 ^ = F* ® 1 + i ί " 1 ® F».

Moreover, β α G Γ(b+)α ^ [ ς ^ - 1 ] Γ ( b _ ) " α ®z[ς,q-i] C[[/ι]] due to the formula

(A. 1.5)

where

= τtι.. .
(cf. Sect. 1.1). Since Γ(g) is a free Z[q,q~ι]-module [33], Eqs. (A.1.2)-(A.1.4) with
x G Γ(Q) can be inteφreted as follows. All terms are elements of the Σ[q,q~1]-
module Γ L , A 7 G Q Γ(g)α Θ Γ( f l)^ 0 ΓfeΓ (or of Π α ? / 3 G Q Γ(g)α 0 Γ ( # 3 β) and
the equations state in particular that these elements can be multiplied.

Let ε G C be a root of unity. Change the base by the homomorphism Έ[q, q~ι] —•
C, g ^> ε and denote

Equations (A.1.2HA.1.4) still hold for Γε(g) in place of Γ(g). But the sum (A. 1.5)
is finite, so Ra vanish for all a except a finite number and R G Γε(b+) ® Γε(b-).
Therefore, Eqs. (A.1.2)-(A.1.4) hold in Γε(g)®3 or Γε(o)®2 with x G Γe(g).

Reversing the proof of Proposition A. 1.3 we see that if we find a symmetric tensor

R G Γε(ί))®2 satisfying (Δ 0 l)R = β 1 3 ^ 2 3 and

(A. 1.6) fl 1 <g> ^ β " 1 =K?<8> Έf?\ R
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~ o

for all p G 2£>o, we could construct an JR-matrix R = RR for Γε(g). It turns out that
such an element is easy to find not in Γε(%) but in its quotient (which sometimes
coincides with Γε($)). Consider a symmetric bilinear (bimultiplicative) form

π : Q x Q -+ <CX, π(Ki,Kj) = q?>, π(Ka,Kβ) = q^\

Let Annπ = {g G Q | V/i π(g, h) = 1} be its annihilator. Since for h G Q,

(A. 1.7) hEf = πiKj.hfEfh, hFf = ^(K^hr^Ffh,

the elements of Annπ lie in the centre of Γε(g). Introduce the Hopf C-algebra

The subgroup generated by Kι in Γε($) is denoted G = Q/Annπ. The form π
factorizes through a non-degenerate form on G denoted also π by abuse of notations.

Clearly, Kf% = 1 in G, where l% are minimal positive integers such that qfτ = 1.
More elements from Ann π can be found via the following

Lemma A.1.4. For any d= 1,2,3 let l(d) be the minimal positive integer I such that
q2dl = 1 and let p(d) = Σ\\a\\2=2d

 a- Then for any i
a£Δ+

l(d)(aτ,p(d)) = 1

Proof. The equation to prove is g'(<*X«ilp(<*)) = l. Assume first that | | α | | 2 i Id. Let
Si be the simple reflection corresponding to α$. The well known equation Si(Δ+ —
OLi) = Δ+ - cti implies Si(Λ+

d) = Δ^ where Δ+

d = {a G Δ+ \ \\a\\2 = Id}. Hence,

Si(p(d)) = p(d) and

(aτ\p(d)) = (Si(ai))\si(fKd))) = -(<*iW))

vanishes.
Assume now that | |α: | | 2 = Id. Then s^Δ^ — α j = Δd — cti and Si(ρ(d) — aι) =

p(d) — α^. Hence,

(αt|p(d)) = ̂ (αiWlsiWd))) = -(ai\p(d) - 2α<)

implies (αi|p(d)) = (α^αi) = 2d and the lemma follows. D

Corollary A.1.5. For any d= 1,2,3 we have K1^ = 1 in G. In particular,

The .R-matrix from the following theorem was already obtained by Rosso [53] in
the case of / relatively prime to det(d α^) using Drinfeld's double.

