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Abstract: We give a new definition, based on considerations of well-posedness for
a certain asymptotic initial value problem, of the phase space for the radiative
degrees of freedom of the gravitational field in exact General Relativity. This space
fibres over the space of final states, with the fibres being the purely radiative degrees
of freedom. The symplectic form is rigorously identified.

The infrared sectors are shown to be the level surfaces of a moment map of an
action of the quotient group Supertranslations/Translations. A similar result holds
for Electromagnetism in Minkowski space.

1. Introduction

The theory of gravitational radiation interweaves physical and mathematical progress
to an unusual degree: some physical intuition is necessary to begin to pose ques-
tions which are significant; and the construction of a mathematically satisfactory
theory often serves as a test of that intuition. If we define radiation mathematically
as disturbances which escape to (or come in from) infinity, then gravitational ra-
diation, which travels at the speed of light, will escape to null infinity, and ought
to be analyzed there. Since what "null" is determined by the dynamical field, from
the analytic point of view one is studying the asymptotics along characteristics of
a system of quasilinear equations. There are several, inequivalent, mathematical
meanings this might have, and the nature of the physical questions under consider-
ation must guide the analysis.

It was Bondi and coworkers (Bondi 1960, Bondi, van der Burg and Metzner
1962, Sachs 1962a; see also Newman and Penrose 1962) who introduced the idea
of analyzing the field at large null separations, and Penrose (1963) who recast their
asymptotic conditions as the existence of a null hypersurface jβ at null infinity.
After this work, it was clear that at a formal level the radiative degrees of freedom
were represented by a function, now called the Bondi shear, on «/.

Ashtekar and Streubel (1981) seem to have been the first to realize that it would
be desirable to develop, not just a space-time by space-time analysis, but a phase
space of radiative degrees of freedom in terms of the asymptotics of the fields.
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They gave such a construction of a phase space entirely in terms of (functions
equivalent to) the Bondi shear. This resulted in a new derivation of the Bondi
energy-loss formula, and a new expression for the total angular momentum emitted
in gravitational waves (which has since been confirmed by independent means; see
Heifer 1990). Also Ashtekar (1987) used this phase space to construct a kinematical
framework which might be hoped to underly an S-matrix theory of gravitons.

It is not straightforward to decide whether such a phase space is correct. The
strongest argument would be to show that it was an appropriate limit of phase
spaces constructed from data on Cauchy surfaces. A program for such a proof
was outlined by Ashtekar and Magnon-Ashtekar (1982); their idea was to deform
a Cauchy surface to J. They were able to show, at a formal level, that the sym-
plectic form of Ashtekar and Streubel was correct. However, they also pointed out
that there were some analytic limitations which might preclude the conclusions of
the formal argument from being valid generally. It seemed likely that in many
cases - perhaps generically - the symplectic form would have to be supplemented
by "leakage" terms at timelike infinity. Also, if one considers a space-time which
radiates in such a way as to become vacuum to the future of some asymptotically
null hypersurface, then the sorts of perturbations allowed by the Ashtekar-Streubel
phase space will include space-times with negative Bondi-Sachs energies, which one
would like to rule out as unphysical in light of the positivity theorems (Ludvigsen
and Vickers 1981, Horowitz and Tod 1982, Schoen and Yau 1982). So the suc-
cesses of the Ashtekar-Streubel construction suggested that it ought to be (at least
largely) correct, but it seemed difficult to justify rigorously.

I shall construct a phase space of the radiative degrees of freedom of the gravi-
tational field in exact General Relativity. The isolation of these degrees of freedom
is determined by considerations of well-posedness for a certain asymptotic initial
value problem (the "M-shaped" hypersurface problem, which is well-posed by re-
cent theorems of Friedrich 1983, 1992 and Kendall 1990, 1992.) We shall be able
to make precise the sense in which the Ashtekar-Streubel symplectic form is valid,
and understand why there are no leakage terms.

The most important consequence is a shift in the idea of what a radiation prob-
lem is. In order to isolate "all" of the outgoing radiative degrees of freedom, one
must take two limits: one must move out to J\ and one must also consider ar-
bitrarily late retarded times. Although for any sufficiently well-behaved space-time
one can consider both limits, one cannot reverse this and solely from the radiative
data reconstruct the space-time. One must give the internal state at some late re-
tarded time, together with the radiation emitted prior.1 From this point of view, the
Ashtekar-Streubel phase space is an approximation in which radiation has wholly
decoupled from the internal degrees of freedom. The coupling which does exist is
rather mild (since the radiative data must match up to the internal data only at one
cut of«/), so the approximation is valid for many purposes.

From this point of view, the total phase space has the structure of a fibre bundle,
with the radiative degrees of freedom (prior to the late retarded time) fibering over
the space of final states (at the late retarded time). This is because the radiative data
must agree with the internal data at the cut of J corresponding to the retarded time.
To a large extent, the fibres have simple structures, and most of the complications
are in the base space. (This is related to the fact that J> is a null hypersurface,
1 It may at first be more intuitive to consider the time-reversed case, where one specifies a space-
time by giving the internal state at some advanced time, together with the radiation incoming
thereafter.
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and so data on it are unconstrained.) We are concerned here only with a fibrewise
analysis. An understanding of the total phase space would be a natural next step;
one would expect a rigorous analysis of the linearization stability of the "M-shaped"
problem to be possible (cf. Moncrief 1975, 1976).

We consider a somewhat different class of radiative data from those of previous
constructions. One difference is quite minor (we work with a generalization of test
functions, rather than a weighted Frechet space) and not expected to be physically
significant, but another is important: we allow "infrared" fields. These are fields
which, although pure gauge at early and late retarded times, nevertheless have
a gauge mismatch between these two regimes. We shall find that the residual gauge
freedom at «/ gives rise to a foliation on the phase space which turns out to be
a classical analog of the emergence of infrared sectors in Quantum Electrodynamics.
The discovery of these was a surprise in quantum theory, but we can now see that
it is presaged (logically, if not historically) by the foliation of the phase space.

The present construction seems likely to help with a similar infrared problem
in the asymptotic quantization program for General Relativity. In Quantum Electro-
dynamics, the infrared sector for the outgoing electromagnetic field is determined
by the asymptotic state of the outgoing charged particles, and this identification is
important in constructing a separable Hubert space. It had seemed that there would
be no way of deciding on the infrared sector for the outgoing gravitational waves
(Ashtekar and Narain 1981, Ashtekar 1987). However, it now seems that the in-
ternal state of the field at a late retarded time could determine the infrared sector.
This will be considered elsewhere.

