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Abstract: An important property of a Hopf algebra is its quasitriangularity and it is
useful for various applications. This property is investigated for quantum groups si2
at roots of 1. It is shown that different forms of the quantum group sl2 at roots of
1 are either quasitriangular or have similar structure which will be called braiding.
In the most interesting cases this property means that "braiding automorphism" is
a combination of some Poisson transformation and an adjoint transformation with
a certain element of the tensor square of the algebra.

Algebras which here will be called quantum sI2 are the simplest examples of quan-
tum groups which have practically all the remarkable properties of this class of
Hopf algebras. One of the most important properties of quantum groups is quasi-
triangularity. Recall the definition from [Dr].

Definition 1. A Hopf algebra A is called quasitriangular if there exists R £
A 0A (or an element from the appropriate completion of A & A} such that

A' (a) = RA(a)R~l , (1)

(40id)(/0 = *i3*23 , (2)

(id ®Δ)(R) = R]3Ri2 . (3)

Here Δ'(a) = σ o A(a\ where σ : A®2 — > A®2, a ® b ι-> b (8) a and ^12,^13,^23 G
A®3 (or to the appropriate completion of it), R12 = R (& 1, ^23 = I ® R, R\ι =

A remarkable corollary of this definition is that R satisfies the Yang-Baxter
equation in A®3:

R\2R\3R23 = ^23^13^12

It is known [Dr] that quantum universal enveloping algebras £//7g are quasi-
triangular over C[[/z]] for any Kac-Moody algebra g. It is also known that the

1 This work was supported by an Alfred P. Sloan fellowship and by National Science Foundation
grant DMS-9296120.
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corresponding algebraic quantum universal algebra Uq(§) introduced by Jimbo [J]

for generic q are not quasitriangular if considered over (C[g, q~1]. This fact is es-
sential when q is specialized at roots of 1.

In this paper the quasitriangularity of Hopf algebras Uq(§) will be studied for

g = s\2 It is studied over &[q,q~l] for general values of q and when q is a root
of 1.

The main result is that for algebras Uq(§) we have a somewhat more general
property than quasitriangularity (l)-(3).

Definition 2. A Hopf algebra A is called braided if there exists an automorphism
R of A® A (or of an appropriate completion of A® A) distinct from σ : a 0 b ι— >
b 0 a such that

)> (4)

(A®id)oR = R13 o ̂ 23 o (A 0 id) , (5)

(id 0 A) o R = Ru o R12 o (id 0 Δ ) . (6)

Here #12, #13, #23 are automorphisms of A ®A ®A such that #ι2 = R 0 id, #23 =
id 0 #, #13 = (σ 0 id) o (id 0 R) o (σ 0 id).

It follows from this definition that the automorphism R satisfies the Yang-Baxter
equation in End(^4®3) :

Ru o R\3 ° #23 - #23 O #13 O £12 . (7)

Let RW> above be an exterior automorphism of A (& A and R^1* G A & A be an
invertible element. Consider the automorphism

\A®A. (8)

Definition 3. The element R^ is a universal R-matrix of the braided Hopf algebra

(i) A'(a) = R(Q\R(l}A(a)R(l}~1) . (9)

(ii) (5) and (6) hold for

(id 0 A}(R({)] — R(υ) (R(l)}R(l) (10)

Now for the universal #-matrix we will have the following relations:

(#12 °^13 )C^23 ) ' ^12 (^13 ) * ^12 =R\2R2?> (#13 )^23 ' ί1 1)

1 1 1 1

(#23 °#13 )^12 * ̂ 23 (#13 ) " ^23 = ^23 " #12 C^13 ) " ^12

We will say that the decomposition

) (13)

is a regular splitting of # if

r/?(0)~1 n τ? (or lv/? {1h - #(1)

(#23 °#13 X#12 ) ~ #12 >

r^0)"1 ^ j?^)"1 vpί^λ pO)
(#12 °#13 X#23) = #23
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If R^ and R^ is a regular splitting of R we have the following relation for

_
\221 23 23 ~ 23 \2 ll \2 '

In the first section we recall the definition and the main properties of the for-
mal deformation U^sl2 of U(sl2\ This section also contains the description of the
"algebraic" quantum group Uq(sl2} and its main properties including braiding. In
the second section the algebra Uq(sl2) and its relation to U(sl2) are studied further.
The third section contains facts about quantum si 2 at roots of 1 and the description
of the braiding of this quantum group.

The sl2 case is chosen for simplicity. The corresponding properties of Uq(s)
for simple Lie algebras g as well as an explicit description of the center for Uq(§)
when q is a root of 1 will be done in a forthcoming publication.

