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Abstract: In this paper we prove the existence of stationary solutions of some
nonlinear Dirac equations. We do it by using a general variational technique. This
enables us to consider nonlinearities which are not necessarily compatible with
symmetry reductions.

Section 1. Introduction and Main Results

The nonlinear Dirac equation has been widely used to build relativistic models
of extended particles by means of nonlinear Dirac fields. A general form of this
equation in the case of an elementary fermion is

iγμdμψ -mφ + y°VF(φ) = 0. (1.1)

Here, ψ : ΊR4 —^ (E-4,dμψ = ^μψ,0 ^ μ ^ 3, we have used Einstein's convention
for summation over μ, m is a positive constant, F : (C4 —» IR models a nonlinear
interaction and yμ are the 4 x 4 Pauli-Dirac matrices:

with
Ό - Λ 2 (\ 0

° - \\ 0 / ' " ~\i 0

Note that x° plays here the role of time. Throughout this paper we assume that
F satisfies F G C2 and

F(eiθψ) = F(φ) for all θ. (1.3)

Different functions F have been used to model various types of selfcouplings.
For a review on this and historical background see for instance [14].



324 MJ. Esteban, E. Sere

Stationary states of the nonlinear Dirac equation are considered as particle-like
solutions. These solutions are in some sense solitons which propagate without chang-
ing their shape.

Stationary solutions are functions of the type

φ(xϋ,x) = e~iωx°φ(x), (1.4)

where by x we denote (x1,*2,.*3) G R 3 , and such that φ is a non-zero localized
solution of the following stationary nonlinear Dirac equation:

iykdkφ - mφ + ωγ°φ + y°VF(φ) = 0 in 1R3 . (1.5)

Here, we have used the repeated index convention for summation over the three
values of k. We will do this throughout the paper.

By "localized," we mean that φ G Wlq(Wi3,€4) for any 2 <Ξ q < oo and
F(φ)eLι(WL3,WL).

The above equation has a variational structure. Indeed it is the Euler-Lagrange
equation corresponding to the following functional:

= I (-\(iyVdkφ,φ)+^φφ-^\φ\2-F(φ))dx, (1.6)

where (, ) is the usual scalar product in C 4 and φφ denotes (γ°φ,φ).
Existence of solutions of (1.5), i.e. of critical points of Iω has been proved in

[5, 6, 9 and 13] in the particular case when

F(φ)=l-G{φφ\ G G C 2 ( R , R ) , G(0) = 0 (1.7)

under suitable conditions on G, with ω G (0,m). When (1.7) holds, one can use a
particular ansatz for the solutions:

φ(x) =

and then Eq. (1.5) reduces to the O.D.E. system

ur + — = v [g(v2 - u2) - (m - ω)]
r
v' = u [g(v2 — u2) — (m + ω)]

(1.9)

where g(s) = Gf(s).
In the above papers the system (1.9) is solved by a shooting method which

yields an infinity of localized solutions for (1.9). We will state the precise results
of [5,9 and 13] in Sect. 4.

The particular form (1.7) corresponds to the so-called Soler model, and has been
widely studied (see [14,17]). There are other models of selfcoupling for which the
ansatz (1.8) is no more valid, for instance the following nonlinearity (see [10,14]):

\φφ\ + b\φyφ\2 (1-10)

with bή=0,~φ = y°φ and y5 — y°γιy2y3.
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In this paper we prove, by a variational method, the existence of non-zero critical
points of 7ω, and therefore of localized solutions of (1.5), both in the case when F
satisfies (1.7) and in the general case.

When F satisfies (1.7), we actually solve the O.D.E. system (1.9) by a vari-
ational method to obtain the existence of an infinity of solutions of (1.9) under
assumptions slightly less general than those in [5,9,13]. The main assumption we
have to add is that G satisfies

G'(x) x^θG(x)9 0 > 1 , V J C G R . (1.11)

This is a super-linearity condition on G. This kind of technical condition often
appears as necessary to use variational techniques when solving nonlinear PDE's.

If F is a general function which does not necessarily satisfy (1.7), we also
obtain an existence result for (1.5) but only for functions F which grow more
slowly than | φ | 3 at infinity. This limitation comes from the fact that we work in
the space //1//2(IR3,(C4). Hence we are not able yet to treat nonlinearities like those
satisfying (1.10). Nevertheless we believe that the method used in this paper should
be useful to extend our results and treat more general nonlinearities. Our results are
concerned, for instance, with nonlinearities as

\φφ\ + b\φyφ\β , i < a j < l9 6 ^ o . (1.12)

Let us now state our main results.

Theorem 1. Let F : <C4 -> R satisfy (1.7) with G e C2(R,1R). Denoting by g the
first derivative of G, we make the following assumptions:

(Hi) g(χ) χ ^ θG(x), 0 > i , V * e R .

(H2) G(O) = 0(O) = O.

(H3) G(x) Ξ> 0 (VJC G R ) and G(A0) > 0 for some AQ > 0.

(H4) 0 < ω < m.

Then there is an infinity of solutions of Eq. (1.5) in Π2<^<+oo ^ ( R 3 , ^ 4 ) . Each
of them is found by a min-max on the functional Iω. They are of the form (1.8),
so they correspond to classical solutions of (1.9) on IR+, decreasing exponentially
at infinity.

For more general nonlinearities F, not compatible with the ansatz (1.8), we have

Theorem 2. Let F(φ) = λ(\φφ\^ +b\φy5φ\β), with 1 < α,j8 < \; λ9b > 0.

Then there exists a non-zero solution of (1.5) in Γl2<^<+oo Wι*(β?91S?) for
every ω G (0, m).

In fact, we will prove a more general result:

Theorem 3. Assume that F:(ϋ4 —> IR satisfies:

(H5) 0 S F(φ) ^ αi(|φ|α i + | φ Γ 2 ) , VΦ ^ ^
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Here, a\ > 0 and 2 < ot\ ^ &2 < 3.

(H6) F G C2(<C4, IR), F'(0) = F"(0) = 0,

(H7) VF(φ)-φ ^ αF(</>) , α > 2, Vφ G C 4

(H8) 3β > 3 , V<S > 0, 3Cδ > 0, Vφ G (C4,

(H9) F(φ) ^ fl3|φφ|v - a4 , v > 1, α 3,α 4 > 0, Vφ G C 4 .

w, /6>r eyery ω G (0,w), w^ cαw ^«J « non-zero solution of (1.5) /«

' 3 4

Theorem 2 is clearly a consequence of Theorem 3.
To prove Theorems 1 to 3 we will use a linking argument. For a description

of the general linking method see [7]. In the case of Theorems 2,3, we need some
ideas introduced in [11,19] in the context of Hamiltonian systems, and we use the
concentration-compactness theory [12].

This paper is organized as follows. The second section is devoted to the proof
of the existence of linking critical levels for the functional Iω. In Sect. 3 we prove
some auxiliary results and a priori estimates. Theorem 1 is proved in Sect. 4 and
Theorem 2 and 3, in Sect. 5.

Section 2. The Linking Argument

We consider a functional of the form

Iω(φ) = I\φ) - 11 |φ| l ^ ^ ) , φ e //1/2(R3,C4),

where

I°(φ) — - J [φ, (-iyoγkdk + my0) φ] d3x - J F(φ)d3x,
^ R 3 R 3

under the assumptions (H5), (H6), (H9), and for 0 < ω < m. Iω is well defined
and of class C2 on E = / / 1 / 2 ( R 3 , C 4 ) .

