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Abstract: The existence of global finite-energy solutions is proved for the initial
value problem for the Maxwell-Schrodinger system in the Coulomb, Lorentz and
temporal gauges

1. Introduction

We consider the coupled Maxwell-Schrodinger system in three space dimensions
for a nonrelativistic charged particle in an electromagnetic field [4]. This system
occurs as a model in laser physics [1]. Although, of course, the system is not
Lorentz invariant, it is rotationally invariant and gauge invariant. In this paper we
prove the existence of global finite-energy solutions of the initial value problem for
the Maxwell-Schrodinger system in the Coulomb gauge.

K. Nakamitsu and M. Tsutsumi in [3 and 5] proved that the initial value problem
for the Maxwell-Schrodinger system in the Lorentz gauge is globally well-posed
in a space of smooth functions in dimensions one and two, and locally well-posed
in dimension three. Y. Tsutsumi in [6] proved, by constructing the modified wave
operator, that there exist global smooth solutions in the Coulomb gauge for a certain
class of scattered data as + — +o00. However, the problem in three dimensions with
initial condition at a finite time has remained open. The present paper resolves this
existence question, but we have not succeeded in proving uniqueness.

In Sect.2 we write the equations and introduce the approximate system to be
used to make the construction. Essentially it is to replace the imaginary i in the
Schrodinger equation by i+ ¢ with a small dissipation constant ¢. In Sect.3 we
construct global solutions of the approximate system in the Coulomb gauge. In
Sect. 4 we pass to the limit ¢ — 0, thereby obtaining global weak solutions. In
Sect. 5 we prove the analogous result in the Lorentz gauge and in the temporal

gauge.
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supported in part by NSF grant 90-23864 and ARO grant DAAH 04-93-G-0198.
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We will denote by || - ||, the norm in L” = LP(IR?), and by || - s, » the norm
in the Sobolev space W7 = Wk P(IR*). We write H* for W*? as usual, and R*
for the interval [0,00). We denote the space of all weakly continuous mapping of
R™ to a Banach space X by C,(R*;X), and the space of all bounded weakly
continuous mappings of R* to X by BC,(IR*;X).

2. The Maxwell-Schrodinger System

We will use Greek indices 4, v, ... to run integers from 0 to 3, Latin indices J, %, ...
to run integers from 1 to 3, and the summation convention for repeated indices. We
write 9 for 9/0t, 0; for 0/0x/, and define 0* by &° = dy and &/ = —0;.

A classical Maxwell-Schrodinger (MS) field in 3 + 1 dimensional space-time
consists of a vector potential with four real components 4, and a complex scalar
field . After a suitable rescaling, we may write the equations of motion as

FFyy+Jy =0, Fyy=03,4,—d,4,, @.1)
iDoyy +D;Djy =0, D, =0, —id,, (22)

together with a gauge condition on the potential. Here the J, are the components
of the charge-current density, given by

Jo=WP, J;j=i(Dpy—yDY).

We introduce a viscosity parameter ¢ > 0, and regard the MS system (2.1)~(2.2)
as the limit ¢ — 0 of the regularized system

"Fuv+J,+eR, =0, (23)
Dol// —(i+ E)Dij!// =0, 24)
where

Ry =0, R;=0;{|y " 247 (DD} , (2.5)
with A7 f = —(4nr)~! % f. The terms R, are defined so that Egs. (2.3) and (2.4)
are compatible. In fact, 0"0"F,, = 0 since F,, = —F,,. Thus (2.3) requires the

equation of continuity
O"(J, +eR) =0. (2.6)

But by (2.4),
&y = do | ¢ [* —2Re {i0;(¥D¥)}
= 2Re {Y(Doy — iD;D;y)} = 2¢Re {yD;D;y} .
Thus (2.6) implies 0'R, = —2Re {l—//-Dijl//}. This is the compatibility condition for

R,. It has the solution (2.5).
We define the charge QO and the energy E by

O=[]y[dx,
E = [{D;yDy + F, Fp )} dx .
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Lemma 2.1. Let  and A, be smooth functions on [0, T] x R3 satisfying (2.3)
and (2.4). Then we have

T —
O(T) +2¢ {dthjlﬁDjlﬁdx = 0(0), (2.7)
T
E(T)+2¢ [dt[{D;DyyDyDyydx+V |y [*}dx = E(0), (2.8)
0

where V is the nonnegative function defined by
V=gl P -4 DY) .
Proof. From (2.4) we have

f% = 2Re [YDoy dx = 2eRe [YyD;Dj\y dx = —2¢ [DphD iy dx .