Theorem A.1.6. The Hopf algebra H = /^(g) is quasίtriangular with the R-matrix
~ o ^

R = RR, where R is given by Eq. (A. 1.1) and

R=ΰF

Proof. Using Eqs. (A. 1.7) one can check the property (A. 1.6) of R £ Γ ε '(g)0 2. Non-
o

degeneracy of the pairing π for Γf

ε{\}) implies that R is an E-matrix for Γ'ε{\)). It
~ o

follows from the above discussion that RR is an i?-matrix for Γ'ε(^). D
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A.2. The algebra uq(&). Rewrite Theorem A. 1.6 for q = ε as

Σ
(α runs over /?i,... ,/?/v). Non-degeneracy of TΓ : G x G ^ C x implies that the
minimal subspaces A, £ c C[G] such that i? G 4̂ 0 £ are A = 5 = C[G]. Thus,
Eq. (A.2.1) implies that the smallest subspaces h+, h__ c Γ'ε(§) such that R G h+(g)h_

β

^ w h e r ehave bases hY[β^φu_φN) Eβ

β, resp. Γ
lβ. As discussed in Sect. 3.1 (cf. [45]) h+ and h_ are Hopf subalgebras. They coincide
with the subalgebras uq(b+) = C(K±\Ei)Ki^n and uq(b-) = C(Kf\Fi)HKn9

since Eτ G h+, Eβ G wq(b+) by e.g. [34, Proposition 40.1.3]. Therefore, by general
theory uq($) = €{Kfι, E^ F ^ ) i ^ ^ n = h = h+h_ = h_h+ is a quasitriangular Hopf

subalgebra of Γ^g). It has the basis ΓLe(/?,,...,/^) E*a 'h' Π/?e(/?,,...,/?*) ^ ^ w h e r e

/ι 6 G, 0 ^ kβ,rriβ < lβ. The i?-matrix .R G txς(b+) 0 ixg(b_) is the dual tensor to
the non-degenerate Hopf pairing

π : h_ x

for / I G G , 1 ^ i , j

C, τr(ft, <, Λ) = 0, -«rv
n.

A.2.1. A presentation of uq(o). A lemma of Levendorskii and Soibelman [27] states:
for any positive roots a < β there are unique constants cn, n G C(g), such that in

(A.2.2)

where j is the number of all positive roots lying between a and /?, which are denoted
a < 7i < < 7j < β. When this lemma is combined with Lusztig's basis theorem
for F(Q) [34, Propositions 41.1.4, 41.1.7] we see that in fact

where the constant iV(g) >̂ max; di is the minimal possible. An upper bound for
it is given in Table 1. It is obtained as the product of m a x ^ with the maximal

Table 1. An estimate for

An

1

Bn

4

Cn

4
Dn

2

the constants

E6

3
Eη
4

JV(fl)

# 8

6
F 4

8
G 2

9

coefficient Q in decomposition OLQ - Σ cίai °f m e highest root αo G A. (Apply
T~k

lT~k\χ . . . T " 1 to (A.2.2), if Ea=Tiι... Tlk_x Eik.) This estimate is rather rough,
and can be essentially improved. The conjectured value of N(Q) is rnax^ di.

Introduce a K-subalgebra ^ ( g ) C Uq(#) generated by Ki,Ei)Fι. It is closed
under the automorphisms Tι and all relations (A.2.2) make sense in ^ ( g ) , thus
Qόqte) has aPoincare-Birkhoff-Witt basis Π α ^ Ω 'K\'Πβ FT (compare [25, 34]).
Clearly, ^ g ( g ) is a subalgebra of Γ(#) Θ^tς.ς-1] ^
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Assume in this subsection that ε2rn ^ 1 for all 1 ^ m ^ N(Q). Then we have a
homomorphism of Hopf algebras

(A.2.3) φ : « ί q ( β ) -> Γ(Q) <g>z[M-i] K -> Γe(g) -> Γ^g)

via the homomoφhism IK —> C, g ι-» ε. Since CIm</> = wς(g) the relations (A.2.2)
are valid also in ιtρ(g).

The algebra t/ε(g) = ^^(g) (8)κ C has the usual generators and relations of Uq(o)
with q set to ε. The obvious homomoφhism φ : Uε(g) —• Γε'(g) induced by (A.2.3)
has itς(g) as its image. Its kernel contains E1^, F^ and h — 1 for h G Ann(π :
QxQ-^ C x ) . Indeed, £fc = [J^IT; , . . .Tik_λ(E{^) in £/ς(g) and Γ(g) for some
sequence ( ή , . . . ,Zfc_i,z), and the factorial vanishes in .Tj(g). Let / C Uε($) be a
two-sided ideal generated by these elements. By the explicit form of bases we get
dimt/εCg)// ^ dimuq(o). Since φ induces an epimoφhism Uε($)/I -* uq(o), this
is in fact an isomoφhism, and a presentation of uq(o) by generators and relations
follows. Namely, the new relations

Eι£ = 0 , Fι

a

a = 0, h = 1 for a e Δ+, he Ann(π : Q x Q -> C x )

are added to the standard presentation of ί/ε(g).