We want to prove Theorems 1 and 3 thanks to linking arguments on Iω. For
Theorem 1, the linking argument will work in the subspace of E whose elements
are of the form (1.8), and will give a nondecreasing sequence (CM)N^\ of positive
min-max levels, assuming F of the form G{φφ). This will be done in part A of
this section.

For Theorem 3, the linking will give one positive min-max level c(ω).
When studying these linkings for / ω , we are faced with some difficulties, which

do not appear in classical linking situations (see e.g. [7] for a description of usual
linkings).
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The main one comes from assumption (H9), which in some sense is too weak:
it would be much easier to find the upper estimate on the min-max levels if we
had

instead of F(φ) ^ a3\φφ\v for φφ large enough.
To deal with this expression φφ, which may vanish even for large values of

\φ\, some technical work has to be done. We start this section by a study of the
functional 7°.

7° splits in two parts, a quadratic one, ̂ (φ,Dφ)ExEr, with

D= -iy°ykδk+rny°,

and a nonlinear one, — J F(φ)d3x. We have the following estimates, for any

φe<£4:
a3\φφ\v-a4 S F{φ) ^ aλ{\φ\^ + \φ\**)

(H9) (H5)

with αi,fl3,α4 > 0, and 2 < 2v ^ max(αi,α2) < 3. Moreover, we always have
F(φ) ^ 0.

Let us study D. It is a differential operator with constant coefficients. So, in
the Fourier domain ξ — (^1,^2^3), it becomes the operator of multiplication by the
matrix

where <7i,σ2,σ3 are the Pauli matrices defined in (1.2).

By classical calculations (see e.g. [4]), D(ξ) has two eigenvalues, +y

and — y/m2 + ξ2. As a consequence, the spectrum of D is sp(D) — 1R\(—m,m).
Note that the meaning of the assumption |ω| < m already appears: it avoids any

degeneracy of \(φ,Dφ)ExE, - f \\φ\\2

L2.

Now, there is a natural splitting of E — 771//2(1R3,C4) as a sum of two Hubert
spaces E+,E-, each of them being stable for D, with sp(D\E+) = [m,-f-oo) and
sp(D\E_) = (-00,-m].

Denote P± the projection on E± with kernel Eτ. In the Fourier domain, P±
is a multiplication operator, by a matrix n±(ξ) which is a smooth function of ξ.
Moreover, π+(0) is the orthogonal projection from (C4 onto (C2 x {(0,0)} and π_(0)
is the projection on {(0,0)} x (C2.

Consider the following norm on E,

= (φ,(DP+- DP_)φ)jχE, = {φ,\D\φ)l

), 0(ξ)π+(ξ) - D(ξ)π.(ξ)]φ(ξ))d'ξ) .

This norm is equivalent to the classical 771/2-norm, and for || | |£,is+ and 7s_ are or-
thogonal, as well as for IHI^. Moreover, \/φ e E, m\\φ\\2

L2 ^ | | φ | | | .
Let us call Es the set of functions φ G E of the particular form given by (1.8).

Es is a Hubert subspace of E stable for D. So it is stable for P+ and P_, and,
denoting ES

±=E±Π Es, we have Es =ES

+ΘES_.
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Coming back to 7°, we now give the key lemma which solves our problem
with (H9).

Lemma 2.1. Assume that (H9) is true, and take μ > 0 and N G N*.
There is a radius R > 0 and an N-dimensional vector space EN C E+ such

that,

if φeE satisfies \\P-φ\\E SR and (P+φ G EN, \\P+φ\\E = R),
thenI°(φ)S f \\φ\\2

L2

Moreover, we can impose E^ C Es

+.

Note that, in Lemma 2.1, EN and R depend on μ,N. The dependence on N is
not very surprising. It would also be true if we had F(φ) ^ c|<p|2v But in that
case, we could take EN, R independent of μ for N fixed. We do not know if the
same thing can be done with the estimate F(φ) ^ c\φφ\v, for \φφ\ large enough.

Corollary 2.2. Assume that (H9) is true with μ,N,E^,R as in Lemma 2.1.
Define , # _ = {φ G Ej \\P-Ψ\\E ύ R, P+φ G EN, \\P+φ\\E S R}, and dJί^ =

{φ G M- I either \\P-φ\\E = R or ||P+φ||/r = R}.
Then, for any φ G dJί- and ω G [μ,m], we have Iω(φ) S 0.

Proof of the Corollary.

• If \\P-φ\\E=R and ||P+φ|| ύ R, then Iω(φ) ^ \{R2 - R2) = 0.
• If | | P - φ | U ^ R, \\P+φ\\E =R, we apply Lemma 2.1, and obtain Iω(φ) =

I°(φ)-^\\φ\\2

L2 £ ι

Ί(μ-ω)\\φ\\2

L2 £ 0. D

6>/ Lemma 2.1. We consider the vector X = I j} G € 4 . Note that y°X =
\ o /

= mX, π+(0)X = X, π_(0)r°X = π_(0)X - 0,

Given λ > 0, we call Vχ the Hubert subspace of E of functions φ(x)
whose Fourier transform may be written φ(ξ) = θ(\ξ\)X, with θ arbitrary in
L2(([0,λ],r2dr),ΊR), and 0(r) = 0 if r ^ λ

Clearly, F;u is infinite-dimensional and VχCEs. So £; ==/^(F J c £+, and
since π+(ξ)X —> X as £ —• 0, ^ is infinite-dimensional.

Moreover, given 0 < η < 1/2, there is λ(η) > 0 such that, if 0 < λ ^
then for any φχ G £/ with \\(P)\\E — 1

(i) mll^||^2(]R3 j<C4) ^ rn(φλ9y
oφλ)L2 ^ 1 - | ,

(ϋ) (Vφ- G £_) |(φ_ |

Given N G N* and η > 0, we select an N-dimensional subspace E^{r\) of E;(η).
There is Λ = A(η,N) > 0 such that, for any β G £#(*?)> w i t n IklU = 1 :

(ij)
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In the following discussion, we are going to choose η(μ) > 0 and R(N,μ) > 0
such that EN — E^(η(μ)) and R = R(N,μ) satisfy the conclusion of Lemma 2.1.

We consider φ = φ_ -f e, ψ- e £_,e G EN, \\Ψ-\\E ύ R, I\e\\E = R- There are
two possibilities:

( a ) Λ 2 ( l - ^ ) %\\φ.\\l^R\ Then

I\φ) ύ \{Ψ,

- \\φ-\\2

E)

= =
Am = 4(1 - ^ )

f o r nύ\.

(b) | | φ _ | | | g Λ2(l - lm\ hence | |φ_| |2 2 ( R 3 ) g £(1 - &). Then

I

>

l-A,Aγ

1

{-A,Aγ

η ^
4m(l

So

i?2 —
g KlR

2v+K2<0 if R^ R(μ,A,a3,a4).

Finally, we take yy(μ) — min(^, 4m(1^2Λ/m))>

proved. D
~ ^ a n c^ Lemma 2.1 is



330 M.J. Esteban, E. Sere

We now describe the Unkings of Theorems 1 and 3.