This work was finished during a visit by the author to the School of Mathematics
and School of Theoretical Physics at the Australian National University at Canberra.
I would like to thank R. Baxter and V. Bazhanov for their hospitality. It is also
my pleasure to thank R. Baxter, V. Bazhanov, J. Mattes and I. Frenkel for valuable
discussions and remarks.

1. Quantum sl2 over <C[[/ί]] and (C[#, q~l

1.1. Here we recall the definition and the main properties of the algebra which is
called quantum sl2 and is denoted as Uhsl2. This is a (C[[/z]]-algebra generated by
elements H,X,Ύ with the following determining relations:

[H,X] = 2X, [H,Y] = -2Y, (1.1.1)

sΛ(f)

[*n = -̂  (U.2)

This algebra is a Hopf algebra with the comultiplication

ΔH = H®l + l®H , (1.1.3)

AX = X ® ehH/4 + e~hH/4 ®X , (1.1.4)

ΔY = Y® ehH/4 + e~hH/4 0 Y . (1.1.5)

The algebra Uhsfa is a formal deformation of Us^'.

Uhsl2/hUhsl2 ~ lfc/2 - (1.1.6)

The algebra Uhsl2 is quasitriangular with R G Uhsl2®Uhsl2 (where (g> is the /z-adic
completion of Uhslf2) given as follows:

/ H 6?) fj
R = exn I ^

P V 4

x(e™Xγ®(e-™Y)k . (1.1.7)

The representation theory of the algebra Uhsl2 is the same as the representation
theory of Usl2[[h]] due to the following fact [Drl,J].
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Proposition 1.1.2. There is an isomorphism of algebras

Uhsl2 ^ Usl2[[h]] .

Any map H «-> //, X^Xψh(H,c\ Y *-* Yφh(H,c), where φh(z9c) = \l/h(z9c) = 1
and

- 29c)φh(z)(c - H2/2 + #) - φh(z + 2,c)ιh(z,c)(c - #2/2 - H) =
s h ( f )

provides such an isomorphism.

The category [4,5/2 -mod of finite-dimensional [45/2 -modules is an abelian cat-
egory over <C[[/z]]. Objects of this category are pairs (F, π), where F is a finite-
dimensional <C[[/z]]-vectorspace and π : [4^/2 — » End(F) is a homomorphism of
algebras (abusing notations we will say V is a vectorspace even in the case when
it is a module just over a ring, not a field). Morphisms / : ( V \ , π \ ) — > (V2,π2) are
C[[λ]]-linear maps from V\ to F2 which are also [4.5/2 -linear: fn\(ά) = π2(a)f for
each α G Uhsl2.

The category [4,5/2 -mod is a rigid monoidal category with identity object H ~
<C[[λ]] and with the tensor product (Fι,πι) 0 (F2,π2) = (Fi ® K2,(πι 0 π2) o zl).
The object dual to (J7, π) is a pair (F*,π* o^), where K* is a vectorspace dual to
V over <C[[/z]] and π*(α) is a dual C[[/z]]-linear map to π(a). The category [4^/2-
mod is a strict monoidal category due to coassociativity of the comultiplication.

The quasitriangularity of the algebra [4^/2 implies that the category of Uhsl2-
mod is a braided category. The braiding is a collection of functorial isomorphisms

cyw : V®W -* W®V , (1.1.8)

where cγψ — PVW ' (πv ® πw)(K) Here PVW(X ® y) = y ®x is a permutation op-
erator, R is the universal ^-matrix (1.1.7).

The remarkable property of the deformation U^sl2 of Usl2 is that relations
between exp(±^p), X and Y are algebraically closed and the action of the comul-
tiplication on them results in an algebraic combination of these elements. Moreover
relations between these elements and the comultiplication are defined over C[e±/z].
This observation is a motivation for the algebra described in the next section.

1.2. It turns out that the formal deformation described above also gives a family of
Hopf algebras. The algebra Uq(sl2) for an undetermined q as the <C[#,#~^-algebra
is generated by k,k~\e and / with the following determining relations:

kk~λ—k~λk—\, ke — qek , (1.2.1)

^ f _ 0—1 ffc e f — fe— ( 1 2 2 }

We will call this algebra polynomial quantum sl2. This is a Hopf algebra [Dr, J,
SI] with the following action of the comultiplication on generators:

Δk z=: K Qy rC , ( l .xZ.3j

/!/ = / Θ 1 + &"1 0 / . (1.2.5)
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Remark. 1.2.1. We have the isomorphism of algebras:

U,(sl2)~Ug-ι(sl2) (1.2.6)

given by the map
q^q~\ k^k~\ e *-* ek~\ f ^ fk . (1-2.7)

Remark. 1.2.2. Since Uq(sl2) is defined over <C[q,q~l] we can specialize q to
any nonzero complex number. Thus Uq(sl2) determines a family of Hopf alge-
bras. Monomials enkm fl form a linear basis in Uq(sl2). This allows us to identify
these algebras as vectorspaces for different complex values of q. We assume this
identification in the rest of this paper.

