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Abstract: We prove that a diffeomorphism possessing a homoclinic point with a
topological crossing (possibly with infinite order contact) has positive topological
entropy, along with an analogous statement for heteroclinic points. We apply these
results to study area-preserving perturbations of area-preserving surface diffeomor-
phisms possessing homoclinic and double heteroclinic connections. In the hetero-
clinic case, the perturbed map can fail to have positive topological entropy only if
the perturbation preserves the double heteroclinic connection or if it creates a homo-
clinic connection. In the homoclinic case, the perturbed map can fail to have positive
topological entropy only if the perturbation preserves the connection. These results
significantly simplify the application of the Poincarέ-Arnold-Melnikov-Sotomayor
method. The results apply even when the contraction and expansion at the fixed
point is subexponential.

0. Introduction

Let / be a C1 diffeomorphism. A homoclinic point for / is a point that is both
forward and backwards asymptotic to a hyperbolic periodic point of / (and is not
the periodic point itself). In other words, q is a homoclinic point if there is a
hyperbolic periodic point p such that q G Ws(p) Π Wu(p) and qφ p. A homoclinic
point is called transverse if the stable and unstable manifolds intersect transversely
there. Poincare [Po] discovered that the existence of a transverse homoclinic point
causes very complicated dynamics. Smale [S] proved that a diffeomorphism / that
possesses a transverse homoclinic point has a horseshoe. A horseshoe is a set A that
is invariant under fn° for some «0 ^ 1 and has the property that fn° restricted to
A is topologically conjugate to a nontrivial subshift of finite type, i.e., there exists
a homeomorphίsm π : A —» Σ such that π o fn° = σ o π, where Σ is the shift space
and σ : Σ —> Σ denotes the shift map. By a nontrivial subshift of finite type, we
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mean a subshift that is defined by an irreducible matrix that is not a permutation;
the full two shift is the prototypical example. It is easy to show that a map that
possesses a horseshoe has positive topological entropy; see Sect. 1.

It is natural to consider homoclinic points where the stable and unstable mani-
folds cross, but may not do so transversely. What one means by "cross" is clear in
simple contexts, and can be made precise with ideas from elementary topology; a
definition using homology is given in Sect. 4.

In the case of a surface diffeomorphism with a homoclinic point where the sta-
ble and unstable manifolds cross with finite order contact, Conley [Co] showed that
there exist transverse homoclinic points in every neighborhood of the nontransverse
homoclinic point and hence the map has a horseshoe and positive topological en-
tropy (see [CR2] for a proof). Conley's result should extend to higher dimensions,
but we do not know a reference. The case of a crossing with infinite order contact
is much more delicate. Various pathologies develop which do not appear in the
finite order case. It seems extremely difficult to establish either the existence of a
nearby transverse homoclinic point or the presence of a horseshoe.

The difficulty in finding a horseshoe lies in showing that the map π : A —» Σ
is 1 :1. Let us say that a map / has a horseshoe factor if some power of / has
a nontrivial subshift of finite type as a topological factor, i.e. there is a subset A
that is invariant under fn° for some no ^ 1 and a continuous map π : A —* Σ that
is onto but not necessarily 1 : 1 such that π o fno = σ o π, where again Σ is the
shift space and σ is the shift map. Any diffeomorphism / possessing a homoclinic
point at which the stable and unstable manifolds have a topological crossing has a
horseshoe factor. We give an elementary proof of this fact in the case of surface
diffeomorphisms in Sect. 2 and generalize our argument to all dimensions in Sect. 4
(see Theorems 2.1 and 4.3). Gedeon, McCord and Mischaikow have recently proved
a generalization of this result [GMM], using results of [MiMr].

The above result has a natural generalization to the case of a heteroclinie cycle,
a chain of hyperbolic fixed points linked by heteroclinie points (as illustrated in
Fig. 0.1). In arbitrary dimensions, we require that each pair of stable and unstable
manifolds forming the chain should cross topologically (Theorem 4.8.). In dimension
two, this requirement can be relaxed a little (Theorem 2.2).

Our results also apply to crossings of center manifolds for indifferent fixed
points, and furnish examples of maps having positive topological entropy with no
apparent hyperbolicity.

Fig. 0.1. A Heteroclinie Cycle.
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It follows from the above results that the diffeomorphisms in question have
positive topological entropy. In dimension two, but not in higher dimensions, one
can then apply a theorem of Katok [K1,K2] to conclude that if/ is C 1 + α and has
positive topological entropy, then / possesses a horseshoe that carries most of the
entropy of / .

The proofs of the above theorems contain two stages. The first stage is to
describe a method by which one proves that a set is being mapped across itself in
the appropriate way to produce a horseshoe factor. The crucial second stage is to
identify the relevant sets in each case when we wish to apply the general method.
For the first stage of the proof, we use only elementary topology in the case of
dimension two, and basic homology theory in arbitrary dimensions. Topological
methods which can be used to find horseshoe factors are not new, although we
believe that ours is more elementary than previous techniques. Our method is similar
to an elegant and very general cohomological method of Easton [E].

Easton applied his method to a number of examples, but the only discussion
of homoclinic points in [E] is in the context of the standard Smale horseshoe.
Churchill and Rod [C, CR] have given cohomological methods, which apply to
surface diffeomorphisms. The theorem on p. 548 of [Ch] is related to Theorem 2.1
of the present paper.

We apply the results of Sect. 2 to study area-preserving maps of IR2. Let C\P

be the group of area-preserving C1 diffeomorphisms of IR2 with the C1 topology.
Suppose / £ C\P and / has two hyperbolic fixed points with a double heteroclinic
connection (see Sect. 1). Such a map is illustrated in Fig. 0.2. Consider a small
perturbation of / in C\P. We show that the perturbed map can fail to have positive
topological entropy only if the perturbation preserves the double heteroclinic con-
nection or if it creates a homoclinic connection (see Sect. 1). A perturbation of the
latter type is shown in Fig. 0.2. We also show that a small perturbation in C\P of
a map with a homoclinic connection must produce a map with positive topological
entropy, unless the perturbation preserves the homoclinic connection. These theo-
rems are formulated precisely in Sect. 3. They generalize ad hoc arguments used in
[KW].

We believe that these results will have numerous applications. There are many
papers in which the authors show that the Hamiltonian flow for a small Hamiltonian
perturbation of a completely integrable Hamiltonian system with 2 degrees of free-
dom has positive topological entropy. This amounts to showing that a small area-
preserving perturbation of a Poincare map having a double heteroclinic connection
has positive topological entropy. All authors apply a Poincare-Arnold-Melnikov-
Sotomayor (PAMS) type method [A,M,Po (Sect. 403), So] to each branch of the
connection and need to verify that the PAMS function has a simple zero. This
implies that the stable and unstable manifolds for the perturbed systems intersect

Fig. 0.2. A Map with a double heteroclinic connection and a perturbation with zero topological
entropy.
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with transversal crossings. This is usually quite difficult to verify, and with few
exceptions (e.g. [Z]), has only been established for non-autonomous equations with
periodic or quasi-periodic forcing. Obviously, this places a great limitation on the
utility of the method. The results in Sect. 3 obviate the need to show the existence
of a simple zero if one wishes to show that the topological entropy is positive; one
needs only to show that the PAMS function has a zero (that implies crossing) and
is not identically zero (that implies that the stable and unstable manifolds do not
coincide) to conclude that the perturbed map has positive topological entropy. This
remark considerably simplifies the process of showing a perturbed map has positive
topological entropy.