In a separate paper (Heifer 1994), I show how this phase space can be used to
derive the asymptotic motions of space-time to which the angular momenta at «/,
as defined by Penrose (1982), are conjugate. In this analysis, not only is knowledge
of some of the internal data necessary, but also the foliation of the phase space by
the infrared sectors enters crucially.

The plan of the paper is this. The next section is devoted to a review of the
definitions which will be needed: spin- and boost-weighted functions; Bondi coordi-
nates; the Bondi-Metzner-Sachs group; and the effect of an abelian gauge freedom
on a fibred phase space. In Sect. 3, we sketch the application of our ideas in the
case of electromagnetism, and show how the infrared sectors emerge. Section 4
reviews the results of Friedrich and Rendall, and establishes the existence of maxi-
mal globally hyperbolic solutions of the initial-value problem (Theorem 4.1). In
Sect. 5, the manifold underlying the phase space is constructed as a certain function
space. In Sect. 6, the main technical result, the correctness of the Ashtekar-Streubel
symplectic form is established (Theorem 6.1). It is perhaps surprising that such
a rigorous result is presently possible, since a direct approach to this problem would
require better asymptotic estimates for Einstein's equations than are known. The last
section discusses the infrared sectors for gravity. These are related to motions of
the phase space in a somewhat different fashion from those for electromagnetism.

We treat only the case of pure gravity, but it should be evident that coupling
to matter can be accomodated within this framework.

Conventions. Our conventions for space-time quantities are those of Penrose and
Rindler (1984-6). We will be concerned with calculus on the phase space and on
the space-time. It will be convenient to use the standard spin-coefficient formalism
on the space-time, and the modern coordinate-free notation for the phase space. We
use (s,λ) to stand for the duality pairing between a vector s and a covector λ in
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this case. Thus the symbol d represents a gradient in the phase space except when
it occurs in a line, area or volume element, du, d^ or d^ du, with respect to the
Bondi coordinate system on J.

Choice of Function Spaces. In most circumstances, the particular choices of function
space used in General Relativity are not of physical significance, and are made for
mathematical convenience. The real question is whether the choice at hand admits
a sufficiently broad class of fields to be of interest. For the analysis of gravitational
radiation, although the formalism of null infinity was introduced in the early sixties,
it is only recently that existence theorems for solutions to the Einstein equations
with the right sort of control of the asymptotics have begun to be proved.

As of this writing, it is not clear whether there is a physically preferred degree
of smoothness for the asymptotic regimes. We have chosen to work in the C°°
category, since the theorems of Friedrich and Kendall make this possible and in
the absence of any other choice it seems the most natural. The function spaces
we use are analogs of the familiar spaces of test functions, and so are unphysical
approximations in that they become exactly zero (or pure gauge) in various regimes
where a realistic field would only decay. However, it will be apparent that our
constructions could accomodate such behavior, and fields of low differentiability,
without difficulty.

2. Preliminaries

We collect here some terminology which will be assumed in what follows.

2.1. Spin- and Boost-Weighted Functions

The radiative degrees of freedom of the gravitational field will be encoded in
a function called the Bondi shear. This function takes values in a certain com-
plex line bundle over null infinity which is the pull-back of a bundle on the space
of generators; in classical language, the function has spin and boost weight. We re-
view here the essential points of this formalism; for details, see Penrose and Rindler
(1984).

Spin space is a two-complex dimensional vector space. Its associated project!ve
space may be identified with a Riemann sphere with a conformal structure and
an orientation. The bundle of functions of spin-weight (p — q}/2 and boost-weight
(p + q}/2 will be denoted {/>,#}. Its space of smooth sections will be denoted
C™(S\{p,q}).

There are two important differential operators (essentially, Dirac operators) on
these bundles,

5 : C™(S\{p,q}} -+ C°°(S2,{p+l,q - 1}) (1)

and its conjugate 5' : C°°(S2,{p,q}) -> C°°(S2,{p - !,?+!}).
The conjugate of {p,q} is {#,/?}. In particular, elements of {p9p} have unique

SL(2,C)-invariant decompositions into real and imaginary parts. There is also
a hidden SL(2, (C)-invariant Hermitian structure for certain other spaces of sections
of the line bundles. It turns out that the operator ό^+1 : C°°(S2,{p,q}) ->
C°°(S2,{p-\-q -f !,—!}) is SL(2,C)-invariant. Let us consider the case p — q.
Then this operator is surjective and its kernel is the complexification of a real
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SL(2, (C)-invariant subspace of C°°(S2, {/?,#}). This allows us to write each element
in the image as a sum of the image of a real section and the image of an imag-
inary section. These are the electric and magnetic parts of C°°(S2,{2q + !,—!})
(Newman and Penrose 1966). The important case of this decomposition for us will
be for the Bondi shear, σ £ C°°(52,{3, — 1}). We can always write σ — 62λ for
some λ £ C°°(52, {1,1}). The electric part of σ is δ29? λ and the magnetic part of
σ is i523λ

2.2. Bondi Coordinates

Bondi coordinates are appropriate for radiation problems. They are defined as fol-
lows. (See Penrose and Rindler 1984-6 for a fuller discussion.)

Let (M^ab) be an oriented, time-oriented space-time. Suppose that M embeds
in a manifold with boundary M, and there exists a smooth function Ω on M, positive

on M and zero on J>+ — dM, with nowhere-vanishing gradient on J* + . Suppose
also Qab — Ω2^ab extends smoothly to a non-degenerate metric on M, and that all
points on ,/+ are future end-points of null geodesies. Then we call J>+ future null
infinity?'

Suppose further that ,/+ is a gab-rm\l hypersurface, diίfeomorphic to R x S2,
with the "R" factors being its null generators, and that the field na = -VaΩ is
shear- free on J> + . Then we can choose the conformal factor so that cross-sections
of the fibration </+ — > S2 are unit spheres, and we do so. We can also choose
na to be gfl6-constant up the generators of J*+, and we do this. Then a function
u satisfying naVau — 1 is a Bondi retarded time coordinate. Fixing such a function,
we let (θ,φ) be standard polar coordinates on the cross-sections u — constant, with
naVaθ = 0 = naVaφ Then (u,θ,φ) form a Bondi system on ,/+, and (u,Ω,θ,φ)
form a Bondi system on a neighborhood of J^+.3 The abbreviation

(2)

will be used.
For example, for Minkowski space, we let (u = t — r, r, θ, φ) be retarded polar

coordinates. We obtain (M,gab) by gluing to this {(u,p,θ,φ) \ u £ IR, p ^ 0,
(0, φ) G S2} via the relation p — 1/r, and we take Ω — p near p — 0.

