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Abstract: The existence of global finite-energy solutions is proved for the initial
value problem for the Maxwell-Schrόdinger system in the Coulomb, Lorentz and
temporal gauges

1. Introduction

We consider the coupled Maxwell-Schrόdinger system in three space dimensions
for a nonrelativistic charged particle in an electromagnetic field [4]. This system
occurs as a model in laser physics [1]. Although, of course, the system is not
Lorentz invariant, it is rotationally invariant and gauge invariant. In this paper we
prove the existence of global finite-energy solutions of the initial value problem for
the Maxwell-Schrόdinger system in the Coulomb gauge.

K. Nakamitsu and M. Tsutsumi in [3 and 5] proved that the initial value problem
for the Maxwell-Schrόdinger system in the Lorentz gauge is globally well-posed
in a space of smooth functions in dimensions one and two, and locally well-posed
in dimension three. Y. Tsutsumi in [6] proved, by constructing the modified wave
operator, that there exist global smooth solutions in the Coulomb gauge for a certain
class of scattered data as t —» +00. However, the problem in three dimensions with
initial condition at a finite time has remained open. The present paper resolves this
existence question, but we have not succeeded in proving uniqueness.

In Sect. 2 we write the equations and introduce the approximate system to be
used to make the construction. Essentially it is to replace the imaginary / in the
Schrόdinger equation by i + ε with a small dissipation constant ε. In Sect. 3 we
construct global solutions of the approximate system in the Coulomb gauge. In
Sect. 4 we pass to the limit ε —» 0, thereby obtaining global weak solutions. In
Sect. 5 we prove the analogous result in the Lorentz gauge and in the temporal
gauge.

This research was done primarily while all three authors were at Brown University. It was
supported in part by NSF grant 90-23864 and ARO grant DAAH 04-93-G-0198.
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We will denote by || \\p the norm in Lp — Z/(IR3), and by || \\ktp the norm
in the Sobolev space Wk^ = 0^(IR3). We write Hk for Wk^ as usual, and R+

for the interval [0, oo). We denote the space of all weakly continuous mapping of
R+ to a Banach space X by CW(Ί&+;X), and the space of all bounded weakly
continuous mappings of R+ to X by B

2. The Maxwell-Schrodinger System

We will use Greek indices μ, v, ... to run integers from 0 to 3, Latin indices 7, k, ...
to run integers from 1 to 3, and the summation convention for repeated indices. We
write δo for d/dt, dj for d/δx7, and define dμ by d° = d$ and δ7 = —dj.

A classical Maxwell-Schrodinger (MS) field in 3 -f 1 dimensional space-time
consists of a vector potential with four real components Aμ and a complex scalar
field ψ. After a suitable rescaling, we may write the equations of motion as

dμFμ v + Λ = 0, Fμ v - dμAv - dvAμ , (2.1)

ΪD0 ψ + DjDj ψ = Q9 Dμ = dμ- iAμ , (2.2)

together with a gauge condition on the potential. Here the Jv are the components
of the charge-current density, given by

Jo = \Ψ\2 , Jj

We introduce a viscosity parameter ε > 0, and regard the MS system (2.1)-(2.2)
as the limit ε — > 0 of the regularized system

where

εRv = Q , (2.3)

- (ί + ε)DjDjil/ = 0 , (2.4)

^o - 0, RJ = dj{\ ψ |2 -2Δ-l(DkψDk\l/)} , (2.5)

with A~lf = -(4πr)-] * /. The terms Rv are defined so that Eqs. (2.3) and (2.4)
are compatible. In fact, dμdvFμv — 0 since Fμv — —Fvμ. Thus (2.3) requires the
equation of continuity

Sv(Λ + εKv) = 0. (2.6)

But by (2.4),

= 2Re

Thus (2.6) implies dvRv = -2Re {ψDjDjψ} . This is the compatibility condition for
Rv. It has the solution (2.5).