In [KW], the authors construct a convex surface whose geodesic flow has pos-
itive topological entropy. They start with a triaxial ellipsoid whose geodesic flow
possesses a Poincare map having a double heteroclinic connection. The authors con-
struct an explicit small local conformal perturbation and show that one connection
breaks and the perturbed stable and unstable manifolds intersect (not necessarily
transversely or with a topological crossing). It follows immediately from the results
in Sect. 3 that the geodesic flow for the perturbed metric has positive topological
entropy.

Another application of the results in Sect. 3 was discovered by Gabriel Paternain
[Pa]. It follows from work of Kozlov [Ko], Tatarinov [T], and Ziglin [Z], that one
can find a suitable Poincare section for the geodesic flow on a Poisson sphere such
that the Poincare map has a double heteroclinic connection and that a small per-
turbation of the geodesic flow by a potential of Hess-AppeΓrot type preserves one
branch of the connection and splits the other branch such that the stable and unstable
manifolds intersect transversely. Theorem 3.2 immediately implies that the perturbed
flow has positive topological entropy. Paternain then applies the Maupertuis Princi-
ple to obtain an explicit real analytic metric on S2 with positive curvature whose
geodesic flow has positive topological entropy.

1. Preliminaries

Let M be a smooth manifold and / : M —> M a diffeomorphism. Suppose p is a
hyperbolic periodic point of / at which the stable and unstable subspaces have
dimensions k and / respectively. The sets Ws(p) = {x e M : fn(x) —> p} and
Wu(p) = {x € M : fn(x) —• p) are immersed smooth manifolds diffeomorphic to
IR* and Wiι respectively. They are called the stable and unstable manifolds of p re-
spectively. Since we often want to exclude the point p from consideration, it is con-
venient to define the deleted stable and unstable manifolds Ws{p) — Ws{p)\{p]
and Wu{p) = Wu(p)\{p}. Note that Ws(p) and Wu{p) are connected, unless they
are one dimensional, in which case they have two components.

A homoclinic point is a point q such that q e Ws(p) Π Wu(p) for some
hyperbolic periodic point p. A heteroclinic point is a point q such that q G
Ws(p) Π Wu(p') for distinct hyperbolic periodic points p and p'. Homoclinic and
heteroclinic points are called transverse if they are points of transverse intersection
of the relevant stable and unstable manifolds. A heteroclinic cycle is a sequence
po,...,pr-i of hyperbolic periodic points such that Ws(pi)Γ\Wu(pi+\)φΦ for
/ = 0,..., r — 1. In dealing with heteroclinic cycles, we make the convention that
indices denoting which point in the cycle we are considering should be interpreted
modulo r.
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Consider now hyperbolic periodic points in a two dimensional manifold that have
one dimensional stable and unstable manifolds. A periodic point p of this type has
a homoclinic connection if one of the components of Ws(p) coincides with one
of the components of Wu(p). Two distinct periodic points p and p' of this type
have a heteroclinic connection if a component of the deleted stable manifold of one
of the points coincides with a component of the deleted unstable manifold of the
other point, and have a double heteroclinic connection if one component of Ws(p)
coincides with one component of Wu(p') and one component of Wu(p) coincides
with one component of W\p').

The (two-sided) subshift of finite type ΣA defined by an n x n matrix A of O's
and Γs is the subset of Σn = {l,...,n}z consisting of all sequences which satisfy
the condition that a symbol / G {1,...,«} can follow a symbol £ £ {l,...,n} if
and only if AM = 1. The matrix A is irreducible if and only if for each / and j
there is an n ^ 1 such that the ijth entry of An is positive. The Perron-Frobenius
theorem [Ga, Sect. 13.2] tells us that A has an eigenvalue λA that is real and satisfies
ΛA = \M f° r aU eigenvalues λ of A. The following proposition is well known (see
[W/Γheorem 7.13(ii)]).

Proposition 1.1. Let A be an irreducible nx n matrix of O's and Vs. Then the
topological entropy of the shift on ΣA is

The full n shift is the special case when A is an n x n matrix with all entries 1
and ΣA = Σn. It has entropy log«.

Lemma 1.2. Let A be an irreducible nxn matrix of O's and Vs. Then λA > 1
unless A is a permutation matrix.

Proof If A is a permutation matrix, then ( 1 , . . . , 1) is an eigenvector with eigenvalue
1. Now suppose that A is not a permutation matrix. Let s and S be the minimum
and maximum row sums respectively of A. Then s ^ λ ^ S, cf. [Ga, Sect. 13.2].
Since A is irreducible, every row contains at least one 1, and hence λA ^ s ^ 1.
We also know that every column of A contains at least one 1 and, since A is not
a permutation matrix, at least one column of A contains a second 1. The Perron-
Frobenius theorem tells us that A has an eigenvector v all of whose entries are
positive. Consider the sum of the entries of Av. Each component of v must appear
at least once, and at least one component must appear more than once, so this sum
is greater than the sum of the entries of v. Hence 1 is not an eigenvalue of A and
we must have λA > 1. D

It follows that a nontrivial subshift of finite type (as defined in the introduction)
has positive topological entropy.

Lemma 1.3. Suppose that the diffeomorphism f has a horseshoe factor. Then f
has positive topological entropy.

Proof We are assuming that there is a subset A that is invariant under fno for
some no ^ 1 and has the property that fn°\Λ is semiconjugate to a nontrivial sub-
shift of finite type σ. Now hTop(σ) > 0 and it follows from well known properties
of topological entropy [W, Theorems 7.2, 7.10] that

hτop(f) ^ -hτop(Γ°\Λ) ^ -hWp(σ) > 0. D
no no
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We now develop the geometric machinery that will be used in the proofs of
Theorems 2.1 and 4.3. Let / : M —• M be a diffeomorphism with a hyperbolic fixed
point p. Let k — dim Ws(p), I = dim Wu(p) and m = k + I = dimM. By choosing
a suitable basis for TPM, we may think of df(p) as a linear map L : IRm —• R m

which preserves the splitting R m = ]R* 0 JRZ, contracts the 1R* factor and expands
the IRZ factor. By the Hartman-Grobman theorem, there are a neighbourhood N of
p and a homeomorphism h of N into R m with /*(/?) = (0,0), such that if x G Λf
and /(x) G ΛΓ, then h(f(x)) = L(h(x)). We may assume that JV and /z have been
chosen so that h(N) = Dk(\) x D'O), where Dn(r) is the closed disc of radius r
about the origin in W1. We may also assume that Dk{\) x {0} and {0} x Dι{\)
lie in Ws(p)ΠN and Wu(p)Γ\N respectively. In order to simplify our notation,
we shall henceforth identify N with Dk{\) xDι(l) and suppress the homeomor-
phism h. Unless otherwise specified, distances in N will be measured with respect
to the product of the Euclidean metrics on Dk{\) and Dι{\). We shall call discs
in N of the form {x} x Dι(l) and Dk{\) x {y} vertical and horizontal respec-
tively.