It is often convenient to introduce a complex g^-null tetrad (la,ma,ma,na) at J> +

associated with the Bondi system. Here na is as before, ma = 2~1/2(<90 — icscθdφ\
and la is the unique future-pointing vector satisfying lana — 1, lama ~ 0.

The Bondi shear at J+ is the (appropriately conformally rescaled) shear of the
u = constant cuts. It takes values in {3, — 1}. Notice that by its definition, the Bondi
shear depends on the choice of Bondi system.

2.3. The Bondi- Metzner- Sachs Group

A Bondi system (u,θ,φ) will not be unique. There is a group, the Bondi- Metzner -
Sachs (BMS) group, acting on the set of Bondi systems. If the null generators

2 This differs from some definitions in that we do not require every (Af,^)-future endless null
geodesic to have an end-point on J>+.
3 We require (u,—Ω,θ,φ) to be compatible with the orientation on (M,^) The minus sign is
because Ω decreases as one moves towards «/+ from the interior.
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of ,/+ are complete, that is, if a Bondi parameter u takes all real values for each
(0, φ) G S2, then there is an associated "active" action by diffeomorphisms. These
active motions are in a certain sense the asymptotic symmetries of the gravitational
field, and we shall give an account of them. Although the following discussion is
phrased in terms of the group action, it applies at the Lie algebra level even if the
generators of J*+ are not complete.

The BMS group is generated by two sorts of motions: the proper, orthochronous
motions Lorentz = O(l,3)|+, which act much the same way as they do on half of
a light-cone; and the super translations, which have the form

u h-» u + α(#, φ\ θ ̂  θ, φ h * φ , , (3)

where α is an arbitrary smooth function. The BMS group is a semidirect product
of Lorentz and Supertranslations:

0 —> Supertranslations —> BMS —> Lorentz —> 0 . (4)

The relation of the BMS group to the connected component of the isometry
group of Minkowksi space, the Poincare group, is important. The Poincare group
is also a semidirect product,

0 —> Translations —> Poincare —» Lorentz —» 0 , (5)

and an analogy is apparent. The connection is still closer, because there is a unique
four-dimensional normal abelian subgroup of BMS which may be identified with
the translations:

Translations = {α G Supertranslations | δ2α = 0} . (6)

However, there is no invariant sense to a "translation-free supertranslation." There-
fore there is no canonical subgroup of BMS to identify with Poincare.

We shall be concerned with the action of the BMS group on the Bondi shear.
We noted above that this shear is the shear of the u — constant cuts, and so depends
on the choice of Bondi system. In order to have a well-defined action, then, we must
specify whether the active motion is accompanied by a passive change in Bondi
system, and whether the shear is regarded as a function on the abstract manifold
J>+ or a function of the coordinates (u,θ,φ). We shall keep the Bondi system the
same, and regard the shear as a function on J* + . Then if φ : J>+ —» J*+ is the
diffeomorphism generated by the supertranslation α, the action is

σ H+ σo φ~l +δ2α . (7)

Notice that it transforms like an ordinary function precisely under the translations.
This may be contrasted with the result of a passive supertranslation by α, which
action is

σ κ - > < 7 - h δ 2 α . (8)

2.4. Gauge Motions on a Fibred Phase Space

We wish to call to mind some aspects of the reduction of a phase space with fibre
structure, and to fix some terminology. Accordingly, in this sketch, we ignore all
technical difficulties (subtleties in infinite dimensions, whether quotients are mani-
folds, etc.).
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Let us recall the Bergmann-Dirac theory of first-class constraints (Bergmann and
Goldberg 1955, Dirac 1964). Let (Γ,ω) be a phase space, and suppose {Cα α € A}
is a family of constraints closed under Poisson brackets. The symplectic form on
the constraint submanifold Γconstraint = {p £ Γ | Cα(p) = 0} is degenerate, and this
degeneracy is compensated by introducing an equivalence relation. Let Fα be the
Hamiltonian vector field conjugate to Cα:

JCα = ω( ,F α ) ; (9)

and let if be the Lie algebra generated by these vector fields. Then two points
in jΓconstraint are identified if there is a flow of a vector field in If taking the first
to the second. The reduction of the phase space thus has two parts: restriction to
^constraint, and passage to a quotient.

We may run this backwards.4 Suppose a connected abelian (for simplicity) gauge
group acts on (Γ,ω). (That is, the action is a representation of the gauge group
by symplectomorphisms.) Let A be the Lie algebra of the group, and let Fα be the
Hamiltonian vector field generated by α e A. Furthermore, let us suppose we can
find a moment map C : Γ —> A*, so that dC^ = ω( , Fα). Then the level surfaces
Γc = {p e Γ I CΛ(p) — cα} f o r c e d * play the part of the constraint manifold
in the discussion above. From this point of view, however, there is no reason for
preferring one level surface to another. Therefore each such level surface, modulo
the gauge action, forms a reduced phase space. We may think of the collection of
these quotients, as the level surface varies, as a foliation of a space whose leaves
are the reduced phase spaces.

We shall use the terms leaf and foliation only to refer to the possibility of
choosing different level surfaces, not to an orbit or the space of orbits of the gauge
action. We may speak of a foliation in this sense whether or not we have passed
to the quotient by the gauge action.

It is the presence of such foliations that is most important in certain radiation
problems. Passing to the quotient by the gauge action may or may not be convenient
(and in the gravitational case is definitely undesirable). However, the foliation enters
the theory by restricting the admissible vectors to those tangent to the leaves. This
restriction turns out to be crucial in developing a satisfactory theory of the angular
momentum of radiation.