We define the charge β and the energy E by

E - ϊ{D$Djψ + \Fμ vFμ v}dx.
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Lemma 2.1. Let ψ and Aμ be smooth functions on [0, T] x IR3 satisfying (2.3)
and (2.4). Then we have

τ
Q(T) + 2ε fdtfDjψDjψdx = Q(0) , (2.7)

o

E(T) + 2ε fdtf{DjDj\l/DkDk\l/dx + V ψ 2} dx = £(0), (2.8)
o

where V is the nonnegative function defined by

V = \ ~

Proof. From (2.4) we have

dQ
dx = 2εRef\l/DjDjψ dx = -2εfDjψDjψ dx .

This implies (2.7). Similarly, from (2.4),

dx = 2RefDj\l/DoDjψ dx

= 2Ref{-DjDj\l/Do\l/ + iFj o

= -f{2εDjDjil/DkDk\l/ dx + F7 0 J,-} </* .

On the other hand, using the identity doFjk + djFko + dkFQj = Q and (2.3), we
have

— J~FμγFμγdx = f{FjQdQFjQ + ^Fj kdQFj k} dx

j o - { F j k ( C j F k Q + dkFQj)}dx

= -fFj0d
μFμjdx = f F J Q ( J j + fifl/) At

Jj-2εV ψ\2}dx.

Adding the above two results, we deduce (2.8).

3. Regularized MS Field in the Coulomb Gauge

We begin by constructing global solutions of the initial value problem for the regu-
larized system (2.3)-(2.4) in the Coulomb gauge djAj = 0. In this gauge, Eq. (2.3)
for v — 0 and v = j φ 0 reduce to the equations

AAQ=JQ, (3.1)

Q-Jj-εRj9 (3.2)



184 Y. Guo, K. Nakamitsu, W. Strauss

respectively. These equations may be written as follows. By (3.1), we may set
AQ = A~1J$ in (2.4). Furthermore, using (2.6) and (2.5), we have

Thus the system (2.3)-(2.4) in the Coulomb gauge reduces to the following system
for the fields A = (A\, A2, A^) and φ :

ΏA = -PJ, V - A = 0, (3.3)

doψ - (i + ε)Δψ = Kε 9 (3.4)

where J — (J\, J^ J$), PJ — J — V(V A~1J) is the projection of J on the diver-
gence-free vector fields, and

Kε = i(A~lJo)φ-(i + ε ) ( 2 i A Vφ + A - Aφ) .

We consider the system (3.3)-(3.4) with the initial condition

(A,dvA9ιl/)\t=Q = (a,b,φ). (3.5)

The Coulomb gauge condition imposes the initial constraints

V α = V 6 = 0 . (3.6)

The main result of this section is the following.

Lemma 3.1. Let ε > 0 and k ^ 1. Assume that (a, b, φ) G Hk x Hk~l x Hk and
a, b satisfy (3.6). Then there is a unique solution (A, φ) 0/(3.3)-(3.5) such that

(A,doA,φ) e C(IR+;//A x T/^1 x Hk) , V^ 6 L2(IR+;//A) .

Moreover, we have

\\A(t)\\2 < C{\ + 1} , E ||5^(0||2 < C , WOlIu < c » (3-7)
//=o

for some constants C = C( | |α | | ι ? 2, | |^ | |2, | |Φ| | ι ,2) independent of t and ε.

To prove the lemma, we write the wave equation in (3.3) as the pair of equations

ΔA = -PJ .

We convert the system consisting of this pair, of (3.4), and of the initial condition
(3.5) to the integral equation

u = GΦN(u) .

Here Φ = (a, b, φ), u = (A, B, φ), N(u) = (0, —PJ, K&\ and Gφ is the linear map-
ping (A, B, φ) -> (AG, BG, φG) defined as

φG(t) = S(t)φ + fS(t- s)φ(s)ds , (3.10)
o
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where
,„ Λ f / 0 /
M(ί) = exp < t i . ~

The operator P is the projection of the space of real 3-vectors in Hk onto its
subspace consisting of divergence-free vectors. We denote this subspace as Hk. We
define Xfi to be the space of all triples Φ = (α, b9 φ) in Hk x //^-1 x Hk> w^m me

norm

Let T > 0, let / = [0, Γ], and let || |k ̂  be the norm in Iβ(I\ Wk^). As a

solution space for the integral equation (3.8), we take the space Xk(T) of all triples
u = (A, B, ι/0 in C(I',Xξ) such that Vψ is in L2 (/;//*), with the norm defined by

We also introduce the space Yk(T) of all u = (A, B9ψ) in L2(/; Hk x Hk~l x
^'3/2), with the norm

We write Xk(T)9 Yk(T) simply as Xk, Yk when there is no danger of confusion.