Lemma 1.4. Let V be a compact subset of Wu(p) Π IntTV. Suppose we are given
p G (0,1) and ε > 0. Then for any large enough n the following hold',

(l)f-n(V)c{0}xDl(p\

(2) If(0,y) G f~j(V), thenfn(Dk{\) x {y})cNand has diameter less than ε.

Proof We may assume ε < dist(F, dN).
Choose a Riemannian metric g on the whole manifold M on which the diffeo-

morphism / acts. The restriction of g to N may not be equivalent to the Euclidean
metric that we are using on N, because h : N —> Dk{\) x Dι{\) may not be differen-
tiable. The two metrics do, however, define the same topology on N. In particular,
there is α > 0 such that if z,z' G N and dist^ (z,z7) < α then dist(z,z/) < ε. Also
given δ > 0, there is β(δ) > 0 such that for any z,zf eN with dist(z,z7) ^ β(δ)
we have dist^ (z,z7) ^ δ.

There is certainly an n\ such that for any n ^ n\ we have f~n(V) C {0} x
/y(l). Set B - sup{||Z)/wi(x)|| : x G TV}. For w ^ 0, let

Λπ = {x G TV : /*(*) G ̂ ( 1 ) x D ^ l ) for 0 ^ it ^ «} .

It is clear that Rn is a union of entire horizontal discs, the image under fn of
a horizontal disc in Rn lies in a horizontal disc, and the sets Rn and / " i ^ both
decrease with n.

Choose «2 so that for any n ^ n2,Rn CDk(l) x Dι(p) and the image under
/ " of each disc Dk(l) x {y} in ΛΛ lies in a disc Dk(β(oc/B)) x {/} for some
j / G ^ z ( l ) . Then any n ^ «i + n-i has the desired properties. D

2. Topological Crossing of Stable and Unstable Manifolds in a Surface

It is intuitively evident what it means for two smooth curves in a surface to cross
topologically: they should contain arcs with the behaviour shown in the left half
of Fig. 2.1. This intuitive notion agrees with the two dimensional version of the
definition given in Sect. 4. In the course of this section and the next, we shall need
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Fig. 2.1. Topological crossing and topological tangency.

to consider three different ways in which two curves in a surface can intersect:
they may coincide; have a topological crossing; or have a topological tangency,
in which case neither of the previous possibilities occurs (see the right half of
Fig. 2.1).

Theorem 2.1. Let f : M —• M be a diffeomorphism of a surface with a hyperbolic
periodic point p. Assume that one component of Ws{p) and one component of
Wu(p) have a topological crossing. Then some power of f has the full two shift
as a topological factor.

Remarks. We emphasize that the topological crossing need to be transverse and
could be of infinite order.

Next suppose that po,...,pr-ι is a heteroclinic cycle in a surface. Then there
are components Vs(pt) of Ws(Pi) and Vu(Pi) of Wu{pι\ such that Vu(pt)n
P(/?j+i)Φ0 for i — 0,...,r — 1. (We remind the reader that in this context indices
should be interpreted modulo r.)

Theorem 2.2. Let po,...,pr-ι be a heteroclinic cycle in a surface M and let
Vs{pi) and Vu(pi) be defined as above. Suppose that Vu(p0) and Vs(p\) cross
topologically. Assume also that Vu(pi) and Vs(pι+\) lie on the same side of any
arc from px to p1+\ that can be formed by first traversing a piece of Vu(pt) and
then traversing a piece of Vs{pi+\). Then some power off has the full two shift
as a topological factor and thus hτop(f) > 0.

We now describe the method that will be used to prove the above theorems. Let
TV C M be homeomorphic to [-1,1] x [—1,1]. In the following we shall identify N
with [—1,1] x [—1,1] and suppress the homeomorphism. Let R = [— 1,1] x [—p,p],
where p e (0,1).

We shall call a set V C IntTV essential if V contains a curve joining the two
components of N\R.

A set S c R will be called a horizontal strip if

(1) S is closed and path connected;

(2) S contains a curve joining the left edge { —1} x [—p, p] and the right edge
{1} x[-p,p] ofR;

(3) dS is a Jordan curve which is the union of a finite number of arcs all of
whose endpoints lie on the left edge or the right edge of R.
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It is easily seen that dS contains exactly two curves joining the left edge {-1} x
[-ρ,ρ] and the right edge {1} x [~ρ,ρ] of R, and S lies in the region of R bounded
by these curves; see Fig. 2.2. We shall call the curve on which the second coordinate
is larger cupper and the other curve cιower.

Definition 2.3. Let n be a positive integer and S a horizontal strip. We shall say
that fn stretches S across R if fnS c JntN,fn(dS Π IntR) c N\R, and fn maps
Cupper and cιower into opposite components of N\R.

Theorem 2.4. Suppose N contains two disjoint closed horizontal strips So and S\
that are stretched across R by fn° for some nQ ^ 1. Then fno has the full two
shift as a topological factor.

Proof Let A ^ Π S - o o / ^ O S b u s \ ) D e f i n e π : A -> Σ2 so that for any z e A the
kth term of the sequence π(z) is 0 if fkn^z G SO and 1 if fkn*z e S\. The continuity
of / and f~ι implies that for any K > 0 there is a neighbourhood N(z) of z in
R such that if z' € N(z) Π Λ, then (π(z))k = (π{z'))k for -K ^k ^ K. Thus π is
continuous. It is easily verified that π o fn°\A = π o σ, where σ is the shift on Σ2.
It remains to show that π is surjective.

Key Lemma 2.5. Let S be a horizontal strip and V an essential subset of N.
Suppose that fn stretches S across R. Then fn(S Π V) is essential.

Proof It is obvious that V contains an arc α : [0,1] —> R such that α(0) lies on cupper

and α(l) lies on chwer and a(t) e IntR for 0 < t < 1. Let us call a component
of dS Π Inti? positive if / " maps it into the same component of N\R as cupper

and negative otherwise. Let t0 e [0,1) be the last time that oc(t) is in a positive
component of dS Π Inti? and ίi G (ί0,1] the next time that α(ί) is in 35. Observe
that if α exits 5 through a given component of 35 Π Int/?, then α must reenter S
through the same component of dS Π IntT?. It is clear from this that the arc of α
between α(ί0) and α(ίi) must lie in S. Its image under / " is a curve in Int N that
joins the two components of N\R. Hence fn(S Π F) is essential. Π

Lemma 2.6. For each r ^ 1, ίλe
tial for every OL £ Σ2.

fn°Sa_ι Π f2n°Sa_2 Π - Γ) / r w ° 5 α _ r w

Proof Use induction of r. The case r = 1 is trivial. Suppose the lemma holds for r.
h /Then V = /π°5α_2 n ΓΊ ^^ is essential for any oc e Σ2. It follows from

Fig. 2.2. A Horizontal Strip.
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the Key Lemma that

/ ^ ( S α , , n V) = fn»sΛ_x n /2w°5α_2 n n / ( r +

is essential. D

Corollary 2.7. For each α e Γ2 β«d eflcλ r ^ 0, the set Λr(a) = Π L - r / ^ °

Proof. Let /? = σ r + 1α, where σ is the shift on Σ2. Then

Λ (α) = Γ(r+X)n«{fn(>sβ^ n n f 2 " 1 ^ ^ ) ,

which is nonempty by the previous lemma. D

Since the sets Λr(a) are compact and Λ0((x) D Λ\(oc) D ..., there is a point
z £ P|^ 0 Λ r (α) ^ o r e a c n α ^ *s °bvious that π(z) = α. Thus π is surjective and the
proof of Theorem 2.4 is complete.