This implies (2.7). Similarly, from (2.4),

% [DyDjp dx = 2Re [DyDoD iy dx
= 2Refbij(DjDo + i o) dx
= 2Re [{—D;DyDoyy + iF ;oD jpip} dx
= —[{2eD; DD Dy dx + Fyo Jj} dx

On the other hand, using the identity 0oF; s + 0;Fko + 0xFo; =0 and (2.3), we
have

*j—tf%Fu oFyvdx = [{F;o00F 0+ 3F;x00F 4} dx
= [{Fi000F ;0 = 3F(8iF o + OiFo )} dx
== JFjo0"Fydx = [Fo(J; + eR;) dx
= J{FjoJ; = 2e0;FjoV'} dx
= [{FjoJ; + 2e¢"F, oV } dx
= J{FjoJ; = 2eV |y [} dx.
Adding the above two results, we deduce (2.8).

3. Regularized MS Field in the Coulomb Gauge

We begin by constructing global solutions of the initial value problem for the regu-
larized system (2.3)—~(2.4) in the Coulomb gauge ¢;4; = 0. In this gauge, Eq. (2.3)
for v=0 and v = j =0 reduce to the equations

440 = Jy , 3.1

(A; = ;0040 — J; — ¢R; (32)
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respectively. These equations may be written as follows. By (3.1), we may set
Ao = 47 'Jy in (2.4). Furthermore, using (2.6) and (2.5), we have

(’).,-('J\()A() = aj(’}oA-]Jo = 6j6kA~I(Jk + &Ry)

A A A1 .
= 0;0,d™ Jy +ER; .

Thus the system (2.3)—(2.4) in the Coulomb gauge reduces to the following system
for the fields 4 = (4, A», A3) and V¥ :

OAd=-PJ, V-4=0, (3.3)
ooy — (i +e)dy =K, , (34)

where J = (J1, o, 3), PJ =J —V(V - 47J) is the projection of J on the diver-
gence-free vector fields, and

K, =i(A7 T —(i+¢) (24 - Vi +4 - AY).

We consider the system (3.3)—(3.4) with the initial condition

(AaaoA, l//)|1:0 = (a> ba (b) . (35)
The Coulomb gauge condition imposes the initial constraints
Vea=V-b=0. (3.6)

The main result of this section is the following.

Lemma 3.1. Let ¢ > 0 and k = 1. Assume that (a, b, ¢p) € H* x H*=' x H* and
a, b satisfy (3.6). Then there is a unique solution (A, ) of (3.3)~(3.5) such that

(4,004,) € C(RT; H* x H*"' x H*Y,  Vy e LX(R*;HY).

Moreover, we have

3
4Ol < C{1 +15, N0 A0 <€ WOz <€ G

1=
Sor some constants C = C(|lal|;.2||bl2.|¢ll1.2) independent of t and e.
To prove the lemma, we write the wave equation in (3.3) as the pair of equations
0od = B, 0gB — A4 = —PJ .

We convert the system consisting of this pair, of (3.4), and of the initial condition
(3.5) to the integral equation
u= GeN(u) .

Here @ = (a, b, ¢), u = (4, B, ¥), N(u) = (0, —PJ, K.), and Gg is the linear map-
ping (4, B, ) — (4%, BY, y°) defined as

G t
(gGSD — M(1) <Z> FIME9) (gg;) ds | (3.9)

o) = S(t)qb+]S(r — sW(s)ds, (3.10)
0



Maxwell-Schrodinger System 185
where

M(t):exp{t (3 6)} , S(#) = exp{(i + &)t4} .