A. The linking of Theorem 1. In this part, we assume that F satisfies (H5), (H6)
and (H9). We suppose, moreover, the following :

F can be written in the form F(φ) = H(\φ\\2, \(p2\2),

with ψι G C 2, φ = ( n ) G C 4, arbitrary, H of class C2.

Note that these conditions are fulfilled in particular when F is of the form (1.7),
with G satisfying (HI, 2, 3).

Let us now define V/ω as the gradient of Iω for 11 |l^-scalar product, that is,
V/ω = \D\-ι(Iω)'. AS a consequence of (HIO), if φ G Es, then V/ω(φ) G E\ and
a critical point of IW\ES is also critical point of Iω. Moreover, Iω is even.

Given 0 < μ < f and iV G N*, we consider Jί'- defined in Corollary 2.1, and
we define Ms_ = Jί- ΠEs,dJΐs_ = dM^ Γ)ES C Jίs_(we have imposed EN C E%
in Lemma 2.1).

From (H5), there are 0 < r(μ) < R(N,μ) and p(μ) > 0 such that

(ω S m - μ => inf Iω(Σ%) ^ p) ,

with

We define the flow hfj^O of V/ ω |^ by

\ fthf = V/ω o hf .

V/ω being locally Lipschitz, hf is well-defined and continuous.
Moreover, Iω ohf(φ) increases as t increases, ω, φ fixed, so Corollary 2.2 im-

plies that hf(Σs

+) Π dJίs_ = 0 Vί ^ 0 Vω G [μ,m - μ]. Finally, we remark that
V/ω(φ) = P+φ — P_φ + kω(φ), where &ω is odd, non-linear, continuous, and maps
bounded subsets of Es onto precompact subsets of Es.

So, by classical arguments (see e.g. [1,3]), we have the following result:

Lemma 2.3. We assume that (H5, 6, 9, 10) are
To 0 < μ < ~ and N e N*, we associate R, Ms_, dJίs_, r, p, Σ+
77ze?2, /or απj ω G [μ, m - μ] α ί̂/ t ^ 0,

where γ is the genus {or Zti-degree) of symmetric sets.

Lemma 2.3 has an immediate consequence :

Corollary 2.4. With the assumptions and notations of Lemma 2.3, for ω fixed in
[μ,m — μ], we can define

cN(ω) = inf {sup Iω(X)/X = -X C Es,

and (\ft t 0) y(hf(Σs

+)ΠX) ^ N}.
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If N\ < N2, then cNγ(ω) ^ c^2{ω), and we have the estimates

0 < p ^ CN(CO) ίk ΓN < +00,

where p depends only on (a\, oc\, ot2, μ) and Γ^ on (#3, a$, v, μ, N).
Moreover, there is a sequence (φn)n^o,φn £ Es, such that

Iω(φn)-> cN(ω)

and
(Iω)'(φn)->0 as / w + o c .

Proof of the Corollary. The monotonicity of (c/v(&0)/v î is obvious.
In the estimate p ^ cχ(ω),p is the same as in Lemma 2.3. It satisfies inf

Im-»(ΣS

+) ^ p. For cN(ω) <, ΓN, we choose ΓN = sup lμ{Jί-\ where Jί^. is
associated to μ,N as in Corollary 2.2. The existence of (φn)n^o is classical result
of min-max theory (see e.g. [1]). D

B. The Linking of Theorem 3. In this section, no symmetry assumption is made on
F, and we cannot use the space Es. In E, the gradient of Iω is of the form P+φ —
P-ψΛ- kω(φ), as in part A, but k does not send bounded sets into precompact sets.
The reason for that is the invariance of the problem by translations in IR3. Such
a situation has been studied, in the context of homoclinic orbits of Hamiltonian
systems, by Hofer and Wysocki (see [11]), and we will use their ideas to overcome
this difficulty. See also Tanaka [19] for another approach.

We suppose that F satisfies conditions (H5, 6, 9). Let 0 < μ < j be fixed. We
consider R, E\ associated to μ and N = 1 as in Lemma 2.1. We take e + £ E\, with

lk+IU = i

We define

^ _ = {φ = φ _ + λe+ / φ _ G £ _ , | | φ _ \ \ E ^ R9λ G [0,Λ]}

and

dJί- = {φ = φ _ +λe+ G Jί- / either \\(p-\\E = R or λ G {0,^}}.

Since / ω ^ 0 on £_, it follows from Corollary 2.2 that Γ ^ 0 on <3yK_.
We also define Σ+ = {φ G £"+ / ||</>||£ = ̂ }, where 0 < r < i? is chosen such

that, for any φ e E+ with | | φ | | £ ^ r, Γ~μ{φ) ^ 0, and that p = infΓ+/w-^ > 0.
This is possible thanks to (H5).

We call ηf the flow of -V/ω = -\D\-\lω)' at time t ^ 0, defined by

We start with the following lemma:

Lemma 2.5. (H5, 6, 9) are supposed to be true, μ G (0, f ) is fixed,
αr£ defined as above and ω G [μ, m — μ]. Consider the mapping
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Then Hω is a Fredholm mapping of class C1 and index 1, and there is
ε > 0 such that for any T ^ 0, the restriction of Hω to Όεj —
(Hω)-\B-(ε) x [ ( r - ε ) 2 , ( r + ε) 2 ])U([0,Γ| x Jf _) is proper.

Proof We just give a sketch of proof. For similar (and more detailed) arguments,
we refer to [11], Lemma 4.4, and [15], Lemma 4.4.

We may write

VIω(φ) = P+φ - P_φ - ω\D\~xφ - \D\-χF'(φ),

and φ \-+ \D\~ιF'(φ) has a compact differential

χ G E *-> \D\~ι(F"(φ)-χ) e E at any point φ eE.

So, by variation of the constant,

η?(φ) = eκp {t(P- - P+ + ω\D\-χ)}.φ + ^ ( φ ) = Z,φ + *,(<?),

if* : £ —> £" is of class C1 and has a compact differential at any φ £ E. Moreover,
i

Kt is compact from E to Hfoc.
As a consequence, ηf,Hω are Fredholm mappings of class Cι,η? has index 0,

and Hω has index 1.
Given ε > 0, let us take a sequence (tmφn) in f/ε̂  such that Hω(tn,φn) —

(Φn^n) n a s a limit (iA*,f*) a s w S o e s to infinity. To end the proof of Lemma 2.5,
we have to show that for ε small enough, (φn) is precompact in E.

After extraction, we may assume that tn tends to t* e [0, T]. We have φn =
L_tn(ψn + rne+) - L-tnKtn(φn) = φι

n + φ2

n. The sequence (φj) has a limit <pi for
the topology of E, and after a new extraction, there is φ\ G .£" such that βφ2

n —> βφ\
for any compactly supported function β e C°°(IR,R).

Let us denote φ\ — φλ

n — φ\i. It is not very difficult to prove that P_ o η?n(φl)
—* 0 and that | | ^ ( ^ ) | U i s smaller than r -\- 2ε for n large enough. So, choosing ε
small enough, we find that

lim inf Iω(φ3

n) ^ lim inf Iω o ηfn(φ3

n) ^ 0.