Λ.3. Ribbon structure of Γ'ε(%) and uq(g). Let us find the grouplike element g =
uη{u)~x for the algebras H and h, where u = 5^n η(bn)an, R = 5^n α n ®&n. Clearly,

are non-zero left integrals in the algebras h+ and h_. For any x e h_, y e h+ and

a'1 = α_ = Π/5 ̂ / / 3 + 1 = ̂  € G (cf. Corollary A. 1.5) we have

6-x = π(x,α+)<5_, <5+y = π(α_,y)<5+.

By Drinfeld's theorem [6] (see Sect. 3.1) we find

# = α~ ! α_ = K^p G h.

By definition a ribbon structure is a choice of a group-like element n such that
κ2 = K^p and rcα = 72(α)^ for all a G Γ^g). The only group-like elements of Γj(g)
are iΓα G G. Commuting n with E1^ we get π(«, l̂ Γi) = g2, which holds for the only
element K = K2P. Therefore, the quasitriangular Hopf algebra Γ'ε(%) (or uq(g)) admits
the unique ribbon structure K = K2p

Let us find the ribbon twist element using the formula v = ΣnQ>nK2pbn> R =

Σ n α n 0 6n. Equation (A.2.1) can be rewritten as

••- Σ

where R=Σ,a

R'a® K- Therefore,

(A.3.1)
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A.3.1. The subalgebra u. Recall that the subalgebra u c h i s defined as the smallest
subspace such that Rl2R21 G u 0 h. Let us find it.

Theorem A. 1.6 gives

(A 3 2Ί o l z r > z l x / i i ^ α ~~
(rrify) -2!

n,m a Hex

β

Proposition A.3.1. The algebra u has the basis

a β

where Kχ = K2μ Y[β Kββ in Gfor some μ G Q.

This follows from the formula (A.3.2) above and

Lemma A.3.2. The smallest subspace i C C[C] such that R2 G A ® C[G] is A
C[2G], where 2G = {x2 \ x G G} C G is the subgroup of squares.

o

Proof Note that R is a symmetric tensor and

= FΪ Σ cΘ

o

This implies that R2 G C[2G] (g)C[2G], Introduce a symmetric bilinear (bimultiplica-
tive) pairing

π 2 : 2G x 2G -* C x , π2(c, d) = π(c, 6), where b2 = d.

Clearly, π(c, b) has the same value for all b G G such that b2 = d. All such 6 differ
by an element of X = {b G G | b2 = 1}. Therefore,

(A.3.3)

Γc^dγ^δdjb2 =
be® ' '

and the statement follows. D

Corollary A.3.3. uq(#) is factorizable if and only if 2G = G. In particular, it is fac-
torizable if the degree I of the root ε is odd.



508 V.V. Lyubashenko

A.4. 2-modular structure ofuq(g) and Γ^.(Q)

Theorem A.4.1. The ribbon Hopf algebras uq(g) and Γ^(Q) are 2-modular, that is
υ G u, if and only if for any x G G such that x2 - 1 we have

(A.4.1) τr(x, x) = π(x, Kip).

Remark A.4.1. Both sides of Eq. (A.4.1) are characters X —> {1,-1}, where X is
the subgroup { x e G | x 2 = l}.

Proof Equation (A.3.1) together with Proposition A.3.1 imply that v G u if and only

if kJe'aK-lp G C[2G]. We have

(A.4.2) kak'aK-lp = ^ π(g, hγxghK_lp = 7 ^ 7 ^

' ' g,he® ' ' be

where the coefficient φ(b) is the Gaussian sum

(A.4.3) φ(b) = Σπ(g, g)π(g, b~ι K_2p).