The operator P is the projection of the space of real 3-vectors in H* onto its
subspace consisting of divergence-free vectors. We denote this subspace as H. We
define X to be the space of all triples @ = (a, b, ¢) in HX x H\=! x H*, with the
norm

1®lye = llalle.2 + 1blle—1.2 + 1@l 2 -

Let 7> 0, let / =[0, T], and let || - || », be the norm in LI(I; WkP). As a
solution space for the integral equation (3.8), we take the space X*(T') of all triples
u= (4, B, ) in C(I;X}) such that Vi is in L*(I; H*), with the norm defined by

lutllyr (ry = 14llk. 2,00 + [1Bllk=1.2,00 + [Wllk 2,00 + [V llk2,2 -

We also introduce the space Y*(T) of all u= (4, B,y) in L*(I; H* x HF=! x
wk3/2) | with the norm

lullyery = 1Allk 2.2 + 11Blle—1,2,2 + Wl 372.2 -

We write X*(T), Y*(T') simply as X*, Y* when there is no danger of confusion.
Lemma 3.2. Let ¢ > 0. Let k = 1 and ® € X§. Then Go maps Y* to X*, with

1Gaullyi < Coll@lls + C{T + T Hjull e -

Proof. Let u= (4, B, ) € Y*, and let (4%, B, y°) be defined by (3.9)~(3.10).
Note that M(z) is an isometry on H¥ x H¥~!'. Therefore, from (3.9) we have
(49,BY) € C(I; H* x H*—1), with

4%k 2,00 + 1B lk=1.2.00 < C{llallk2 + Blli=1.2} + CT2{[|4llk 2.2 + I1Blle-1.2.2} -

Thus to complete the proof, it is sufficient to show that ¢ is in C(/; H*) and
satisfies

1k 200 + IV k22 S Colll@likz + T4k 3,2} - (3.11)

To see this, we may assume k = 0. Now g = S(¢)¢ is the solution of the initial
value problem

oo — (i + &)y =0, Yoli=0 = ¢ .

The standard energy-type estimate shows

IS()l13 +28{HVS(t)¢H§dS =4Iz - (3.12)

On the other hand, the standard L? — L9 estimate for the heat evolution operator
e’ implies

ISl = Ct™ ) £l (3.13)
VSO fll2 £ Ct | f 32 - (3.14)
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By (3.13), we have

}S(t — $W(s)ds
0

< G [t =) (s)ll32ds
2 0

. 12
< Cl {{ uw<s)n§,2ds} , (3.15)

and it follows that ¥ € C(I;L?). By (3.14) and the singular integral inequality,
we also have

!

T

V [ S(t — sW(s)ds

0

IA

2 . 2
dt £ C, {f(f -S)“3/4IIW(S)II3/zdS} dt

2 0

lIA

t
0
; 32
43
Ce {{)‘ [[l//(s)||3;2ds}

lIA

t
C,t'? { ()13 s - (3.16)

From (3.12), (3.15) and (3.16), we deduce (3.11) for £ = 0.

We next show that the nonlinear term N(u) is locally Lipschitz as a mapping
from X* to Y* for k = 1. To this end, we recall the Gagliardo—Nirenberg inequality

& fll, = Cllad* fll 1A

where 1/p —j/3 =s(1/g—k/3)+ (1 —s)/r, jlk s <1 (if k —j —3/q is a non-
negative integer, only s < 1 is allowed), and where

. s Y
”djf“p:{[g%j”%”p} - (3.17)

We will also use the estimate

147" flle < Cllflless » (3.18)

which follows for instance from applying the generalized Young’s inequality to the
expression 47! f = (4nr)~! x .

Lemma 3.3. Let k = 1. Then N(u) maps X* to Y*. We have
IN@)Iye £ (U4 TY)Z, ()l ull e » (3.19)
IN@) = Ny < (1 + TY)Z0 wllullior + 11 i)l = o'l g (3:20)

where Z, 1(r) = Cy 1 {r +r*}.

Proof. Let u = (4,B,) € X*. We recall the definition N(u) = (0,—PJ, K,). We
will estimate the components of N(u) using (3.17) and (3.18). We recall that
J; = 2Re{iyD;y}. We first show that

k=122 = CLU+ T2} {lullr + ulln Hull g - (3:21)



Maxwell-Schrodinger System

187

Indeed, let £} = yVy and f, = A||y|*>. The L?>-norms of f, and f, are esti-

mated as

I/l = WllsllVYlis = Clivli2liVidh.2
17212 < Illslivlig < Cll4lh, 2111 2
These give
10,22 < W12, 00 V¥, 2,2 + T2 A1 200 W] 2, 00
< C{U+ T H{lulln + llulln } -
We also have the estimates

ld* f1l. £ C Z d“Wllalld* V4

a+b=k

sC 3 [ i 2 e i v V7 P
a+b=k

¢y [ P 7 277 K 27 e
a+b=k

and . .
ld* falla < C 5 Jld*Alsllad®Wllsld s

a+b+c=k

<cC zknd"An“/knAnl Sl PV V7
a+b=

< C X AN AL I, i

a+b=k

< C{llAlh2 + Wl 22 ANk 2 + Wl 2} -
These imply

Id* f1llo.22 < C ;k||wnz/i‘1,2,wuwui,zf'/;;l|vw||2/fl,2,21|wnli,zf’é"
a+b=

(3.22)