We shall show below that the radiative modes are actually fibres in certain phase
spaces, so let us see what the effects of such structure are. Let (Γtotai>ω) be a phase
space; suppose there is a fibration

-* ""* /total

I (10)
base

so that ω restricts to a non-degenerate form on each fibre. Suppose further that the
gauge action respects the fibration, that is, there is a pair of actions A x Aotai ~*
Γtotab ^ x Aase -* Aase such that the diagram

A X i total ~*" /total
I I (Π)

A X 1 base > 1 base

Jan Segert points out this is the reduction of Marsden and Weinstein (1974).
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commutes. Let K : Γtoia\ — > A* be the moment map. Although the gauge motions
do not leave the fibres invariant, some of the information in the moment map and
its level surfaces may be recovered from data on the fibres.

We can regard each fibre as a phase space, so suppose we have found a moment
map C : Γ — > A* (depending smoothly on the base point). By this we mean

(W, dCα) = ω(W, VΛ) = (W9dKΛ) (12)

for W tangent to Γ. Therefore we have

(13)

for some D depending only on the projection to Γbase Thus any level surface of
the total moment map will intersect each fibre in a level surface of the fibrewise
moment map, and conversely. It will be enough, then, to construct the fibrewise
moment maps.

3. Electromagnetism

In this section, we give a treatment of electromagnetism on Minkowski space, analo-
gous to that of General Relativity below. The case of electromagnetism is somewhat
simpler than gravity, because the gauge freedom acts "vertically," in a bundle over
space-time, and because the linearity of the theory allows a cleaner isolation of the
radiation field. Still, the results here will be useful in interpreting those for gravity.
Our emphasis here will be conceptual, and we shall give no proofs. (These can
easily be adapted from the gravitational case, below.) These results build on earlier
work of Ashtekar and Narain (1981) and Sparling, Newman and co workers (e.g.
Chakravarty et al. 1986).

The electromagnetic potential will be denoted Φα. (Quantities with hats refer
to the physical space-time; conformally rescaled quantities are bareheaded.) The

field strength is Fαb = 2V[αΦb] We shall suppose there are no sources, and that
the field extends smoothly to J^+ (and so has the usual peeling behavior). We may

take Φα = Φα to be smooth at J> + . It is convenient to choose the gauge so that
nαΦα — 0 at </+, where nα is a null vector tangent to the generators of ,/+. Then
the most important quantities are the rescaled components

Φ — lim rmαΦα and 02 = lim rFα^m nb , (14)
r— »oo r— >oo

which are smooth on J> + . These are related by <p2 = —8UΦ. Note that the gauge
freedom remaining at </+ is Φ t— > Φ -f δγ, where y is a smooth real-valued function
of angle only.

The function φi can be thought of as the profile of the emitted radiation. It
very nearly determines the electromagnetic field throughout space-time, assuming
no sources of present.5 Indeed, if we consider electromagnetic fields which van-
ish in some neighborhood of future timelike infinity, then the field is determined

5 If the field is assumed to have a certain regularity throughout Minkowski space, or at future
timelike infinity, the determination is complete. However, these regularity assumptions are not
natural in radiation problems, and analogous assumptions in the gravitational case would be ill-
defined or too strong.
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throughout space-time by φ2 More generally, if Cauchy data for the field are given
on a spacelike hyperboloidal initial surface Σ meeting J^+ at u — UQ, and if φ2 is
specified on «/+ to the past of UQ (and if φ2 U=u0 agrees with the radiation field at
UQ which would be deduced from the Cauchy data), then the Maxwell field is deter-
mined throughout space-time. Since Φ determines φ2, knowledge of Φ for u < UQ
can replace knowledge of φ2 in this argument.

The phase space may thus be constructed from two sorts of data: the usual
Cauchy data (with suitable asymptotics) on £; and the field Φ on Ji — {p 6 J> + \
u < UQ}. We shall call the Cauchy data on Σ the final states, and the field Φ on
jV the radiative modes. Since Φ must agree at Z — {p G ,/+ | u = UQ} with what
can be deduced from the final state, the phase space has a bundle structure: the
radiative modes fibre over the final states. We shall give a fibrewise analysis.

A formal construction of a fibre of the phase space is as follows. Fix a gauge
on </+ as above, and fix a final state. From this, we may work out the field at
u — UQ, and all its w-derivatives there. For simplicity, assume the field is gauge to
all orders at u = UQ. Let Γ be the space of fields Φ of type {!,—!} on Jf which
are smooth, agree at UQ, together with all their derivatives, with the values inferred
from the data on Σ (or are gauge-equivalent to such fields), and are pure gauge
sufficiently far in the past. There is a natural topology and smooth structure on Γ.
The symplectic form is

ω(/ι,/2) = (47ΓΓ1 / [(δw/ι)/2 - f ι d u f 2 ] dud^ + conjugate (15)

(Ashtekar and Streubel 1981). It is closed and weakly non-degenerate.
Now let us consider the effect of a gauge change. The admissible changes are

of the form Φ ι—> Φ + δy on J*+, where γ is a smooth function on the sphere.6 We
let Vy be the vector field on Γ generating this motion. Then one can check that

/ T7" \ J/^ / 1 £. \ω( ,Vy) = dCy , (16)

where
_ι w°

Cy = (4π)~ ^[Φ]5 yJ^ -fconjugate . (17)
w= —oo

As y varies, this detects precisely the electric part of the gauge-invariant jump

-Φ (18)

Therefore the leaves of the foliation of the phase space are labeled by the electric
parts of these jumps.7

Now let us consider fields for which Φ is pure gauge (i.e., purely electric) at UQ.
Those with [ΦJ — 0 are said to lie in the classical sector; the others are in infrared
sectors, with the sector labeled by the jump. Such sectors play an important role in

6 Strictly speaking, there is not a well-defined action by such functions on the space of data on
Σ, since there are many gauge changes on the interior of Σ with the same asymptotic behavior.
Thus a correct treatment has the space of y's as a quotient of a larger gauge freedom. The result
is the same.
7 It should be emphasized that the term "electric" is used in the sense of spin- and boost-weighted
functions, and is not obviously related to the electric part of the electromagnetic field. However,
it can be shown that CΊ = (2π)~] §\W.φ\]ydy where 9?φi is a certain component of the electric

field in the Bondi system.
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Quantum Electrodynamics, in the construction of the Hubert space of out-states.8

Essentially, the sector is determined by the out-state of the charged particles, and
a Hubert space of acceptable states of the electromagnetic field, given these data,
is constructed from fields in the sector. It was rather a surprise to find that the
electromagnetic field was so restricted (Ashtekar and Narain 1981). However, we
can now see that this is foreshadowed by the foliation of the classical phase space:

Theorem 3.1. Fix a final state for which Φ is pure gauge at Z. Let C7 be the
moment map for the gauge freedom on J*+. Then the classical sector is the zero-
set of this moment map, and the infrared sectors are the level sets for non-zero
values.