Its absolute value is found by the standard procedure

(A.4.4) \φ(b)\2 = |G

xex

This formula suggests to consider a function on Y = G/2G

Here the pairing π restricts to a non-degenerate pairing 7 r : X x 7 - ^ { l , - l } . Thus
the algebra uq(#) is 2-modular iff ψ(y) = const62/j[κ_2p]. This condition means that
the Fourier coefficients π(x, x) of the function φ are proportional to the Fourier co-
efficients π(x, K2p) of the delta function δyi[κ_2ph Equivalently, π(x, x) = π(x, K2p)
for all x G X since the proportionality constant is 1. D

A.5. The integral on uq(φ

Proposition A.5.1. The functional J : uq(φ —> C

is a left integral on the Hopf algebra uq{%). It is independent of the choice of the
reduced expression for WQ.
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Proof. Notice that

by Corollary A. 1.5. This implies (1 0 J)Δx = J x.
All left integrals are proportional to each other, whence all functionals / defined

for different reduced expressions are proportional to each other. The elements of the
highest grade Y\a E

ι£~x (g) Y\β Fβ

β~ are also proportional to each other. Since

(see [20, 21, 26], compare with (A.2.1)) these elements are all equal. Therefore all
integrals are equal. Π

A.5.1. Invariance of the integral. When uq(%) is factorizable, it is unimodular by
Proposition 3.7.4. We will prove it also in non-factorizable case.

Proposition A.5.2. The algebra ug(g) is unimodular.

Proof. A left integral δ+ £ uq(b+) and a right integral u_ £ uq(b-) are given by

a) β he®

By a result of Hennings [10] and Radford [45] the double D(uq(b+)) is unimodular
with the two-sided integral δ+ω-. Its projection to uq{%) via the epimoφhism j :
D(uq(b+)) —» UQ(Q) is

' -j _L. JL A. A. P

This is a two-sided non-zero integral in uq($). G

Λ.6. 3-modular structure of uq{%)

Proposition A.6.1. Ifuq($) is a 2-modular Hopf algebra then it is 3-modular as well.

Proof. We have to check the remaining condition (M3) from Theorem 3.7.3, namely

Only maximal powers will contribute to this expression which can be found from
Eq. (A.3.2),

(RuRn) =

Σ|2G| VAX (la~ l) _2! \Li~« ' z_^

and this obviously does not vanish. G
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Now we find the unique (up to a sign) normalization of the integral which will
be used for constructing switching operators.

Proposition A.6.2. Let j : uq(o) —> C be the renormalized left integral

ί = v/j^Gfg"2^1^ TΊ —-—-?°?' i /

considered also as an element μ G funq(G). Ifuq($) is 3-modular, then P = S2/yp :
F —• F is a projection for S = S_(μ).

Proof The claim is equivalent to Eq. (3.8.16)

" X (Rl2R2l)=l.

Substituting the expression for (f ®l)(Rl2R21) from Proposition A.6.1 we get

a(2p|2p)

|2GΓ

due to ( Π α F}?-1) K-2p = qi2ri2p)K-2p T[a F^'K This fixes the normalization. D

Proposition A.6.3. The exponential central charge λ = / v for 2-modular uq($) is a
root of unity

(A.6.1) λ = < Γ 2 ^ > 4 P Σ ^ , 9M9, A -2

(A.6.2) =

where n is the rank of Q and I is the degree of the root of unity q = ε.

Proof. From Eq. (A.3.1) we find

Substituting B!aKK-2p = ^ Σbe® Φ^b b ? E ( l ( A 4 2> w e find

where φ(b) is defined by Eq. (A.4.3). Its absolute value is determined by Eq. (A.4.4)

(A.6.3) \φ(l)\2 = \G\ V π(x, x)π(x, K_2p) = |G| \X\

since all summands equal 1 by Theorem A.4.1. Therefore,
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due to exact sequence 0 — > X — > G - i 2 G - > 0 .
By Eq. (A.6.1) λ satisfies an algebraic equation of degree 21. Since λ is an

algebraic number of absolute value 1, it is a root of unity.
If we sum up in Eq. (A.6.1) not over G, but over its covering grqup Q/IQ, the

sum will multiply by Γ/ |G|. This proves Eq. (A.6.2). D

Remark A.6.1. One easily recognizes in Eqs. (A.6.1) and (A.6.2) generalized quadratic
Gauss sums. Notice also that if uq(%) is not 2-modular, then J v - 0 by Eq. (A.6.3).

B. Examples of 3-modular algebras

We assume that (α^) is the Cartan matrix of a simple Lie algebra g and q = ε is a
primitive root of unity of degree I such that ε2p ^ 1 for 1 ^ p ^ iV(g). We explore
case by case whether uq(g) is 3-modular or equivalently 2-modular.