Since P+(φl) —•>• 0 as n —> oo, this inequality implies that φ^ —>• 0 for the topology
of J51. The sequence φn is thus convergent in E, and Lemma 2.5 is proved. D

Lemma 2.5 allows to work with a generalized version of the Leray-Schauder Z2-
degree, due to Smale [16]. Given T ^ 0, we may define Vε τ = Uε τ Π ({T} x Jί"_)
and rfΓ - deg(//ω(Γ, ), F£,Γ,(0,r2)).

We have ί/o — l From Corollary 2.2 and Lemma 2.5, dj — do. As a conse-
quence, the equation Hω(T,φ) = (0,r2) has always a solution in Vεj, and we have
the following result

Corollary 2.6. With the assumptions and notations of Lemma 2.5, for any t ^ 0,
η™(Jf - ) Π Σ + w non-empty.

So, if we define c(ω) = inf^o sup Iω o ηf(jV-), we have the estimates

0 < p ^ c(ω) ^ Γ < +oo ,

where p depends only on a\,ot\,a2,μ, and Γ on a^,a^ v,μ.
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Moreover, there is a sequence (φn)n^o, ψn € E, such that Iω(φn) —> c(ω) and
Wω)\ψn)\\E' -+ 0, asn -+ oo.

Section 3. Estimates and Auxiliary Results

We start with a priori estimates for the solutions of the nonlinear Dirac equation
(1.5), obtained via the so-called virial theorem. These estimates do not give direct
a priori bounds on the norm of the solution in E. The indefiniteness of the quadratic
part of the energy functional Iω (and even of the two pieces of it, the one containing
the derivatives and the Oth-order term) is one of the main causes for that. But the
nonlinear part makes things much worse. Indeed, even when F satisfies (1.7), we
see that the term ~φφ has a cancellation cone, and hence for any G, G(φφ) can
never have good growth properties: it can be equal to 0 for small \φ\ and for large
\φ\ as well.

Proposition 3.1. Let F e C^β^IR) and let φ e Hl(Wt3,<E4) a solution of (1.5)
such that F(φ) £ /^(IR3). Then φ satisfies

J(iy°ykdkφ,φ)dx=^J(m(φφ)-ω\φ\2-2F(φ))dx. (3.1)

Remark. For the nonlinear Dirac equation (1.5), the above identity (3.1) is the
equivalent of the so-called Pohozaev identity for semilinear elliptic equations. For-
mally (3.1) derives from the fact that if φ is a critical point of/ω, then

= 0 . (3.2)
t=\

Proof of Proposition 3.1. We notice that the generator of the group t —• φ{'-) is
x Vφ. We use this multiplier to prove (3.1).

Multiplying Eq. (1.5) by γ° and taking the scalar product of this with x Vφ we
obtain for all R > 0,

f(iy°ykdkφ, xJdjφ)dx = J(W(φ), xjdjΨ)dx , (3.3)

where by VA(φ) we denote —my°φ -f- coφ + F'(φ).
Integrating by parts in BR = {x e 1R3; |JC| < R} we obtain

% xJdjφ)dx = -3fA(φ)dx + fA(φ)(x-n)dσ , (3.4)
BR BR SR

where SR = {x e R 3 ; |*| = R}. Moreover

ReJ(iy°ykdkφ, xjdjΨ)dx = - j(iy°ykdkφ,φ)dx
BR BR

+ \ί [(iy°ykdkφ,φ)(χ.n) + ψdjφjnkfy
kφ)] do , (3.5)

2SR

where n = (n\,n2,m) is the outward unit vector to SR.
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Therefore, since φφ, \φ\2 and F(φ) G R,

/ ((iγ°ykdkφ,φ) - ^m(φφ) + ^ω|φ| 2 - 3F(φ))
B R

X λ I /

(3.6)
SR

Now, since φ G /^(IR 3 ) and F(φ) G /^(R 3 ) , there exists a sequence Rn —+ +00
such that

Rn I ( |Vφ| |φ| + | φ | 2 + \F(φ)\) dσ ^ 0 .
SRn ~^

Then we take R = Rn in (3.6) and prove (3.1). D

Let us now see why a solution of Eq. (1.5) which is in //^2(1R3,C4) has more
regularity. This is done by using a standard bootstrap argument and the regularizing
properties of the inverse of the linear Dirac operator.

Proposition 3.2. We suppose that F satisfies (H5, 6, 7, 8), and we take ω G (0,m).
If φ G E is a solution of (1.5) such that

\Iω(φ)\ S Γ and I M I ^ , ^ ^ K ,

then for any q G [2, +00),

φe WUq(β?) and \\φ\\wxtq ύ Mq ,

where Mq depends only on the constants a\,a2,Cs,oc\,(X2,(x,β, which appear in
(H5, 6, 7, 8), and on m,Γ,K (and q, of course).

Proof From (1.5), we write

φ = D~ι(F'(φ) + ωφ), with D = -iy°ykdk + mγ° .

From (H5), (H7) and (1.5), we have

0 S (ot-2)jF(φ)d3x ^ 2/ω(φ) ^ 2Γ .

From (H8), for any x G IR3,

\F'(φ) + ωφ\(x) ^ (α3

By assumption, ||φ||L2 ^ A'. We want to improve this estimate iteratively.
Assume that we have obtained \\φ\\u = Kq f° r some q ^ 2.

Then, by Holder's inequality,

\\\F(φ)\lβ\φ\\\LP ϊ

So φ = </>i -f </>2? with

| |φi||^i,2 + HφilUu ύ MqΛ and | |φ 2 | |^i,P ύ MPf2
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So | |φ | | ^ i ,p S Mp. Hence

with 1 - l

335

1 1 1 1

if this quantity is positive. Continuing this process, we prove the proposition. D

Proposition 3.3. Assume that F : C 4 —» IR satisfies (H5, 6, 7, 8). Then for every
pair of constants c\,C2 there exists a constant M, depending only on c\,C2, such
that any solution φ G E of (1.5) for which

satisfies

ex ^ Iω(φ) S

j(iy°ykdkφ,φ)dx ^ M

j(m(φφ)-ω\φ\2)dx S M ,

JF(φ)dx < M

(3.7)

(3.8)

(3.9)

(3.10)

Remark. The quadratic forms defined by the integrals in (3.8) and in (3.9) are not
definite positive or negative. Moreover, the subspaces of//1/2 on which these forms
are either positive or negative definite are all infinite dimensional. Therefore (3.8)
and (3.9) do not provide a priori estimates for the solutions of Eq. (1.5) in any
Sobolev space. Inequality (3.10) could provide one if for instance F behaved like
the sum of power functions at infinity. Nevertheless in the often encountered case
when F depends on φ through the function φφ or a similar one, (3.10) again does
not provide any estimate.

Proof of Proposition 3.3. First of all, Proposition 3.2 implies that φEH1, and
from (H5), F(φ) e L\ so we can apply Proposition 3.1 to φ.