1.2.3. Identify q = eh and consider CC[[/z]] as a module over (C[g, q~1]. Then we
have an injective homomorphism of algebras:

φ : Uq(sl2) -* Uhsl2 <8>α:[[Λ]] 0C[[Λ]][ε]5 ε2 - 1 , (1.2.8)

' ε, φ(f) = e~^ Y ® e~h . (1.2.9)

Here the left side is regarded as the module over
The following seems well known.

Proposition 1.2.4. The center of Uq(sl2} is generated by the element

k + qk~}

c = e f + . (1.2.10)

The central element (1.2.10) was first constructed in [S2]. The fact that it gen-
erates the center of Uq(sl2) can be found in [DK],

1.3. The algebra Uq(sl2) is not quasitriangular in a sense of Definition 1. But, as
we will see, it is braided in the sense of Definition 2.

Consider the algebra Uq(sl2) over C[^2,^~2]. Define the automorphism RQ of
Uq(sl2)®2 as follows:

k)=l®k, (1.3.1)

Ro(e®l) = e®k, RQ(l 0 e) = k 0 e , (1.3.2)

Θ /) = ^^] <8> / , (1.3.3)

Consider the following completions of Uq(sl2):

1
(13.4)

(1.3.5)
/7=0

Here Pn and β/? are polynomials. It is clear that these completions of vectorspaces
are indeed completions of algebras.
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Consider the following completion of Uq(sl2)®2\

f oo "I

Uq(sl2}®2 = \ Σ e»Pn(k±l

9f)®Qm(e,k±l)fm . (1.3.6)
U,w=0 J

Again, this is a completion of the algebra Uq(sl2)®2, such that

Uq(sl2f
2 <-* Uq(sl2)

(e^ ® Uq(sl2)
(n . (13.7)

Clearly the element

R} = Σ — — q~2—e

k ® fk , (1.3.8)

which is the last factor in the ^-matrix belongs to Uq(sl2)®2. Here (k)q\ =

(k)q...(l)q, (k)q = ^fγ . It is also clear that (1.3.8) is invertible in Uq(sl2)®2.

Consider Uq(sl2)®2 as a subspace in Uq(sl2)®2.

Proposition 1.3.1. The Hop f algebra Uq(sl2) is braided with

R(ά) =Ro(RιaR^}} , (1.2.14)

where RQ and R\ are defined above in (1.3.!)-(!.3.3) and (1.3.8). The element R\
is a universal R-matrix for Uq(sl2) (in the sense of Definition 3).

Proof. First consider the algebra Uhsl2 from Sect. 1.1. Denote

(1.3.10)

R\ = Σ —hΓ^ ^~h eϊn(n+l)(e^X)n ®(e~^Y)n . (1.3.11)

It is easy to check that

0 \) = (Y®e~hτ}R(), R0(l ^Y} = (e~hτ 0 7)^0 . (1.3.12)

Therefore the automorphism a H-» R^aR^1 can be extended from the automorphism

of Uhslf2 to the automorphism of Uq(sl2)®2 (it will be an exterior automorphism
of Uq(sl2)®2). Comparing with (1.3.1)-(1.3.3) we identify it with R0.

Clearly RQ satisfies conditions (5) and (6) and the element R} satisfies (10), (11),
(15). Because there is a homomorphism of Hopf algebras Uq(sl2) —>• Uh$l2, an
automoφhism (1.3.!)-(!.3.3) is a preimage of RoaR^1 in Uhslf2 and the element
(1.3.8) is a preimage of (1.3.11). We expect Proposition 1.2.3 to be true since the
homomorphism is injective.

The other way to prove Proposition 1.2.3 is by easy direct computation.
It is easy to see that the splitting on RQ and R} is a regular splitting in the

sense of (15) and therefore R\ satisfies the twisted Yang-Baxter equation (16). In
Sect. 1.4 this equation will be written explicitly.
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The algebra Ug(sl2) is a deformation of the universal enveloping algebra of sl2

in the following sense.

Consider the algebra Us 1 2 — Us 1 2 ®<c <C[ε], where ε2 = 1 and introduce the
following Hopf algebra structure on it:

Δ(ε) = ε ® ε ,

AY = Y®l+ε®Y . (1.3.13)

Proposition 1.3.2. There is an isomorphism of Hopf algebras:

\)Uq(sl2)^Usl^ , (1.3.14)

where
k2 - 1

ε — k mod (q - 1 ) , H — - mod (q - 1 ) ,
- 1

- 1). (1.3.15)

The proof is clear.

1.4. Consider the function of complex z,

(z;?)oo= ΠO -*?")• (1-4.1)
«^1

We regard it as an element of (C[[#]] This product converges to an analytic function
of z in any finite part of C if q is a complex number, and \q\ < 1.

