Commun. Math. Phys. 169, 521-561 (1995) Communications in
Mathematical
Physics
© Springer-Verlag 1995

On Separation of Phases in One-Dimensional Gases

Kurt Johansson

Department of Mathematics, Royal Institute of Technology, S-10044 Stockholm, Sweden.
e-mail: kurtj@math.kth.se

Received: 15 November 1993

Abstract: We prove that in a one-dimensional gas in the canonical ensemble with
pair interaction A/r” — B/r?, v > 2, we have a separation of phases at sufficiently
low temperatures. The same combinatorial framework can be used for both lattice
and continuous models. A rather precise bound on the critical temperature in a 1/r?
lattice gas is obtained when the nearest neighbour coupling is large. The interface
between the two phases is defined and investigated.

0. Introduction

There are many results on phase transitions in lattice models in all dimensions. For
continuous models however there are very few results, see [Ru2] or [Is], appendix. It
is still an open problem to prove that there is a phase transition in a 3-dimensional
continuous gas with a Lennard-Jones interaction, A/ rl2 _ B /r(’, see [Si], problem
7. In view of this it seems worthwhile to try to establish the existence of a phase
transition in a 1-dimensional continuous gas in particular in the non-hard core case.
A phase transition in one dimension requires a long-range interaction, which makes
the argument complicated, but on the other hand the difference between a lattice and
a continuous gas should be least in one dimension.

We need an energy-entropy argument which is not so sensitive to the exact location
of the particles, i.e. if we move the particles slightly the argument should still be valid.
In two previous papers such a method was developed and it was proved that in a lattice
gas [Jol] or in a hard-core continuous gas [Jo2], in the canonical ensemble, with
attractive pair interaction —1/7%, 1 < a < 2, there is condensation at sufficiently low
temperatures. Here condensation means that for a large system, with high probability,
the gas has non-uniform density, a separation of phases occurs. A heuristic argument
is given in the introduction to [Jo1].

In this paper these results will be extended to a continuous gas without hardcore.
The pair interaction will be of Lennard-Jones type, A/r” — B/r?, v > 2. This model
is more unlike a lattice gas and is more difficult to deal with than the hard-core
continuous gas.
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In the papers [Jo1] and [Jo2] different combinatorial arguments were used for the
lattice and the continuous case. In the present paper the same combinatorial framework
(entropy estimate) is used for both the lattice and the continuous gas, only the energy
estimates are different. Also the rearrangement (condensation) procedure is simpler
than those used in [Jo1] and [Jo2]. Furthermore the phase separation and the interface
are more carefully defined.

For the lattice gas corresponding to an 1/r2-Ising model, a rather precise estimate
of the critical temperature is obtained in the limit when the nearest neighbour coupling
becomes large. This has been investigated also in [ACCN] and [IN]. To be able to
deal with continuous models one has to leave the strictly ferromagnetic models, so
the results for the lattice gas (Ising model) are valid even if not all couplings J, are
> 0, provided J, ~ 1/r? as r — oo.

The organization of the paper is as follows. In Sect. 1 we define the models
considered, write the continuous gas as a lattice model, define what we mean by a
phase separation and state our results. Section 2 contains the energy-entropy argument
for what we call a general lattice gas. In Sects. 3 and 4 the energy estimates for the
lattice and continuous gas respectively are proved. Together with the general energy-
entropy argument of Sect.2, they establish the results in Sect. 1. The last section
contains the proof of an energy estimate used for the continuous gas in Sect. 4. To
prove this estimate we must show that the probability that we have very many particles
in a short interval, or in a sequence of short intervals is small.

1. Definitions and Results
1.1 The General Lattice Gas

A continuous gas and a lattice gas on a line can both be written as special cases of what
we call a general lattice gas, which is defined as follows. Consider a one-component
one-dimensional lattice gas where we allow multiple occupation at a lattice point. We
will work in the canonical ensemble so we have a fixed number N of particles in our
box A =7ZnN[0,L). Let L = [N/g], where ¢ € R" is given, g is the overall density.
For our purposes the following boundary conditions are convenient: all lattice points
in Z N (—00,0) are occupied by a single particle, and all lattice points in Z N [L, co)
are empty. This means that our basic configuration space is

L
QN’Q={@6NZ;ZHJ=N,%=1 if j <0 and n; =0 iijL}
k=1

with L = [N/o].
Suppose that we are given a Hamiltonian H : Qy , + R U {oo}. For each
ACQy, we put

Z(A) = Zy , y(A) =Y _ exp(—H(n),
neA

where as usual exp(—oco) = 0. We get a probability measure on the o-algebra of all
subsets of @y , by letting

PN,Q,H(A) = ZN,Q,H(A)/ZN,Q,H(QN,Q)
for each A C Qy -
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We want to show that, in the models we consider, there is a separation of phases
at sufficiently low temperatures. Because of the choice of boundary conditions we
expect to get a dense phase (liquid) to the left in A and a dilute phase (vapour) to the
right. The question is how far into A the boundary conditions are felt. To make this
more formal we need a definition. First, for each n € Q , and z,y € Z, we put

y—1

N@,pm =Y n,.

=T

Definition 1.1. Let 0 < 6, < o < 6, < 1 and w € (0,1). We will say that
ti i Qn,— Z*TN[0, L], i = 1,2, defines a (6,,6,,w)-phase separation if the following
conditions are satisfied for eachn € Q ,:
@) if < t(n), then
N(CE,t]) 2 6](t1 - $)7

(i) if x > ty(n), then

(iii) Let {ey} be any sequence tending to zero as N — co. If (z, z+€ ' N¥) C(—00,t)),
then
N(z,z+ey'N*) (@) > (6, — o)) N¥,

and if (z,x + ey N*) C (t,,0), then
(z, 2+ ey N¥) < (8, + o(1)) N*,

for all sufficiently large N.

The interval [0,¢,] should be thought of as containing the dense phase, density
> 6, and [t,, L] as containing the dilute phase, density < §,. The third condition
gives an upper bound on the size of “bubbles” in the dense phase and “droplets” in
the dilute phase. The size of the largest bubble/droplet is less than essentially N“.

By the choice of boundary conditions ¢,(n) = 0 and ¢,(n) = L defines a (1,0,0)-
phase separation. It is clear that we always have ¢,(n) < oL/6,.

That the boundary conditions are felt far into A should mean that ¢,(n) and t,(n)
are “close” for typical configurations. We can think of (A ny,) as an interface
in n, and we will call

A(n) = t,(n) — t,(n)

the thickness of the interface if n. Note that A(n) depends on §,, 6, and w. In particular
choosing a larger w, i.e. allowing larger bubbles/droplets, makes A(n) smaller. It is
not clear what the right definition of the interface in a one-dimensional gas should
be.

1.2 The Continuous Model

As above, let L = [N/g], o € R" fixed. The configuration space is

‘QN’Qz{.IE [O,L]N;in <xi+l’i= L. N — 1}



524 K. Johansson

Also we introduce fixed particles at z; = ¢ — 1, ¢ < 0. On {2y , we consider the
Hamiltonian

1 N 0 N
H¢(~Z’) = 5 Z QS(['TJ - le) + Z Z¢($1 -z;),

where

with D,C € R* and v > 2.
For each Borel subset B of {2 , we set

Z(B) = /exp(~ﬂH¢(g))davl coodzy,
B
and the probability of B is given by

Py o s(B) = Z(B)]Z°(2y ,) -

If we write ¢(r) = (r) — C/2r?, then ¢(r) is increasing and concave, and (r)
is increasing for r > r,, where r, = [max((y + 1)yD/6C,yD/C)]'/=2. After a
change of variables (scaling) we can assume that r, = 1. The change of variables will
modify the constants in the potential, and we will write (using the same notation)

() = () — A/r?, (1.1)

where (r) = B/r7 — A/ r2. Now, ¢(r) is strictly increasing and concave and (r)
is increasing for r > 1.

To relate this model to the general lattice model above we need some further
notation. Given g € {2y , we let n,(z) be the number of z,’s in [, —1), ¢ € Z, and
we write n(z) = (n,(2));2_ - Clearly n(z) € Qy , for all z. Given n € Qp , We
set

2n) = {z € Ny ,;n(x) =n},

and for A C Qy ,, 2(A) = | £2(n). Now, for any A C Qy ,,
neA

0= [ ew-pH @)V

€A Q(n)
=Y exp(—Hg(n, B)),
ncA
where
Hi(n, B) = —log / exp(—fH,(2)d"x. (1.2)
2(n)

Hence, for any A C Qy .,
Pﬁ],g,¢('Q(A)) = PN,g,H;(A)?

which gives the relation between the continuous gas and the general lattice gas. We
will write A(z) = A(n(z)).
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The main result for the continuous gas is the following theorem.

Theorem 1.2. There are positive constants 3%, n,, i = 1, ..., 4, which only depend
on the parameters in ¢, such that if 3> 3% and o€ (exp(—n,5),1/4), there
is a (1/2 — exp(—n,B),exp(—n,5), ,0)~ Y-phase separation, so that when
Nmexe=mb) < d < [,

P§ polz € 25 A@) > d} < a2

for all sufficiently large N.

This theorem shows that, for 3 sufficiently large, with high probability the thickness
of the interface is short on macroscopic length scales, and hence established the
existence of a phase separations. The theorem will be proved in Sect. 4.

The Helmholtz’ free energy for the gas is defined by

f(gvﬁ) - hm ﬂN lOgZNQ¢('QNg))

and the pressure is given by

p(u, B) = sup(uo/B — f(o,B)),
0>0

see [Rul], Chap. 3.
Corollary 1.3. If 8 > 3%, there is a . such that Op/dy does not exist at (., [3).

The proof of the corollary is sketched at the end of Sect. 5.

It is known that if the pressure is not differentiable as a function of x at some point
(B, p,), then there must exist several Gibbs states at this point, see [KY] Theorem
3.1(b).

1.3 The 1/r?-Lattice Gas

In this section we consider an ordinary lattice gas, with at most one particle
per lattice site, having a Hamiltonian which behaves like 1/r% for r large. Let
QN ={n€Qy,0<n; <1,i€Z}andset HY(n) = +o0 if n € Qy ,\Qx. If
n € Q% set

co L
Hiw)=-28) ) JG—dnmn,, (1.3)
—oo j=I1
where J(r) satisfies
[l =D rlJ(r) = 1/r?] < oo. (1.4)
r=2

With some extra work it is also possible to use the weaker condition 72J(r) — 1 as
r — o00. Write J; = J(1). Note that we do not assume that J(r) > 0 for all 7 > 1.
By the substitution s; = 2n, — 1, this model is related to the Ising model with
Hamiltonian
oo L

H(s) = ——5 o> TG s +,6hz (1.5)

i=—o0 j=1,i<j
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(with +/— boundary conditions). Assume that J(r) > 0 and let M (3, J;) denote the

spontaneous magnetization (using the usual + boundary conditions) as a function

of 3 and the nearest neighbour coupling J;. Let M*(8) = sup M(B,J;) and
J

1
B* = sup{B; M*(3) = 0}. It is known that 8* < 1, [IN], i.e. if 8 > 1 we can
make M(3, J,) positive by choosing J; sufficiently large. The idea ot treating J; as
an extra parameter was introduced in [ACCN].
We will now establish the corresponding result in the present setting.