We now apply Theorem 2.4 to prove Theorems 2.1 and 2.2. D

Proof of Theorem 2.1. After possibly replacing / by a power of/, we may assume
that p is a fixed point of / . We use the notation introduced at the end of Sect. 1.

The first observation is that Wu(p)Γ)N contains two arcs oq and α2 that cross
[-1,1] x {0} topologically. We choose d\ to be [—1,1] x {0}. Now let α be any
arc that lies in Ws(p) and crosses Wu(p) topologically. After replacing α by its
image under a large enough power of / , we may assume that the intersection of
α with Ws(p) is contained in [-1,1] x {0}. One of the components of α ΠN can
now be chosen to be α2.

Choose p > 0 such that the endpoints of αo and αi lie outside R = [—1,1] x

Lemma 2.8. For any large enough n there are disjoint closed horizontal strips
So(n) D f~noc0 and S\(n) D f~noc\ that are stretched across R by fn.

Proof Choose ε > 0 so that the closed ε-neighbourhoods of the end points of α0

and αi lie in \ntN\R and the closed ε-neighbourhoods of αo and αi are disjoint
and lie in IntTV. Let n be large enough so that the conclusions of Lemma 1.4 hold
with V = αo or αi. For / = 0,1, let

S,{n) = [-1,1] x {y e [-p,p] : (0,y) € / "" (a , )}

Each of the sets Si is a rectangle of the form [—1,1] x Ly/o^i]- These are certainly
horizontal strips; in Sj the curve cupper will be [—1,1] x {yn} and cιower will be
[—1,1] x {̂ /θ} It is clear from our construction that S0(n) and S\(n) are closed
and disjoint, and that αz lies in fnSj(n) for ί = 0,1. Each segment [-1,1] x {y}
in one of the 5/ is mapped by fn to a curve of length less than ε which contains
a point on one of the α/? and consequently lies in IntTV. The edges [—1,1] x { ẑo}
and [—1,1] x {ya} of St map into the ε-neighbourhoods of the endpoints of α;, and
thus map into different components of N\R. D

Theorem 2.1 follows immediately from the above lemma and Theorem 2.4. D
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Proof of Theorem 2.2. After replacing / by one of its powers, and the original
cycle by a possibly longer one containing the orbits of the periodic points involved
in the original cycle, we may assume that all of the periodic points po,...,pr-\
are fixed. We shall assume that the surface is oriented and the diffeomorphism /
is orientation preserving. If the surface is not orientable, we can replace / by a lift
to the double cover of the surface; and if / is not orientation preserving we can
replace / by / 2 .

Choose a smooth embedding of [-1,1] x [-1,1] whose image N is as shown
in Fig. 2.3. The embedding is chosen so that {-1} x [—1,1] maps into Vu(p0) and
there is p G (0,1) such that

(1) [-1,1] x {-p} and [-1,1] x {p} map into Vs(Pι).

(2) The image R of [—1,1] x [—p,p] lies on the same side of Vu(po) as Vs(po)
and on the same side of Vs(p\) as Vu(p\).

Our strategy is to show that any sufficiently large iterate fn maps R across
itself twice as shown in Fig. 2.3. We can then apply the argument in the proof of
Theorem 1. Let α and β be the vertical sides of R, namely {-1} x [-ρ,ρ] and
{—1} x [—p,p] respectively. We first show that α and β map across R in the proper
way.

In the following discussion all curves are embedded curves. Pick a number
σ G (p, 1) such that fnoc U fnβ is transverse to [-1,1] x [—σ,σ] for all n.

V S ( P 1 )

V U (P O )

-1

N

Fig. 2.3. Proof of Theorem 2.2.
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Definition 2.9. Let y : [0,1] —> M be a curve. We shall call y good if for all
sufficiently large n, there is tn G [0,1] such that

(2) fn o y([O,tn]) does not intersect any part of the boundary of N except
(-1,1) x {-1};

This is obviously an open property with respect to the Hausdorff topology on
compact curves.

Definition 2.10. Let η be a compact curve and y a curve. We say that fny accu-
mulates on η if there exist compact curves yn C y such that fnyn converges to η
in the Hausdorff topology on compact curves.

We shall use the following obvious lemma.

Lemma 2.11. Suppose y is a curve that accumulates on a compact curve η. If η
is good, then y is good.

Proposition 2.12. Any curve which has one endpoint on Vs(p\) and lies on the
same side of Vs(p\) as Vu(p\) is good.

Proof Divide the integers modulo r into blocks of consecutive integers so that
i and j are in the same block if and only if Vu(pk) — Vs(pk+\) for i ^ k < j .
Observe that 1 is the first element of a block.

Let ί\ = 1,...,4 be the first elements of the blocks. Observe that if y is a
curve with an endpoint in Vs(pιi) that lies on the same side of Vs{plf) as Vs(pif),
then fny accumulates onto every compact curve contained in {plf} U Vu(pl/)U

•• u{/ V l_1}uκ«(/V l_1).
We now prove by a descending induction that if 1 ^ j ^ k, then any curve

with an endpoint on Vs(pij) that lies on the same side of Vu(ptj) as Vs(plj) is
good. The case j = k is obvious. The inductive step is contained in the following
lemma. D

Lemma 2.13. Suppose y is a curve that has an endpoint on V\plj) and lies on

the same side of V^p^) as Vu(plj). Then at least one of the following occurs:

(1) fny accumulates on a curve β that has an endpoίnt on Vs(piJ+ι) and lies

on the same side of Vs(pij+ι) as Vu(pif+ι).

(2) fny contains a curve a that has an endpoίnt on Vs(pi-+ι) and lies on the

same side of Vs(pij+X) as Vu(pij+ι).

Proof There are ways (illustrated in Fig. 2.4) in which Vu(pij+ι-\) and Vs(pij+ι)
can intersect. In Case I they have with a topological crossing; both phenomena (1)
and (2) occur. In case II they have a topological tangency and Vu(plj+γ-\) lies
on the same side of Vs(pij+ι) as Vu(pι + 1 ) ; only phenomenon (1) occurs. In case
III they have a topological tangency and Vu(pι+ι — 1) lies on the opposite side
of Vs(pij+χ) from Vu(Pi/+ι)', only phenomenon (2) occurs. The hypothesis in the
theorem, that Vu(pj) and Vs(pi+\) lie on the same side of any arc from pt to pi+\
that can be formed by first traversing a piece of Vu{pι) and then traversing a piece
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Vs(Pi|)

V5(Pij)

Vs(Pij)

Pi;

Fig. 2.4. The three cases in Lemma 2.13.

of Vs(pι+\), guarantees that Vs{pij) lies as shown in Fig. 2.4 and not on the other
side of F * ^ ) . D

It follows from Proposition 2.12 that for any large enough n, both fnot and fnβ
contain arcs that lie in the interior of Λ̂  and join [—1,1] x {σ} to [—1,1] x {—σ}.
Henceforth we consider a fixed value of n for which such arcs exist. Arcs of
fnoc U fnβ that join [-1,1] x {σ} to [-1,1] x {-σ}, lie in the interior of N, and
do not contain any shorter curves with these properties will be called connect-
ing curves. Two connecting curves cannot intersect because they lie in fnoc U fnβ
which is the homeomorphic image of two intervals. There are only finitely many
connecting curves, because any horizontal line [—1,1] x {y} that is transverse to
fnoc U fnβ contains only finitely many points that can lie on connecting curves. The
first coordinate in N induces an ordering on the connecting curves in an obvious
way.