Lemma 3.2. Let ε > 0. Let k ^ 1 and Φ G Xξ. Then GΦ maps Yk to Xk, with

\\GΦu\\χk ^ CβHΦH + C^Γ1/4 + T^}\\u\\γk .

Proof. Let u = (A, B, ψ) G F^, and let (^G, BG !, ^G) be defined by (3.9)-(3.10).
Note that M(/) is an isometry on //"^ x Hk~l . Therefore, from (3.9) we have
(AG,BG) e C(I\Hk x Hk~l), with

Thus to complete the proof, it is sufficient to show that ψG is in C(I\Hk) and
satisfies

To see this, we may assume k = 0. Now ψ$ — S(t)φ is the solution of the initial
value problem

= 0 , ψo\t=o = φ .

The standard energy-type estimate shows

imφHl + 2ε / \\VS(ί)φ\\2

2ds = \\φ\\l . (3.12)
0

On the other hand, the standard Lp - Lq estimate for the heat evolution operator
eεtΔ implies

||S(0/lb ^ C6r
1/4H/||3/2 , (3.13)

||VS(f)/||2 ^ Cer
3/4||/||3/2 . (3.14)
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By (3.13), we have
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f S(t - s)ψ(s)ds
o

(3.15)

and it follows that ψG e C(/;L2). By (3.14) and the singular integral inequality,
we also have

] S(τ - dτ£Cj\f(τ-sΓ3/4\\Ψ(s)\\3/2ds\ dτ
2 0 ^ 0

t ϊ 3 /2

o

(3.16)

From (3.12), (3.15) and (3.16), we deduce (3.11) for k = 0.

We next show that the nonlinear term N(u) is locally Lipschitz as a mapping
from Xk to Yk for k ^ 1 . To this end, we recall the Gagliardo-Nirenberg inequality

where l/p - j/3 = s(\/q - Jfc/3) + (1 - s)/r, j/k ^ s ^ 1 (if k - j - 3/q is a non-
negative integer, only s < 1 is allowed), and where

\\djf\\P = Σ I
l ι « ι=y

We will also use the estimate

^ c||/||6/5,

(3.17)

(3.18)

which follows for instance from applying the generalized Young's inequality to the
expression A~lf = (4πr)~~l * /.

Lemma 3.3. Let k ^ 1. Then N(ύ) maps Xk to Yk. We have

\\N(u)\\γk ^ (1 + Tll2)Z^k(\\u\\xι }\\u\\χk , (3.19)

\\N(u)-N(u')\\γk ^ (1 + Tl'2)Z^k(\\u\\χk + \\u'\\χk)\\u - u'\\χk , (3.20)

where ZBtk(r) = CBtk{r -f r2}.

Proof. Let u = (A,B,\I/) G Xk . We recall the definition N(u) = (Q,-PJ, Kε). We
will estimate the components of N(u) using (3.17) and (3.18). We recall that
Jj = 2Rε{iίl/Djil/}. We first show that

-1,2,2 Tl'2}{\\U\\χl + \\U\\2

χl}\\U\\χk . (3.21)
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Indeed, let f\ — ψVψ and /2 =y4||ι^||2. The I2 -norms of f\ and /2 are esti-
mated as

These give

iμ||o,2,2 ύ
^co + Γ'/'HiHβ. + iHβ,}. (3.22)

We also have the estimates

a+b=k

^ c Σ \\dknT\m\~a/k\\dk^nf\\^\\\-b/k

a+b=k

and
II^ΛIb =• c Σ ll̂ l̂kll̂ l̂l

@~1t-b~\-C'=k

< /~ι \ Λ 1 1 ik A 1 1 Q/K I I A 11 1 — t
_ c 2^ II" ^ i lό l l ^ l l ό

α+Z>-A:

= ^ Σ I M I I * + l , 2 M H l , 2 11^11^+1,211^111,2

^ c{||^4||ι}2 + H ι A| | ι ,2 } 2 { IMIk+ι ,2
These imply

, , , , , , , ,
a+b=k

^ C{||lA||l,2,oo + ||V^||lf2,2}{| l̂l*+l,2,oo + II W||*+lf 2, 2> ,

and

||^/2||θ,2,2 ^ CΓ1/2{M||l,2,oo + ||^||l,2,oo}2{|M|k+l,2,oo + ||^lk+l, 2, 00} ,

respectively. Thus

\\dkJ\\o.2,2 £ C{1 + r1/2}{||w||^1 + ||«||^}||«||^+ι .

This estimate, together with (3.22), proves (3.21) for all k ^ 1.

We will next show that

ll^llM/2,2 ^ C{1 +T^2}{\\u\\χί + \\u\\2

χl}\\u\\χlt . (3.23)

We recall the definition Kε = ίg\ — (i + ε)(2/#2 + di), where g\ = (zl"1^)^,
g2 =A Vι/^, and ^3 —A Aψ. Using (3.18), we have
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,/2 ^ M||6||V.A||2 g C| |VΛ| | 2 | |V.A| | 2,

i V t f r l b £C| |VΛ| | i |M|,, 2 .

These estimates yield

|l^||θ,3/2,2 ^ CTV2{\\ψ\\l2,00 + |M||l, 2,oo + | M l l l 2 , o o } I I Ά I I l , 2 , o o

We also have the following estimates for the derivatives,

\\dkg\\\ιi2 ύ Σ \\daA~lJ0\\6\\dbψ\\2
a+b=k

/θ| |6/5| | r fVl |2+ Σ_ \\d*.

αφO

{ Σ ,
a+b=k {i+j=a

α φ O

i y~] \\daψ\\2
a+b=k

1,211^11^2

< C V III

^ c Σ ll^llf I
α+Z?=A:

^c Σ I M I l f 2 ! M l
ύf+^=:/:

2 =i c

^c Σ I M I l z l M l l u
fl+ft=yt

When we take the L2-norm in time, we obtain

||^.||o,3/2,2^cr l/2 |^|k2,

ll^2||o,3/2,2 ^ c Σ Mll
a+b=k

^ C{M||t,2,oo

\\dkg3 Ho. 3/2, 2 ^ c Σ I M I l

respectively. Thus

|Λ,1 + \\u\\2

χ,}\\u\\χk
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This estimate, together with (3.24), proves (3.23). From (3.21) and (3.23), we have
(3.19). The proof of (3.20) is similar.

Lemma 3.4. Let k ^ 1 and Φ G Xfi. Then there is a Γmax > 0 such that the
equation u = GφN(u) has a unique solution u in Xk(T) for all T G (0, Γmax), and
such that if Γmax < oo, then

iίϊή \\u(t)\\x\ = oo . (3.25)
' ΐ^max °

Moreover, if Φn G X$ with Φn — > Φ in Xξ, and if T G (0, Fmax), then the solution

un 0/(3.8) with Φ replaced by Φn belongs to Xk(T) for sufficiently large n, and
un-^u in Xk(T\

Proof. By Lemmas 3.2 and 3.3, we have

\\GΦN(u)\\χk ^ *\\Φ\\χk + β(T9 \\u\\xι )\\u\\χk , (3.26)

\\GΦN(u) - GΦN(u')\\χk ^ β(T9 \\u\\χk + \\u\\χk)\\u - u'\\χk , (3.27)

for some α > 0, and β(T,r) = C{Γ1/4 + T}{r + r2}. We choose R > 0 and Tk =
Tk(R) > 0 so that

< R, (3.28)

β(Tk,4*R) < 1/2. (3.29)

Let Bk(Tk) be the closed ball of center 0 and radius 2uR in the space Xk(Tk). Then
by (3.26) and (3.27), GφN( ) is a contraction mapping of Bk(Tk) into itself.
Therefore the equation u — GφN(u) has a unique solution u in Bk(Tk). Since 7\
depends only on k and Λ, a standard continuation argument shows that there exists
a Γmax > 0 such that u extends to a unique solution in Xk(T) for all T G (0, Γmax),
and furthermore that if Γmax < oo, then