Theorem 1.4. Assume that J : Z+ — R satisfies (1.4) and that the Hamiltonian
is given by (1.3). Let £ > 0, K € (0,1) and N\ > 2 be given. Suppose that
0 € (1/\1—1/)\). Put u* = 1 — 4/ + 1/X\* and assume that Bu* > 1+ £/2.
There is a constant J;' such that if J, > J\', then there is a (1 —1/X, 1/X,(1+&)71)-
phase separation so that for all d > 1,

Py ona{n € Qu s A) > dy < Cd™7, (1.6)
where C' is a constant, N is sufficiently large and
2Bp* = 1-€/2)(1 — k)
= . 1.7
v 1+¢ 1.7

The proof will be given in Sect. 3.

Let us give some heuristic comments. Inequality (1.6) implies that in the corre-
sponding Ising model, the spontaneous magnetization M = M (3, J;) > 0. We have
the inequality M > 1 — 2/X > p, and for given 3, J|, the largest possible A should
be A = 2(1 — M)~!. Picking x and ¢ small, we see that the exponent v in (1.6)
is approximately 2(3M? — 1). This should be compared with the known fact [IN],
that the 1/r?-Ising model has an intermediate phase, where the correlation function
[(s98,) — M?| ~ |z|=?, with 6 < 2(BM? — 1) and 6 — 2(3 — 1) as J; — oo; it is
conjectured that § = 2(8M? — 1) in the intermediate phase [IN].

The largest possible £ we can choose, keeping 1 positive, is & = 2(Bu> —1)—¢/2,
€ > 0 arbitrary. Hence the best estimate we can get on the size of the largest
bubbles/droplets is that they are < N281'=1-¢/27" which is close to NU+0™",
As the critical line is approached we expect that § — 0, and then the upper bound on
the size of maximal bubbles/droplets approaches O(N).

Define
B.(J;) = sup{B; M(3, J,) = 0} .
Corollary 1.5. There is a constant C; such that if J; > C|, then
Bu(J}) — 1 < 25 e=2N/5, (1.8)
Proof. See Sect. 3.

Remark 1.6. Going through the proof in Sect. 3 and estimating the constants numer-
ically, it is seen that C| ~ 8 + 8||J|| suffices.

Remark 1.7. It is conjectured that the critical line B=03.(J;) is given by
BM?(3, J;) = 1, and it seems reasonable that M (8.(J,)—, J;) = 1-0(exp(—O(J,))).
This gives 8.(J;) — 1 = O(exp(—O(J}))), so the exponential dependence on J; in
(1.8) should be correct.

Remark 1.8. The existence of a phase separation can also be proved when J(r) is
arbitrary in RU{oo} for r < r, and J(r), r > r,, is decreasing and r*J(r) — J*+ > 0
as 7 — 00. See Remark 4.2.
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2. The Energy-Entropy Argument
2.1. Partitions and the Rearrangement Procedure

In this section we will develop the necessary combinatorics and carry out the
energy-entropy argument, under suitable assumptions on the Hamiltonian H:Qy , —
RuU {oo}, for the general one-dimensional lattice as defined in Sect. 1.

We will use the notation introduced in Sect. 1 and |M| will denote the cardinality
of an arbitrary set M. Define

P ={,7);n € Qn oy € [0,LINZ, with |y| odd}.

For I' = (n,7) € & we will write mI" = n and m,I" = 7. In the ordered
pair (n,7), v is called a partition and it defines a partition of the configuration n
into blocks. Given n and a,a’ € [0,L] N Z, the block (a,a’) = (ng, ..., Ng_y)-
If A = (b,b') is another block, then the block obtained by joining A and A’
is AA = (ng, ..., Ny _{, Ny, ..., Ny_y). Let I' = (n,v) € & be given with

v ={b,a5b,, ..., a,b,}, where b, < a, < ... < a, <b,. This gives a partition
Qf n into blocks A}, By, ..., A, B, where A = (q],b]) and B, = (bj,a]_H),
j=1,...,s Here a; = —o0o and a,,, = oco. We will call A, ..., A o-blocks,
B, ..., B, e-blocks and we will say that these are the blocks in I

Let C' = (¢,c’) be a block in I" € &7 and define the length |C| of C to be ¢ — c.
The weight w(C') of C is defined to be

1

w(C) = Z max(1l,n;).

From the definitions it is clear that
IC] < w(C) 2.1

for every block C in I'. If we restrict ourselves to configurations with n, < 1 for all
i, as in a standard lattice gas, then equality holds in (2.1).

We now turn to the definition of the partitions that we will work with. Assume
that every n € Qp , has been assigned a basic partition v®(n), ie. a subset

vO(n) C {1, ..., L} with an odd number of elements. Let \ and £ be given positive
parameters and for j > 1 set
u, =274 v =COM, 22)
where
CE) =250 -1 L. (2.3)

We can now iteratively define partitions v*)(n) in the following way (compare [Jol1]
p. 45). Suppose that v*~D(n) has been defined. Consider all e-blocks in (n, y*~D(n))
of length > v,, B .y Bj,, p > 1. If the o-blocks in (n, v®(n)) between

[
B; = (b, ,a, ) and B, = (b .,a, .y have total weight < u, we set

. = laj, 11,0, 1NY*~D(n); if the o-blocks have total weight > u,, we set 7, = 0.
Do this forr =1, ..., p—1; if p =1 there are not 7,’s. In the same way we define

Ay s )\q_l with e- and o-blocks interchanged. Let

B (n) = y* D@\, U... U Ny UN UL UA, ).
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Note that we remove an even number of elements from v*~(n), so [y*(n)| is odd.
Let
o =[)1Pm

k>0

and, for each n € Q ,, define I'i(n) = (n,v,(n)).
It follows from the construction that the following lemma holds (see [Jol], p. 45
for more details).

Lemma 2.1. Consider two o-(e-)blocks of length > v, in I'j(n), n € Q N,o- Then the
total weight of the e-(o-)blocks between them is > u;, k > 1.

The choice of the basic partition 7?(n) should be such that o-blocks have a higher
density of particles than the e-blocks. Before stating the precise definition we need
some notation. Given I' € & with 7" = n, x,y € Z, we write

y—1
N(,y) =Y _n,
1=T

and
y—1

v,y) =Y _min(l,n,). (2.4)

Definition 2.2. We will say that I' € & satisfies the (,,6,)-density property, 0 <
8, <6 <1, if
(1) for each o-block A = {a,a’) in I, and all z € [a,a’ — 1],
) v(a,z) = 6(z — a),
@) v(z,a’) > 6;(d —xz— 1)
(2) for each e-block B = (b,t') in I, and all = € [b,V'],
(i) N(b,z) < by(z —b),
(i) N(z,b) < 6, —z — 1),
(i) |B| < w(B) < &7'|B|.
We can now prove

Lemma 2.3. If (n,Y%(n)), n € Qy , satisfies the (6?0),650))-density property, then
I'\(n) satisfies the (6, 6,)-density property with

6, =60 —1/x, &=6D+1/A, (2.5)

where X is the parameter in (2.2).

Note that we assume that X is chosen so that §; > 6, are required in Definition
2.2.

Proof. See the end of this section.

We will now define the rearrangement operations which will be used to transform
a configuration into the corresponding condensed configuration. Given j>1 the
(™ order) elementary rearrangement operation S; P — P is defined as follows.
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(The present definition differs from the one used in [Jol].) Let I’ € & and let
CM, ..., C® be the blocks in I'. Set

WD = min, wC),

i.e. the smallest weight of a block in I". If W(I") > U, We set SjF = I'. Otherwise

let C*) be the first block (counting from the left) of weight < u,, ;. S, I is obtained

from I by letting C® and C**+) change place, except when k = ¢t — 1, in which
case we let C*=? and C*~D change place. More formally, that C® = (c,c; )
and C**D = (¢, ., ¢,,,) change place means that we set

mS,I'=CcW . . ct-De*he®o®td | o,
8,1 = (Ml \{ ks Cop1s D U {g + Cpyn — oy } -

The points ¢, and ¢, , will be called “old” partition points. Note that if we specify
¢ and ¢, we can recover I" from S, I" uniquely, so the fact that different choices of
¢, and ¢, gives different I" given S;I" means that we have a decrease in entropy.
The “old” partition points always come in pairs and we will say that they constitute
a pair of “old” partition points, one of them lies in an o-block and the other in an
e-block.

Set

A={(n)n € Qn,}-

We want to define @] C 2, j > 2. Assume that @J has been defined. For I" € @] we
let
k;(I") = min{k € N;W(S;T) > u,,},

Here Sf = §;0...05, (k times). The map R; : 9’3 — & is now defined by

R I'= Sf i1 and we set @] n==x, (ﬁj ). It is clear from the definition that

res#,=wi)zu;, j=1. (2.6)

We are now in position to define the condensed configuration corresponding to a
given configuration. Let

1
P14 [logz (E n 1) N]. @7
Then
re,,,=mnl=1. (2.8)

To see this note that if |7,I"| > 1, then W(I') < L+ N < N(1/p + 1), but from
(2.6), W(I') > 2P > N(1/p + 1), and we get a contradiction. Define the maps
%j CA - S J 2L by %’j = Rj oRj_1 o...oR,. It follows from (2.8), that if
Ay, By, ..., A,, Bg are the blocks in I'j(n), so that n = A, B, ... A B,, then

HAn) =mP#,[\(n)=AA,...A,B\B,...B,.

For a configuration n € Q ,, Z2(n) is the corresponding condensed configuration.
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2.2. The Entropy Estimate

Before stating the basic entropy estimate we need some further notation. Write
I'in) = %j_ll"l(@) and for a given A C Qy ,» @j(A) = {FJ(@);@ € A}. Note
that 75(A) = RJ_I@j_l(A). Also

ZA)y= Y e HmD, (2.9)
rezAA)
since the correspondence n +— I[j(n) is one-to-one. Given A C QN7 2 k =
(ky, ..., k,) € NP and I}y € 7, (A), we write
A, Ty, k)y={I"€ A(A); I, I = T, k(I') = k},
where k(I) = (k;(I), ..., k (F)) We will also write k,(n) = k;(I;(n), j =
I, ..., p, and k(n) = (k, (n), ooy ky()). Also set
AAk= | AALE.
Th€Tp+1(A)

The entropy change, as well as the energy change, in the rearrangement procedure
will be estimated using the quantities

P
sk) = k;

and »
JOEDLIT
7=1

Note that 1 + s(k(n)) = s = the number of o-(e-)blocks in I (n).
We can now prove

Lemma 2.6 (The entropy lemma). Let A C Qy ,, Iy € 75,,,(A) and k € NP be
given. Then

|Z75(A, Ty, k)| < — (s(k)) ecrs®rreok)

Hk'
j=1
where
¢ = log[SC(EA2'*], 210
¢, =2+&log2. ’
Proof. Define for2 < j<p+1,
‘?7(14) Fo’ l_ﬂ) = {’%j—lp; F S -@1("47 F07 ]_i:)} .
The first step is to prove
(I € Z(A, Ty, k) R, I" = T}| < (kp T ) el )
7

for each I € 75 (A, I}, k), with ¢;, ¢, given by (2.10).
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From the definition of the rearrangement it is clear that each o-(e-)block C' in
I' e 7, is of the form C' = C,C,,,...C, for some o-(e-)blocks C,, ..., C} in
I'"if I' = R I", I'" € . To reconstruct I"" from I" uniquely we have to specify
the positions of 2k, (I'") old partition points. As explained above these occur in pairs,
with one of the points in the pair, called the old o-point, lying in an o-block in I,
and the other, called the old e-point, lying in an e-block in I'.