In general, Q = Q/ Ann π, Q being the root lattice and Ann π = Qπl Cow, where
Cow = Z{j-ωi} is the coweight lattice and oϋi is the basis of the weight lattice P.
This implies Annπ = QΠ Z{Z-c^}, where Z = Z if dι\l and Z = l/d{ if di\l. The
inclusion Q ^ P, ctj = ]ζ™=1 a^ω^ determines the annihilator:

Annπ = {u = ̂ J u jθί 3 \ Vz VJ a i j u j = 0 (mod Z )̂}.

3 3

Similarly for X = Ker{2 : G -> G},

X = {^ = ̂  ^ αj I Vi 2 ^ P flij^j = 0 (mod Z )̂}/ Annπ.

i i

2- or 3-modularity of uq(g) is equivalent to the property

(u\u) - (2/>|w) = 0 (mod I)

for all u e X.
If Z is odd, X = 0 and wς(g) is perfect modular (we shall see that this is not the

only case).

B.I. The algebra uε(sϊ(2)). This example was already considered in [40] for odd
Z. Set 11 = I for Z odd and l\ = 1/2 for Z even, then it is the degree of ε2. Since
π(K,K) = ε2 for K = K\, the group G is isomorphic to 7L/l\7h. Several cases
emerge.

1. Zi = 2m + 1 is odd. Then uε(sί(2)) is perfect and

Λk2-2k _ I ^ \ - i π a -l-2m 2
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where a is determined by ε2 = e2πιa/ίι. Here for any relatively prime integers c

and odd positive b ( | ) = ]X ί — J denotes the Jacobi quadratic symbol, where

b = pλp2.. .pr with prime pj and ( —J = ±1 is the Legendre symbol (see e.g.

[24]).
2. h = 2(2m + 1). Then uε(sί(2)) is 3-modular and

where a is determined by ε2 = e 2 π m / Z l . The value of the generalized Gauss
quadratic sum was found here by a method of Lang [24] combined with results
of Chandrasekharan [2].

3. h = Am. Then uε(sί(2)) is not 2-modular since X = {1, K2m} and

B.2. The Cartan matrix An. The determinant of the Cartan matrix is n + 1. Let
p = (Z, n + 1) be the greatest common divisor. Then

Annπ = {-v | Vi ^ aιjvj Ξ 0 (mod p)}.

i

Various possibilities appear here as we already have seen for n = 1.

B.3. The Cartan matrix Bn. Here g = o(2n + 1), di - 2 for 1 ^ i < n and dn = 1.
Index of connection detΛ = 2. Let /' = Z for Z odd and V - 1/2 for I even. Then

Annπ = {"^Ujaj \ Vi < n ^2aijuj = ® (mod Z'), ^ ^ n j ^ j = 0 (mod I)}.

In particular, 2u = (άttA)u = 0 (mod V) if n E Annπ. Solving the equations we find
that Annπ = ΓQ and G = Q/l'Q.

1. V is odd. Then uq($) is perfect modular. Z might be even in this case.
2. V - 2m is even. Then X = F2{mα;} and the algebra U£(Q) is 2-modular iff m is

odd.

B.4. The Cartan matrix Cn. Here Q = sp(2n), di = 1 if 1 ^ z < n and cZn = 2. The
index of connection det A = 2. Let Z7 = Z for Z odd and V - 1/2 for Z even. Then

Annπ = {V^UjCtj | Vi < n V^«,ij% = 0 (mod Z), Y ^ α n j ^ = 0 (mod I')}.

3 3 3

1. I is odd. Then uq(o) is perfect modular with G = Q/IQ.
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2. Z = 2(2ra + 1). Then uq($) is 3-modular and

_ (lQ + Έ,(2m + l )α n for n odd

1 IQ + 2£(2m + l )α n + ̂ (2m + l)(αi + α 3 + + α n _i) for n even '

In both cases X = F2{(2m + l ) α j .
3. / = 4m. Then

Annπ = IQ + Σ2man + 2£m(2αi + 2^3 +

A) n zs odd. Then wq(g) is 3-modular and X - F2{27710 ,̂7710 }̂.
B) n = In' is even. Then

X - F2{2raα;, m α n , m(αi + 0:3 + + an-\ + n'an)}

and uq($) is 3-modular iff nf even or m odd.

B.5. The Cartan matrix Dn. Here g = o(2n) and dτ = 1. The index of connection
detA = 4. Since Au = 0 (mod Z) implies 4u = 0 (mod Z), we have for p = (4,Z),
it = 16, 6 = (61,.. ., 6n), i fcΞO (mod p). This enables one to find all u G Annπ =
QΠlP.