4. The Space-Times

The phase space for the outgoing radiative modes in General Relativity will be
constructed as a certain function space, whose elements represent data for an initial-
value problem for Einstein's equations. In this Section, we discuss the space-times
which are the solutions of these problems. We first review how the data determine
the solutions locally, and then give a rapid treatment of the elementary aspects of
the global theory.

4.1 Local Results

It will be clearest first to describe the sort of solutions sought, and then to charac-
terize the data. ^

We shall want a vacuum space-time (M,#a&), oriented and time-oriented, with
M embedding as the interior of a manifold with boundary M, and the following
properties:
(a) There exists a smooth function Ω on M, positive on M and zero on J^+ = δM,

with VαΏ nowhere zero on J> + \
(b) The metric gab = Ω2^gab extends smoothly to a non-degenerate metric on M;
(c) e/4" is a null hypersurface diffeomorphic to IR x S2, with the "R" factors being

the null generators;
(d) The points on J>+ are the future end-points of null geodesies in (M,g^);

(e) There exists a partial Cauchy surface Σ in (M,g^) whose closure Σ in M is
compact and meets J*+ transversely in a cut Z (i.e., a section of the fibration
J^+^S2);

(f) A Bondi retarded time coordinate attains arbitrarily negative values on each
generator of J^+.

Requirements (a)-(d) are standard for a future null infinity in radiation problems.
(Property (d) simply distinguishes ,/+ as future null infinity.) Property (e) will
turn out to ensure that the asymptotic initial-value problem is well-posed: data will
be given on Σ ana the portion Jf of J^+ to the past of Z. Property (f) is also
a standard requirement; it could be weakened, however, without much change.

8 In our notation, the usual construction of infrared sectors corresponds to the case UQ = -foe. It
seems likely, in view of the considerations of well-posedness discussed above, that some of the
difficulties in the usual construction may be removed by delaying the limit UQ —> H-oo to a later
stage in the analysis. Compare Jauch and Rohrlich (1976).
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Fig. 1. A cross-section of the initial-data surface ffl = Σ U Jf for the space-time. Here Σ is the
spacelike part of ̂  this part meets J^+ in the cut Z = dΣ. The set JΫ* is the portion of Jf on
./+ to the past of Z

Now let us explain how such a space-time is determined by data on
Jf = Γ U Λ Λ

Let Σ be an oriented three-manifold whose boundary Z is diίfeomorphic to

S2; let Σ be the interior of Σ. Let regular hyperboloidal initial data for Einstein's
equations, in the sense of Friedrich (1983), be given on Σ. (Actually, we consider
the time-reverse of Friedrich's case. Also, Friedrich took Σ to be the ball, but this
is unnecessary here.) These data determine a space-time for which a portion of
</+ to the future of Z exists. The past Cauchy horizon N of Σ in this space-time
is (near Z) a smooth null hypersurface and the metric and its derivatives on this
hypersurface attain limits which determine smooth asymptotic characteristic data.
Properties (a)-(e) hold.

Fix a Bondi system at J>+ in which Z corresponds to w = 0. We may then work
out, from the space-time above, the Bondi shear and all its w-derivatives at Z. Let
Jf = (—oc, 0] x S2, and let σ be any smooth extension of the Bondi shear to J f .
Then a theorem of Kendall (1990) shows that the doubly-characteristic initial-value
problem on Jf U N is well-posed locally relative to Z, and so there is a locally
unique space-time inducing these data in a neighborhood of Z as well.

The space-times under consideration are then determined (at least in a neigh-
borhood of 3tf) by the regular hyperboloidal initial data in Σ and the shear on J f .
Therefore such data ought to form the manifold of the phase space. Since the ad-
missible shears depend on the hyperboloidal data, we see that the phase space has a
bundle structure, with the spaces of allowed shears fibering over the hyperboloidal
data. We shall refer to the data on Σ as the final state, and the shears compatible
with a final state as the radiation data. We are here concerned exclusively with a
fibrewise analysis: we fix the final state, and consider the possible radiation data
compatible with it.

At present, it is not known under what conditions a final state will admit
a radiative datum for which a space-time exists in a neighborhood of Jf, that
is, for which condition (f) holds. However, for local analysis on the phase space,
it is not necessary to know exactly which data are admissible. We simply need to
know that sufficiently small perturbations of a space-time satisfying (a)-(f) will
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also satisfy (a)-(f) , and that the map from data to space-times is smooth. These
are guaranteed by stability results of Kendall (1992).

4.2 Developments

We now show that the data under consideration have well-defined maximal glob-
ally hyperbolic extensions. The argument is quite similar to that for the standard
Cauchy problem, and so a rapid treatment will be given. However, the force of the
present results is somewhat stronger from that for the standard Cauchy problem. In
the standard case, a development of the data by definition contains the entire ini-
tial surface as a Cauchy surface. Once a local existence and uniqueness theorem is
established, this is no loss of generality, since the finite speed of propagation guar-
antees the existence of such developments. In the characteristic case, on the other
hand, the local existence and uniqueness results do not guarantee the existence
of developments including the entire initial surface. Therefore one must consider
developments with different domains on the initial surface, and the maximality one
seeks is in part a maximality with respect to such domains.

This result is somewhat stronger than what will be needed below, since in the
sequel we shall simply posit that the solution extends to the whole of the initial-data
surface. However, we recall that our aim is to give a construction that is robust,
and for this reason the result is of interest here.

In what follows, we assume a familiarity with the differential topology of space-
times, as described in Penrose (1972). A few comments are necessary, since the
standard expositions of the theory apply to finite space-time, and we shall have to
consider the boundary as well.

The notions of chronological and causal precedence are conformally invariant
and so have an interpretation in (M,gab) independent of the factor Ω used in defin-
ing the conformal completion. Thus the chronological and causal futures and pasts
7+, /+, /~, J~ have evident meanings. The concept of an achronal set is also well-
defined. Then the domains of dependence of an achronal set are also defined. We
shall soon show that 3tf is an achronal set in the solutions of interest; then we shall
be interested in the domains

= {x G M I every timelike curve in M through x

which is past- (future )-endless in M meets

and D(J^) = D+(Jf) U D
In what follows, when condition (f ) is not assumed, the sets 3tf and Jf are

understood to include only the portion of ,/+ which exists.