Claim 2.7. Given that the old o-point in a pair of old partition points lies in a certain
o-block in I, there are < exp(c, + ¢, j) possibilities for the pair, where c,, c, are given
by (2.10).

We postpone the proof to the end of the section.

If I'" € 7)(A, Iy, k) and I = R I", then |m,I"'| — |myI"| = 2k,, and using this
repeatedly we obtain |m,["| = 2(k, + ...+ k; ;) + 1, since [myI| = 1. The number

of o-blocks in I'is (|, ['| + 1)/2 =k, + ...+ k,,, + 1. If we have k; pairs of old
partition points there are less than or equal to

ky otk H 1tk — 1 (ko
k] k]

ways to distribute the £, old partition points among the o-blocks in I". This together
with Claim 2.7 gives (2.11).
Now,
AA T, = |J {I'eZAT, kiR I =T},
7y41(A, Iy, k)

and consequently using (2.11),

[ 75(A, Ty, B)| B )
|7 (A T, B~ (ky+ o+ ey )UK,

cr+eajky )

Since |7, (A, I}y, k)| = |[{I}| = 1 repeated use of this estimate completes the proof
of the lemma.

2.3. The Energy-Entropy Balance

Let us now define the (¢;, 6,,w)-phase separation that we will use. Consider n € Q N.o
and let

[ (n) = {b;(n), ay(n), by(n), ..., a,(n),by(n)}, bi(n) < ayn) <...<by(n).

Put
L) =b(n), t(n) =b(n), (2.12)

so that t,(n),t,(n) are the rigth and left endpoints of the first and last o-blocks
respectively.

Lemma 2.8. t,(n),t,(n) defined by (2.12) defines a (0,, 6,,w)-phase separation with
5 =8"—1/\ 6, =6L+1/Nandw =1+

Proof. See the end of this section.
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Lemma 2.9. For eachn € Qy ,»

log A(n) — (1 +§)log2 —
1+8&log2

o(k(n)) > 91, 2.13)

with ¢, given by (2.10).
Proof. See the end of the section.
We now come to the main result for the general lattice gas.

Proposition 2.10. Let the density ¢ € RY, the Hamiltonian H : Qy , — RU {oo},
a basic partition YO(n), satisfying the (8, 6)-density property, for eachn € Q N.o
and a subset Q% of Q N,o be given. Assume that § and X in (2.2) and D, D >
2% exp(c,), can be chosen so that 6, = 8 — 1/X > 6 + 1/A = 6,, and

H(n) — H(Zn) > d s(k(n)) + dyo(k(n)), (2.149)
foranyn € Q. Q\Q}k\, satisfying A(n) > D, where the constants d,, d, satisfy

K, =d; — ¢; +log(exp(x(d, — c;)) — 1) > 0,

K,=d,—c, >0, @15)
for some k € (0, 1) with ¢, c, given by (2.10). Then for d > D,
Py ou{n € Qu g Am) > d} < Py, Q) +Cd™?, (2.16)
where
po =R
1+¢&log2 2.17)

C = exp(((1 + &) log2 +¢)))(exp K| — 1) '(exp K, — 1)~
Proof. Let X = {n € Qy ,\QN;0(k(n)) > 0y}, where oy > 1. If we can show that
Py o,5(X) < C"exp(=K,(1 = K)a) 2.18)

then combining this with (2.13) we obtain (2.16); C’ = (exp K; —1)"'(exp K, — 1)~1.
Note that A(n) > 2!*¢ expc, implies o(k(n)) > 1.

By (2.9),
/
ZXy= Y, e HmD
I'eA(X)
- ¥ emen %
FE€Pp11(X) I E€R(X)Bp =T

- Z e—H(mF)i i Z Z e-—(H(mF')—H(m%pI")),

IeZ1(X) s=1 o=0q k€Ks,o I'EA(X:T)k)
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where K , = {k; s(k) = s and o(k) = o}. We now use Lemma 2.6 and the estimate
(2.14) to get

Z(X) < Z e~ HmI) ie—bls i e—(—r)byo Z
s=1

e 1(X) g=0yp kEKs,o
s!

P
1 ;!

J=1

% e—nbzo

, (2.19)

where b, = d, — ¢,, i = 1,2. The multinomial theorem yields

s! s! e .
i T vt | (Rl

p
k€Ks,o [Tk kekKso [] k;! 5=t
j=1 j=1
P S
< (Ze—nby) < (enbz 1)t = eb3s,
J=1
where b; = — log(e”*2 — 1). Inserting this in (2.19) we see that
o0 o0
Z(X) = Z e~ Hm D) Z e~ (b1—b3)s Z e~ (1—R)bo
FeS1(X) s=1 =09

S Ce—(l—.‘c)b2(d'0—1) Z e-H(7r11") ,
€7, 41(X)

since b, > 0 and b; — b; > 0 by (2.15).
To complete the proof of (2.18) we need to show that

> M <z@,,).

rez,11(X)

This follows if we can prove that for any I', I € 7, (X)), m ' = m|I" = m,[" =
myI”. Assume that mI" = m " but m,I" = {z} # {y} = m,I", where we can
suppose that z < y. It follows from the assumptions that both I" and I satisfy the
(6, 6,)-density property. Since mI" = m ", N(z,y)(I') = N(z,y)I""). Now, by
the density property for I, N(z,y)(I") < 6,(y — z), and by the density property for
I'", N(z,y)(I'") > 6,(y — z). Since §, > §,, we get a contradiction.

This completes the proof of Proposition 2.5.

Proof of Some Lemmas
Proof of Lemma 2.3. We proceed inductively. Define

k k
o =0T —w o) 8 =60+

i=1 =1

for k > 1. Suppose that n,v*~D(n)) satisfies the (6", 6*~)-density property.
Consider an o-block {c,c’) in (n,7*(n)) and let [ and I’ be the weight and length,
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respectively, of the e-blocks (or parts of e-blocks) in (n,y*~D(n)) between ¢ and
c+t < . The construction of v*)(n) from v*~1(n) above shows that t—I’ > v, 1 /u,,
which gives | < wu,t/v,, and hence I’ < u,t/v, since I’ < [. Using the density
property of (n, ¥*~D(n)) we get

ve,e+1) > 8F Dt — 1) > 65D -y fu )t =6t

o0

Now, 617 N\, 6 TT(1 — w;/v;) > 60(1 — 1/)) > &, as k — oo. If we interchange
1=1

o- and e-blocks above we get

Ne,e+1) <80 = 1) +1 < (6870 + uy /vyt = 60t

In this way we can prove (1)(i), (1)(ii), (2)(i) and (2)(ii) in Definition 2.2. It
remains to establish (2)(iii). Let B = (b,b’) be an e-block in (n,7*®(n)) and
let {(I") be the weight (length) of the o-blocks between b and b’ in (n,y*~D(n)).
Then as above | < w,|B|/v, < wu,w(B)/v, and by the induction hypothesis
w(B)—1 < (|B] -1")/6%V < |B| /6% and hence (1 —u, /v,)w(B) < |B|/8FY,
which gives w(B) < |B|/6".

Proof of Lemma 2.8. That properties (i) and (ii) in Definition 1.1 are satisfied follows
from the fact that I, (n) satisfies the (6, 6,)-density property. It remains to establish
(iii).
1

Write A = 6,_\,1N 1+€, Consider the interval [z,z + A) in [0,¢,). Let ¢ be the
smallest positive integer such that v?(n) N [z, z + A) = (. If ¢ = 0, then [z, z + A)
is entirely contained in an o- or an e-block in (n, Y% (n)). In the first case the density in
[z,z+A)is > 5?0) > 6, and there is nothing to prove. In the second case the endpoints

of the e-block containing [z, + A) must be removed at some step YP~D — @)
where A < u,, and v, < L, which gives a contradiction for sufficiently large /N since

u, < (v,/(CNH/IHO < C'NVIHO, (2.20)

Hence we can assume that ¢ > 1 and 9~ P(n) N[z, z + A) # 0. Clearly (2.20) must
hold with p = ¢, since we remove endpoints in the step 79~ — +@. Consider now
o- and e-blocks in (n,v9~D(n)). Let z be the length of e-blocks wholly or partially
contained in [z,z + A). If z < u, we get using (2.20) (p = q)

N(z,z+ A) > A7'60 V(A - 2) > 67 V(1 — C'NVIH0 [e [NV AHO)
> 6 —o(1),

by the density property for o-blocks in (1, 79~ D(n)).

Assume that kuq <z < (k+1Duy, for some k& > 1. Then from the definition of the
construction of 7@ from v9~D, we see that [z, z + A) contains at least k o-blocks of
length > Vg ieey=A—2z> kvq, where y is the total o-block length in [z, + A).
Now, by the density property for (n, 79~ "(n)),

N@,o+2)> 600 L > 5001 -2).
y+2 y
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But z/y < u,/v, +u,/y and y + (k+ Du, > y+2z = A gives y > Al + (k +
l)uq/y)_l, and hence

U k+Du \u ! N1/ (1+6)
O+( >q> ¢N

24« A3 — ).
y kv, AT g&lNl/(Hé) o(D)
Thus

N(z,z 4 4) > 8601 — uy/v,) — o(1) > & — o(1).
The proof in the case where [z, + A) is contained in (¢,, L) is analogous.

Proof of Claim 2.7. Given j > 1, let AV BD = A® B® be the blocks in
I'e€ 7)., Supposethat I' = R I", where I'" € 7} and let A, By, ..., A, B, be the
blocks in I, Then k, =k, (I'") = 7 —t. From the definition of the rearrangement it is
clear that each A% is of the form A% = 4,4, ... A, forsomei, j, 1 <i<j<m,
and similarly for the e-blocks B®.

Let g, = 0 and define recursively

9; =V, +2u, +2g;_4, (2.21)

j=2 Alsosetw, =v,,+g;, j =1

Consider the following statements:

(b),: Consider two o-(e-)blocks in I" € ?J of length > v, | + g,- Then the total
weight of the e-(o-)blocks between them is > u,, k£ > j + 1.

(c);: If we have two o-(e-)blocks Cand C'inI € % +1> such that the weight of the
e-(o-)blocks between them is = z, and if I = Rj I, there are o-(e-)blocks C,
and Cy in I, |Cy| > |C| = (w, +2u, ), |C%] = |C'| = (w, +u,,) such that
the weight of the e-(o-)blocks between Cy, and C% in I is < x + Ujyq-

Since v, > v,, (b), follows from Lemma 2.1.

The strategy is now to prove that (b), and the definition of the rearrangement
procedure imply the claim for this 7 as wefl as (¢);. We then show that (b) 41 follows
from (b), and (¢)y, ..., (c) ) and this complates the proof by induction.