The following identities are well known:

n(n+l)

(Ii"— - <1A2)

":ίK '-.?.w^I (1A3)

This implies the following multiplicative presentation for the universal Λ-matrix R\:

(1.4.4)

Let us write the twisted Yang-Baxter equation explicitly for R\ in terms of
generators of Uq(sl2).

It is well known that

(H + t gOoo =(u;q)00(v;q)OG (1.4.5)

if
uv = qvu . (1.4.6)
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The identities (10) for the universal ^-matrix R\ follow from (1.4.5) with

u := (qϊ -q-ϊ)2e®k®f, v := (q? - q~ϊγ(\ ® e ® f) (1.4.7)

for upper (10) and

u :=(qϊ -q~ϊ)2(e®k~l ® /) , v := (q? - q~ϊ )2(e ® / <g) 1) (1.4.8)

for lower (10).
The proof is an easy computation.

Remark. 1.4.1. As was noted at the end of the previous section, the element R\
satisfies the twisted Yang-Baxter relation (15). In terms of function (z;#)oo this
means

(F; $)«,(£+; $)«,(£; 3)00 - (E9q)00(K^9q)QO(F'9q)00 , (1.4.9)

where
F = (q? -q~ϊ)2e® f ® 1 , E = (q? - q~Ί )21 ® e <g) / ,

K+ = (qλ2 - q-τ )2e ® k ® / , K_ = (qϊ - q'^fe ® k~l (g) / . (1.4.10)

Notice that these elements satisfy relations similar to Uq(sl2):

K+F = q~lFK+, K+E =

K-E =

+K^ =K_K+ . (1.4.11)

These relations may be regarded as determining relations for CqlGL^]. The ex-
planation of this fact remains a bit mysterious. Notice that functions (z; q)^ also
appeared in [FK], where they were interpreted as "quantum dilogarithms."

2. More on Quantum s/2 Over <C[#, q~l]

Let us clarify the relation between 6^(5/2) and Lfc/2.

2.7. A representation V of sl2 is said to be an integer if H acts as a diagonalizable
element in V and if Spec(//|κ) C TL.

Define Usl2 as the following completion of Us 1 2 in the category of integer
modules [L]. It is generated by Pf, X, Y, t G TL with determining relations

XY-YX=ΣfPf9 1 = Σ ^ (2-1.1)
f^TL f^TL

As a vectorspace UsΪ2 consists of elements ^2f m^^Pf^f(X,y\ where Af(X,Y) is
a polynomial over X9 Y.
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The algebra UsΪ2 is a topological Hopf algebra with the comultiplication A :
Usl2 — > £Λs/2 0 Usl2 acting as:

A ( Y ) = 7(8)1 + 107,

(2.1.2)

Define the Hopf algebra Usl^ as the algebra which is equal to Usl2 ®<c C[ε2]/ε2

1. The comultiplication

n-\-m=f

= 7® 1 + ε ® 7,

(2.1.3)

provides t/^/(

2

δ) with the Hopf algebra structure.
Let A be the usual diagonal comultiplication:

AX =X® 1 + 1 ®X

AY = 701 + 107,

ΔPf= Σ

which also provides a Hopf algebra structure on

Consider the following element in Usl^ '•

(2.1.6)

(2.1.7)

Proposition 2.1.1. (1) The comultiplication (2.1.3) is related to the diagonal Co-
multiplication by twisting with the element F:

Δ(a) = F - A(a) F~l . (2.1.8)

(2) The element F has the following properties:

(A 0 id)(F) - F13F23 ,

(id®Λ)(F) = F13Fι2. (2.1.9)

The proof is by straightforward computation.

Corollary 2.1.2. The algebra Usl^ with the comultiplication (2.1.3) is a quasi-
triangular Hopf algebra with

~l ~"R = σ(F)F~l = Σ ε~pn ® &Pm , (2.1.10)
nmζΊL

where σ(a 0 b) = b 0 a.
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2.2. Define the algebra Uqsff as the <C[g2?g~2]-algebra generated by e,f,ε2 and
PI with the following determining relations:

PfPm = δfmP,, 1 = £ P( ,

As a vectorspace Uqsl consists of sums

nomials over ~

The following comultiplication provides

ΔPf= Θ
n+m=f

(2.2.1)

,/,ε2 ), where af are poly-

with a Hopf algebra structure:

Ae=

I l l

Theorem 2.2.1. The algebra Uqsl^ is quasitriangular with

(2.2.2)

(2.2.3)

Notice that element ε3 — 1 generates a Hopf ideal. Let Uq(sl2) be the corre-
sponding quotient algebra [L]

(2.2.4)