Lemma 2.14. Two connecting curves are adjacent in this ordering if and only if
they are joined by a curve in [—1,1] x (—σ,σ) that does not intersect fnoc U fnβ.
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Proof. It is obvious that two connecting curves are adjacent if they are joined by
a curve in [—1,1] x (—σ,σ) that does not intersect fna U fnβ.

Conversely, suppose that c\ and c2 are adjacent curves. Choose a segment γ of
the form [jti,jt2] x {y\} that joins c\ to c2 and is transverse to fnoc U fnβ. Starting at
(*i> J>i )> follow γ until it intersects fnoc U fnβ. On one side of γ or the other we can
now move along fna or fnβ and intersect γ before hitting the lines [1,1] x { i l } .
We then continue along γ to the next intersection with fnoc U fnβ. After finitely
many steps we reach (x2,y) ^

Lemma 2.15. Suppose γ lies in N, joins fna and fnβ and does not contain any
curve that joins fnoc and fnβ. Then f~ny lies in R.

Proof. Clearly f~ny cannot cross α or β. Also f~ny cannot cross the piece δ of
Vs{p\) marked in Fig. 2.5, for fnδ lies near p\ and is disjoint from N. D

We divide the connecting curves into two classes-those of type α that lie in
fnoc and those of type β that lie in fnβ.

Lemma 2.16. There are connecting curves αi,o?2 of type α and β\,βi of type β such
that each pair αz ,j8/, i= 1,2, is adjacent with respect to the ordering described
above.

Proof. Let x and y be the points where the two arcs of fna that emanate from
Ws(p\) first intersect [—1,1] x {σ}. These arcs, the piece of Ws(p\) that join the
initial points, and the segment of [—1,1] x {σ} form a Jordan curve. The two arcs
βi^βi of fnβ that emanate from W\p\) and end at the first intersection with
[—1,1] x {σ} enter the interior of the Jordan curve described above and do not
cross it. Let α* (resp. βf) be the connecting curves of type α (resp. β) contained
in oίi (resp. /?/). It is clear that β\ and β\ lie in between α* and αj; with the right
choice of numbering we may assume that they occur in the order α*, β\, β\, and

α|. There must be connecting curves αz and βt between each pair α* and β* which
have the desired properties. D

Lemma 2.17. Suppose that α and β are adjacent connecting curves. Then the
region in [-1,1] x [-σ, σ] between α and β contains the image under fn of a
horizontal strip that is stretched across R by fn.

V(Pi

v u (P 0 )

Fig. 2.5. Proof of Lemma 2.15.



108 K. Burns, H. Weiss

Proof. By Lemma 2.14, there is a curve y C [— 1,1] x (—σ, σ) that joins α to β and
does not intersect fnoc U fnβ. Let C be the component of [—1,1] x (~σ,σ)\(fnoc U
fnβ) that contains γ. Let S = f~nC. Note that (α U jB) Π 5 = 0. The other sides of
R, namely {-1} x [—ρ,p] and {1} x [—p,p] lie on FP(/?i) and do not map into N
under fn. Hence /Λ(3Λ) Π C = 0 and S Π 57? = 0. But S is connected and contains
f~ny, which lies in R by Lemma 2.15. Hence S C R.

Since / n ( α U β) is transverse to [-1,1] x {—σ,σ}, we see that dC is a Jordan
curve consisting of a finite number of arcs belonging to fna,fnβ,[—\, 1] x {—σ}
and f—1,1] x {σ}. It follows that dS is a Jordan curve consisting of a finite number
of arcs belonging to α,j8,/ w ([-l, l] x {-σ}) and / " w ( [ - l , l ] x {σ}). The end-
points of these arcs must lie on otU β. Furthermore S is obviously closed and path
connected and contains the curve f~ny that joins α to β. Thus S is a horizontal strip.

We now show that fn stretches S across R. It is clear that fn maps S into
intN and maps dS Π Inti? into [—1,1] x {—σ,σ} C N\R, so we have only to show
that cUpper and cιower map into opposite components of N\R. The curves cw/?/7£,r and
clower do not belong to ocU β, so / w must map them into [-1,1] x {—σ, σ}. Since
Cupper a n d c\ower lie on opposite sides of f~ny in R, their images under fn lie on
opposite sides of y in the region of [—1,1] x [—σ, σ] that lies between α and jβ.
Hence cupper and c/0M,er map into opposite components of N\R. D

We see from the two previous lemmas that the hypotheses of Theorem 2.4 are
satisfied. This completes the proof of Theorem 2.2. D

Remarks.

(i) In the proofs of the above theorems we have not used hyperbolicity of the
fixed points: it would suffice for them to have stable manifolds that contract under
/ , and unstable manifolds that contract under f~λ at a subexponential rate. It is
not difficult to devise explicit examples that have fixed points with these properties.
There are also natural examples in celestial mechanics.

(ii) The hypothesis in Theorem 2.1 that there be a topological crossing is es-
sential. Gavrilov and Silnikov [GS] have constructed a surface diffeomorphism with
zero topological entropy which has a homoclinic point at which the stable and
unstable manifolds have a topological tangency.

Fig. 2.6.
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(iii) The hypothesis in Theorem 2.1 that Vu(pι) and Vs(pi+\) lie on the same
side of any arc from pt to pι+\ that can be formed by first traversing a piece of
Vu(pt) and then traversing a piece of Vs(pi+\) is necessary. Figure 2.6 shows an
example in which both this hypothesis and the conclusion of Theorem 2.2 are false.

3. Perturbations of Area-Preserving Maps of R 2

Let C\P denote the space of C1 area-preserving diffeomorphisms of 1R2. Suppose
/ G C\P has a hyperbolic fixed point p with a homoclinic connection. The structural
stability of hyperbolic fixed points ensures that any diffeomorphism g that is close
enough to / in the C1 topology will have a fixed point pg that is close to p.

Suppose that Vs(p) and Vu(p) are the components of Ws(p) and Wu(p) which
coincide. Let V*(pg) and Vg(pg) be the components of Ws

g(pg) and W^{pg) that
are close to Vs(p) and Vu(p) respectively.

Theorem 3.1. There exists a neighborhood % of f in C\P such that if' g e % and
Vs

g{pg)*Vu

g{Pg\ then hTOP(g) > 0.

Proof. In view of Theorem 2.1, we have only to show that pg must have a
homoclinic point if g is close enough to / . It is a general fact, which goes back
to Poincare, that homoclinic points persist under small perturbations in C\P (see
[McMe] for an exposition of the proof).

We now give a proof that any g close enough to / has a homoclinic point,
which we will modify in the proof of the next theorem.