As noted above an o-block A®) in I = R,I" € #,,, I'" € 7, is of the form
AR =4, ... Aj;, where A,, ..., A, are o-blocks in I". Assume that w(A,) < u,,.
Since A, _, and A, are not joined, A, cannot move to the left. Hence when we get
to A, we do the rearrangement

...B, (AB;A;,\B;,,...—...B,_|BAA, B, ....

If i + 1 < j, then w(B,) < ujyy, since w(A,A, 1) > u, +u, = u,;,. Hence the
next rearrangement must be
...B BzAzAi+lBt+1Az+2'Bz+2 s T Bz—leAzAz+1Ai+2Bi+1Bi+2 et

i—1

It follows from (b); that both A,,, and A, , cannot have length > w,. After this
rearrangement no more o-block can be joined with A A, | A, , unless 1 +3 = 7 and
w(A,) <u;,y, in which case A, will be joined with 4;4, 4, ,,.
If w(A;) >u;,, we apply the same argument as above with A; A, ,, replaced by A,.
This argument shows that there are seven possibilities for A®), and we list them
below. In each case we specify the “assigned” block A(f) used in (¢),.
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1) A® = A mI=...B, [AB,..; AP = A,.
2) AP = A A, m=...B_BAA B . iwd)<u,; AP =A4,,,.
3) AV = A A A m I = "'Bi—lBiAiAi+1Ai+ZBi+lBi+2]‘c‘ E
w(A;) < ujyqs wByyy) < uyyps min((A | |4 ,)) <wjs AP = Ay if
[Ai1] = |A;y0|, otherwise AP = Aita-
4 AV = AA; A pA s D= Bi—lBiAzAi+!Ai+2Ai+SBi+lBi+2Bz+3;
w(A) <ujyq; wBiyy) <ujyp; WA ) <upysi+3=7;
min(|A, |, |4,4,]) <w); AP = Ay i |4, > Ayl otherwise
A(*k) = A
5) AP = A A sm T =...B,_|A;A BB, ..; wA)>u;,;
w(B;) < ujyy; min(|A;], [A4;44]) < w,; AP = A, if |A;] > |A,,,|, otherwise
Agkk) = A'L+1‘
6) A® = AA Ay mI = ... B,_1AjAi A BBy By s w(4,) > Ujt15
w(By) < ujy s WA ) <wugyy, i+2 =7 min(|4,;], |4, ) <wg; AP = 4,
if |A;| > |A; |, otherwise AP = A
7AW =AA, i mI = .. B 1 AA BB s wA) > w5 w(d,) <ujygs
i+1=T1; AP = 4,
A similar argument shows that there are six possibilities for an e-block B* in
e, I'=RI"I'"eZ,.

1) B® =B;mI'=...AB/A,,,..; BY = B,.

Ui e & U
D BY = BBy, mI' = ... A4 BBy Aiys -5 w(By) < Ujpis BY = B, -
3) B(k) = B’iBi+1B1+2; 7T1F =... A’iAi+lBiBi+lBi+2Ai+2Ai+3 k "
w(B;) < ujpps WA p) < ujyy; min(By, |, |Byy,)) < wy; BY = By, if
|B;,1| > |B;,,|, otherwise BY = B, ,.

4) B® = BB, ;s mI'=...A,B;B;;1Ai1Aips - - s w(B,) > (R
w(A; ) < uj, s min(| By, |B,,, ) < wj; BY = B, if |B,,,| > |B,,|, otherwise
BY =B,

* T il
5) BY = BB, s mI'=...ABB; Ay i+ 1 =7 w(A ) <ujp;
k
|Bi| <w,; BY = By,

6) B® = B,B, By, mI' = "'Bz'—IAiAi+1Ai+2kBiBi+lBi+2; i+2=r1;
w(By) < ujyy; WA 1) < ujygs [Bigol <wjs BP = B; ).

Checking all the cases we see that (c), holds. The fact that we need < z+u,,, in

general and not < z can be seen for example in case 3) for o-blocks when AL = A, 2
We will now prove (b), ;. Suppose that there are two o-(e-)blocks C' and c’

in I' € 7, of length > v, + g,,;, such that the weight of the e-(o-)blocks

between them is < u,, k > j + 2. We will show that this leads to a contradiction.

I' = R, I" for some I C 7. By (c); there are o-(e-)blocks Cy and C} in I of

length > vy} + 9,1 — (w; +2u,,,) such that the weight of the e-(o-)blocks between

Cy and Cf is < uy, + u,;- Continuing in the same way, using (c);_, ..., (c);, we
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find that there are two o-(e-)blocks C’Jr and C,F in I’ + where I' = %’]—F t T, i € A,

J
of length > vy + g, — > (w, +u;; ;) = vy, such that the total weight of the
i=1 j
e-(0-)blocks between them is < u, + D u;; < uy +u,,, < u;,,. Hence we have
1=1
two o-(e-)blocks in I'y € 7] of length > v, such that the length of the e-(o-)blocks
between them is < w, ;. This contradicts (b);.

We now have all the facts we need to prove Claim 2.7. Given that the old
o-point in a pair of old partition points lies in a certain o-block A® in I, we want
to show that the number of possible positions for the pair is < exp(c; + c,j). Let =
and y be the distance from the old o-point to the left and right endpoint of A®)
respectively. If 1 < z < wu,,, going through all the possible cases for B*~D

and A® we see that the old e-point in the pair has distance < w, + ujy, to

either the left or the right endpoint of B*~V. This gives < wu;,; - 2(w; + u,y,)
possibilities. If v, ., < z < w; + u;;,, we see by checking all cases that the

distance from the old e-point to the right endpoint of A% is < w,,,, giving

< W, Uy possibilities. If =z > w; + Uy then we see that y < w;. If

Y > u;4, then the distance from the old e-point to the right endpoint of AR
is < Uy and if y < wu,; , the dista.ngg .is < Wit Uy giving < 2w; - u;y,
possibilities. The total number of possibilities for the pair is thus < 5u; (w; +
Uiy q)-

j+1

The definition of g; and w; give

j+1
Wi+ Ujp = Vjypt szﬂ_l(vt +u;)
i=2
— C(g))\[z(1+€)(j+1) + 23’2&(25]' _ 1)/(2& - 1] +j2j
= CE)N2HI 1+ _ 1 4 [ /(C(©)P) - 1]127¥]. (2.22)

A simple computation shows that this is < 5712087 exp(c, ). Hence the total number
of possibilities is < 2@+87 exp(c,) = exp(c; + 7).

Proof of Lemma 2.9. Let A;,B,, ..., A,, B, be the blocks in I'j(n). Assume that
s > 2 so that ¢; < t,, otherwise there is nothing to prove. Let ¢ > 1 be defined by
k; =0if j > g and k, > 1. Checking the different cases, as described in the proof of
Clalm 2.7, we see that in each step 7 — 2., , the infinitely long blocks (containing

J+
A, and B, respectively) cannot grow " by more than w; + u, ;. Hence

s—1

A(n) = Z(|B [+ 14,4 < ZZ(w +Uji) -
j=1 j=1
From (2.22) we get
2 q
= 2(1+6) c1H(1+8)
Am) < Se Z:: ’ < ee12rTe

with ¢; given by (2.10). Clearly o(k(n)) > g and consequently
log A(n) + log g -
1+8log2

o(k(n) >
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3. Proof of the Energy Estimate for the Lattice Gas

In this section we will show how Theorem 1.4 follows from Proposition 2.10.
Choose x€(0,1), A>2 and £>0 and take pe(1/)\1-—1/X). Let
QN = {n € Quim; > 1some i}, so that Py, za(Qp) = 0. Note that for a
configuration in Q Q\Q”,i, the weight of a block is equal to its length. As our basic
partition we take YO(n) = {j € Z;n; # n;,,}, ie. a block in (n,7?(n)) consists
of either just 1’s (o-block) or just 0’s (e-block). Clearly the basic partition satisfies
the (1, 0)-density property.

We will now show that the estimate (2.14) holds for each n € @y, Q\Q}k\,, where
d,, d, satisfy (2.15) under the conditions of Theorem 1.4.

Lemma 3.1. If H? is given by (1.3) and H = H?, then (2.14) holds with
dy =28(J, — 1+ k(=1 4+ A7) = kA7 =8| Jl4)

3.1
dy = 28p*(\)log?2, G-

where K|, K, are numerical constants.

Assume that the lemma is valid. Then
Ky =dy — ¢, =2Bp* () — 1 - £/2)log 2, 3.2)

by (2.10) and (3.1) and this is positive provided Su?(\) > 1 + £/2. We see that the
second condition K| > 0 in (2.15) holds if J; > J*, where
1
T =14k(1 = A"+ rA 71+ % [c; — log(exp(kK,) — D].  (3.3)
Theorem 1.4 now follows from Proposition 2.10 and from (3.2) and (2.17) it follows
that ¢ is given by (1.6); furthermore D = 2!*¢ exp(c,).

To prove Corollary 1.5 we use expz — 1 > z in (3.3) and choose £/2 =
B(1—4/X)—1. Then Bu?(A\)—1—£/2 > 0. Put A = 53(B—1)"" so that £ = 2(3—1)/5
and x = 1/2. A simple computation shows that C(€) < (£log2)~!(1 + £log?2) and
we obtain

5 1
JI<C+ 567 log -1 (3.4)

where C is a numerical constant. Now, if
B — 1> exp2C,/5)exp(—2J,/5) (3.5)

and J; > C|, then (3.4) and (3.5) imply J, > J}, and hence the conclusion of the
theorem, which in turn gives M (G, J;) > 0. Thus the estimate (1.8) in Corollary 1.5
must hold.

To prove Lemma 3.1 we need to introduce some more notation. For n € Q ,.
let 74(n) = 0 and

J
rim =Y k@m, 1<j<p,
i=1

i.e. r.(n) is the number of elementary rearrangements performed in going from I',(n)
to ]"J +1(n). The total number of rearrangements is s(k(n)) = r,(n). If r,_; <i <7,
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we put

Z T

rmy=S,""'Im,

so that I"(n) is the configuration obtained after i rearrangements starting from '} (n).
Lemma 3.1 will follow if we can prove that

AH = Hm ' ")) — Hm, I'(n)) > d, + dyj , (3.6)

when r;_; <i <7

Let ¢ be a pair potential and C = (e, ..., e,), C" = (f;, ..., f,) two blocks
with C to the left of C’. The interaction energy between C and C’, when the distance
between the blocks is z, is then

z—1 '

EyC,C )= Y e, [, ¢i+j+72).

i=0 j=1

The i™ rearrangement is either of the form CyA, B A232A3C’ — CyA A, B, B,A;C|

or CIA B,A,B,A,Cy — C,A;B,BA)A, Cos where A;, i = 1,2,3 are o-blocks,

B 1= 1,2 are e- blocks and C,, C; contains all other blocks. Let z; = |A,| and
= |B,|. We than have

(1) xia yz Z uj )

. 3.7)
(ii) max(z,, ¥;) < U,y

Now, write J!(r) = J, — 1 if r = 1, J‘(r) 0,if r > 2, J>(r) = 1/r%, 7 > 1, and
Jry=0ifr=1, J3(r) Jry—1/r2if r > 2, so that J = J! + J% + J3. Put
AH* = E 1(CyA,, B,,0) — E;1(CyA, Ay, B,,0)
+ E (B, A,B,A;C,,0) — E;x(B,, B,A;C,,0)
+ Ek(CyAy, Ay, y) — E(CyA L Ay, 0)
Then AH = AH' + AH? + AH?. We get immediately that

AH' =28(J, - 1), (3.8)
AH? > —168||J |4, (3.9)

where we have used Z r|J3(m)| = ||J]|4 in (3.9).