Remark. 2.2.2. It is clear that quasitriangular Hopf algebra (Uq (sl2),Δ,R) is a

deformation of Hopf algebra (U^\sl2),A7R) described in the previous section:

- 1]] ~ t/(ε)

Proposition 2.2.3. (1) There is an isomorphism of algebras φ :

ε, φ ( f ) = f (2.2.5)

(2) The map A : Ug(sl2)
(ε}
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Ae = Σ e ® <l2pf + l ® e •>

Ϊ (g)82

/ez

(2.2.6)

determines a Hopf algebra structure on Uq(sl2)^ and it is related to the comul-
tίplίcation (2.2.2) by the twist

, (2.2.7)

where F is the element (2.1.5)

(3) The Hopf algebra (Uq(sl2)[^'\,Δ) is quasitrίangular with

R= Σ ̂  Λ»®Λ, Σ τ <r^V®A (2.2.8)
k^O \κ)q

Proof. Statements (1) and (2) are an easy straightforward exercise. The statement
(3d) follows from general facts about twistings of quasitriangular Hopf algebras
[Dr]. For the twisted ^-matrix we have:

R = F2\RF~l . (2.2.9)

Formula (2.2.8) follows from relations:

F2ίe
k <g> /*F-' = (εe)* ® /* . (2.2.10)

Remark. 2.2.4. The quasitriangular Hopf algebra Uqslι is a deformation of Usl2 :

ί>ί(ί/2)[[? - !]]/(? - l)tf,(ί/2)[[? - 1]] - Ush.

3. Quantum 5/2 at Roots of 1

3.1. Let ε be a primitive root of 1 of degree f and let f be odd.
Let q = ehε and consider

U*(sl2) = Uq(sl2)[[h]]/kUq(sl2)[[h]] - (3-1.1)

If A is an algebra we denote by Z(A) its center.

Proposition 3.1.1. (1) Elements ef\k(,ff belong to the center of Uκ(sl2).
(2) The center of Uε(sl2) is generated by ef,kf,ff and by

c = ef+k

(^l)2 (3-L2>

freely modulo relation
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det

(ε- l ) 2 c ε o . . .

1 ' • • O
0

o 0

ε o o 1

ol

o

ε
c(ε- I)2

\2/y -2.

(3.1.3)

(3) The algebra U(](sl2) is finite-dimensional over Z(ί/,(ls
ι/2)).

See [DK] for details.
One can introduce the Poisson structure on the center of Ul:(sl 2) according to

the following general construction.
Let Ah be an algebra deformation of associative algebra A. We assume that

Ah = A[[h]]. We denote the multiplication in Ah by m/7 : ^[[/z]]®2 —-> A[[h]] and we
have m h = in mod h, where m is the multiplication in A.

Proposition 3.1.2. Let a,b G A[[h]] and either a mod h or b mod h belongs to the
center of A. Then the element

{a mod h,b mod h} = -(mh(a,b) - ma(b,a)) mod h (3.1.4)

is defined and {-,-} determines a Poisson structure on the algebra Z(A\ and {-,-}
determines a Poisson action of the Poisson algebra (Z(A), {•>•}) by derivations
of A.

Proof is straightforward (see for example [DP]). Notice that {-,-} may be iden-
tically zero.

In our case A is Uί:(sΪ2) and Ah is Ureh(sl2) and the Poisson structure {•,•} can
be computed explicitly between generators of Z(£// ;(s/2)). The answer is:

{kf,e'} = f2k'e'9 {kfjf

2/+1

{c, f l}=0

for each a 6 Z ( U K ( s l 2 ) ) .
The Poisson action of Z(£/,(5/2)) on (7ί;(

(3.1.5)

can also be computed explicitly:

/'-',
(3.1.6)
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All these formulas can be easily derived from relations in Uq(sl2) and from the
identity

J ' -4 ( f> I \ I -\

... j ~ 7 v - . ^ . , y

q- 1

which can be found in [K].
Denote by Zo((/ε(s/2)) the central subalgebra in Uε(sl2) generated by e/,//,A:± /.

Remark. 3.1.3. The algebra Z ( U K ( s l 2 ) ) is finite-dimensional over Zo(UK(sl2)).

Proposition 3.1.4. The subalgebra Z0(£4(^/2)) is a Hopf subalgebra with the
comultiplication

Δk' =k'®k' ,

Ae{ = / 0 kf + 1 <8> / ,
zj/ =f^\+ k~f (g) /^ . (3.1.8)

The proof is an elementary corollary of the identities

fsk~n+s 0 /""" ,

^-έί;^
s=0 \ S

Δk" =kn®kn . (3.1.9)

The following is a general fact about Hopf algebra deformations. Let A be a
Hopf algebra with multiplication m and comultiplication A. Let Ah be a Hopf algebra
deformation of A such that Ah = A[[h]] as a vectorspace, Δ^ = A mod h and m^ = m
mod /L

Proposition 3.1.5. Lei ^(^4) C Z(^) be a central subalgebra which is a Hopf
subalgebra and let { , } be the Poisson structure (3.1.4) on X(A\ Then X(A)
is a Hopf-Poisson algebra in the sense of [Dr]:

(3.1.10)

where {a 0 b, c 0 d} = {a, c} 0 bd -f ac ® {Z?? rf}.