ΐkn" ||ι/(0||^ - oo . (3.30)

We claim that (3.25) holds where the smaller norm in XQ is used. For, otherwise
there would be a constant L > 0 such that

for 0 ^ t < Γmax. By (3.26) and (3.27) with k = 1, there exists T\ > 0 depending
only on L such that the equation v = GvN(v) has a unique solution v G Bl(T\) for
all Ψ G XQ with A^-norm < L. Let 0 < δ < T\ and Γ* = Γmax - δ. Let w* be the
unique solution of u* = GU(τ*)N(u*) in Bl(T\). Then u* coincides with u( + T*)

on [0,<5), so that w* G^(Γ) for all Γ in (0,δ). Moreover, (3.26) with Φ replaced
by w(Γ*) and u by u* is valid for Γ G (0,δ). It implies that
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If we choose δ so small that β(δ,2aL) < 1/2, this inequality yields

\\U*\\Xk(T} < 2<*\\u(T*)\\χξ

for 0 < Γ < δ. But this implies

ϊϊm KOIL* 3S 2αH7;)|U ,
* ' L max °

which contradicts (3.30). This proves (3.25).
To prove the last part of the lemma, it is sufficient to show that un — > u in

Xk(Tk\ with Tk as above. Let n be sufficiently large so that (3.28) with Φ replaced
by Φn holds. The above existence argument shows that both u,un belong to Bk(Tk).
Then using Lemma 3.2 and (3.20), we have

II" - Un\\χk(τk) = \\GΦN(u) - GΦnN(un)\\χk(Tk}

^ α||Φ - Φn\\χ, + β(Tk9 \\u\\χk + \\un\\χk)\\u - un\\χk(Tk}

^ α||Φ - Φn\\xk + β(Tk94*R)\\u - un\\χk(Tk} ,

Together with (3.29), this implies that un -> u in Xk(Tk).

Proof of Lemma 3.1. By Lemma 3.4, there exists a unique solution (A9ψ) of the
approximate system (3.3)-(3.5) such that

(A,dtA,\l/)eC([0,T);Hk x Hk~l x Hk), Vφ € L2([0, Γ );//*) ,

for some T > 0. Moreover, T = oo if (A9dtA9ψ) does not blow up in the Hl x
L2 x Hl-noτm in finite time. Thus to complete the proof, it is sufficient to show
that (3.7) holds a priori. In view of the last part of Lemma 3.4, we may assume
that A and ψ are smooth.

Let AQ be defined by (3.1) and let Q and E be the charge and the energy defined
in Sect. 2. Thus Q(Q) = \\φ\\\, and E(Q) is estimated as

E(0) = ||(V - ia)φ\\l + ±\\VA-l\φ\2 - b\\\ + I||V x a\\2

2

2 + C{||0||3||0||2 + il|6||2}
2 + i||V x a l i i

where we have used the boundedness of V^"1 as an operator from £6/5 to L2.
Since Aμ and ̂  satisfy the regularized system (2.3)-(2.4), Lemma 2.1 implies that
E(t) ^ E(Q) and Q(t) ^ β(0). Using the Coulomb gauge condition, we have

— fAjAjdx = fdoAjAjdx = /{F0y + djAQ}Ajdx

= f{FOJAj - AQdjAj} dx = fFQJAj dx

By integration, this implies

IM(0||2 ^ \\a\\2 +2^2E(Of2t, (3.31)
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which proves the first estimate in (3.7). In the Coulomb gauge, the energy for the
field A may be rewritten as

±fFμvFμvdx = f{dμAvdμAv - dμAvdvAμ}dx

= f{dμAvdμAv - doAodoAQ - IdjA^doAj - 8jAkdkAj}dx

jdμAj -f

It follows that

Σ II^WIIi + Σ IIMoWII2 ^ £(0) , (3.32)
μ J

so that the second estimate in (3.7) holds. We also have

113

3 3

k=\ k=\

^ £(0)1/2 + CE(Q)WQ(Q)W Σ |
k=\

where we have used (3.32). Thus

which together with HiKOll i = δ(^) proves the last estimate in (3.7).