Let A, = (n,,, ...,nb_l) i=123and B, = (n,, ..., g, 1), ¢ =1,2,and

write 1y p =1 =1y g Mg =1 =ng g 15 M3 = 1=my, g My =1 =Ng 44 s
s = Ty, 1k—1> Mo = Ngy—i a0 117 . =my, ;. Then the density property gives

-

0<Y n,, <8k (3.10)

i=1

6, =1/A),r=1,...,7 for

1 m1,1§k§$2,1§k§x2,1§k§x3,
1<k<y,1<k<yandl<

<
k respectively.

= IA

k
<
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Using this notation we have

() E2(CyA,, BI,O) — E(CyA, 4y, BI,O)

p 31 (z+J 1)2 (H—J~1)2
(e 9)
nl’L)n5]
+;;(Z+]+$—l)2
T2 Y
N3,i"s,5 1 1

230> gt - Yon (e ;)
zlJl(z+]—1) il = C+j—-1 G+j+z,—1)
==X -2

(i) EJZ(BI’ A2B2A30170) - EJZ(BI’ BzA3C1’0)

nZz)n6] .
S Y M S Y
Zz(z-l—]-l-zz—l)z 3

i=1 j=1

—Zz(l—“u)(l “24)((“_1)2 (z+y+y1—1>2):2‘"

=1 j=1

(lv) EJ2 (Az, BZA3CI7 0) e EJ2 (Az, BzA:;Cl, yl)

T2

1
—ZZ ’J<(z+j—1)2 (i+j+y1—l)2)
25 )
(Z+J+yz“1)2 (i+j+y1+y2—1)2

i=1 j=1
=5 - X,
Now,
)1 2 Y1 z2
(l—n“ nm)(l N, )
.+, > J
’ “—;; G+j- ;;aﬂw -1y
=5, — 5.
Hence
AH?>> 2, -5, - 5, — 55— 5S¢~ % (3.11)

Let f be a non-negative, decreasing and convex function and consider

b d
S=3 > abfG+)).

1=a j)=c

k k -
Put A, = Yoy, By = ) f;. Assume that 0 < A, < A, < Af,i=a,...,b
1=a j=c

A,_,=A* |=0,B,<B <Bfi=c...,d B,_, = B*, =0, and write
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a=A4,-4,_,,B,=B,-B, |, af = Af¥ - A¥ |, B} = B — Bf |. Summation
by parts then gives

b d b d
YN @B fa+N<S<Y D B fG+7). (3.12)
i=a j=c

i=a j=c
Using (3.10) and (3.12) we obtain

z yi—1 1

LEEY Y
i=1 j=1 (i +7)
2z; oyl

1
L5022 Gigp

i=zy+1 j=1

i Y1
1

Ts <6 —

T 2;__:1 ?:: (@ + 5)°
(3.13)

Y1 22— 1 Y
<=2 -6 Y arpd ~26)) 5.
i=1

i=1 j=I
Ty y1+y2—1

1
Y= T o
: ; ;yz @i+ 47
ZyIZ—li 1
e A G

To estimate these sums we use the following result which follows from Eulers
summation formula. If a 4+ ¢ > 2, then

b d
L @rdb+o, 11
ZZ(i+j)2—10g(a+c)(b+d)+a+c b+d

=1 j=c

(i)
12\(a+c¢P (b+d)?

+i< 1 n 1 )_‘_1( 1 1
2\t "oror) "6 (a+c>3+(b+d>3)

+ﬂ((a+c)4 + b+tot @+at (b+c)4) + R,(3.14)

where —1/100 < R < 0.
Using (3.7) and (3.14) to estimate the sums in (3.13), (3.11) gives

AH? > 26[1 — 46, + §31[jlog2 — C,1 — 28C,6, (3.15)

where C| and C, are numerical constants. (C; ~ 2 and C, ~ 6 will do, but better
values can be obtained with more numerical work.) Combining (3.8), (3.9) and (3.15)
we obtain (3.6), with k; = C, and k, = 4C, — C,.
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4. Proof of the Energy Estimate for the Continuous Gas

To prove Theorem 1.2 we want to apply Proposition 2.10 to the lattice gas model
with Hamiltonian Hg(n, () given by (1.2) where ¢ is given by (1.1).

Given n € Qy , we define the basic partition 7O(n) as follows. If n,_, > 1,
n; = n; =0, theni+1 € YO(n);if n,_, =n, =0andn,,; > 1, theni+1 € I'O(n).

It follows immediately that (n,y®(n)) satisfied the (1/2,0)-density property.
The key energy estimate is the content of

Lemma 4.1. If0 < 9 < 1/4 and X\ > 7, then

(i) there is a Q% C Q,, such that
P§ , iz, n(@) € Q) < 207 'N*IP,

where ci only depends on the parameters in ¢, and

(ii) there is a diffeomorphism 72 : £2(n) — 2(J8n) with Jacobian = 1 such that
Hy(z) — Hy(Z* @) 2 75k) +10(8) @.1)

ifn(z) € Qn ,\QMN{n; o (k@) > A~ log N}, where k = k(n(z)) and vy, 7,, ¢
are positive constants, which only depend on the parameters in ¢

Assuming the validity of this lemma we can prove Theorem 1.5. Note that

[ exp(—BH () d"x

2A(n))
H — H3(% =1 = 4.2
2(n)
The integral in the numerator is greater than or equal to
exp(—BH () dVy = / exp(—PH A @)z, @43

Jo*(2(n)) £2(n)

Here we have made the changed of variables y = 2% (). The right-hand side of (4.3)
can be written

/ exp(—BH y(x)) exp(B(H 4(z) — Hy(#* (@) d"
2(n)

> exp(7, (k) + 7,(k)) / exp(—BH (%" @) d"z,
2(n)

where the inequality follows from (4.1). Inserting this in (4.2) gives (2.14) with
d, = pBv,, d, = P,. We see that the conditions (2.15) will be satisfied provided
B is sufficiently large. The constants involved are chosen as follows: k = 1/2,
1+ ¢ = nlogB, A = exp(n;[), where 7, = min(vy,/2log32,v,/2log?2) and
N, = v, — 1, log2. If we assume that

10log162 2log7 4 10g2c§‘>
’ y Tk )

97, N € ™

62ﬁ*=ma><(
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then some computation shows that the conditions in Proposion 2.10 are satisfied with
¢ > 2and D = NBCmA) | where 1, = 2¢5 provided N is sufficiently large.
Theorem 1.2 now follows from Proposition 2.10 and the estimate Lemma 4.1(i).

Proof of Lemma 4.1. The first step is the definition of .72™. Consider a fixed z € £2(n),
n € Qu, Let A, By, ..., A, B be the blocks in I'i(n). If A; = (a;,b;) and
a, <z <...<zm <b, Wedeﬁne

I(A)) = {z, - max(0,a;);k < i <1},

ie. I(A;) gives the positions of the particles in A; relative to the left endpoint (or the
origin). I(B ) is defined analogously if there are particles in B ,» otherwise I (Bj) = .
Fix k, 1 < k < s, and let AL, BO . AD B be the blocks in I"®(n). Then

each A has been built up from o-blocks in I'j(n), i.e. AV = Ay Ay We
set
tj+1—1
A = [ d@)+14,, .- A, 4.4)
1=t

which then gives the positions of the particles in AY). T (B(J)) is defined analogously.
Recall that %(n) = A,...A,B,...B,. Thus if I(4,...A,) = {y,}K__ and

s N
IB,...By) = {yi —by =2 (0 —aj)}_ ot where y;_; <y,;, 1 < N, we see that
j=2 1=K+

it is natural to define .Z2*(z) = y. It is clear that 22" is a diffeomorphism on 2(n)
with Jacobian = 1.
Each A4, lies in some block A% in I'®)(n), so we can talk about the distance dikj)

between A, and A; in I'®(n). Note that for all 4, j,
(s—1) 0); -
deV < dVG, ). (4.5)
The interaction energy between two blocks C' and C’ at distance z is given by
EyC,Cloy= Y. #(C|-s+t+2), (4.6)
s€I(O),teI(C)
and the interaction energy between the particles within a block C' is
EyC.C00= Y dt—s). 4.7)
$,t€I(C),s<t

For 0 < k < s we set

HY) = > EyA,A;,d"), 4.8)

37 "]
1<i<j<s

We consider a fixed z € §2(n), and we will not indicate the dependence on z. H (k)
gives the interaction energy between the particles in different original o-blocks after
k elementary rearrangements. Also, set

HE) =3 (B, (A, 4,,0)+ E,(B,, B,,0)),

=1
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for 0 < k < s, and finally
0 _ 0) (0)
H¢Y3—H¢(@)—H¢ H¢721

HY3Y = Hy(9* @) — Hy 7 - Hy; Y. @
Here H' % represents the interaction energy between particles within the same original
o- or e-blocks, and clearly it does not change during the rearrangement procedure.
Hfbk;, k = 0,s — 1 represents the interaction energy between e-blocks, and between
e- and o—blocks
We will now state some estimates which together imply (4.1). There is a Q% C
Qy,, satisfying Lemma 4.1(i) such that if n(z) € QN,Q\Q}"V, o< 1/4, X >7 and
s = s(k) = 2, k = k(n), then

AHy, = HY — HSTV > kys(k), (4.10)

AH, | 2 — K,8(k) + Ky0(k), (4.11)

AHy,,=HY, — HS;V > — 3 AH, — A 'k, log N, 4.12)

where x,;, ¢ = 1, ..., 4 are positive constants, which only depend on the parameters

in ¢.
Let us first show how (4.1) follows from (4.10) to (4.12). If the right-hand side of
4.11) is > ky0(k)/2, (4.10) and (4.11) give
K K
AH,, > sty + 2 ok). @.13)

If the right-hand side of (4.11) is < k;0(k)/2, then s(k) > K5(2k,) " o(k) and (4.10)
gives
AH,, > s(k) + a(k') (4.14)
Let -y, = min(k,/8, k3 /8k,). Since Hgf)z - Hf;;” =0, (4.12)~(4.14) yield
Hy(z) — Hy(Z*T) > 7,5(k) + 1,0(k) + (1,0(k) — A~ 'k log N),
where v, = ,/4. This gives (4.1) if we put ¢ = k4/7,.
Proof of (4.10). We have
HY —HSTV = > (B4, A;,d0) — Ey(A,, A, d5 D)

VAR 77709
1<i<j<s
s—1
> (By(A), Aj, 1) — Ey(Ay, Ay, 00)
7=1

>2k(s—1) > K;s.
where we have used d;s l]) = 0, (4.5), and the fact that ¢(r) is strictly increasing
when r > 1. It is clear that x, only depends on ¢.