Proo/ Let us compute ^({α,δ}):

Δ({a,b}) — -Δ(mh(a,b) — πih(b,a}} mod /z

, , , , m o d h

= {Δ(a},Δ(b)} .

This proves the proposition.
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Corollary 3.1.6. The central subalgebra Z0(Uε(sl2)) is a Hopf-Poisson algebra
with the comultiplicatίon (3.1.8) and with Poisson structure (3.1.5).

In the case of quantum si 2 it is also an easy explicit computation which proves
that (3.1.8) is compatible with Poisson brackets (3.1.5). It is also known that the
coalgebra structure on Uq(sl2\ q G C* does not depend on q [FRT].

3.2. Let 21 be a Lie algebra with Lie bracket [ , ]. Denote by H(x, y\ . ? . ] its
Campbell-Hausdorff series; so that

exp(x) exp(j) = Gxp(H(x,y\ . , . ] ) ,

H(x9y){ . , . ] = x + y + -[x,y] + - - - . (3.2.1)

Here we assumed 21 <— > £721 and the multiplication in the left side is taken in (721.
If 21 is infinite-dimensional £721 should be properly defined as a topological algebra.

Another important fact is the identity

00 1

exp(*) . y - exp(-*) = Σ ~} bl fr y] - -1 (3.2.2)

which holds in [721 (or in appropriate topological algebra).
Suppose (A, {•,•}) is a Poisson algebra and Ah is an associative algebra which

is a formal deformation of (A,{ , }). Assume the identification of vectorspaces

Ah — ̂  [IT*]]. Denote the multiplication in Ah as m^ : Af2 — > A^. We have

~{a,b} + o(h2), (3.2.3)

where (a,b) c-̂  ab is the commutative multiplication in
Introduce the following Lie algebra structure on Ah[h~1]:

[x,y] = -(mh(x,y) - mh(y,x)) . (3.2.4)

For x G A[[h]] define XQ = x mod Λ, XQ £ A. Clearly

fcy]o-Kyo}, (3.2.5)

where x,y G A[[h]] <-> A[h~l

9h]].
In order to define Campbell-Hausdorff series for the Lie algebra (Ah,[ , ])

we have to consider an appropriate completion of A when A is infinite-dimensional.

For example we can assume that Ah is a filtered algebra with filtration {A^}
and then

[A(n\A(m)]cA(n+m~l) . (3.2.6)

In this case Ah will be the completion of Ah with respect to this filtration.
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Lemma 3.2.1. Let x,y G A[[h]] <-* A[[h~l ,h]] ^ A[[h~\h]]. Then the product

is defined in A[[h l , h ] ] . Here H(x,y) is the Campbell-Hausdorff series for Lie

algebra (Άh,[ , ]).

Note that (3.2.5) implies

H(x9y\ . , . ] mod h = H(xθ9yQ){.t.} , (3.2.8)

where jc, y G ̂ 4[[A]].

Lemma 3.2.2. For x,y £ Ah <—* A[[h~\h]], the product

mh (mh (exp (-Λ ,y) ,e~~hj =: exp(x) * y (3.2.9)

/£ defined over A[[h~\h]] and exp(*) * y G

This lemma follows immediately from (3.2.2) and from the fact that xy - yx = 0
mod h.

Notice that , λ , , , Λ /0 ^ 1 A Λexp(Λ ) * j mod h = exp(%0) ° yo •> (3.2. 10)

where

exp(Λ:0)o^0= Σ — {Λ:O{...{Λ:O ?^O}...} (3.2.H)
n^n * - v - '

n

3.3. Let SL^ be a Lie group dual to SL2 in the sense of dual Lie-Poisson groups
[Dr]. This group may be regarded as a group of pairs of triangular matrices:

1 e\ (l

0 k)'(f k

with pairwise multiplication (x,y)(x',yr) = (xx',yyf).
This group is a Lie-Poisson group [Dr] which means, in particular, that the

algebra of algebraic function C[SL^\ is a Hopf-Poisson algebra with the comulti-
plication induced by a group multiplication in SL^ and with the following Poisson
brackets between coordinate functions:

{«,/}=*-*-', {k,e}=ke, {k,f} = -kf. (3.3.2)

Remark. 3.3.1. We have an isomorphism of coalgebras (see for example [FRT]):

Uq(sh) ®C[M-,j <C(?) - C[5I2*](9) . (3.3.3)

Proposition 3.3.2. There is an isomorphism of Hopf-Poisson algebras:

φ : 2b(t/e(ί/2)) -^ C(SL*2] , (3.3.4)

= (ε-\Γff, (3.3.5)

= f2{φ(a),φ(b)}. (3.3.6)
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The proof is clear.
Let C[[iSX2l] be the algebra of jets of functions on SL^ in the neighbourhood

of 1. As a vectorspace it consists of the formal power series over k — 1, e, f.