< C{llh 2 00 + IV 2 2 HIW Ik, 2,00 + 1V, 2,2}

and

ld* fallo,2.2 < CTYV2{[|4111,2.00 + WIh. 2, 00 P{IAN+1,2, 00 + [Wllks1,2, 00} 5

respectively. Thus

"I llo.2.2 = C{1+ T2} {Ilullr + [full % Hlull e -
This estimate, together with (3.22), proves (3.21) for all £ = 1.

We will next show that

IKellk 32,2 < CLU+ T2 luller + flull Ml e -

(3.23)

We recall the definition K, =ig, — (i + ¢)(2igs + g3), where g1 = (47,

go=A -V, and g3 =4 - Ay. Using (3.18), we have

lgillsn = ||A 1J()1|6||l//||2 < CHJ0||6/5||'//||2

=C
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lg2ll32 = 4llslIVll2 = ClIVALIVY 2,

lgsllsz = IllslAllslVlls < CIVAIRIIL, -
These estimates yield

IKello, 32,2 = CT{IIWIT 2, 00 + 411,200 + 14117 2,00 IV, 2,00
< CTY2{JJull3 + llul3n} - (3.24)
We also have the following estimates for the derivatives,

ld* g1l = 32 174 Dollelld®wll2

a+b=k
< Clollsslld*wll2 + Zklld"JoHs/st”l/sz
a+b=
a+0
< CWIE Wik +C 32 {:2 lld Wllﬁa/(zaﬂ>||d’¢||6a/(2a+/>} "l
a+b=k | i+j=a
a+0 ’
< CIWIa Wl +C X ldYlLl s lldyll
a+b=k
a+0
< Cll vz »
ld*gall2 < C Zk]]daA”6k/(k+2a)”d Vil k/ik-+26)
a+b=
<cC ;kud"Au”“uAu‘ R v A T P
a+b=

<C 3 | AL AL S IS w5
a+

[dgsllsn £ C 3 dAllogn+20 14" Allskrirs26) 14 31c

a+b+c=k
'k 2—alk bk —blk
< C X (dh Al Al
a+b=k
k 2—alk b/k —blk
sC ¥ T e e w2 o o7
a+b=k

When we take the L2-norm in time, we obtain
Id*g1llo,32,2 < CT*Wllk 2, 00 V1132 o0 »
k 1—alk blk 1—b/k
4 g2lo2 S € 3 AN, ool 2 I VWAL oIV VIS
a =,

lIA

C{ll k2,00 + IV llk 223 {l14ll1.2.00 + [[VY]h,2.2}

'k 2—alk blk 1-b/k
c ;AnAn;:fz,oonAn1,;Lo||wnk,/z,2||wn,,z,é
a+b=k

Cllllk 2,00 + VW llk 2, 2H 4l 2,00 + 19Y 11,22}

IIA

||dk93 llo, 3/2,2

I\

respectively. Thus

I Kello, 32,2 < C{U+ e} {1+ T2 {[uellyr + fael 3 el -
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This estimate, together with (3.24), proves (3.23). From (3.21) and (3.23), we have
(3.19). The proof of (3.20) is similar.

Lemma 34. Let k =2 1 and & EX(;‘. Then there is a Tmax > 0 such that the

equation u = GeN(u) has a unique solution u in X*(T) for all T € (0, Tyax ), and
such that if Tmax < 00, then

1[1anlmax||u(t)nxg =00. (3.25)

Moreover, if ®, € X} with &, — ® in X}, and if T € (0, Tyax), then the solution
u, of (3.8) with ® replaced by ®, belongs to X*(T) for sufficiently large n, and
u, — u in X*(T).