1. h i oJJ. uq(%) is perfect modular with Q = Q/IQ.
2. I = 2(2m + 1). Then uq(%) is 3-modular with

G = Q/(/Q + S(2m + l)(α n_i + an)) for n odd or

G = Q/(IQ + 7L{2m + l)(α n_i + o n ) + ̂ (2m + l)(αi + a3 + + α n_i))

for n even. In both cases X = F2{(2m + l)o^}.
3. I = 4m αnt/ n w odd. ^^(9) is 3-modular with

Annπ -IQ + Έ2m{an-\ + α n ) + Zm(2aι + 2α3 + + 2on_2 — α n _i + α n ) ,

X = f2{2mai,m(an-ι + α n )} .

4. I = 4m and n = 2nr. Here

Annπ = IQ + 7L2πι{an-ι + an) + I2m(aι + a3 + + α n _ 3 + α n - i λ

X = F2{2mα2, m(α n _! + α n ) , m(αi + α 3 + + α n _ 3 + α n _ 0 } .

The algebra uς(g) is 3-modular iff n' even or m odd.

B.6. 77*e Cartan matrix E6. Here d̂  = 1 and detA = 3. The equation Au = 0
(mod /) implies 3 W Ξ O (mod I).

1. Z ί*5 odJ. Then t^(g) is perfect modular with

I - α6)), if Z = 3p

2. I = 2m and 3|ra. Then %(g) is 3-modular with G = Q/ZQ and X =

3. Z = 6m. Again uq(o) is 3-modular with

G = Q/ilQ + 7L2m{piλ - a3 + a5 - α6)),

X = F2{3mαi, πι(a\ — α 3
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B.7. The Carton matrix EΊ. Here dι = 1 and άttA - 2. The equation Au = 0
(mod Z) implies 2u = 0 (mod Z).

1. ί i ί odd. Then 1^(3) is perfect modular with G = Q/IQ.
2. Z = 2(2m + 1). Then uq($) is 3-modular with X = F2{(2m + 1)^}

G = Q/(IQ + Z(2m + l)(α 2 + α 5 + α 7)).

3. Z = 4m. Then X = F2{2mα;, m(α 2 + α 5 + α 7)}

G = Q/(IQ + Z2m(α2 + α 5 + α7)).

The algebra uq($) is 3-modular iff m is odd.

5.8. The Cartan matrix Es. Here dτ = 1 and det A = 1, therefore, G = Q/ZQ.

1. I is odd. Then wς(g) is perfect modular.
2. / = 2m. Then ttq(g) is 3-modular with X = F

J5.9. The Cartan matrix F 4 . Here d\ = di = 2, d3 = c?4 = 1 and det^4 = 1, which
implies Q = P. Let Z7 = I for / odd and V = 1/2 for / even. Then

A n n π = ΊL{lfω\, I'ω2, lω-$, IL04},

where

- 2a\ + 3α2 + 4α3 + 2o;4, CJ2 = 3a\ + 6α2

= 2θί\ + 4α 2 + 6α3 + 3α4, 0^4= αi + 2α 2

are the fundamental weights.

1. I is odd. Then uq(#) is perfect modular with G = Q/IQ.
2. I = 21'. Then uq(o) is 3-modular with G ~ (Z/ΓZ)2 x (Z/ZZ)2

G = Q/(lfax, Zr(3α2 + 4α 3 + 2α4), /(αi + 2α2 + 3α3), Zα4),

_ ίF2{Zx(αi + 2α2 + 3α3), Z;α4} for Γ odd

1 F2{raαi, m(3o;2 + 4α 3 + 2α4), Z7(Qίi + 2α 2 + 3α3), Z/α4} for Z7 = 2m '

B.10. The Cartan matrix G2. Here d\ = 1, d2 = 3 and detA = 1, which implies
Q = P. Let Z' = Z if 3|Z and Z' = 1/3 if 3|Z. Then Annπ = Z{lωul'ω2}, where

α i = 2OL\ + α 2 , c<;2 = 3OL\ + 2 α 2

are the fundamental weights. Therefore,

G = Q/Z{lωuϊω2} ~ 7L/17L x ΊL/l'7L.

1. Z w o<iί/. Then uq(%) is perfect modular.

2. Z = 2m. Then wg(g) is 3-modular with X = F2{mα;i, ι^
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