Theorem 3.3.3. The algebra CftSΪ^]] is braided with the automorphism R of the
form:

R(a) = exp(ro) o exp(π ) o a . (3.3.7)

Here 1

r0 = -z0z, (3.3.8)

rλ = Li2(e ® /), Li2(x) = - /- - dy , (3.3.9)
o y

and we assumed k = exp(|).

Proof. Consider the algebra (̂ [[SZ ]̂] over <C[[/z]] generated by e,f,z (we will
assume that it is completed by formal power series with respect to e,f and z) with
determining relations: __ _

[z,e] - 2he, [z,7] = -2hf , (3.3.10)

It is a Hopf algebra with the comultiplication

J z = z 0 1 + 1 0 z ,

zle = e0e§ + 1 ®e ,

Af = J® 1 -f e~f 0/ (3.3.11)

Clearly this algebra is a Hopf algebra deformation of Hopf-Poisson algebra
and we have the isomorphism of vector spaces (̂ [[SZ ]̂] — ̂ C[[ £[[& ~ 1]] 0

The map φ : Uq(sl2) -> Ch[[SL$]][h~l]

Φ(e)= h

 e

 h , φ(f)= h

 f

 h , φ(k) = e$ (3.3.12)
~ ~

is a homomorphism of algebras. Here we assumed that q = eh and considered
Uq(sl2) over C[[A]].

Consider the image of R\ under the extension of φ 0 0 to an appropriate com-
pletion of Uq(sl2)®2:

(φ®φ}(Rl) = (e®f;eh)oΰ. (3.3.13)

Here (z e^)^ is the asymptotics of the function (z g)^ at g — > 1 (see the lemma
from Sect. 3.4)

- exp (1 - β (g)/)3 . (1 + O(A)) . (3.3.14)

This asymptotics in the element of ^[[S l̂]]02^"1]], where the tensor product
completed by power series over e 0 1, 1 0 β, ____

According to the previous section the element

1 , (3.3.15)
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where a £ QtfSZ^]]®2 eχists in ^[[SLJ]]02 and determines the algebra automor-

phism of Ch[[SL$]]®2.
We will denote by R^ the image of the automorphism (1.2.6)-(1.2.8) under

= J ® e~2 ,

= e-i ® / ,

= 10z, (3.3.16)

Define
R(a) = R(0} o R(l\a) . (3.3.17)

From the definition of R and from the braiding of Uq(sl2) we deduce that

is braided with R defined in (3.3.17).
Moreover, we can represent R^ as follows:

As was explained in the previous section this product exists in

[SLΪ]]®2[[h-1]].
Since the Hopf algebra C/^SZ^]] is a deformation of Hopf-Poisson algebra

] the latter is braided with

R(a mod h) = R(a) mod h , (3.3.19)

and since (3.3.14), (3.3.15) and (3.3.18)

R(a) = exp(r0) o exp(n) o a , (3.3.20)

where exp(α) o b is defined in (3.2.11).
Note that in the proof of Theorem 3.3.3 we have also proven that Q[[SL|]] is

a braided Hopf algebra.

Remark. 3.3.4. The analogue of Theorem 3.3.3 for an arbitrary simple Lie algebra
© with the standard Lie bialgebra structure [Dr] has been given in [R], where linear
terms of r0 and r\ have been described.

3.4. Let (z g)oo be the function defined in (1.4.1) for \q\ < 1.

Lemma 3.4.1. The function (z q)^ has the following asymptotics when q — > ε,
6 ^ = 1 , t-odd:

•(1 -V)2 ΠO -εmz)~7(l + O(λ)), (3.4.1)

where q = εeh, h —> 0.
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Proof. The function (z q)^ satisfies the following difference equation:

(zq\ q)oo = - - (z; q)^ , (3.4.2)
1 -zq

and it is uniquely determined by this property and by the condition (O;^)^ = 1.
Iterating this equation we have

(V;g)" = (*;g)oo (3A3)

The function (3.4.1) presents the asymptotics of the solution to Eq. (3.4.3) normal-
ized by (O ^)oo = 1.