Proof. By Lemmas 3.2 and 3.3, we have
1GoN@llxr = allPllx + BT lully) el xe o (3.26)
IGoN(u) = GoN (W)l = BCT, [laallr + [l o)t — 'l (327)

for some « > 0, and B(7,r) = C{T"* + T}{r +r*}. We choose R > 0 and T} =
Ty(R) > 0 so that

[@llx <R, (3.28)
B(Tk,4aR) < 1/2. (3.29)

Let B*(T}) be the closed ball of center 0 and radius 2«R in the space X*(T}). Then
by (3.26) and (3.27), GgN( - ) is a contraction mapping of B¥(T}) into itself.
Therefore the equation u = GgN(u) has a unique solution u in B¥(T}). Since T}
depends only on k and R, a standard continuation argument shows that there exists
a Tmax > O such that u extends to a unique solution in X*(7T') for all T € (0, Trax),
and furthermore that if Ty, < oo, then

lim ||u(t)||X0k =00. (3.30)

We claim that (3.25) holds where the smaller norm in X is used. For, otherwise
there would be a constant L > 0 such that

il < L

for 0 < ¢t < Thax- By (3.26) and (3.27) with k = 1, there exists 77 > 0 depending
only on L such that the equation v = G,N(v) has a unique solution v € B'(T}) for
all ¥ € X] with Xj-norm < L. Let 0 < § < T and Ty = Tpax — 6. Let u, be the
unique solution of u, = Gyr,)N(us) in B'(T1). Then u, coincides with u( - + T%)
on [0,6), so that u, € X*(T) for all T in (0,5). Moreover, (3.26) with @ replaced
by u(7,) and u by u, is valid for T € (0,9). It implies that

“”*”Xk(r) = (|Gyr. )N(“*)“Xk(r)

ocHu(T*)HXg + BT Nl v oy 4 ”X"(T)

IIA

IIA

ocHu(T*)IIXé( + (6, 20L) | || i 7y -
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If we choose 0 so small that (J,2¢L) < 1/2, this inequality yields
iy < 20Tl
for 0 < T < J. But this implies

T (a0l < 20Tl

max

which contradicts (3.30). This proves (3.25).

To prove the last part of the lemma, it is sufficient to show that u, — u in
X*k(Ty), with Ty, as above. Let n be sufficiently large so that (3.28) with @ replaced
by @, holds. The above existence argument shows that both u,u, belong to BX(T}).
Then using Lemma 3.2 and (3.20), we have

lu — un“Xk(Tk) = ”G<1>N(u) - Gd’nN(un)HX"(Tk)
@ = @l + BCTis 1t + tall it = sl
2| @ — Byl i + B(Th AaR) | = tnll v, -

I\

IIA

Together with (3.29), this implies that u, — u in X*(T}).

Proof of Lemma 3.1. By Lemma 3.4, there exists a unique solution (4,¥) of the
approximate system (3.3)—(3.5) such that

(4,0,4,4) € C([0,T); H* x H*=' x H*), Yy e L¥([0,T); H"),

for some T > 0. Moreover, T = oo if (4,9,4,) does not blow up in the H' x
L? x H'-norm in finite time. Thus to complete the proof, it is sufficient to show
that (3.7) holds a priori. In view of the last part of Lemma 3.4, we may assume
that 4 and  are smooth.

Let Ay be defined by (3.1) and let Q and E be the charge and the energy defined
in Sect. 2. Thus Q(0) = ||¢||3, and E(0) is estimated as

E©0) = [(V —ia)p|5 + 3IVA~ ¢ = bl + 31V x al3
< {1Vl + lallalilla}* + CLllslllz + 3bl2} + LIV x al3
< C(llalli. 2. 18]l2. 1 8ll1,2) ,

where we have used the boundedness of VA~! as an operator from L%° to L2.
Since 4, and y satisfy the regularized system (2.3)-(2.4), Lemma 2.1 implies that
E(t) = E(0) and Q(¢) < Q(0). Using the Coulomb gauge condition, we have
1d
EEfAjAjdx = fa()AjAjdx = f{Foj‘ + 6jA0}Aj dx
= f{F()jAj —AoajAj}dX = fFojAjdx
< 2'"2E(0)"2)4]2 -
By integration, this implies

14Dz < llall2 + 22E0) 2, (3.31)
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which proves the first estimate in (3.7). In the Coulomb gauge, the energy for the
field A may be rewritten as