Let Γs and Γu denote V*(pg) and Vg(pg) respectively. Pick nearby points xs G
Γs and xu G Γu. Let Δs and Δu be the arcs of Γs and Γu respectively joining xS9xu

to g(xs),g(xu). Then Δs and Δu are C1 close and we can find a short arc α from
xs to xu such that

ocn(g~ι(Δs)UΔs) = {xs} and α Π (g~ι(Δu) U Δu) = {xu} .

Suppose now that pg does not have a homoclinic point. Then α U Δs U g(oc) U Δu

forms a Jordan curve that bounds a compact region i?0 with positive area.
Let R be the compact region bounded by the arc of Γs from pg to xs, α, and

the arc of Γu from #(xw) to pg, as shown in Fig. 3.1. Then g(R) is the compact

g(χs)
rs

Fig. 3.1. Proof of Theorem 3.1.
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region bounded by the arc of Γs from pg to g(xs),g o α, and the arc of Γu from
g{xu) to pg. One sees that either R c gR or gR c /?, and that in either case their
areas differ by area (/?o) This is impossible if g is area-preserving. D

Now suppose / E Cj^ has a double heteroclinic connection between hyperbolic
fixed points p and p'. We describe natural and easily verifiable geometric conditions
that will ensure that a nearby area-preserving map will have positive topological
entropy. As explained in the introduction the essence of the result is that a small
area-preserving perturbation of / can fail to produce positive topological entropy
only if it preserves the double heteroclinic connection or if it creates a homoclinic
connection.

The structural stability of hyperbolic fixed points ensures that any diffeomor-
phism g that is close enough to / in the C1 topology will have fixed points pg

and p'g that are close to p and p' respectively. Suppose that Vs (p), Vu(p), Vs(p'),

and Vu(p') are the components of Ws(p\Wu(p\Ws(p'\ and W\p') which are
involved in the double heteroclinic connection described above, so that Vs(p) =
Vu(p') and Vu{p) = Vs(p'). Let Vs

g(pg) be the component of Ws

g(pg) that is close
to Vs(p\ and define Vu

g{Pg\Vs

g{p'g\ and Vu

g(p'g) analogously.

Theorem 3.2. There exists a neighborhood % of f in C\P such that if g E °tt and

(i) K;(Λ)* W ) o r
 ^ ( Λ ) * W ) a n d

(2) V*(Pg)ΦV«(Pg) and Vs

g{p'g)*V«(p'g), then hTOP(g) > 0.

The following corollary, which contains the result used in [KW], is an easy
consequence of Theorem 3.2.

Corollary 3.3. There exists a neighborhood % of f in C\P such that if g G
®,Vg(Pg)*Vg(p'g) and V^Pg)nVg"(p'g) + 0, then hTOP(g) > 0.

Remarks.

(1) The above results include the case where one of the connections is not
broken.

(2) The area-preserving serving hypothesis is easily seen to be essential in these
results.

(3) We emphasize that we are considering a small perturbation of / .

In our proof of Theorem 3.2 we shall use the fact that g can be linearized near
pg by a C1 change of coordinates that depends continuously on g. This C1 lin-
earization is not essential for the proof of this theorem but it significantly simplifies
the exposition.

Linearization Theorem 3.4. Let f be a dίffeomorphism of IR2 with a hyperbolic
fixed point p. For g close to f in the C1 topology, let pg be the hyperbolic fixed
point of g that is close to p. Let λg and μg be the eigenvalues of DPgg on the
stable and unstable subspaces at pg respectively. Let Ag be the linear map of IR2

defined by the matrix

λg 0
0 μg
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Then there exists a neighborhood U of p diffeomorphic to the open unit ball B in

R 2 , a neighborhood Jί C Diff^R2) of / , and a continuous mapping H : Jί —>

Όifiι(U,B) such that Ag o H(g) = H(g) o g on UDg~lU for each g G Jί.

Remarks. This theorem is due to Hartman [Ha]. It is false in higher dimensions and
is false if one asks for the linearization to be C2 or smoother. We outline a proof.
One may assume that pg is the origin for all g. Change g outside of a ball around
0 so that it agrees with a hyperbolic linear map outside of a still larger ball around
0. One can easily show that the stable and unstable manifolds are C1 ([HPS]). One
then applies the one-dimensional Sternberg Linearization Theorem [St] to the local
stable and unstable manifolds of 0. The theorem immediately follows by observing
the continuous dependence of the conjugating map in Steinberg's proof in the C1

topology. We thank A. Katok for helpful remarks about this proof.

Proof of Theorem 3.2. Choose U and the linearizing map H as above. We may
assume that H(f) maps the region inside the double heteroclinic connection for /
into the first quadrant of IR2.

Define the coordinates xg and yg on U by H(g)(q) = (xg(q),yg(q)). Let $F
and J^-1 be the foliations of U\{pg} that are the level curves of the functions
Q(q) = Xg(q)yg(q) and q —> xg(q)2 — yg(q)2 respectively. We say that q\ is above
q2 if q\ and q2 lie on the same leaf of βF1- and Q(q\) > Q{qi). Suppose that OL\ and
0C2 are C1 arcs which are transverse to #'-L and have the same endpoints. We say that
OL\ and &2 are equivalent if the regions R\ = {q : q lies above a point of αi and below
a point of α2} and R2 — {q : q lies above a point of α2 and below a point of αi} have
the same area. It is easily seen that pg cannot lie between two equivalent curves.
Furthermore two equivalent curves must either cross topologically or coincide.

Now suppose that W is a connected C1 curve in U that is part of a curve that
is invariant under g. We say that W is carried by a leaf L of 3F if there is a point
q G W Γ)L such that the arc of W from q to g(q) lies in U, is transverse to ^λ~
and is equivalent to the arc of L from q to g(q). See Fig. 3.2.

An easy continuity argument proves the following lemma.

Lemma 3.5. Let W be a connected C1 curve in U that is part of a curve that
is invariant under g. Suppose that for some q G W the arc of W from g~ι(q) to

A1==Ao

W

Fig. 3.2. W is carried by L.
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g(q) lies in U\{pg} and is transverse to
£F that carries W.

K. Burns, H. Weiss

Then there is a unique leaf L of

Choose a compact neighborhood UQ of pg with the property that \Jl

n°°_mgn

(C/o) C ί/. Let qs be the first point on Vg(pg) (as one moves along Vg(pg) start-
ing from pf

g) that lies in U$. Let Ws be the path component of U Π Vg(pg) that
contains qs. Define Wu analogously. Let U and Lu be the leaves that carry Ws and
Wu respectively.

If U —Lu, then pg will have a homoclinic point in U, and it follows from
Theorem 3.1 that either g has positive topological entropy or there exists a homo-
clinic connection for pg. Henceforth we will assume that Lsή=Lu.

Let Γs be the curve that starts at p'g, follows Vg(pg) until the first intersection
with U and then follows U (in the direction from q towards g(q), where q is the
point of changeover from Vg{p'g) to U). Define Γu analogously. Suppose that we
can choose points xs on Γs and xu on Γu such that the arcs from xs to g(xs) and from
xu to g(xu) are C1 close. Then we can use the argument in the proof of Theorem 3.1
to see that area preservation will be violated unless pg has a homoclinic connection.
Even though Γs and Γu are no longer invariant, their construction ensures that the
area-preservation argument still applies.