Lemma. Let (M,^) be a time-oriented space-time satisfying (ά)-(e\ and suppose
3tf is achronal. Then J( = IntD(J^) is globally hyperbolic. Also Σ^Jί, and
every point on Jf is the endpoint of a null geodesic on jK.

Proof. That Jί is strongly causal follows from Lemma 4.16 in Penrose (1972).
That J+(p)ΠJ~(q) is compact for p,q G Jt follows from Proposition 5.20 and
Theorem 6.5 there. The remaining assertions are elementary. D

Definition. Let a final state on Σ and a radiation datum compatible with it on
J^ be given. A development of these data is an oriented, time-oriented space-time
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(M^ab)for which properties (a)~(e) hold (and inducing the correct data on Σ and

that portion of J+ which exists}, such that Jtf is gab-achronal and M —

Lemma. For any final state and radiation datum compatible with it, a development
exists.

Proof. The results of Friedrich together with standard results on the Cauchy problem
show that there is a maximal globally hyperbolic development of the data on Σ for
which a portion of J>+ at and to the future of Z exists, and for which the past
Cauchy horizon is (near Z) a smooth null hypersurface meeting </+ transversely
in Z. Moreover the field attains smooth limits on this hypersurface, which are the
correct characteristic initial data. Let us denote the manifold of this space-time
by MF.

Kendall's theorem shows that the initial- value problem with the data on the past
horizon and those on Jf is well-posed (locally at Z). Let MR be a space-time
produced by this theorem, with S the strip of the past Cauchy horizon of Σ serving
as one of the characteristic data surfaces. (We do not include Z in S.)

Now Mp \JS\J MR is an oriented, time-oriented space-time satisfying (a)-(e).
Also no point in MR is in the future of any point in Mp. It follows that ffl is
achronal in this space-time. The remaining claims will follow from the previous
lemma. D

Theorem 4.1. There exists a unique development which is maximal with respect
to inclusion.

(Here "unique" and "inclusion" are to be understood in the sense of the natural
isomorphism classes of developments.)

Proof. Fix a Bondi coordinate system on «/+ in which the cut Z is given by u — 0.
We shall consider developments meeting </+ in different sets, and we shall want to
compare their sets Jf of points on J>+ to the past of Z. We begin by examining
the forms of these sets.

Condition (c), that J\f be diffeomorphic to 1R x S2 with null generators being
the "R" factors, may be expressed more formally by saying that there is a diffeo-
morphism R x S2 — >• j\f of the form.

(x9(θ9φ))» (u(x9θ9φl(θ9φ)) .

The function α : S2 — > [-00, 0) given by α(0,φ) = mfxu(x,θ,φ) is, as an infimum
of continuous functions, upper semicontinuous. Conversely, it is not hard to show
that for any upper semicontinuous function α : S2 — > [— oo,0), the set

Jf(μ) = {(u9θ9φ) £Jf+\0>u> α(0,<p)}

satisfies condition (c). (We do not claim that there is a development for every such
set, however.)

If a development exists corresponding to a function α, then there is a unique
maximal globally hyperbolic development corresponding to this function. This argu-
ment follows that for the standard Cauchy problem, cf. Hawking and Ellis (1973).
(One must be a little careful because of the freedom in choosing the conformal
factor. However, since there are geometric ways of fixing this in a neighborhood
of </+, there is no real difficulty.)
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Now let A be the set of α's achievable from the given data. If αι,α2 G A with

αi rg α2 (for all θ,φ), then the maximal globally hyperbolic development (M,^)ι

corresponding to αi must include the one (M,^)2 corresponding to α2. To see this,

note that we can glue to (M,gα£)2 a portion of (M,0flδ)ι on the region extending
inwards from Λ^(αι) — ,/F(α2) to get a development, which must then be included

in (M9gab)ι.
Let a(θ,φ) = infa€Aθi(θ9φ). Since ^(α) = UαeΛ ^(αX we can construct a

solution to the initial-value problem in a neighborhood of Σ U Λ^(α) by patch-
ing together solutions in neighborhoods of the sets Σ U «yK(α). From this we can
construct a development corresponding to α, and so there is a unique maximal

globally hyperbolic development (M,^) corresponding to this function. By the
argument of the previous paragraph, it is maximal among the developments for
arbitrary α G A. D

5. The Manifold Underlying the Phase Space

In this section, we define the function space representing the radiative modes of
the gravitational field. As discussed above, this ought to be a fibre of the total
phase space, with the base point representing a given final state. We must expect
that there will be some restrictions necessary to have a rigorous isolation-in the
sense of some sort of splitting of the symplectic form compatible with the fibre
structure - of the radiative modes from the internal ones, since there is a coupling
between the two: the data must match at the cut Z. In the realistic ("generic")
physical system, one would not except an exact isolation to be possible. However,
to develop a conceptual framework, the first step is to give a clear mathematical
description of the case where the isolation is possible; after that one can treat
what will amount to boundary (at Z = dJf — dΣ) effects. In this paper, we shall
be explicitly concerned with the first step only. On the other hand, the boundary
effects ought to be deducible from our approach: see the comments following the
proof of Theorem 6.1.

In order to provide this clean isolation of the radiative modes, we shall have in
mind a system which is, as far as the radiative data can reflect, stationary except
for a finite range of values of the retarded time, M, which correspond to cuts prior
to Z. Thus we shall assume to shear is purely electric and locally independent of
u except for a compact region on J f . This restriction is really made for the sake
of definiteness and could be relaxed considerably, in the following senses:
(a) In this section, we do not need the vanishing of any w-derivatives of σ at Z. For

Theorem 6.1, below, we shall need only the vanishing of the first w-derivative
there. (This is only used in the first paragraph of the proof.)

(b) Finite rates of decay of dσ/du as u -^ -co could easily be incorporated here
and in all that follows.

(c) The assumption that the shear be electric near Z and in the far past could be
dropped. The modification necessary to treat this are all straightforward; the only
thing to bear in mind is that the "gauge freedom" is still purely electric. The
significance of dropping this assumption is discussed briefly in Heifer (1994);
see also Newman and Penrose (1966).