L [FyFudx = [{0, 4,0, Ay — 8, 4,0, A} dx
= f{a“Ava#A\,. - avoaoAO — zajAoaoAj — ajAkakAj}dx
= f{a,lAjé‘“A,- + 6,~A06,~A0 + 2A0606jAj +Ak6k6jAj}a’x
= f{a#Aja,,A,» + 6jA0&jAo}dx .
It follows that
S 0, AW + 510 o) < E0), (3.32)
I3 J

so that the second estimate in (3.7) holds. We also have

lolla = 1Dll2 + N4, llsllwlls

< A 3 3 12 12
< Dl + C}; II@kAszkZ_] kw1l " 1wl

3
< E(0)"2 + CE(0)20(0)'* 3 [lawy |12,
k=1

where we have used (3.32). Thus
Lol = C(Q(0),£(0)),
J

which together with ||y(¢)||5 < Q(0) proves the last estimate in (3.7).

4. Global MS Field in the Coulomb Gauge

We now prove the existence of global finite energy solutions of the initial value
problem for the exact MS system in the Coulomb gauge, Egs. (3.3)—(3.4) with
¢ = 0, by making use of Lemma 3.1 and a compactness method.

Theorem 4.1. Assume that (a, b, $) € H' x L> x H' and a, b satisfy (3.6). Then
there exists at least one solution (A,y) of (3.3)—(3.5) with ¢ = 0, such that

A€ Cu(RY;L?), 8,4€BC,(RT;L*), €BC(RTH"Y.

Theorem 4.2. Let A, be as in Theorem 4.1. If we define Ay by (3.1), then
Ao, A, Y satisfy the MS system in its original form (2.1)~(2.2).

Proof of Theorem 4.1. Let ¢, > 0 with ¢, — 0. By Lemma 3.1, for each n there
is a solution (Y,, 4,) of the regularized equations

04, =—-PJ(Au, ¥y), V-4,=0, (4.2)
OoYn — (i + &1)AY, = K., (4, Vn) (43)

such that (4, 0oA,, ¥,) belongs to C(R* : H' x L2 x H') and assumes the initial
value (a, b, ¢) at t = 0. Moreover, we have

4.2 < C{1+1}, 110 4u(Dli2 < C, (4.4)
lWu(Olh,2 < C, (4.5)
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where in the following discussion C denotes various constants independent of ¢ and
n. Now from the definition of J = (J;, J>, J3) in Sect. 2,

W, A)lls 2 < 2{1Walls[IV¥nll2 + I 4nllslvallE}
< C{U+ (VA alli2 -
By (4.4) and (4.5), this implies
I (Wns 4n)(D)]l32 < C. (4.6)
Also, the three estimates above (3.24) give
1Ko, Wy A2 = CLIIIT L + VAl + VAl H a2

which shows that
1Ko, (s An)(Dl3/2 < C. (4.7)

By (4.4)-(4.7), we can extract a subsequence of {(4,, ¥,)}, which we denote
again by {(4,, ¥,)}, such that

A, — A weakly® in L>=([0, T, H'), 0<T < oo, (4.8)
0oA, — 0pA weakly” in L®(R*;L?), (4.9)

Yn — ¥ weakly”™ in L2°(RT; H'), (4.10)

J(Wn, Ay) — B weakly™ in L°(R*; L3/?) (4.11)

Ko, (Y, An) — o weakly™ in L®(R*; L), (4.12)

for some A, v satistying (4.1) and o, f € L°(R*; L*/?). Passing to the limit # — oo
in (4.2) and (4.3), and using (4.8) and (4.10)—(4.12), we have

O4=—-PB, V-A4=0, (4.13)
o — id = a, (4.14)
in 2/(R*;H™ ).

We shall show that (i, 4) is the desired solution. Now 94 is bounded from
R* to L?, and 034, dpyy are bounded from R* to H~' by (4.13) and (4.14).
Thus (4, dod, V) is continuous as a mapping of R* to L?> x H~! x H~'. Also it
is locally bounded from R* to H' x L? x H'. Thus it follows that (4, 0od, V) is
weakly continuous as a mapping of R* to H' x L2 x H'.