4. Global MS Field in the Coulomb Gauge

We now prove the existence of global finite energy solutions of the initial value
problem for the exact MS system in the Coulomb gauge, Eqs. (3.3)— (3.4) with
ε = 0, by making use of Lemma 3.1 and a compactness method.

Theorem 4.1. Assume that (α, b, φ} E Hl x L2 x Hl and a, b satisfy (3.6). Then
there exists at least one solution (A,ψ) o/(3.3)-(3.5) with ε = 0, such that

A e CW(IR+;Z2), dμA G £CW(IR+;L2), ψ G ̂ ^(IR+ T/1) .

Theorem 4.2. L^ί A, ψ be as in Theorem 4.1. If we define AQ by (3.1), then
AQ, A, ψ satisfy the MS system in its original form (2.1)-(2.2).

Proof of Theorem 4.1. Let εn > 0 with εn — >• 0. By Lemma 3.1, for each n there
is a solution (ψn9 An) of the regularized equations

ΠAn = -PJ(An, ψn)9 V - An = 0 , (4.2)

doψn - (i + εn)Δψn = KBa(A», ιl/n) , (4.3)

such that (An, doAn, ψn) belongs to C(1R+ : Hl x L2 x Hl) and assumes the initial
value (a, b, φ) at t — 0. Moreover, we have

H A W l h < C{1 + *}, \\dμAn(t)\\ι,2 < C , (4.4)

2 < C , (4.5)
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where in the following discussion C denotes various constants independent of t and
n. Now from the definition of J = (J\, /2> Jϊ) in Sect. 2,

By (4.4) and (4.5), this implies

\\J(φn, An)(t)\\3/2 < C . (4.6)

Also, the three estimates above (3.24) give

\\K,,(Ψn, Λ)| |3/2 ^ C{||<Ml,2 + \\VAn\\2 + || VAΛ\\2

2} \\φn \\ ,, 2 ,

which shows that
11^(^,40(0113/2 < c . (4.7)

By (4.4)-(4.7), we can extract a subsequence of {(An, ψn)}, which we denote
again by {G4n, ^/OK such that

An-* A weakly* in Z°°([0, ΓJ /ί1), 0 < Γ < oo , (4.8)

dQAn -> doA weakly* in L°°(IR+;L2) , (4.9)

ψn->\l/ weakly* in L°°(IR+;//1) , (4.10)

J(\l/n,An)-+ β weakly* in Z,°°(IR+;L3/2) , (4.11)

^eΛ(^ ^») -̂  α weakly* in I°°(IR+;I3/2) , (4.12)

for some A, ψ satisfying (4.1) and α, β G Z°°(R+;L3//2). Passing to the limit n — > oo
in (4.2) and (4.3), and using (4.8) and (4.10)-(4.12), we have

ΏA = -Pβ, V A = Q , (4.13)

d0ψ-iAψ = a, (4.14)

in ^(IR4-;//-1).
We shall show that (ψ,A) is the desired solution. Now d^A is bounded from

IR+ to Z2, and d\A, dQψ are bounded from 1R+ to H~l by (4.13) and (4.14).
Thus (A, d()A,ψ) is continuous as a mapping of 1R+ to L2 x H~l x H~l. Also it
is locally bounded from ]R+ to Hl x L2 x Hl. Thus it follows that (A, dQA, ψ) is
weakly continuous as a mapping of IR+ to Hl x L2 x Hl .

We claim that the field (A, ψ) satisfies the initial condition (3.5). In fact, if
( - , ) denotes the duality pairing, An satisfies

f ( A n ( s ) d 0 f ( s ) + d0An(s)f(s), v)ds = (a, v) ,
0

and

f ( d t A n ( s ) d o f ( s ) + {ΔAn(s) + PJ(An9 \l/n)(s)}f(s), w)ds = (b, w) ,
o

for all (u, w) G L2 x Hl and all / G C°°(IR+) with /(O) - 1 and f ( t ) = 0 for
ί large. Taking the limit n — * oo and using (4.8), (4.9), (4.11) and (4.13), we
find that

f{A(s)doh(s) + dQA(s)h(s)}ds = a ,
o
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dlA(s)h(s)}ds = b ,

as integrals in L2 and H~1

9 respectively. This implies (A, δo^)|ί=o = («> b). Apply-
ing the same argument to ψn, we deduce that \l/\t=Q = φ.