It is clear that we can choose xs and xu with the desired properties if U or Lu

lies in the interior of the first quadrant, as illustrated in Fig. 3.3.
If neither U nor Lu lies in the interior of the first quadrant, Vg(pg) and Vg(pg)

lie "inside" Γs and Γu. If we interchange the roles of pg and pg in the above
argument, we will then find that the Ls and Lu constructed from Vg(pg) and Vg(pg)
lie in the closure of the quadrant bounded by Vg(pg) and Vg(pg) in the linearizing

g(χ,

Fig. 3.3.

Fig. 3.4.
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coordinates around pg; see Fig. 3.4. Moreover, if one of the original U and Lu

lay outside the closure of the quadrant bounded by Vg(pg) and Vg{pg) (in the
coordinates near pg\ one of the new U and Lu will lie in the interior of the first
quadrant (in the coordinates near pg), and we are done.

The only remaining case is when U and Lu form the boundary of the quad-
rant bounded by Vg(pg) and Vg(pg). But this is only possible if pg and p'g
form a heteroclinic cycle of length 2. Moreover each of the pairs Vg(pg), Vg(pg)
and Vg(pg\Vg(pg) will either coincide or cross topologically. It follows from
Theorem 2.2 that g has positive topological entropy or a double heteroclinic con-
nection between pg and pg. D

4. Topological Crossing of Higher Dimensional Stable and Unstable Manifolds

Suppose that Y and Z are compact oriented manifolds with boundary, smoothly
embedded in an oriented manifold X. Suppose further that dYΠZ = Φ = dZΓ\Y
and dim Y + dimZ = dimX. We wish to define the (oriented) intersection number
of Y with Z,#(7,Z).

Let us recall the definition in the case when Y and Z are without boundary
(see e.g. [Hi]). The orientations of X, Y and Z allow one to assign an intersection
number of 1 or - 1 to each transversal intersection of Y and Z. If Y and Z are
transverse, there are finitely many intersection points and #(7,Z) is the sum of
the intersection numbers at all intersection points. It is easily shown that if Y' is
homotopic to 7, Z' is homotopic to Z, Y is transverse to Z, and Y' is transverse
to Z', then #(Y',Z') = #(7,Z). One defines the intersection number in the general
case by first performing a homotopy to make the submanifolds transversal, and then
using the definition in the transversal case.

This procedure can be carried over to our situation, with one caveat. The invari-
ance of intersection number under homotopy breaks down if the boundary of one of
the submanifolds is allowed to intersect the other submanifold. One can, however,
make the submanifolds transverse with a homotopy that moves points less than any
prescribed distance. Thus we simply add to the above definition the provison that
the homotopy used to make Y and Z transverse should move points by less than
ε/2, where ε is chosen so that

(*) 0 < ε < min(dist(d7,Z),dist(<9Z,7)).

Now suppose that W and W are smoothly immersed oriented submanifolds
of X with complementary dimension. It is natural to say that W and W' cross
topologically if there are compact embedded submanifolds with boundary, V C W
and V C W\ such that dim V = dim W and dim V = dim W\ dV Π V = 0 = V Π
dV and #(V, V') + 0. Note that it would be no loss of generality to require V and
V to be connected, for if #(V,V')^Q we can choose components V^dV and
F 0

;C V w i t h ^ F o ^ o ' H O .
It is possible to generalize these ideas so that they can be applied to nonori-

entable manifolds. Suppose that Y and Z are compact orientable embedded
submanifolds with boundary such that dim Y + dimZ = dimX; we no longer re-
quire X to be oriented or even orientable. Let U be an orientable open set con-
taining Y ΠZ and Θ a choice of orientations for 7,Z and U. Then we can define
#c(Y,Z; U) by following the above procedure (with the orientation of U replacing
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that of X) and requiring homotopies of Y and Z to move points by less than ε/2
where, in addition to (*),ε also satisfies

ε < min(dist(7\tf,Z),dist(Z\ί/,7)).

This condition ensures that no intersection points appear outside U. We point out that
in general both the sign and the absolute value of #@(Y,Z; U) can change with Θ.

Definition 4.1. Let W and W be smoothly immersed submanifolds with comple-
mentary dimension in a manifold M. Then W and W cross topologically if there
are an orientable open subset U of M and compact orientable embedded subman-
ifolds with boundary, V C W and V <zW such that

(1) dim V = dim W and dim V = dim W,
(2) dvnv' = 9 = vndV,
(3) vnV c u,

and there is a choice Θ of orientations on V, V' and U such that #&(V, V'\ £/)φO.

It is convenient to give another version of this definition. Observe that if 7, Z and
U are connected, then only the sign of #$(Y,Z; U) can change with Θ. Moreover if
U' is another connected orientable open set containing Y ΠZ, and & is the choice
of orientations for Y9 Z and U' that is compatible with Θ, then

Thus if Y and Z are connected compact orientable embedded submanifolds with
boundary that have complementary dimension, we can define

where U is any connected orientable open set containing Y ΠZ and Θ is a choice
of orientations for Y,Z and U. We hasten to point out that there are such open
sets, for example the open ε-neighbourhood of Y for small enough ε.

Observe that V, V and U can be chosen as in Definition 4.1 if and only if there
are components Fo of V and Γo' of V such that #+(F0, F Q ) Φ 0 . Thus Definition 4.1
is equivalent to:

Definition 4.2. Let W and W1 be smoothly immersed submanifolds with comple-
mentary dimension in a manifold M. Then W and W' cross topologically if there
are compact connected orientable embedded submanifolds with boundary, V c W
and V C W, such that #+(Ύ, FX)ΦO.

We call V and V a good pair for W and W if they satisfy the above properties.
We are now ready to state the main theorem.

Theorem 4.3. Let f : M —> M be a diffeomorphism with a hyperbolic fixed point
p. Assume that Ws(p) and Wu(p) have a topological crossing. Then some power
off has the full two shift as a topological factor.

Remarks. We emphasize that the topological crossing need not be transverse and
could be of infinite order. It follows from Lemma 1.3 that hτop(f) > 0. As in the
two dimensional case, we only require contraction of Ws(p) by / and of Wu(p) by
/ - 1 , not exponential contraction. Gedeon, McCord and Mischaikow have recently
proved a generalization of this result [GMM].
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Before proving Theorem 4.3, we develop the topological machinery that will be
needed. The ideas are analogous to those in Sect. 2, but we have to use homology
in place of elementary two dimensional topology. Now TV will be a subset of M
that is homeomorphic to (and identified with) Dk(\) x Dι(\) where k + / = dimM
and R = Dk(l) x Dι(p) for some p e (0, 1).

We call a set V C TV essential if inc* : Ht(V, V\R) -• ///(TV, N\R) is nonzero.
If S C TV, the interior of S as a subset of TV is

lntNS = {x e S : £e(jt) Π TV C 5 for some ε > 0} .

We shall call a set S C TV a horizontal strip if S is connected, S C R, and £
can be decomposed into two disjoint sets S° and Sδ such that:

(1) ίP C Int# S;
(2) i = inc* : ///(TV, N\R) -+ ///(TV, N\S°)is nonzero;

Remark. There are only two types of horizontal strip that arise in the results of this
paper. The first are those described in Sect. 2, for which we can choose Sd to be a
small neighbourhood in S of c\oy,er U cupper. The second have the form Dk{\) x 7,
where Y C Dι(p); in this case we choose Se to be Dk{\) x Yδ, where 7^ is a small
neighbourhood of 37 (see Lemma 4.7 below).