We claim that the field (4, ) satisfies the initial condition (3.5). In fact, if
(-, ) denotes the duality pairing, 4, satisfies

f(An(S)aOf(s) + aOAn(S)f(S)’ U>d5 = <a’ U) s
and ) ‘
{(atAn(s)aOf(S) + {44,(s) + PJ(An, Y)($)} f(5), w)ds = (b, w) ,
for all (v, w) € L?> x H' and all f € C*®°(R*) with f(0)=1 and f(¢) =0 for

¢t large. Taking the limit n — co and using (4.8),(4.9),(4.11) and (4.13), we
find that

} {A(s)0oh(s) + doA(s)h(s)}ds = a,
0
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t
J{0A(s)oh(s) + O5A(s)h(s)}ds = b,
0

as integrals in L? and H ™!, respectively. This implies (4, do4)|.=0 = (a, b). Apply-
ing the same argument to ,, we deduce that y|,—o = ¢.

We also have a = Ky(4, ¥) and f =J(4, ¥). To see this, let I be a bounded
interval in R*, and @ a bounded open set in R®. It is sufficient to show
that o and f coincide with Ky(4, ) and J(4, ) on I x Q, respectively. Now
by (4.4), {(4,, 0od,)} is a bounded sequence in L*(I; H'(Q) x L*(Q)). Since
HY(Q) C LY(Q) C L*(Q), with the first imbedding compact and the second one con-
tinuous, a standard compactness lemma [2] then asserts that there is a subsequence
of {4,}, again denoted by {4,}, such that

A, — A strongly in L*(I x Q). (4.15)

Similarly, since {dpy,} is bounded in L°(R*;H~') as indicated above, and so
{(¥n, GoWn)} is a bounded sequence in L2(I; H'(Q) x H~'(Q)), we may assert that

Y. — ¥ strongly in L*(I x Q). (4.16)

By (4.5), |Y|? is bounded in L(I;L%%), while by (4.16) and the arbitrariness of
Q, we may assume ¥, — ¥ a.e. on [ x IR®. It follows that |i/,|> — |/|> weakly in
L*(I;L°/%), and this implies

A7 NWul? — 47 PP weakly in L2 (I;L°), (4.17)

since 47! is bounded from L5 to L°. Therefore by (4.8), (4.10) and (4.15)—(4.17),
we have
J(Ans ) — J(A4, W) weakly in LY3(1 x Q) ,

Ko, (An, ) — Ko(4, ) weakly in L¥3(1 x Q).
Thus o = Ko(4, ) and f = J(4, ) on I x Q, which completes the proof.

Proof of Theorem 4.2. Let Ay be defined by (3.1), that is, 44¢ = Jy. Then Ay, 4, Y
clearly satisfy the component of (2.1) with u = 0 and also (2.2). To see that (2.1)
also holds for u+0, we use the following fact. If f € H' and g € H™!, and if
s > 3/2, then the inequality

g, LN = Cligl 12l /120l 2

holds for all { € H*. Hence the product fg is well-defined as an element of H ™5,
Since Y is in L*(R™; H') and Doy = iD;Djy is in L¥(R*T; H™1), it follows that

doJo = 2Re{yY Doy} = 2Re{i)D;Dy} = 8,J; ,
by the definition of J, in Sect. 2. Since 49 = 47 'Jj, this implies
dodo = 0,47y . (4.18)
From (3.3),(4.18) and the definition of P, it follows that
0"F,y =04, — 0;00d0 = —(PJ); — ;0,47 = J;,

as was to be shown.



194 Y. Guo, K. Nakamitsu, W. Strauss

5. Global Solutions in Other Gauges

In this section we consider the initial value problem for the MS system (2.1)-(2.2)
in the Lorentz gauge 04, = 0 and in the temporal gauge 4o = 0.
The problem in the Lorentz gauge reduces to the system

DAy +J, =0, ', =0, (5.1)
Doy + Dijl// =0, (52)
(A”, 6OA[U !//)lz:o = (aus b[l’ ¢) . (53)

The equations require us to assume the initial constraints
by = 0;a;, Aag = 0;b; +|¢|* . (5.4)

Theorem 5.1. (Lorentz gauge) Assume that (ay, by, ¢) € H' x L? x H' and the
ay, b, satisfy (5.4). Then the initial value problem (5.1)~(5.3) has a solution
(Y, Ay) such that

(Ao, 00do) € C(RY; H' x L?),  (A4;,004;,%) € Co(RY; H x L2 x HY) . (5.5)

Proof. We will reduce the problem to the Coulomb gauge by a gauge transfor-
mation. Let a, b denote the 3-vectors with components a;,b;, respectively. Let
f =471V - a. We define