Proof of (4.11). We write ¢(r) = ¥(r)+£(r) as in (1.1), where &(r) = —A/ r2. Hence
AH 61 = = AH w1t AH . Inequality (4.5), (4.6) and the fact that ¥(r) is increasing
for r > 1, yield AH,, , > 0 and thus

AHy | > AH ;. (4.15)
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For any n € Q) , define v; = min(1,n,;), so that v(z,y), defined in (2.4), is given

y—1
by > v,. If v, = 1, then there are particles at z;, ..., Tyyn,—1 in [i —1,4), and we
let ]\—41 = {z,}. If v; = 0 we let M, = (. For each o-block A, in I'j(n) we define

b]—l
(A = | J (M; —min(0,a)), j=1,...,s.

Jj=a;

Then I*(A;) C I(A;), and I*(A,) describes the configuration we get if we just keep

one particle in every occupied box. If AY) is an o-block in '™, we define I*(A®)
in analogy with (4.4). Also,

Ef(A A, )= > Al-s+t+32).
SET*(A),teI*(A")

Furthermore, let
=P = 3" ENA,A;LdE).

3> g)
1<i<j<s
Now, it is not difficult to see that
AH,, > AHE = HFY — HI$™D. (4.16)
To prove this, observe it suffices to prove the nonnegativity of
0) * (0)
Eg(A, A,),d0) — BY (A, A, dY)
1 1
— (By(Ay, A;,d5T ) — EF (A, A5, 457D,

which equals

( )OS >[£(IAI—t+s+d‘°>)_§(|A|_t+s+d<s1))]

teI(A\T*(A,) tel(A;)
s€l(A)) sEIAP\I*(4))

That each term in these last sums is nonnegative follows from (4.5) and the fact that
£ is increasing.

Considering the right-hand side of (4.10) means that we are trying to estimate
the change in energy by just considering one particle in each box and neglecting the
others. This suffices unless there are very many particles in an o-block compared to
its length. To tackle this problem we have to consider two different cases.

Suppose that in rearrangement number k from I'*~D(n) to I'®(n), the o-blocks
A and A’ are joined. Define

{ 1 if w(A) <2|A]° and w(A’) < 2|4
e = .
0 otherwise .

Assume first that 7, = 1. We want to estimate the right-hand side of (4.16).
Suppose that A’ is moved to the left when it is joined with A; the other case is
analogous. If A’ = A ... A, | welet A” = A;... A, ie. the join of all o-blocks
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to the right of A;. Since £ is increasing and concave, we see that Eg‘ (A, A 2) and
Ef(A,A',z) — Ef(A, A', z + y) are increasing functions of z > 1, y > 0 arbitrary.
Hence

HEP — HEMD > B4, A y,) — BE(A, 4',0)
+Ef (A, A" y)) — Ef (A, A"y, + 4p), (4.17)

where y, is the length of the e-block, B, between A and A’, and Y, is the length of
the e-block B’, between A’ and 4, ... .

Suppose that 7; _; < k <r;, j > 1. It follows from the density property Definition
2.2(2)(iii) that |B| > §,w(B), |B'| > §;w(B’), and since w(b) and w(B') are > u,
we have

yizéluj, i=1,2. (4.18)

Also, from the assumption 7, > 1,

1/5

o1 =12, (4.19)

T, 22U

where x, = |A|,z, = |A'|.
Let ©(z) =0if x < 0 and O(x) = 1 if £ > 0, and write

Fity= > 6t-s),

sET*(A)

(4.20)
Gity= Y O —|Al+9).
SET*(A)
Then
T T2
Ef(A A, 2) = / ( / g(s+t+z)dFj{,(s)> dGh(@).
1 M0
From the density property, Definition 2.2(i), we see that
—) <GB <t tell
51(t ) < A(t) =1, el ,l'1] (4.22)

§is =D < Fa(s)<s+1, sel0,z,].
Using (4.22) and integrating by parts we find
EZ(Ay Al: yl) - Eék(A, A,, 0)

Ty T

1 1
/0/((8+t)2 B (8+t+y1)2)dtds_3:l . (4.23)
1
Similarly,

E):fk(A/a Al’a Z/z) - Eék(Alv A”, yl + y2)

T3 oo
1 1
1/0/((3+t+y2)2_(s+t+y1+y2)2)dtd8_3J' (4.24)

> A8}

>-A
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Computing the integral in (4.23) and using (4.18) and (4.19) yields

Qr+o)1+71(1+0)
214714 0)(T+0)

1/5

where 7 = u;) and 0 = 51uj, Similarly, from (4.24)

E;(Al» A”7 Z/z) - Eg(A/> AH? 2/1 + y2)
(zy—o)( 4y, +0)
(z,+y, +0)(1 +0)

Now, ¢,

v

1/3 and min(z,,y,) < Ujyqs SO (4.25) and (4.26) give

2P~ B > AGG/90 - 13). 4.27)

Suppose now that 1, = 0. The estimate (4.26) holds also in this case, and since
we always have Ef(A, A',y;) — Ef(A, A’,0) > 0, (4.17) gives

HP — H D > —6A. (4.28)

Summing (4.27) and (4.28) over all k£ and using (4.16) we obtain

rj-—l
AH51>Z Z A[1,(G/90 — 13) — 6(1 — )] . (4.29)
Jj=1 k=r,

In order to obtain the estimate we want, we have to prove that we get a sufficient
energy gain in the case n, = 0.
Consider the k" rearrangement, r;_1 < k < rj, and assume that , = 0. In

the k" rearrangement two o-blocks A = A, - A%_1 and A" = A, ... A4 _,

are joined. Suppose that w(A) > 2|A|’; the case w(A’) > 2|A’]’ is analogous.
Let N(A) denote the total number of particles in A. From the definition of w(A)
it follows that N(A) > w(A) — |A|. There must be a block Aik in A such that

N, = N(4,) = N(A)/|A|. The previous inequalities give

w(A)

N, > 2|A| (4.30)

Thus, to each k with n, = 0, we can assign a pair (A%,Aqk) of o-blocks. Clearly
different k’s give different pairs of o-blocks. Let z, and (; be the distance between the
i particle in A;, and the first particle in A, in F(O)(@) and I"*~D(n) respectively,
1=1,..., N,. Then

2, > 1+, 4.31)
¢ <A 4.32)

Since £(r) is increasing, we get

A, =AY 3 z(--g &),

j= 1k<r] 1 i=1
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Now, by (4.30)—(4.32),

Ny Ny,

1 1 1 N,
>(-2+2): 2wz

=1

24/5 24/5
> Tw(A)l/s > - u;/s‘

and u; > (log2)j/5, so

ry;—1

p
AH, ZAZ Z J(L—1,)/90. (4.33)
j=1 lc='r‘_7_1

Adding (4.29) and (4.33) we get (4.11) with k, = 7A and k; = A/180.
Proof of (4.12). Since the distance between any two e-blocks B; and By, in I'¥ is
greater than the distance between B, and By, in I (=D and since ¢(r) is increasing
forr > 1,

s k-1

AHy s > Z Z[Edv(Bj’ Apy @iy o1 0541 6-1)
k=1 j=1
— Ey(Ay, By, gy s+ by 1))

S S
+ 3 D Bs(Ap B agyy j + bt j1)
k=1 j=k

= E4 (A, B, a5 s+ 0,1, (4.34)
where we have used the notation
a; =4+ ..+ AL,
bir =Bl +...+|Byl
for j <1 and ap = ijk = 0 for j > k. The right-hand side of (4.34) represents

the change in the interaction energy between o- and e-blocks when going from a

configuration to the corresponding condensed configuration.
Using the fact that Ey(, -, -) < 0 and rewriting the second double sum in (4.34)

we obtain

s k-1
AH, 5 > Z ZE¢(Bj7Ak’aj+l,k—l +bj41k-1)
k=1 3=1
S S
+ 2 D (Ey(A By gy g + by i)
k=1 j—k

— Ey(Ag, Bj, a5+ by 1]

S
+ 3 Ey(A, B® a1 ). (4.35)
k=1

where we have written B® = B, ... B,.
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The estimate we want follows from the following three estimates of the terms is
the sums in (4.35). If j < k, the

Ey(Bj, Ay @y gy + b5y k1)

J
> —K Z(Ed)(Al: Ay, Qg -1+ bjyk—l)
1=1
— Ey(Apy, Ay gy oy T 000 k1)) (4.36)

where k = 8,(1 — 8,)"1 6!, If j > k, then

E¢(Ak, Bj’ak—H,j + bk,j—-l)
— Ey(Ay, Bj, gy s+ by 5-1)

J
> —K Z (BEg(Ag, Ay gy gy + bk ;)
1=j+1
— Ey(Ag, Ay agepy gy + b 1)) (@.37)

The third estimate is the most difficult one: there is a Q% C @ N, Satisfying Lemma
4.1(i) such that if m(z) € Qy ,\QN, 0 < 1/4 and A > 7, then

> E A, B® a0, ) > -k, log N, (4.38)
k=1

where k, only depends on the parameters in ¢.

The idea behind the above estimates is the following rearrangement procedure.
Consider the o-block A,. Let successively the e-blocks B,_,, B,_,, ..., B}, change
place with the o-block to the right. Then the interaction between the e-blocks and
A, goes up, but the interaction energy between A, and the o-blocks to the right
goes down. We compare these energy changes. Then we let successively the e-blocks
B,, ..., Bj_; change place with the o-block to the left, and argue similarly with the
energy changes. Finally we insert the e-blocks By, ..., B, _, between A, ... A, and
B, ... B,. This leads to an energy change estimated by (4.38). The proofs of (4.36)
and (4.37) are not difficult, but (4.38) is far from immediate. To prove it we need
some control over how many particles there are in a box in typical configurations.
For example, if there are very many particles, say (log N)2, in the last box in A,
then the estimate need not be true. We will prove in Sect. 5 that configurations for
which (4.38) fails have a vanishing probability in the limit N — oco.

Assume now that (4.36)—(4.38) are valid. Use (4.36) and (4.37) in the first and
second sums in (4.35) respectively, rearrange these sums, and use (4.38) to estimate
the last sum. This gives (4.11) if A > 7 (which implies £ < 1/2).

We will now prove (4.37). The proof of (4.36) is analogous. Inequality (4.38) will
be proved in Sect. 5.

Let A=A, ...A,z=|A], z=ay ;+b,,;_; and y = | B,|. Then (4.37) can
be written

E4 (A, Bj,2) — E4(Ay, B;,z + )
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We can write

T

E¢(C,C',z)= / </¢(t+s+z)dFC/(t)>dGC(s),
0

0

where F, and G, are defined as in (4.28) I(-) given by (4.4) instead of I*(-). Hence
we see that (4.39) follows if we can prove that for each ¢ > 0,

Yy
/((;S(t + 5+ 2+ @) — Gt + 5+ 2)dFp (5)
0

T
< m/(¢(t+s+z+y) — Pt + s+ 2))dF,4(s). (4.40)
0
From the density property we now that F'4(s) > 6,(s — 1) and FB], (s) < 6,8, and

by definition FBj (s) < 0if s < 1/6,. A consequence of this is that FBj(s) <

0,(1 — 62)—1(3 —1), if s > 1. An integration by parts shows that the left-hand side of
(4.40) can be written

y
—/(¢'(t+s+z+x)—¢'(t+s+z))FBJ(s)ds
0
+ (@t +y+z+2) =Pt +y+2)Fp (Y
y
< —51/~;/(¢'(t+s+z+x)—¢'(t+s+z))(s— 1)ds
1

+ 6kl +y+z+a) -t +y+2)y—1

— (¢ +z+2z) — Pt +2)(0— D].
Here we use the fact that ¢(r) is increasing and ¢'(r) is decreasing when r > 1. The
integration by parts formula shows that this equals

y
6lm/(¢(t+s+z+m)—¢(t+s+z))ds
0

=61ﬂ/(¢(t+s+z+y)—¢(t+s+z))ds. 4.41)
0

Repeating the argument above, now using the inequality F4(s) > 6,(s — 1), we find
that the right-hand side of (4.41) is

Sn/(¢(t+s+z+y)—¢(t+s—|—z))dFA(s),
0

and we have proved (4.40).
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Remark 4.2. To prove the existence of a phase separation in an ordinary lattice gas
as given in Remark 1.8, one can use methods similar to the ones used above. Assume
that o < 1/r, and define Y?(n) as follows: k& € vO(n) if Mgy = LMy =
co=mn g =ny=0orifn,_, =...=n,_, =0and ny =1, ie. an o-block in
(n,7%(n)) always ends with r — 1 zeros. With this definition J(r), r < r,, does not
enter into the energy considerations in the rearrangement procedure.