We multiply Eq. (1.5) by —φ* on the right and y° on the left. We obtain

y°ykdkφ,φ) + m(φφ)-ω\φ\2 -(VF(φ\φ)] dx = 0 . (3.11)
1R3

From (3.1) and (3.7) we get

-6c2 S J (iy°ykdkφ,φ)dx ^ -6ci ,
R3

which of course implies (3.8). Now, from (H5) and (H7) we have

(3.12)

(3.13)

Therefore, (3.11)—(3.13) imply

f (m(φφ) — ω\φ\2)dx ^ — 6c2 . (3.14)
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Next we multiply (3.11) by - 2 and (3.7) by 2α and add them. Then we have

(a-2)J(m(φφ)-ω\φ\2)dx
IR3

R 3 IR3

+ 2occ2-2f(VF(φ),φ)dx
R3

S (oc-2)f(iγ°γkdkφ,φ)dx + 2occ2 by (H7) .,
R 3

This and (3.7), (3.12) prove (3.9) and (3.10). D

Let us define two kinds of norms, that will be used in the sequel.

Definition 3.4.
• Given q ^ 1, and φ : R 3 —* B measurable, where (B, | |) is a Banach space,

we write

E/,(φ)=sup ίj\φ(xψdx
3 \

where Qι = { ( J C 1 , * 2 , * 3 ) e WL3/P ^ Λ:1' ^ Z1 + 1, Vi}.

C/̂  w β worm on the Banach space "uniform Zj
• Given q ^ 1, αrcd φ : R 3 —> 5 measurable, we define

Nq(φ) =
,/GZ3

I\φ\qdχ
Qi

α worm ow /Λe Banach space of functions for which it is finite. Note that

( )

The following result will be very useful in Sect. 5:
Proposition 3.5. Let ω G (0,m) and β G (3,oo). There are K > 0 and no ̂  1,
w/πc/z depend only on ω,m,β, ŵc/z ί/ẑ ί if φ e E, χG "uniform L^OC(1R3,IR),"
Ω e E' and φ : R 3 —> C 4 measurable, satisfy Dφ — ωφ = φ + Ω, with \φ(x)\ ^

α.^. x G IR3,

^ K(Uβ(χr\\φ\\L2{R3) + [1 + ̂ ( χ ) ] ' 0 " 1 ||ί2||£/) . (3.15)

Proof. We denote φi = (D - ωl)~xφ, φ2 = (D - ωI)~xΩ. We know that N2(φ) =
\\φ\\L2 is finite. We follow the same iterative scheme as in the proof of Proposi-
tion 3.2.

If, for some q ^ 2, Nq(φ) is finite, then

Np(χφ) ^ Uβ(χ)Nq(φ) with 1 = i + i ,

by Holder's inequality. So,
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and by Sobolev embedding,

Nq,{φ\) ^ C{

q

ι)Uβ(χ)Nq(φ) ,

-7 = - + | = - + ( T J — | ) , provided this quantity is positive. We also have

N3(φ2) ύ C^\\ψ2\\E ί C^\\Ω\\E, ,

and Nqf(ψ2) S ^3(^2) if q' ύ 3, hence

Nq,(φ) ^ C(4\Uβ(χ)Nq(φ)+\\Ω\\Ef) , if q' ^ 3 .

Starting with q0 = 2, we iterate the process, until qnQ ^ 3, i.e. pnQ ^ | .
By induction on π, we get

NH_^) ύ c(5)

So
) + ^ 3 (Vφ,) ^ n o ( < ? , ) ^

^(χΓ-'llΦll^ +(1 + Uβ(χ)y°-2 \\Ω\\E,)

[Uβ(χΓ\\φ\\L2+(\ + Uβ(χ)Γ-ι \\Ω\\E,} .

We have the Sobolev inequality

Moreover,

\\<P2h S

hence the proposition. D

Proposition 3.5 has the following consequence:

Corollary 3.6. Assume that F satisfies (H5, 6, 8), and take ω G (0,ra).
Then there are η0 > 0 andKQ > 0 such that, ίfU\(F(φ)) ^ η0, then \\φ\\E g

Proof. Combining (H8) and Proposition 3.5, we get

g +K\\(

for δ = δo suitably chosen, and U\(F(φ)) ^ η0. Hence the result, ϋ
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Section 4. Existence of Solutions in the Symmetric Case

We already explained in the introduction that existence and multiplicity results for
localized solutions of the O.D.E. system

v! + y = v [g(v2 - u2) - {m - ω)] ^ ^

v' = u[f(v2 - u2) - (m - ω)}

can be found in [5, 6, 8, 9 and 13]. The first result (see [9]) is the existence of
one solution (u, v) of (1.9) satisfying u(0) = 0, v(0) > 0. Moreover u,v decrease
exponentially at infinity and u, v > 0 in R + . Cazenave and Vazquez made a number
of assumptions to prove it and in particular the nonlinearity g had to be monotone
nondecreasing. To our knowledge, the most general extension of their result is due
to Merle:

Theorem 4.1. ([13]). Assume that 0 < ω < m and that g e C!(1R,R) satisfies:

0(0) = 0, (4.1)

G(x) ^ (m - ω)x for x large , (4.2)

G(x) = (m — ω)x => g(x) + m — ω . (4.3)

Then there exist functions u,v which are global solution of (1.9) with

κ(0) = 0, v(0) > 0 , (4.4)

and for all θ £ (0,m — ω), there exists CQ > 0 s.t.

0 < u{r) < υ(r) ^ Cθe~θr for r > 0 . (4.5)

Remark. Remember that G is defined by G(t) — f^g(s)ds.
The most general multiplicity result can be found in [5].

Theorem 4.2. ([5]). Assume that 0 < ω < m and assume that g G C!(1R) is a
function satisfying

0(0) = 0 , (4.6)

g is monotone nondecreasing in (0, -hoo), (4.7)

g(x) > m -f- ω for x large , (4.8)

^ ~ 1 ( m - ω ) ) > 0 . (4.9)

Then there exists a sequence of global solutions o/(1.9), (un,υn) such that

un(0) = 0, υn(0) > 0 for all n , (4.10)

both un and vn have n zeroes in (0, + o o ) , (4.11)

(un,vn) converges exponentially to (0,0) as r —» +oc . (4.12)

In this paper we also prove existence and multiplicity results for (1.9). Our
assumptions are different from those above, and somehow more restrictive. The main
additional assumption we make is (HI), which says that G is strictly superlinear.
This is a usual assumption one encounters when using critical point theory.

Our result concerning the symmetric case is thus less general than Theorems 4.1
and 4.2 above. But our method is completely different: we use variational techniques.
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This provides us with additional information about the "energy" of the solutions and
also estimates on their norm.

In order to begin our study about symmetric solutions of (1.5), i.e. solutions φ
of the form (1.8), we first write the expression of the energy functional for this
particular class of functions.

If φ G E\ then

/u\ Iω(φ) +?°Γ , 2uυ , ? ?

\υJ 4π Q L r

ω(u2 + υ2) - G(v2 - u2)~\r2 dr , (4.13)

and the Euler-Lagrange equation associated with the functional S is the O.D.E.
system (1.9).

Our main result concerning system (1.9) is Theorem 1. The remainder of this
section is devoted to prove it.

In order to use variational techniques to solve (1.9) let us first use an approxi-
mation procedure.