(ac’ bc» ¢C) = (Pa’ Pb, e_if(;b) 5
where Pv = v — V(V - 47'v) as before. Note that ¢¢ € H', since Vf = (I — P)a.
By Theorem 4.1, the MS system in the Coulomb gauge, (3.3)—(3.4) with ¢ =0,
has a solution (4, Y¢), A4° = (4], 45, AS), such that
A° € Cy(R*;L%), ,4° € BC,(R*;L%), € BC,(R;H'),

that satisfies the initial condition

(lpca aOAC> Ac)lt=0 = (aé’, bC: ¢C) .
Let

AG= 47"y (5.6)
We define 4 to be the solution of the initial value problem

o= (/19), (57)
where f is as above and g = 47!V - b, so that Vf € H' and Vg € L?. By (4.18),

04 = —00ds, (4 07

Oodly = A"V - J°,

where J¢ = J(A°, y°) € L>°(IR*; L%5). Since 47'V is bounded from L®3 to L2,
this implies that do4 is in L°(IR*;L?). Then the energy estimate for (5.7) shows
that VA € C(R*;L?) and dp4 € C(R™;L?,). We define 4, and § by the gauge
transformation 4

Ay =45+ 00, Y= e . (5.8)
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We shall show that (4,, ) is the desired solution of (5.1)—(5.3). Now from
(5.6)(5.8) and (5.4), we have
Aoli=o = A|i=0 + 9= A" ¢ +V - 47 b =ay,
00Aoi=0 = 00AS|i=0 + 03Alim0 = Ao =V - a=b.
Ajli=0 = aj + 0;f = (Pa); + (({ — P)a); = a; ,
doAjli=0 = b + 0,9 = (Pb); + (I — P)b); = b,
Yo =€/ =¢.

Thus (4, ¥) satisfies (5.3). Applying 0" to the first equation in (5.8), and using
(5.7) and 0,45 = 0, we see that the 4, satisfy the Lorentz gauge condition 04, = 0.

We now prove (5.5) and (5.1)—~(5.3). From the definition (5.8), 4, and y belong
to C,,(R*;L?). From (5.6)~(5.8), we have

Odo = —|y°[*.

Since (Ao, 00Ao)|i=0 = (ag, bo) € H' x L2, this equation implies that 4, €
C(R™;H') with dpdo € C(R*;L?). Then 0;4; € C(R*;L?), since 0*4, = 0. We
also have

0jAk — 0kAj = 0;A; — 04 AS € Cy(RY;L?)

The last two facts imply that d;4; € C,,(R*;L?) for all j and k. Similarly,
oA = DoA§ — 0,45 + 0,40 € Cy(RY;L?) .

Thus we have proved that 4,, 0,4, € C,(R*;L?). In particular, A4; € Co(RT;H).
By (5.8), this implies 0,4 € C,,(R*; H'). Then

O = €"{0; +id; ¢ € LS.(RY;L?).

Thus ¢ € L{S(R™; H'). Now by Theorem 4.2, (A5, ¥©) satisfies (2.1) and (2.2),
which are invariant under the gauge transformation (5.8). Thus (4,, ¥) also satisfies
(2.1)~(2.2) and hence (5.1)~(5.2) since 0*4, = 0. The weak continuity of ¥ in ¢
now follows from (5.2). This completes the proof.

In the temporal gauge 4y = 0, we may write the initial value problem for the
MS system as

—000;4; =Jo, Ao=0, (5.9)
L__\Aj + 6j8kAk = —Jj , (5.10)
i0oy + DDy =0, (5.11)
(4, 004, Y)li=0 = (aj, bj, ¢) . (5.12)
The initial constraint is
0;bj + > =0. (5.13)

Theorem 5.2. (Temporal gauge) Assume that (a;, b;, ¢) € H' x L* x H' and the
b; satisfy (5.13). Then the initial value problem (5.9)~(5.13) has a solution (4, yr)
such that

4; € C(RT;HY),  00d; € BCL(RYL?), € BC(RYH').
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Proof. We define f, a°, b¢, ¢°, A5, A° and Y as in the proof of Theorem 5.1. Using
the solution 4 of the simple equation

QoA +45=0, o=/,

we define , 4, by (5.8). Then (¥, 4;) provides the solution of the theorem.
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