5. Proof of (4.38)
In this section our goal is to show that there is a Q} C Qy , such that

Py, slzin(@) € Q4207 ' N*~<1P, (5.1

if A > 7 and o < 1/4, where [ just depends on the parameters in ¢, and if z € 2(n),
n € Qy,\@N, then (4.38) holds.

What we want to show is that configurations where there is a large number of
particles in a single box [j — 1, ), or in a sequence of boxes, has small probability
for large N. The proof is by an energy-entropy argument.

Let v, be a given integer > 2 and put

Q(J)z{B’EQN,Q;n]>VO}7 j:l,...,[/~ (5'2)

That n € Q) means that there is an excess of particles in box nr j, [j — 1, 7). The
next lemma given us a way of moving a particle from box j, which contains an excess
of particles, to an empty box. This lemma is the combinatorial part of the argument.

Lemma 5.1. There is an injective map T; : QU — Qy , such that if m = T;n, then
m, = n; — 1 and there is an | = l(n) such that n,_, = n; = ny; =0, m; =1 and
m, = n,; for i not equal to j or .
Proof. The proof will be given later in this section.

The next step is to use 7} to define a map F' : 2(n) — .Q(Tj@), and use F' in
an energy entropy argument to show that the probability of configurations where the

number of excess particles in some box is > C(log N)!/4*1/2¥ goes to zero in the
limit N — oo.

Lemma 5.2. There is a v, > 2 such that if QY is defined by (5.2) the following
holds. For each n € QY, 1 < j < L, there is an injective map F : 2(n) — 2(T;n)
and a partition

2(n) = U 2(n,n), (disjoint union),

nel

where I is a finite index set, so that
(1) F: 2(n,n) — F(2(n,n)) is a diffeomorphism with Jacobian = 1, and
(i) if z € £2(n) and n, <n, fori=1,..., L, then

B
Hy(@) ~ HyF@) > 3 1,

where B is the constant in (1.1).

Proof. The proof will be given below.
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We will now prove

Lemma 5.3. Let

r_ . () < 1/4+1/2
12 {zeﬂ.lglgLnJ(@)_[logN] }
where (2 = (2 ,. Then
Pg  J(2\2) < BB (10g N Y4112 5.3
N,0,6(12\12') < exp —1—6[0g ] . (5.3)
Proof. Define for m > [log N]/41/2r =my, 1 <j <L,
) — (). — _
Q2 = {n €eQVin; =m andlrgr}cangnk = m}.

Then

L
aA=J U U omwm. (5.4)

Jj=1 m>my QEQ(%)

Let N be sufficiently large, n € Q%) and F be the mapping given by Lemma 5.2.
Then, by Lemma 5.2 (i) and (ii), for each y € I,

Z(FQn, ) = / exp(—GH ) dVy

F(£2(n,p)

= / exp(—BH4(F(z)))d" z

2(n,p)

= / explB(H 4(z) — H,(F(2))) — BH4(z)]d" z
(n,p)

> exp(BBm” [8) Z(2(n, ) -

Summation over p € I gives
Z(£2(n)) < exp(—BBm" /8) Z(F(£2(n))) . (5.5)
Note that F(2(n, n)) N F(An,v)) = 0 if p # v, since F : A(n) — F(2(n)) is
injective. We now sum (5.5) over all n € Q%) to get
Z( U Q(n)) < exp(—BBm" /8) Z(2n),

neQ®
where we have used F'(£2(n)) C .Q(Tj@) and .Q(Tj@)ﬂ Q(ij) = () whenever m # n
by Lemma 5.1. Now by (5.4),

ZON\)<L Y exp(—BBm/8)Z(£n)).

m=mg+1

Estimating this sum by an integral, we get

c 8L BB
Py 5 6(2\2) < ————— exp(—B] /8) < exp < — ¢ llog N]7/4+1/2) :

vBBm
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The next lemma does not concern the total number of excess particles in a single
box, but the total number of excess particles in certain groups of boxes.

Let n € Qy , be given. We let .4(%) be the set of indices k£ € Z, such that n;,
lies in an o-block (e-block) in I'(n), see (5.12). Put 7 = Z(n) = {k;n, > vy} N.A.

Z = {ky, ..., ky}, where k; < ... < ky,. Writt M = [log N]q + r with

0 <7 <[logN], and put 7O = {k(, ..., k.}, 79 = {ky, tirstr > Kayirhs
ji=1,...,q. Set

my=mim)= Y (m-v), Jj=0,....q.
ke 7@
Lemma 5.4. Let

" __ . . < -
2'={zeQ: max mn@) < llog N}

Then for all sufficiently large N,
Pf 0 (2\2") < 207 27417, (5.6)

where ¢} only depends on the parameters in @.

Proof. We will prove that
Py, s((@\2")N 2" < (0 - 0/e) ' N2-BvgB/24

which, if we take cT = B/3, together with (5.3) implies (5.6), since v, > 3 and
v > 2. Given 5,0 < j7 < q and m > [log N], let

L. ={n€ ; max n, < my,m.(n) =m and max m,(n) =m.(n) 5.
§m n QN,Q jhax, m; < m, (1) 02X &(1) (1)

Then .
o\eyn2 =) U U ew. (5.7)
7=0 m>[log N1 LLGLj’m

Consider n € L, ,,,. The idea is now to move the excess particles in the boxes with

indices in 7 successively to empty boxes using the maps defined in Lemma 5.1
and 5.2. _
Let n¥ = n. Suppose that n® has been defined, and that

Z (ngc” -1 >0,
ke 7)

which means that n® still contains excess particles in boxes with index in 7. Let
k, be the smallest k in .77 such that

ngji = max n{.

ke 70)
Then n® € Q*7), and we put
4D = T, @,

with T)_ given by Lemma 5.1. We also get a map F, : 2(n®”) — 2(n®“*P) from
Lemma 5.2. Furthermore, we define the map 7' : L; ., — Qy , by T(n) = n™*D.



554 K. Johansson

Then there are no excess particles in the boxes with index in _Z¥ in T'(n). Note that
themapT': L, — Q@ ,, 1s not necessarily injective.
We can now formulate the essential energy and entropy estimates:

Claim 5.5. Let z € 2(n™), 1 < i < m. There is a number )\, independent of z, such
that

Hy@) - Hy(F,@) > ), (5.8)
These numbers satisfy
i Bylm
>0 .

Furthermore, for each n’ € (L, ),

{neL,,;n=Tn} <expm. (5.10)

Jym? =

The proof of the claim will be given below.
Assuming the validity of the claim we can now complete the proof of the lemma.
By the same argument as in the proof on Lemma 5.3 we see that

2@ > ZFE0@D)) > ™ 2(02@®)).
Here we have used (5.8). Repeated use of this inequality gives

Z(n)) < exp ( -8 Az> Z(ATn)

=1

<exp(—C,8m) Z({2(T'n)),

where the second inequality follows from (5.9), and C; = By, /24. Using this we
find

Yz <SP N Z(ATn))

’LIEL]’m EELjvm
=e P N Z2(@){n € L ;0 = Tn}|
n/€T(Lj m)
<em@AD N Z@0@y) < eTMOPTNZ@). (S.11)
ﬂleT(Lj,m)

If 2 > C, 3 the estimate (5.6) is trivial, so we can assume that C;3 > 2. Then (5.7)
and (5.11) give

o0
P, s\ n2h)< Y @b < 1—1—/51[1—1) ~(C18-Dllog N]
m=[log N]+1 —e

This completes the proof of Lemma 5.4.
The results needed to prove (4.38) are now at our disposal, so we proceed with

Proof of (4.38). With the notation introduced above let

* .
Qn = {n € QN,Q,OISn]a%cqmj(n) > [IOgN]} .
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Then (5.1) holds by Lemma 5.4. We have to show that the inequality (4.38) holds for
all z with n(z) € Qy ,\QN-

Let n € QN,Q\QX,. (n, I (n)) gives a partition of n = A B, ... A,B,, where
A, = (a,b,), k=1, ..., s are the o-blocks. Put

A= J{j € Zray <j < b}, (5.12)
k=1

sothat .Z = {...,1_},ly, ..., lp}, I, <l is the set of all indices for boxes in
o-blocks. Write ; =n;, ., i > 0, to simplify the notation. Let 7' = .#\ 7. Then
w <vyyifie 7.

Observe that the interaction energy between two boxes at distance z from
each other containing v and p particles respectively is > —Apv/z?. Recall that
B® = B, ... B, and write B®) = (£,,&,, ...), i.e. § is the number of particles in
the i box in B%®. Then £, = 0 and &, = 0 if ¢ > L. It follows from the density
property that

m
d & <ém, 1<m<L. (5.13)
k=1

If x, = |A;|, we have

E (A B(k) ) > A fk: ZL: nbk—igt
k> Y R - s
i Frhe i=1 t=2 (@ =240+ ty?
> — A6 Sy Moy 5.14
oanY Y e G

i=1 t=1

where we have used (5.13) to get the second inequality. Now, since a; ,; 4+ = ay ,

Ggy1,s = 0and ny, =0, we get

s L oo

Hi
Z By(Ay, B®, ay,, ) > — A8, Z Z G+ 1)
k=1 t=1

i=1

L
Hi Yo Ki — Y
=-A6Y | Y armt Y ot ; 7‘]
t=1 Lie 7’ @+ ieZ @+0 e @+
L o q
14 ”"-V()
2—A622[2%+Z i~
t=1 i=1 (7,+t) =0 iej(j) (Z+t)
L q m.
J
Z—A(Sz,:VOlOgL—l‘t:lego m] . (5.15)

where we have used p; < vy wheni € 7', m, = Y (u; — 1), and | 79| =
i€ 70
[logN1,j=1,..., gand | Z©| < [log N]. Since n € Q%, m, < [log N] and hence
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the last expression in (5.15) is bounded from below by

© g 1

t=1 j=0

q
1
> — Ad, |yylog L + [log N _—
2[ o log L + [log ]; ([logN]J)Z]
> — Aéb,[yylog L +1logg+ C1. (5.16)
Now L = N/p and ¢ < N/[log N], so when N is sufficiently large we have

S
> Ey(A, BP0y, ) > — ASy(p + Dlog N,
k=1

which proves (4.38) with x, = A(y, + 1).