For every A ^ Ao, Ao defined in (H3), we consider a nonlinearity GA which
satisfies what follows (denoting gA = Gr

A):

G = Γ G(x), \x\ g A
A " \ G(A + 1)04 + l)-η\x\\ \x\ έ A + 1,

GA G C 2 (R), G'A^ 0 Vx G R (4.14)

G^ satisfies (HI) with g — gA and 0 replaced by */ ,

where 77 = min {0,|}

Notice that (HI) and (H3) imply that for A' > A + 1, GA> ^ GA on IR.
Then for ε ^ 0 we define the functional SA, ε '

^QJΠu'v^-v'u + mtf-u2)

- ω{u2 + v2) - GA(v2 - u2) - j(u2 + v2)5μy2dr . (4.15)

Note that the Euler-Lagrange equations corresponding to S'Λ ε (") = 0 are

2u
' H = ^ [ ^ ( ^ - w2) + ε(w2 + ί^2)1/4 ~{m- ω)l

r (4.16)
vf = u [gA(v2 -u2) + ε(u2 + ι^2) ι /4 - (m + ω)] .

Our strategy to prove existence and multiplicity of solutions to (1.9) consists in
looking for critical points of SA)E, a n d passing to the limit as ε goes to 0. Finally,
the critical points of SA, O obtained by the above limiting procedure are shown to
be solutions of (1.9) for A large enough.
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Theorem 4.3. Under the assumptions of Theorem I, for every A ^ Ao, ε > 0, the
functional SA,& satisfies the Palais-Smale condition, and there exists a sequence

of distinct critical points of SA, ε, ( "«'ε ) s u c n

\ A, ε /

(4.17)

with cn independent of {A ^ Ao, ε > 0), PA > 0 independent of ε £ (O,εoL and

cn

A ε ^ cn

A ε for all n1 ^ n. Moreover

lim cn

A e = +oo for all A,ε . (4.18)
«—>-+oo

Proof Let I (u

v

J ) > be a sequence in Es such that

Uj

J

From (HI),

o

^ max< -,
[ε i

for j large enough, where C\ depends only on ε and ψj is defined by (1.7). By the
definition of gA and (H2) we have

gA(φφ)φ + ε |φ | 1 / 2 φ| ^ C|φ | 3 / 2 for all φ .

Therefore by the regularizing properties of the inverse of the linear Dirac operator,

lkyll^i'5/3(iR3)+//i/2(IR3) ^ c 2 + o(i + | | φ y | U ) ,

and by the Sobolev embedding,

\WA\E ^ c3.

Next, the embedding of Es in L^(IR3) is compact for 2 < q < 3. Indeed, this
can be easily derived from the definition of//1/2 as interpolation space between H{

and L2 and also from the fact that X — {u G /^(IR 3 ); u is radially symmetric} is
compactly embedded in Z^(1R3) for 2 < q < 6 (see [18 or 2] for a proof of it).

Hence, from {ψj} we can extract a subsequence, still denoted by {ψj}, such
that

φy -> φ* in Z ^ R 3 ) , 2 < # < 3 (4.20)
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for some function φ* in Es. By our assumptions on g and gA, we can then pass to

the limit in (4.19) to infer that S' (U

Ό* ) = 0 , where (UΛ are associated to φ* by

(1.8). Moreover (4.20) and the regularizing properties of L^1 imply that

φy -> φ* in i7 1 / z ( lR J ) , (4.21)

and therefore, from (4.19),

So SA,E satisfies the Palais-Smale condition.

For every A ^ Ao, ε > 0, the functional SA,ε satisfies all the properties nec-

essary for the application of Corollary 2.4. Therefore there exists a sequence of

positive min-max levels (cn

A ε) such that cA g ^ cA c W ^ n. The existence of

PA,C" is also given by Corollary 2.4. Moreover for every n, A, ε, the same corollary

shows the existence of a sequence I ί UJ J > satisfying (4.19) with c = cn

A ε. So, by

the Palais-Smale condition, there is a critical point at each level c = cA ε. The fact
that lim^-^+oo cA ε = +00 is again a consequence of the Palais-Smale condition,
combined with classical properties of the genus (see e.g. [1]). D

Proposition 4.4. Under the assumptions of Theorem 4.3 and if ( w ) is any solution
ofS'ΛX) = 0 with cx <, SAtεCΰ) £ c2 we have

+?°/ , 2uv , \ j ,

o V r /

+ 0 0

(m(v2 -u2)- ω(v2 + u2))r2 dr
0

(4.22)

^ M , (4.23)

0 S f (GA(v2 - u2) + -r(v2 + u2)5/4)r2dr g M , (4.24)
o 5

w/zere M is a constant which depends only on c\ and c2. This result is also valid
for ε — 0.

Proof. Let φ satisfy (1.8). Then the function F(φ) = GA(φφ) + (4ε/5)|φ|5 / 2 sat-
isfies all the assumptions of Proposition 3.3. Hence (3.8)—(3.10) hold. Moreover
all the functions GA satisfy assumption (H7) with a uniform constant α = 2η > 2.
Therefore, by Proposition 3.3 we infer that M is independent of ε and A. •

Next we will be interested in obtaining some kind of a priori estimates for the
critical points of SA,£, independently of ε small enough and A ^ Ao. We first obtain
a uniform decay estimate at infinity.

Proposition 4.5. Let c\,c2 G 1R, εo > 0 be fixed. Then for all δ > 0, there exists
R > 0 such that for all ε e [0,ε0], A ^ Ao,

\u{r)\2 + |i;(r)|2 ^ δ2 Vr ^ R (4.25)

for all (u

v)eEs such that S'AtBCυ) = 0, cx g S ^ ) ^ c2.
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2_m+w 2
m-w u

Fig.l.

Proof. From Proposition 3.2, we know that \u(r)\ + \v(r)\ —> 0 as r —» oo, and we
want to find a uniform estimate on the convergence speed.

Take δ > 0, and assume by contradiction that there are sequences r7 —> -foo,

εy -* ε <E [0,ε0], 4̂7 ^ Λo and (UΛ £ Es such that

«, ( o + = δ2 v y ,

= 0 and c\ ^ (4.26)

Now let us compare the functions iij, Vj with the solutions of the Hamiltonian
system

f M' = v[gA(v2 -u2) + εj(u2 + v2)1'4 - (m - ω)]
S (4-27)
11/ = M [ % ( ^ 2 - M2) + εj(u2 + v2)1'4 -(m + ω)]

The corresponding Hamiltonian is the function

HAj9εj(u9υ) = ~ \GAJ(V2 - u2) + ^ ( W

2 + v2)5/4 - ω(u2
i;2)

for (u9v) e R 2 .
From (H4), (0,0) is a hyperbolic equilibrium for (4.27). From (HI, 3), the

zero energy level {HA Ej = 0 } is compact. Moreover, from (H3), H'A ε »(w, v)—

2HApSj ^ (η - l)(GAj(v2 - u2) + ί f(w 2 + *;2)5/4) > 0, so that there is no other

equilibrium point than (0,0) in the domain {— h ^ HAJ,EJ = h] for /z > 0 small

enough. It is not difficult to see that h can be chosen independently of j .
Studying the flow of (4.27) in the domain {—h ^ HAJ,8J S h} (see Figure 1),

one easily obtains the following property:
For δ chosen small enough, there are D,L,σ > 0 independent of j (but

depending on δ), such that if (ΰj,Vj) is the solution of the Hamiltonian system (4.27)
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satisfying ΰj(rj) = Uj(rj),Vj(rj) = ty(r;), then there exists Tj such that \Tj — rj\ ^ D
and

G(v){r) - ΰj(r)) > 2σ for all r G [r} - LJj + 1 ] . (4.28)

Now, for rj very large, the solutions (UJ,VJ) and (M/,U/) are very close on
[ r 7 - Z ) - L , r;-j-D-f-L]. A precise proof of this property is given in [8],
Lemma 2.5. Therefore,

G{ή{r) - uj(r)) > σ (4.29)

for r G [fj — L, ?j + L] and y large enough. But this contradicts (4.24) because of
assumption (H3). The proof is complete. D

The uniform asymptotic decay obtained above can be shown to be exponential:

Proposition 4.6. Let ε0 > 0 be fixed. Then for every c\,c2 G 1R, there exist con-
stants R,K,σ > 0 such that

u(r)\ + \v(r)\ S Ke~σr , Mr ̂  R (4.30)

for all ε G [O,εo], A ^ ^ 0 ««rf /or any critical point (") of SA,ε such that

ex ύSA^{u

υ) Sc2.