We also have α — K$(A, ψ) and β = J(A, ψ). Ύo see this, let / be a bounded
interval in R+, and Ω a bounded open set in IR3. It is sufficient to show
that α and β coincide with KQ(A, ψ) and J(A, ψ) on / x Ω, respectively. Now
by (4.4), {(An,doAn)} is a bounded sequence in L4(Γ,Hl(Ω) x I2(Ω)). Since
Hl(Ω) C L4(£2) C L2(Ω), with the first imbedding compact and the second one con-
tinuous, a standard compactness lemma [2] then asserts that there is a subsequence
of {An}, again denoted by {An}, such that

An -> A strongly in L\I x Ω) . (4.15)

Similarly, since {d^\l/n} is bounded in Z,°°(IR+;//~1) as indicated above, and so
{(ψn, 8Qφn)} is a bounded sequence in L2(I;Hl(Ω) x //"^(Ω)), we may assert that

\l/n->\l/ strongly in L\I x Ω) . (4.16)

By (4.5), \\l/n

 2 is bounded in L2(/;L6/5), while by (4.16) and the arbitrariness of
Ω, we may assume ψn — > ^ a.e. on / x IR3. It follows that \φn

 2 — > |ί//|2 weakly in
I2(/;I6/5), and this implies

Λ~l\ψn\
2 -* ^~ 1 ! 1A|2 weakly inL 2(/;L 6), (4.17)

since zT ! is bounded from L6/5 to L6. Therefore by (4.8), (4.10) and (4.15)-(4.17),
we have

J(An, \l/n) -> J(A, ψ) weakly in I4/3(7 x Ω) ,

^εΛ(Λ, ^Λ) -̂  ^o( ?̂ ιA) weakly in L4/3(7 x Ω) .

Thus % = Ko(A, ψ) and j8 = J(^ί, ψ) on / x Ω, which completes the proof.

Proof of Theorem 4.2. Let ^o be defined by (3.1), that is, ΔA$ = JQ. Then AQ, A, ψ
clearly satisfy the component of (2.1) with μ = 0 and also (2.2). To see that (2.1)
also holds for μφO, we use the following fact. If / G Hl and g £ H~l, and if
s > 3/2, then the inequality

holds for all ζ G Hs. Hence the product fg is well-defined as an element of H~s.
Since ψ is in L°°(]&+;Hl) and D0ψ = iDjDjψ is in I°°(IR+;//~1), it follows that

by the definition of J^ in Sect. 2. Since v4o = Δ~λJ$, this implies

50^0 = ̂ "^. (4.18)

From (3. 3), (4.18) and the definition of P, it follows that

dμFμj = ΏAj - djdoAo = -(PJ)j - djdkA~lJk = Jj ,

as was to be shown.
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5. Global Solutions in Other Gauges

In this section we consider the initial value problem for the MS system (2.1)-(2.2)
in the Lorentz gauge dμAμ = 0 and in the temporal gauge AQ = 0.

The problem in the Lorentz gauge reduces to the system

= Q , (5.1)

iDQ\l/ + DjDjψ = 0 , (5.2)

(Aμ9 d0Aμ, \l/)\t=Q = (aμ, bμ, φ) . (5.3)

The equations require us to assume the initial constraints

j + \φ\2 . (5.4)

Theorem 5.1. (Lorentz gauge) Assume that (aμ, bμ,φ) G Hl x L2 x Hl and the
aμ,bμ satisfy (5.4). Then the initial value problem (5.1)-(5.3) has a solution
(ψ,Aμ) such that

(Aθ9 S0A0) G CίR+ tf1 x L2), (Aj,doAj9ψ) G Cw(R+;Hl x L2 x Hl) . (5.5)