3.5. Let ε be a root of 1 of odd degree (.

Definition 3.5.1. The algebra Uε(sl2) is a complex algebra generated by elements
e,f,ω,z (complicated by formal power series over e,/,z) with the following de-
termining relations:

ωe = εeω , ωf = ε~l fω ,

~°Ve"! . (3.5.1)
ε — i

and z G center of Uε(sl2\

Clearly Uε(sl2) is a Hopf algebra with the comultiplication

Ae = e

Jz = z < g ) l + l < g ) z , (3.5.2)

and the map φ : t/ε(s/2) —> Uε(sl2)9

φ(e) = e, φ(f) = f (3.5.3)

determines a homomorphism of Hopf algebras.

The algebra Uε(sl2) has all properties absolutely similar to
_ _ ̂

• The center of Uε(sl2) is generated by e ,/', z and by

(3 5'4)

• Z(C/ε(5/2)) is generated by ef,f, z, c freely modulo the relation (3.1.3) where
we have to replace k —» βίω.

• U&(sl2) is finite-dimensional over Z(Uε(sl2))
• The central subalgebra Zo(t/ε(s/2)) is a Hopf subalgebra in i/e(s/2) and Pois-

son brackets (3.1.5), (3.1.6) determine the structure of Hopf-Poisson algebra
on Zo(C/g(5/2)) together with its Poisson action on Uε(sl2).

• There is an isomorphism of Hopf-Poisson algebras Z$(UE(sl2)) —
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Let ε4 be the 4/th-root of 1, such that ε? := (ε?/ = / and consider Uε(sl2)

over (C[ε4,ε 4]. Then we have:

Theorem 3.5.2. (1) The algebra Uε(sΪ2} is braided Hopf algebra with

tf(a) = tf(0)(tf(1Wr'), (3.5.5)

where
R(0\a) = exp(r0) o exp(n ) o a , (3.5.6)

, (3.5.7)

and

R(l}= \Σt$af®(ίt\ Π ( l - ε m e ® / Γ 7 . (3.5.8)
y.s,f=0 J m=0

(2) The element R(l} satisfies relations (12), (13).

Proof. First, it is easy to check that the automorphism

acts as (1.3. !)-(!. 3. 3) (assuming there k±l = ω±le±^\
Then notice that when q — ehε, h — -> 0, the asymptotics of the element (1.2.13)

is given by

. (3.5.10)
m=0

This follows from Sect. 3.4.
The theorem now follows from Proposition 1.2.3 and from (3.2.9), (3.2.10).

3.6. Let us discuss the relation of the algebra Uε(sl2) described in Theorem 3.5.2
to the finite dimensional quotient algebra

9 f ' 9 z ) , (3.6.1)

where (ef , f f , z) is the ideal generated by these elements.
It is well known that the algebra £/ε(s/2)' is a quasitriangular finite dimensional

Hopf algebra with the universal ^-matrix

R=

For details see for example [RT]. The following proposition explains the relation
between (3.6.2) and (3.5.8)
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Proposition 3.6.1. (1) The automorphism R^ from (3.5.6) induces an identity
automorphism on the quotient algebra Uε(sl2)'®2 (2) We have the identity:

/ /-I P^-^
Π (1 - eV) = g _ ;Z" + Q(zθ . (3.6.3)

Proof The first statement follows immediately from the fact that point & = 1, e = 0,
/ = 0 is a symplectic leaf of the Poisson structure (3.3.2) on SL%. The identity
(3.6.3) follows from the comparison of the asymptotics (3.4.1) with the represen-
tation (1.4.2) in the case when q — εeh,h —> 0, and z/ = o(h).

Thus, the quasitriangular of the quotient algebra U£(sl2)
f with the universal

R-matήx (3.6.1) is in agreement with the braiding structure of U£(sΪ2) with the
universal ^-matrix (3.5.8).

Conclusion

We have shown that in an appropriate sense the algebra Uq(sl2) is quasitriangular
even when q is a root of 1: it is a braided Hopf algebra in the sense of Definition 1.
This modified notion reproduces known results for appropriate quotients of Uq^sli)
[RT,R]. _

Notice that functions similar to those which describe the e® f dependence in
(3.5.8) had already appeared in the literature in the context of the Chiral Potts
model (see [BB] and [FK]).

The generalization of these results for Ug(Q) for simple Lie algebras g is straight-
forward and will be done in a separate publication.

The following list of problems seems natural to understand now:
(i) The description of the category of modules for algebras ί/ε(g). One has to

understand the category where both associative algebra and Poisson struc-
tures for C/ε(g) are taken into account,

(ii) The description of algebras ί/ε(g), where g is a Kac-Moody algebra. It is
especially interesting to do this for affine Lie algebras g.

First steps towards understanding question (i) have already been done in [WX]
for ε = 1. Certain results about the quantum affine algebra Uq(sl(n)} including the
description of minimal cyclic representations can be found in [DJMM].
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