Finally, the assumption of smoothness of class C°° in what follows could be weak-
ened considerably.
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The allowed space Γ of σ's will therefore be the set of those agreeing at Z with
that inferred from the hyperboloidal data on Σ, and which are pure gauge near Z and
sufficiently far in the past. (To be pure gauge means σ = 52α for some real function
α independent of u\ the functions α may be different near Z and in the far past.) We
remark that there are many data on Σ admitting shear data which are pure gauge
near Z (take the data on Σ to be those for a stationary space-time, for example). The
existence theory discussed in the previous section guarantees that from any given
final state and any shear data of the type under consideration, a space-time will
exist inducing those shear data on a neighborhood of Z. At present, it is not known
under what conditions a space-time will exist for which the generators of J>+ are
complete to the past and the shear data on all of Jf is induced. However, as noted
in Sect. 4.1, the stability results of Kendall (1992) show that for any space-time
for which this does hold, sufficiently small perturbations of the shear data also give
rise to such space-times.9 Thus the physical phase space will really be an open set
in Γ. This will be adequate for the analysis in Sects. 6 and 7, which is local on the
physical phase space.

In order to have a uniform treatment of the gauge freedom, it will be convenient
not to fix the supertranslational freedom at first. Since we are considering shears
which are pure gauge at Z, this will have the effect of allowing arbitrary such
shears.

Fix a diίfeomorphism Jf —» (—oo,0] x S2. Let Γ be the set of all smooth func-
tions σ of type {3,—!} on Jf whose ^-derivatives vanish outside a compact set,
which are electric at u — 0 and for u sufficiently negative. The most convenient
way to topologize Γ is as follows. Choose any function / (of type {0,0}) on Jf
which is smooth, identically —1 for sufficiently negative u and identically +1 close
to u — 0. The map

C°°(S2, {3, -l})eiectπc θ C°°(S\ {3, -1 })electπc 0 C0°°( ,̂ {3, -1}) -+ Γ (19)

given by
(α,j?,y)^α/ + β + y (20)

is an isomorphism of (algebraic) vector spaces. (Here the electric elements of
C°°(52,{3,-1}), as the kernel of a certain differential operator, form a Frechet
space. The subscript 0 denotes compact supports.) Topologize the right-hand side
so that this is a homeomorphism.

Lemma. The topology so defined is independent of the choice of f.

Proof. Let f be a second such function. Then we suppose that we have

af + β + y = σ = α'/' + β' + / . (21)

Considering sufficiently small u, we see that we must have — tx + β = — α' + /?';
similarly, for sufficiently large u, we must have α -I- β = α' + β1. Thus α = α' and
β = β1', and so y' = γ + α(/ — /')• It follows that the transition function

C°°(S2, {3, -l})electπc θ C°°(S\ {3, - 1})electnc θ C0°°( ,̂ {3, -1})

-> C°°(S2, {3, -l})electπc θ C°°(S\ {3, -1 })electnc θ C0°°(JΛ {3, -1})

9 Here "small" is in the sense of the topology used here; in fact, we use a topology somewhat
finer than necessary.
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given by
(α,/ϊ,y)^(α /,j8 /,/) = (α,/?,y + α(/-/ /))

is a homeomorphism. D
Thus the inverses of the maps (19), as / varies, form an atlas for Γ. The

transition function identified in the proof above is smooth, so we have given Γ the
structure of a smooth manifold.

The following are immediate: (a) the manifold is modeled on a sequentially
complete locally convex topological vector space; (b) this vector space is reflexive
and its dual may be identified with a suitable space of distributions; (c) the sequence

0 — » Gauge Freedom — > Unreduced Data — * Bondi News Functions — >• 0 (22)

given by

0 -> C°°(S2,{3,-l})electπc -> Γ -* C0°% ,̂ {2,0}) -+ 0

β ~ (0,0,0) (23)

(α,β,y) i-> κduf + duy

is an exact sequence of topological vector spaces; (d) the projections from Γ to
C°°(5'2,{3,-l})eiectric giving the future and past limits of the shear are smooth.

Property (c) implies that the smooth structure of Γ is invariant under passive
supertranslations. It is not hard to show too that the smooth structure is invariant
under passive Lorentz motions, so that it is invariant under all passive BMS motions.
For active motions, we must consider the family of Γ's as the cut Z varies; the
naturality of our construction guarantees the appropriate co variance.

6. The Symplectic Form

Ideally, one would like to identify a symplectic form on the phase space we have
constructed by starting with the usual symplectic form got by integrating linearized
solutions over Cauchy surfaces (Arnowitt, Deser and Misner 1962, Regge and
Teitelboim 1974, Chernoff and Marsden 1974), and working out what this gives
in terms of our data. Formally, the way to proceed is clear. Since the three-form
which is integrated is closed, one should deform the Cauchy surface to the M-
shaped surface 3? . This approach was outlined in Ashtekar and Magnon-Ashtekar
(1982). In our notation, the symplectic form they identified is given by

(0(31,82) — (8πG)~l f[s\S2 -S2S\]dud^ + conjugate . (24)

Since the surfaces involved are not compact, some justification of the invariance
of the integral under deformations is necessary. The difficulty occurs at u — -oo.
The difference between integrating over the M-shaped surface and the Cauchy sur-
face amounts to what may be called a leakage integral (at u — — oo, which presum-
ably corresponds to spacelike infinity). A comprehensive treatment of such leakages
would require stronger asymptotic estimates than are currently established.10 There-
fore we shall give a proof of the correctness of the symplectic form by less direct
means. This proof has the advantage of avoiding all gauge problems.

We first verify that ω is a symplectic form.

10 Roughly speaking, one would want to show that the asymptotic expansion of the metric held
uniformly as u —* —oo to O(l/r). The relation between null and spacelike infinity is a major
outstanding problem in the existence theory for Einstein's equations.
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Fig. 2. Construction of the Cauchy surface in Theorem 6.1. A cross-section is shown

Proposition. The form ω is smooth, closed and weakly non-degenerate.