Proof. We will reduce the problem to the Coulomb gauge by a gauge transfor-
mation. Let α, b denote the 3-vectors with components α/,6/, respectively. Let
f = A~lV a. We define

where Pv = v - V(V A~lv) as before. Note that φc £ H\ since V/ = (/ - P)a.
By Theorem 4.1, the MS system in the Coulomb gauge, (3.3)-(3.4) with ε = 0,
has a solution (^c, ^c), Ac = (A\, AC

2, A\\ such that

Ac G CW(R+;I2), dμA
€ G 5

that satisfies the initial condition

Let

We define λ to be the solution of the initial value problem

Dλ = -So4i, (A, 30A)|/=o = (/, ^) , (5.7)

where / is as above and g = Zl"1 V - b9 so that V/ G Hl and V^ G I2. By (4.18),

d^ = A-}V Jc ,

where Jc = J(AC, ι//c) G Z°°(]R+;Z6/5). Since J-^ is bounded from Z6/5 to Z2,
this implies that d^Ac

Q is in L°°(R+;L2). Then the energy estimate for (5.7) shows
that Vλ G C(R+;L2) and δ0A G C(R+;L2

OC). We define ^μ and ψ by the gauge
transformation

Aμ=AC

μ + dμλ9 ψ = έψ . (5.8)
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We shall show that (Aμ, ψ) is the desired solution of (5.1)-(5.3). Now from
(5.6)-(5.8) and (5.4), we have

M=o = 4 t=v + g = Δ~λ\φc\2 + V - Δ~lb = α0 ,

|f=o = <Wol*=o + dlλ\t=Q = Aλ\t=Q = V a = b .

AJ ί=0 - <fj + 3, / = (Al)y + ((/ ~ />)*),- = *y ,

y |/=o = bc + a, 0

Thus 04^, φ) satisfies (5.3). Applying dμ to the first equation in (5.8), and using
(5.7) and djAj = 0, we see that the Aμ satisfy the Lorentz gauge condition dμAμ = 0.

We now prove (5.5) and (5.1)-(5.3). From the definition (5.8), Aμ and ψ belong
to CW(R+;Z2). From (5.6)-(5.8), we have

Since (AQ, BoA())\t=Q — (a^ bo) G Hl x L2, this equation implies that AQ £
CXR+;//1) with d0A0 G C(R+;Z2). Then 3y^y G C(R+;I2), since 5 μ̂ = 0. We
also have

djAk - dkAj - djAc

k - dkA
cj G CW(R+;L2) .

The last two facts imply that d^Aj G CW(IR+;L2) for all 7 and k. Similarly,

Thus we have proved that ^μ, δv^μ G CW(IR+;L2). In particular, AJ G
By (5.8), this implies djλ G C^R+ /ί1). Then

djφ = eiλ{dj + /5y/}^ € ̂ (R+;I2) -

Thus (A GLJ^R+ T/1)- Now by Theorem 4.2, (Ac

μ9 ψc) satisfies (2.1) and (2.2),
which are invariant under the gauge transformation (5.8). Thus (Aμ, ψ) also satisfies
(2.1)-(2.2) and hence (5.1)-(5.2) since dμAμ = 0. The weak continuity of ψ in t
now follows from (5.2). This completes the proof.

In the temporal gauge AQ = 0, we may write the initial value problem for the
MS system as

-d0djAj=Jι>9 Λ0 = 0, (5.9)

ΠAj + djdkAk = -Jj , (5.10)

id0\l/ + DjDjψ = 0 , (5.11)

(AJ9 d0Aj, ψ)\t=o = (aj, bj, φ) . (5.12)

The initial constraint is
Sy*y + |0|2 = 0. (5.13)

Theorem 5.2. (Temporal gauge) Assume that (αy, 6y, φ) G Hl x L2 x /71 αw^/ ίA^
6y satisfy (5.13). ΓAew ίΛ^ initial value problem (5.9)-(5.13) has a solution (A, ψ)
such that

A G Cw(JR.+ ;Hl) , δ0^ G 5CW(R+;I2) , ^r G tfC^R+ tf1) .
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Proof. We define /, ac, bc, φc, AC

Q, Ac and \l/° as in the proof of Theorem 5.1. Using
the solution λ of the simple equation

we define ψ, Aμ by (5.8). Then (ψ, A} ) provides the solution of the theorem.
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