From (1) above and the excision theorem, we obtain:

Lemma 4.4. The map ix = inc* : H\(X ΠS,XΓ)Sd)^ Hι(X, X\S°) is an isomor-
phism for every set X C TV, in particular when X = N.

Since ///(TV, N\R) is one dimensional, we see from property (2) of a horizontal
strip that there is a unique one dimensional subspace L(S) C ///(£, S°) such that

/(///(TV, TV\/?)) C ^OL(S)).

Let n be a positive integer and S = S 0 U S° a horizontal strip. We shall say that
fn stretches S across R if fnS c TV, / Λ 5 5 C TV\i? and

/ : : L ^ ) -> ///(TV, TV\/?) is nonzero .

Theorem 4.5. Suppose TV contains two disjoint closed horizontal strips SQ and S\
that are stretched across R by fn° for some no ^ 1. Then fn° has the full two
shift as a topological factor.

Proof. Except for the proof of the Key Lemma, the argument is identical to that in
the two dimensional case. In the present context, the Key Lemma says:

Let S = S6 U S° be a horizontal strip and V an essential subset of N. Suppose
that fn stretches S across R. Then fn(SΠ V) is essential.

The proof of this claim is very similar to that of Lemma 3.4 in [E]. Consider
the commuting diagram

Hi(vns, vnsc) -^ Hι(S,sc)

H,(f"(vnS),f"(vns)\R) -±> H,(N,N\R)
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in which j and k are induced by inclusions. We want to show that A: is a nonzero
map. This will be true if / " o j is a nonzero map. Since fn stretches S across R,
it suffices to show that image (j) 0 1 ( 5 ) Φ0. To that end, consider the commuting
diagram

^U Hι(N,N\R) - U H^N, N\S°)

Hι(V,V\SQ) -£-> Hι(VC\S,VC\Sd) -U

in which all maps are induced by inclusions except for the map iγ\ which is defined
by Lemma 4.4. Since the diagram commutes, it suffices to show that image (/ o ίj) n
/#(£(#))+ 0- Observe that i\ is nonzero because V is essential, i is nonzero because
S is a horizontal strip, and Hι(N,N\R) is one dimensional. Hence / o iλ is nonzero.
It now follows from the definition of L(S) that image (/o/ 1 )n/#(Z'(5))#0.

Proof of Theorem 4.3. As in the corresponding theorem for surfaces, we may
assume that p is a fixed point. We use the notation and geometric structures intro-
duced at the end of Sect. 1.

Lemma 4.6. Wu(p)Γ) IntN contains two compact embedded l-dimensίonal mani-
folds with boundary, Vo and V\, such that

(1) V0Π Vx = 0 ;
{2)dVoyJdVλ cN\(Dk(l)x{0});
(3) z/zc* : Hι(Vh dVt) -> Hι(N, N\(Dk(l) x {0})) is nonzero for ί = 0, 1.

Proof Let Vo = {0} x Dι(l/2). Now we find Vx. Let Vs and Vu be a good pair for
Ws{p) and Wu(p) according to Definition 4.2. Then fnVs and fnVu are a good
pair for any n. Choose «__large enough so that fnVs C IntΛf. Choose an open set
X such that f P d , I C IntN and dX is a smooth submanifold transverse to
Vu. Then fnVu ΠX is a smooth manifold with boundary. There is a component V\
of fnVuC\X such that fnVs and Fi are a good pair for Ws(p) and J^WO). It is
easily seen that Vo and V\ have the desired properties. D

Choose p > 0 such that dV0 U 3Fi C N\CD*(1) x D^p)), and set i? = Dk(\) x
Dι(p). Our choice of p makes the sets Vo and Fi that were defined in the previous
lemma essential.

Lemma 4.7. For any large enough n there are disjoint closed horizontal strips
S0(n) D f~nVo and S\(ή) D f~nV\ that are stretched across R by fn.

Proof Choose ε > 0 so that the closed ε-neighbourhoods of <3F0 and dV\ lie in
IntN\R. Let n be large enough so that the conclusions of Lemma 1.4 hold with
V = Vo or Vx. For / = 0, 1, let

γt(n) = {ye D\p): (0, y) e f~n(Vi)} and S^n) = Dk{\) x Y^ή).

Our choice of ε and (2) of Lemma 1.4 ensure that we can split Y^n) into
complementary subsets Yf(n) and Y?(n) such that Y® clntY^n) and fn maps
Dk{\) x Yf{n) into N\R. Set Sf(n) = Z)A(1) x γP(ή) and 5?(n) = Dk{\) x y P(n).
It is clear from our construction that So(n) and S\(n) are horizontal strips and are
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closed and disjoint. Moreover (f~nVh f~ndVi) c (5,-(w), S°(n)) for i = 0, 1. We
have the following commuting diagram:

H,(Vi9

inc* inc*

, N\R)fl

The top arrow is an isomorphism and the right arrow is a nonzero map by
Lemma 4.6 and the subsequent definition of R. Hence the bottom arrow must
also be a nonzero map. Since i//(5z («), Sf(n)) is one dimensional, we have
1(5, (w)) = Hι(Si(n), 5f(Λ)). It follows that fn stretches 5, (w) across R. D

Theorem 4.3 follows immediately from the above lemma and Theorem 4.5. D

As we pointed out in the introduction, Theorem 4.3 has an extension to a
heteroclinic cycle in which all the appropriate deleted stable and unstable manifolds
have topological crossings.

Theorem 4.8. Let f : M —> M be a diffeomorphism with a heteroclinic cycle
po,...,pr-\ in which each pair Ws(pt) and Wu(pi+\) has a topological crossing.
Then hτop(f) > 0 and some power of f has the subshίft of finite type ΣA

as a topological factor, where A is the 2r x 2r matrix

/ I
f 0

0

Ki

1
0

0
1

0
1
1
0

0
1
1
0

0
1

0
1

1
0

1
0 J

Proof Let k be the common dimension of the W\pr) and / the common dimension
of the Wu(pι). Choose neighbourhood Nj of the pt that are pairwise disjoint and
have the same properties as N in the previous arguments. Given p e (0, 1), let Rt

be the subset of Nt that is identified with Dk{\) x Dι(p). We make the obvious
definitions of an essential subset of TV/, a horizontal strip in Rj, and what it means
for fn to map a horizontal strip in Rj across Rj. Each Wu(pi) contains compact
submanifolds with boundary VQ and V[ such that, for a suitable choice of p, VQ is
an essential subset of Ni and V[ is an essential subset of Nι+\. For a large enough
n0 there are horizontal strips Sι

Q D f~n* Vι

Q and S[ D f~no V[ in Rt such that /Λo
stretches Sι

0 across Rj and S\ across Rj+\. Now let

and define

= {x: e U U all* e

{(0, 0), (0, ! ) , . . . , ( * - 1, 0), (* - 1, I)} 2

so that the mth term of the sequence π{x) is (z, j) if fmn^x G Sj. The image of the
map π is ΣA. D
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