Proof Taking derivatives in (4.16) and after tedious computations we find the
following:

i —υ" + (m2 - ω2)v — o(v) -f o(vf) for r large,

-u" + (m2 — ω2)w = o(u) -f o(w7) for r large.

We conclude by an easy application of the maximum principle. D

Remark. Both the uniform decay and the exponential decay properties we proved
above are independent of ε G [0, εo] and also of A g: AQ. The main reason for this
is that the constant M in (4.24) is independent of ε and A.

Now we have all the ingredients which are necessary to pass to the limit as
ε goes to 0. We begin by deriving some a priori estimates.

Proposition 4.7. For all cχ,c2 G 1R and ε0 > 0, there exists a constant C > 0 such
that for all ε G (0,ε0], A ^ Ao, (") critical point ofSA,ε satisfying cx ^ S^ε (") ^
c2 we have

Moreover, for every p > 1 there exists Cp(A) > 0 independent ofεe (0,ε0],

S CP{A\ φ defined by (1.8) . (4.33)

Proof. From Proposition 4.6, there are R, C > 0 such that

Then (Hl,3), (4.24) and GA's definition yield the existence of η > 1, AQ > 0, M >
0, independent of ε G [0,ε0], A ^ AQ and such that

(4.34)
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hence

Then estimate (4.23) together with Proposition 4.6 proves (4.32). Finally (4.33)
follows from (4.32) and Proposition 3.2. D

We now can pass to the limit as ε goes to 0. The next step will be to obtain a
priori estimates independent of A.

Proposition 4.8. Let A ^ AQ be fixed. Under the assumptions of Theorem 1 and
(4.14), there exists an infinite sequence (uA,vA) of distinct critical points of the
functional SA,O, i e. solutions of (1.5) with g = gA. Moreover^ for every n £ IN
there exist positive constants C,K,σ,R independent of A (but depending on n),
such that

I + W(r)\ ^ Ke~σr \/r^R. (4.37)

Proof The above series of lemmas and propositions provide us with the estimates
which are needed to pass to the limit in (4.16). Indeed Theorem 4.3 yields the
existence of an infinite sequence of distinct critical points of SA,ε Then we use
Proposition 4.7 and the compact embedding W]£ cZ^(JR 3),2 < q < 6, to pass
to the limit. By doing this we obtain a nondecreasing sequence of positive criti-
cal levels cn

A 0 > 0 such that for every n, there is a nontrivial solution of (1.5),

(un

A,v
n

A), such that SA,o (uj) = cn

A?0. The estimates (4.36) and (4.37) then follow

from Propositions 4.6 and 4.7.
If the sequence cA 0 is strictly increasing, the proof is complete. Assume there-

fore that there exists n such that

4o = # d = c , (438)

and let us denote by Kc the set of critical points of S^o, (")» such that SA,o (") — c

If Kc is not compact, its cardinal is infinite, and the proof is over.
To treat the remaining possibilities, we need the following lemma:

Lemma 4.9. Let A ^ Ao be fixed. We assume that (4.38) holds and that Kc is
compact. Then:

(i) Let %, ΊΓ be two bounded open sets in Es such that ^ c f c ΐ c f .
Then there exist constants <5i,α,εi > 0 such that for all ε e (0,εi], for all
{u

υ)e(r\<tί)n{(u

ΰ);SAt8{
u

ΰ) e [c-δu c + δ,]} we have

WE' ^ cc.

in) For all εe(O,εxl if (u

v) £% and if SA^{u

υ) G [c - δu c + δ{], then

^ β(ε) > 0 .

This lemma has the following consequence (whose proof is standard and will
be omitted):
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Corollary 4.10. Under the above assumptions, there exists δι > 0 such that for
any 0 < ε :§ ε\ there is a time T(ε) > 0 with

S c - δ2 (4.39)

for all (") $. t' and such that SA,E (") S c + δι, where by hί: we denote the flow

induced by -VSA,ε = -\D\~ιSA^E.

Proof of Lemma 4.9. ίr is bounded in Es, and Es is compactly embedded in Lq

for 2 ^ q < 3. As a consequence, *Ŝ ,o restricted to the domain f \^/ satisfies the
Palais-Smale condition, and (i) follows from that.

From Proposition 4.7 and the same compact embedding as above, for ε > 0
small enough, any critical point (u9v) of SA,E such that SA,?,(U9V) G [C - δo,c + <5o]
must be in %. But from Theorem 4.3, we know that SA^b satisfies the Palais-Smale
condition, hence (ii). D

Let us come back to the proof of Proposition 4.8. We make the same
assumptions as in Lemma 4.9. Let us take two bounded open neighborhoods of
Kcy%,1r such that y(Kc) = y(f") and Kc C Ψ e t c t\y being the genus. By
Corollary 4.10,

But we also have dE-{-y('t'*) ^ n. Therefore, y(Kc) ^ 2, so Kc is an infinite
set. D

Remark 4.11. Notice that Propositions 3.2 and 4.8 easily imply that (u}

A\υ}^) e.
L°°(1R+)2 for all n,A ^ Ao. Moreover from it we infer that uA(0) = 0 V / i , ^
AQ. Our goal now is to prove that for every n these solutions are uniformly bounded
in (Z°°)2, independently of A. Of course, that will show that for A large enough,
(u'A,vA) is a solution of system (1.9).

Lemma 4.12. Let n £ N and (un

A,v
n

A) as in Proposition 4.8. Then there exists
C\ > 0 depending on n but independent of A ^ AQ, such that

\vn

A(0)\ ^ Ci . (4.40)

Proof This easily follows from Lemma 2.9 in [8]. Indeed this result shows that
(Όn

A)\r) - (u'A)
2(r) ^ e-4(v'A(0))2 for all r G [0,1/co]. This and (4.36) allow us to

conclude. •

Proposition 4.13. For every n G N there exists Cι > 0 depending on n but inde-
pendent of A g; AQ, such that

l l ^ l l i - ( R + ) + | | ^ | | ^ ( I R + ) ^ C 2 . (4.41)

Corollary 4.14. For every n G N f/7έTέ> βΛ7'y^ yl(«) ^ ^o such that for all A ^
A(n\ (un

A9vA) is a solution of (\.9).

Remark. Of course this proves Theorem 1.