Proof. It is smooth and closed because it is constant in the chart. Integrating by
parts, we have

ω(s\,s2) = (4πG) - (8πG) + conjugate ,

where § denotes the difference between the boundary integrals at u — 0 and
u — ~oo. Suppose, for some fixed s\, this vanishes for all s2. By taking $2 to be
a bump function in u times an arbitrary angular function (with values in {3,—!}),
we have s\ — 0. However, then we have

= -(SπG)"1/ [s -f- conjugate ,

where § now is the usual angular integral. This implies that the electric part of
s\ is zero. However, since s\ is constant, it must be purely electric. D

Theorem 6.1. Let (M,^) be the maximal globally hyperbolic development of
data on ffl, and let s\,s2 be tangent vectors at the corresponding point in Γ. Let
h\,h2 be linearized solutions to Einstein's equations inducing the data s\,s2 on

Jf (and pure gauge on Σ). Then there is a Cauchy surface S in (M^gab) such
that ω(s\,s2) = a>s(hι,h2), where a>s(h\,h2) is the usual 3 + 1 symplectίc form
determined by integrating over S.

Proof. We first show that oy^(h\,h2) — 0. Let h\ab — + a , and similarly
for h2 and ξ2. Let αi, oc2 be the supertranslations induced by ζ\, ζ2 at Z. Then
o>z(h\,h2)= (h\,dP2), where P2 is the supermomentum at Z determined by α2

(and { , } is pairing in the 3 + 1 phase space). Then (h\,dP2} is the change in
this supermomentum under a supertranslation by αi. However, the vanishing of the
derivatives of σ at Z implies this is zero.

Assume the Bondi system has been chosen so that Z is given by u = 0. Fix the
coordinate p = Ω as in Penrose and Rindler (1986), Sect. 9.8. (The relevant effect
of this is to ensure that, for any fixed u, the surfaces of constant p are space-like
for small enough positive p.) For negative integers n, consider the null hypersurface
extending orthogonally inwards from u — n. We choose a smooth portion Cn of this
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hypersurface given by p ^ cn for some positive cn. (We shall place restrictions on
cn in what follows.)

Now assume n is so negative, say n rg TV, that s\,sι are pure gauge for u g n.
Then ω(sι,S2) = coκn(h\9h2)9 where

*„ = {/> G £ I p(p) ^ cπ} U {/? G M, I p(p) - CΛ and n £ u(p) ^ 0} U Cn .

For each n ^ N, consider the contribution to the integral ωκn(h\>hι) from Cn.
By choosing cw small enough, we may make this contribution arbitrarily small;
indeed, we may make the integral of the absolute value of the integrand arbitrarily
small. Choose cn small enough so that this latter is < \/\n\.

Now construct S by starting with

{p G Σ p(p) ^ CN}

and for n ^ N alternately joining the surfaces

{p G M I p(p) = cn,n-l ^ u ^ n}

with ^
{;? G M I p e Cπ_ι and C Λ _I ^ p(/?) ^ cw} .

This surface is by construction everywhere spacelike or null, and ω(s\,S2) =
G>s(h\,h2). We must show it is a Cauchy surface.

A timelike curve starting from a point on S - Σ will have p strictly decreasing
and u strictly increasing. Since p is a monotonically increasing function of u on
S — Σ, this curve cannot meet 5 - Σ at a second point. If it meets Σ, it must do so
on the set of points with p < CN, that is, on Σ — S. So there is no timelike curve
from S — Σ to S. Since we already know Σ is achronal, the set S must be achronal.

Finally, let us show that we can ensure that every null geodesic meets S. We
know every null geodesic meets 3tf. Let Y be the space of null geodesies, topolo-

gized as bundle over &C. (So the fibre is S2 over a point in Σ and IR2 over a point
in ΛΛ) Write Y — \J^ Yn9 where each Yn is compact and has base contained in

ΣU{p G Jf I u > -n} .

Thinking of the elements of Yn as past-directed null geodesies from &\ they must
meet Kn in a compact set for which p is bounded away from zero. By choosing
cn —> 0 quickly enough as n —> — oc, then, we can ensure that every null geodesic
meets S. D

We remark that we did not really need the vanishing of dσ/du in a neighborhood
of Z; we used only the fact that it vanished at Z, and that fact only in the first
paragraph of the proof. If this derivative did not vanish, then one would have an
additional contribution (h\,dPι} to the symplectic form, representing a mixing of
the internal and radiative modes, which can be viewed as a boundary effect due to
leakage of radiation at Z.

It should be clear that the proof could be modified to accomodate finite rates of
decay of dσ/du as u —» — oo.

Note that the Cauchy surface may depend on s\ and s^; on the other hand,
no gauge restrictions were placed on h\ and hi except that they should induce
the correct data on 3tf. These issues are related: only if we make some choice of
gauge in the interior of space-time can we expect to control the integrals uniformly.
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However, gauge-fixing is not the only obstacle to getting some sort of uniform
control; the relation between null infinity and spatial infinity would have to be
understood.

7. Gauge Freedom

The sectors for the gravitational phase space are defined by considering the jumps
[σ], which are purely electric functions on the sphere.11 The classical sector is
[σ] = 0; the others are infrared sectors (Ashtekar 1987). They play an important
role in the theory of angular momentum.

The interpretation of the sectors for gravity turns out to be subtly different from
that for electromagnet! sm.

Theorem 7.1. The sectors are the level surfaces of the function C : Γ —^Super-
translations'" given by

Cα = (SπGΓ1/ [σ]δ /α d^ + conjugate .

This function descends to a moment map for the group Supertranslations/Trans-
lations acting by σ ι— > σ 4- 52α.

Proof. The first assertion follows from the fact that C°°(52,{3,-1}) and

C°°(S2,{-3,1}) are dual, together with the surjectivity of the map δ'2 : C°°(S2,
{1,1})^C°°(52,{71,3}).

Certainly the action σ t-> σ -f 52α descends to the quotient group. Let Vx be the
vector field generating this motion. Then we have

co(s, Vx) = (8πG)fsδ/otdud^ + conjugate
Λ"

+ conjugate

D
Notice that the action here is not the standard active BMS motion, Eq. (7),

unless σ = 0. Although formally the same as the result of a passive BMS motion,
Eq. (8), we do not accompany this motion by a change in the Bondi parameter,
so this is not a passive BMS motion, either. We shall see in a subsequent paper
that this foliation, and the difference between the action here and the standard BMS
actions, goes some way to resolving an old mystery: why approaches to defining
angular momentum at cuts of ,/+ by BMS motions give unphysical answers.
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11 If shears which have magnetic components at Z and as u —> — σo are allowed, then the sectors
are labeled by the electric parts of the jumps.
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