Proof of Lemma 5.1. Let s,t € [0, L] be two integers and let Qg{ 1 be the set of all n
in QU such that the number of boxes with exactly one particle is = s and the number
of empty boxes is = t. Let 7 be the number of n;’s such thatn,_, =n, =n, ; =0;
T > t. The condition ¢ < 1/4 ensures that fo 1 = unless s + 1 > 7. To simplify
the notation we write X = Q(S{ ).

Given n € X we can assign ¢ different m € Q , by letting m; =n, —1,m; =1
for some / such that n,_; = n; = n;,; = 0, and m, = n, for i not equal to [ or j.
Let Y be the set of all m that can be obtained in this way, starting from any n € X.
This construction defines a bipartite graph (X,Y,.#), where (n,m) € .4 if m can
be obtained from n in the way described above. Let o(z) denote the valence of the
corner z in the graph, and for A C X let

R(A)={m € Y;(n,m) € 4 for some n € A}.

Given m € Y we can obtain any n € X such that (n, m) € .4 by moving a particle
from one of the s 4+ 1 boxes with exactly one particle in m, to the j® box. Hence
o(m) = s+ 1 and clearly o(n) = 7 for any n € X. Let A C X be arbitrary. Then

s+ DA< TAl =D om) < D om)=(s+ DIRA).

neA me R(A)

Hence |A| < |R(A)| for all A C X and according to Hall’s lemma (“marriage
lemma”), see [GW], there is a matching of X into Y, i.e. an injective map
Tj : X — Y, such that (n,T,,n) € % for each n € X. This gives an injective

map T, : Q@’i - Q No Hm e Tj(Q(j) then m has exactly s + 1 boxes with one

s,t/2 i

particle and ¢ — 1 empty boxes. Consequently Tj(ng,b # Tj(ij)’ ) if (s, 1) # (s, ).
Hence T; : Q¥ — Qy , is injective.

Proof of Lemma 5.2. Let n € QY so that n; < ,; the choice of y, will
be specified below. Divide box no. j, [j — 1,j), into n, — 1 subboxes, I,” =
[G-D+GE—-D/(n, —D,G—-D+ i/(n; — 1)), of length 1/(n; — 1). At least
one of these subboxes must contain more than one particle. Let k£ = k(n) be given
by Lemma 5.1. Let £2(n,l, u, v) be the set of all € 2(n) such that
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(e) each of I](i), 1 < i < [, contains at most one particle, but IJ@ contains two or
more particles,
(®) z, is the first particle in I O and
(@) z, <k(n)—2,z,.,>kn)+1.
The index set I is the set of all possible (I, u,v) for a given n. We define F' on
2(n,l, p,v) by y = F(z), where (suppose v > u, v < p is analogous)
z, if 1<i<porv<i<N
Y, =% Tigl if p<i<v 6.17
z,—0—-D+k@n ifi=v.

It is clear from the definition that (i) is satisfied, and it is also immediate that
F(£2(n,l, u,v)) are disjoint for different values of (I, u,v), so F is one-to-one on
£2(n). From Definition (5.17) of F" and the definition of T; in Lemma 5.1 we see that
F maps £2(n) to .Q(Tj@).

We now turn to the proof of the energy estimate (ii). Assume that x_, ..., z
[J — 1,7) are the positions of the particles in box j, 7 = o + n; — 1. Define

€

T

HP@ = > ¢z —z,))

o<i<k<T

and

H;Z)(@) = Z Z |z — z:1),

1=0 k<o or k>T

so that HJ(.I)(:_U) is the interaction energy of the particles in box j with each other,
and H;Z)(:_c) is the interaction energy between the particles in box j and the particles
in all the other boxes. Hf”(:g) and Hf)(g:) for i # j are defined analogously, and
HY@) =0if n, < 1.

The potential ¢(r) in (1.1) satisfies ¢(r) < 0 if » > 1. Thus

Hi,)(F(@) < 0. (5.18)

We will now prove the estimate

B

H;(z) - H} (F(2)) > 7 n]. (5.19)
Suppose that z € 2(n, [, u,v). Then
H @) — HP(F@) = 37 ¢(l5, =2, + 6@,01 = 2,)- (5:20)

. 1=0
i#u,ptl

Recall that ¢(r) = B/r7 — 2A/r?, v > 2. There is a constant d, > 0 such that
¢(r) > —d, for all 7 > 0, and there is an r,, such that

¢(ry>B/2rY, if 0<r<r, (5.21)
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and ¢(r) is decreasing in (0, 7,). Let vy | = [1/ry]+ 1. Since Ty =T, < 1/(nj -1,
we see that if vy > v}, thenn; —1 > v, and thus z,, —z, < r,. Hence (5.20)
and (5.21) give

@)~ HY (@) > —din, + 2 (n; — 17

d B 1
zrﬂ[ L +—(1——>]. (5.22)
J V(')y 1 2 VO

Choose v, so that if 1, > 1, then the expression in brackets in the last line in
(5.22) is > B/4. This proves (5.19) if vy > max(vy ;, g »)-
The next step is to estimate

H @ -HPF@)= Y, ¢z, —z,). (5.23)

k<o or k>T1

The boxes adjacent with box j each contains < n. particles by assumption. Hence
their contribution to the sum in (5.23) is > — 2d,n,. The distance from a particle in
box k to the partticle at z, is > |k — j| — 1. Since the number of particles in any box

is <n; and ¢(r) > 2A/r* we see that

2. 24
HP(z) - HP(F(z)) > —2dyn, —2n; = —dny, (5.24)
k=1

where d, = 2d, + 2Am? /3. The estimates (5.18), (5.19) and (5.24) together show that

B B 4d, _
Hy(@) — Hy(F@) = 7 NJ —dyn; > 7(1 -2y 7) .

Choose v 5 so that 1 —4d, B~ y 0 ~7 < 1/21if vy > vy 5. Then the desired inequality
follows if v, > [max v, which only depends on the parameters in ¢.

Proof of Claim 5.5. We will denote the number of excess particles in the boxes

. . . (J) — _ .
with index in Y by v,, v, = Vi - bitog Nigagr — YO0 & = 1, ..., [log N]. Then
[log N1

>~ v; = m. The positions of the particles in box k are z, , ..., z,  _;, ie.,

i=1
k-1<z, <...<z,  _ <k, 04 = 0y if there are no particles in box k. The

interaction energy between the particles in box k and the particles in box [ is

Opt1—1 opp—1

Hy@= > > ¢z, —z.

t=0 T=0],T#t

By the same argument as in the proof of Lemma 5.2 we can show that

> H,, @) — Hy, (Fi@)] > = (n“’ﬁ, (5.25)
le 79
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using the notation introduced in the proof of Lemma 5.4. If j € %\ 7 then n; < vy
by definition. Combining this with the density property for e-blocks we see that

1
> (Hy, (@) - Hy (F@) > —4AVO(Z - - d1> = —dyy,, (5.26)
AUCAD) =17

where dy = 4A(7?/6 + d,).
Consider now

> Hy, @) — Hy_ (Fi(z))]

VAVl
[log N1(j—1)+r M
= ( oo+ Y )[Hkr,kt (z) — Hy, 1, (Fi(@))]
t=1 t=[log N]j+r+1
=5+ 5. (5.27)

If |k, — k,| = 1 we use the fact that max n; < m, = [log N]1'/4*1/27 as above, to get
the estimate
Hk,-,kt('Z) - Hk,-,kt(Fz@)) > = d1m0 > (5.28)

where d; is a lower bound on ¢(r) as above. If |k, — k,| > 1 we use the fact that
the distance between any particle in box k. and any particle in box k, is > |1 — t|.
Combining this with max n ; < my and §(r) > — 2A/r? we find that in this case

2Am,
He @ — Hy, o (Fi@) 2 — = t‘|’2 : (5.29)
Let d, = max(2A4, d;). Then (5.28) and (5.29) give
[log N1(j—D+r 1
X, >—d >—-2d 5.30
1= %M ; o Y i [
(Recall that [log N](j — 1) +r < 7 < [log N]j + r.) Similarly,
1
X, > —2d,m 5.31
2= T e N +r+1— 7 (5-31)
Combining (5.25)—(5.27), (5.30), (5.31) and (5.18) we obtain
H () — H¢(Fz(2))
B 1 1
> = 7 —2d, —d
= g () 4(’”0(7 “TogNIG - D—r ' [ogNlj+r+1- r) o
=, (5.32)
What we do in the construction of n”, i = 1, ..., m, is that we successively remove

the excess particles in the boxes given by 7). Hence it follows from (5.32) that

[log NI v,

[IOgN] 1
2 —_ ) - . .
+ 2dym, Z ( TN 1= 1) dyvym (5.33)



560 K. Johansson

We will use the following estimate

[log N1 v; [log N1

> YMG w0 =2 DR

=1 j=1

¥ 2
2_7+1ugm2—ygm. (5.34)

Choose v 4 so that v, > 1, 4 implies By /24 — dsv;y > 0. Them (5.33) and (5.34)
imply

m

B
Z)\"' > ﬁl/gm,

i=1

if we can show that
[log Nl v, [log N1 1
—2d, — ] >0. 5.35
; ZJ 4o Z < [logN]—l—l—z) (5-35)

Yy
Using the Cauchy-Schwarz’ inequality and the estimate Y j7 > v2, we see that the

i=1
left-hand side of (5.5) is bounded from below by

[log NI [log N] 1/2
Z v? ( > V3> : (5.36)

i=1

where ds = 4nd,/ /6. Now, again by the Cauchy-Schwarz’ inequality

[log N] [log N1 1/2
me3 < ( 3 ) flog NI~
i=1 i=1

[log N] 1/2
v2)

If we write z = ( we thus have z > m[log N]1~'/? and (5.36) equals

=1

g(x) = Bx?/8 — dsmyz. When N is sufficiently large then
- B _ _
g(x) > g(m[log N1] 1/2) =3 m[m[log N] - dsmyllog N 1723
B
> £;-ma — 8ds[log NJV/2=1/4) > ™

since v > 2 and m > [log N]. This proves (5.36).
The condition on vy is

vy > max v, 5.37
0= 1<icq 007 (5:37)

which only depends on the parameters in ¢.
It still remains to prove (5.10). Let n € L, .. There is a sequence {j,};L; C

7Y9)(n), which depends on 7, such that

1
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This means that we first move a particle from box j;, then from box j,, and so
on. Given n’ = Tn and {j,}/, we can find n by reversing (5.38). Given n’ we

also know 79(n), since 7U(n) = 7Y (n"). Since |7 (n)| = m, the number of
possible sequences {j,.}7, is

(m+[logN]— 1)

m

and consequently,

log N1 -1

m
m+ [log N] -1

) < exp([log N]) < expm.
m

< exp <m log

Remarks on the Proof of Corollary 1.3. This proof is analogous to the proof of
Theorem 1.3 in [Jol]. The only difference is that when we divide A into two parts
[0,€)N A and [£, L] N A, the interaction energy between the two parts is not o(/V) for
all configurations. But if we exclude configurations for which the number of particles
in a box is > [log N1'/4*1/2Y which we can do by Lemma 5.3, it is clear that the
interaction energy between the two parts is o(N), and the proof in [Jo1] can be used.
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