Proof of Proposition 4.13. Let n G N be fixed.
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As in [8] we see that for all A ^ Ao,

^ MΫir) - (u"A)
2(r)) = \un

A)\r) - 4ωun

A(r)υn

A(r) . (4.42)

Since by Proposition 4.7, uA and vA are bounded in L2(0,-foo;r2i/r) uniformly
in A ^ AQ, (4.42) implies that for every p > 0, ((vA)

2 — (uA)
2) is bounded in

L°°(p, +oo) independently of ̂ 4 ^ 1. Moreover (uA,vA) is a solution of the system

1 +σo

•«5(Ό = ~ τ / Λ » h((^)2 - K)2) - (« - ω>] ^
L/ (4-43)

ιfl(r) = - / «3(ί) [^((^) 2 - (u"A)
2) ~(m + ω)] ds .

r

Hence the above estimates and Proposition 4.7 imply that for any p > 0, uA

and vA are bounded in L°°(p,+oo) independently of A ^ 1. Indeed the uniform
exponential decay at infinity implies that vA and uA are uniformly bounded in
L\[p,+oo) r2dr).

But lemma 4.12 and the definition of QA enable us to use a contraction theorem
in order to prove local existence of bounded solutions of (4.16) (with ε = 0) in an
interval [0,<5], δ > 0, with the initial values (0,vA(0)). Moreover δ is independent
of A ^ Ao, as well as the estimate on \uA(r)\ + \vA(r)\ for r G [0,(5]. Therefore, if
we choose p — δ, the proof of Proposition 4.13 (and also of Theorem 1, by the
remark above) is complete. D

Section 5. Proof of Theorems 2 and 3

We start with the following result, which describes the behavior of bounded critical
sequences:

Lemma 5.1. Assume that F satisfies (H5, 6, 7, 8), and take ω e (0,m).
There is λo > 0 such that any non-zero φ e E, solution of (1.5), satisfies

Iω(φ) ^ λ0.
Moreover, if (φn)n^o is a sequence in E such that \\φn\\E is bounded indepen-

dently of n, and (Iω)\φn) -> 0 in E', 0 < c\ S Iω(ψn) ύ c2 < +oo, then there
are p non-zero solutions φ\...,φp of (1.5) in E, and p sequences (Xn)n^O'"
{Xn )Λ^o, Xln £ IRΛ such that i+j => \Xι

n -XJ

n\ -^«_oo oo, and, after extraction,

- > 0 .
, n—>oo

Each φι satisfies Iω(φι) e [λo,c2], and 1 ̂  p ^ ψ.

Proof The existence of λo follows from (H7), which gives

and from Corollary 3.6.
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The existence of φι,...,φp can be proved thanks to classical arguments of
the concentration-compactness theory (see [12]): "vanishing" is forbidden by
Corollary 3.6.

The estimates on Iω(φι) and p come from the inequality Σ?=ι Iω(φι) S c2. •

The main problem we have to face is to find an estimate on the E-norm of
appropriate critical sequences.

As in Sect. 4, we need auxiliary functionals. Assuming that F satisfies (H5,6,7,
8,9), we define, for ε > 0, φ e (C4, Fε(φ) = F(φ) -f ε |φ|α 2, where α2 is the con-
stant of (H5).

Clearly, Fε satisfies (H5,6,7,8,9). We also define

For ε fixed, we associate to If a positive min-max level cε(ω) and a sequence
(φε,n)n^o in £, such that If(φε,n) ->n-^oo cε(ω) and

W?)'(<PW)\\E> -> 0,

thanks to Corollary 2.6. There is also a level c(ω) corresponding to Iω, and
cfi(ω) -^n_*oo c(ω).

We have the following result

Lemma 5.2. Assume that F satisfies (H5),(H6),(H7),(H8),(H9), and consider
If, cε(ω) defined as above.

Then there is φε e E with (If)'(φε) = 0 and

0 < -y ^ If(ψε) ύ cε(ω) for ε small enough ,

where λ$ comes from Lemma 5.1.

Proof Let ε > 0 be fixed and {φn} C E be such that

First we prove that \\φn\\E ̂  C, where C is independent of n. We do this as
in the proof of Theorem 4.3. Then we apply Lemma 5.1 to {φn} This yields the
existence of at least one critical point of If, φε, such that

0 < λo(ε) S I°Λψe) ύ cε(ω)

and

0 < ^ύ λo(ε)

for ε small enough. D

Lemma 5.3. Assume that F satisfies (H5,6,7,8,9), and consider the functions φε

found in Lemma 5.2.
Then for ε\ small enough \\φε\\L2^3 (£4^ is bounded independently of ε G (0, εi].
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Proof. We take εi such that Fε satisfies (H5,6,7,8,9) with constants α/? α, , a, β, Q , v
independent of ε e (0,εi]5 and 4& :g I^iψε) ύ cε(ω)9 as in Lemma 5.2, with more-
over cε(ω) ^ 2c(ω). From Proposition 3.3, each φε satisfies

m J (φεφε) - ω j \φε (5.1)

ύ K{X) , ^ ( 1 ) independent of ε . (5.2)
IR3

We take v > 0, whose value will be chosen later. Recalling the notation

Qι = {(x1,*2,*3), I1 g xι ^ /'' -h 1 (V/)}, n G Z 3 , there is a finite set L c Z 3 , with

0 ^ Card (L) ^ (5.3)

and such that

We take Λ > 0, to be chosen later, and we define

rA = jjeltf/distf* UQ/) ^

(5.4)

(5.5)

There is a smooth function ΘR : R 3 —> [0,1], such that 0« = 0 on VQ, ΘR=\ on

W?\VR, and ||VΘA||£oo ^ ^,Km independent of/?. We have

D(θRψί) - ωθRφε = θRF'ε(φε) (5.6)

with

and, from (H8)

almost everywhere.
But, from (5.4), we have

(5.7)

l€L

leL

(5.8)
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So, from Proposition 3.5,

K '[δ + CδηΓ + [\+δ
m

ω

t\\L2

for δ — <50, η = *Jo and R — Ro suitably chosen. As a consequence,

m - I
2 '

;>

Now, from (H9), (5.2), (5.3) and (5.5),

/

349

(5.9)

(5.10)

Combining (5.1) with (5.10) and (5.11), we get

mfiφφ)

and

= ( 6 )

(5.11)

(5.12)

(5.13)

which proves the lemma. D

Combining Lemma 5.3 and Proposition 3.2, we find that φε, solution of

Dφε - ωφE = F'ε(φε) = F'(φ£) + εα 2 |φ ε | α 2 ~ 2 φ ε (5.14)

is bounded in E (and even in any Wι'q, q G [2,00)) independently of ε G (0, εi].
So

= O(\\φε\\%;2) =

hence

0 as 8 - f O

(5.15)

(5.16)
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Moreover,

0 < ^ ^ Iω(φε) g cβ(ω) + 6||ς»β | |^ -> c(ω).
2 ε > o o

Applying Lemma 5.1 to (φi/w)«^o> we find φ G E such that (Iω)f(φ) = 0,
0 < Ao < / ω (φ) S c(ω).

From Proposition 3.2, φ is in f|^2 F T ^ R ^ C 4 ) , and Theorem 3 is

proved. D
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