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Abstract. The invariants JKk of a framed knot K coloured by the irreducible
SU(2)q-module of dimension k are studied as a function of k by means of the
universal ^-matrix. It is shown that when Jκ k is written as a power series in h with

q = eh, the coefficient of hd is an odd polynomial in k of degree at most 2d + 1.
This coefficient is a Vassiliev invariant of K. In the second part of the paper it is
shown that as k varies, these invariants span a d-dimensional subspace of the space
of all Vassiliev invariants of degree d for framed knots. The analogous questions for
unframed knots are also studied.

Introduction

A framed knot K in the 3-sphere determines an SU(2) invariant Jκ k for each
positive integer k by using the irreducible SU(2)q -module of dimension k to "colour"
the knot. These invariants, sometimes called the coloured Jones invariants of K, are
Laurent polynomials in t/1/4 with integer coefficients. Setting q = eh, each coloured
Jones invariant can be expanded as a rational power series

in the variable h. Together they form a single function of h and the colour fc, the
coloured Jones function of K. We shall study the dependence of this function on k.

Our main result, Theorem 1.6, is that the coefficient Jd(k) of hd in the expansion
of Jκk is an odd polynomial in k of degree at most 2d+ 1. Furthermore, if K has the

zero framing then the term in k2d+l vanishes, and so in this case Jd(k) is of degree at
most 2d - 1. An extension to the case of framed links is given in Theorem 1.7. These
results have proved fruitful in our study with Kirby [7] of algebraic properties of the
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6'[/(2)-quantum invariants of 3-manifolds introduced by Witten [14] and Reshetikhin-
Turaev [12].

In the spirit of Vassiliev's finite type invariants, we note that for each k the
coefficient Jd(k) of hd in Jκk is an invariant of K of degree d, that is of type d
but not of type d — 1 . By varying k we can find, by the result above, at most d + 1
independent invariants. In fact there is always a relation among the coefficients of
the polynomial Jd, since Jd(l) = 0 for d > 0, and so Jd(k) can provide at most
d independent invariants. By considering the values of these invariants on certain
"chord diagrams" in the sense of Bar-Natan [2] (corresponding to linear combinations
of knots), we show that Jd(k) does in fact determine d independent framed Vassiliev
invariants of degree d (Corollary 2.4).

If K has the zero framing, then Jd(k) is of degree at most 2d — 1 in fc, and so
provides at most d — 1 independent unframed invariants of degree d as k varies.
Evidence points toward a much lower bound of d -f 1 for the degree of Jd, and a
consequent reduction to [d/2\ in the number of independent invariants. We show
by another explicit calculation on chord diagrams that there are in general at least
this number of independent unframed invariants of degree d arising as values of the
coloured Jones function (Corollary 2.9).

We conclude with a conjecture about determining the Alexander polynomial from
the coloured Jones function.

1. Calculations from the Universal β-Matrix

The coloured Jones invariants Jκ k of a framed knot K can be calculated from a
closed braid representation of K using Drinf eld's universal ^-matrix for SU(2)q [4],
as described in Reshetikhin and Turaev [11]. We shall use this approach to produce
a state sum for Jκ k which will be seen to reduce to a finite sum when calculating

Jκk up to terms in hd, where q = exp(/ι).
Recall that the .R-matrix is an invertible element of the topological tensor product

S? ® ̂ , where S? is the deformed universal enveloping algebra Uh(su(2) (g> C). It
can be written, following Kirby and Melvin [6], as

00

R = Σ sn(h)Xn 0 Yn exp (\h(H + nl) ®(H- nl)) ,
n=0

where

( 5_ s-i)n j sinh (i hn)

and X, Y and H are generators of ̂  satisfying the relations

sinh (\ hH)
[H, X]=2X, [H, Y] = -2Y , [X, Y] = [H] =

sinh (i h)

We shall also make use of the element μ = exp (| hH) in ̂  which is sometimes

called the enhancement of R.
As is shown below, the elements R±l and μ can all be expressed as sums of

"bounded degree" in the following sense. Any element in &®n can be written as
a power series in h with coefficients in ,^®n, where 3F is the algebra of complex
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polynomials in the noncommuting variables X, Y and H. Rearranging the terms in
this series produces a sum of the form

in which the ajk are monomials in X, Y and H, and the coefficients c (h) are
complex power series in h. The index set J may be infinite, but we allow only
finitely many coefficients c of any given order, where the order ord(c) of a power

oo

series c(h) = ^c^ is the smallest i for which cτ / 0. Such a sum is said to have

bounded degree if
deg(αj/c) < ord^)

for each j in J and all k = 1, . . . ,n. Equivalently, the coefficient of hd is a linear
combination of tensor products of monomials of degree at most d. Observe that sums,
products and exponentials of bounded degree sums are again of bounded degree.

It is clear that μ — exp(hH/2) has bounded degree. Indeed

oo

^—-V

ra=0

with cm(h) = hm/(2mm\) and μm = Hm. The same is true of R±.

Proposition 1.1. The universal R-matrixfor SU(2)q and its inverse can be written as
sums of bounded degree,

where oc^ and β^ are monomials of degree not exceeding the order of ' c3.

00

Proof. Write R = £) Sn exp(Tn), where Sn = sn(h)Xn ®Yn (for sn as above) and
n=0

Tn — - h(H + nl) (8) (H — nl). Evidently Tn is of bounded degree, as is Sn since

ord(sn) = n. Thus the product Sn exp(Tn) is a sum of bounded degree in which all the
monomials which appear are of degree at least n, and it follows that R is of bounded
degree. Using the formula R~l = (S <g> I)R, where S is the antiautomorphism of ̂
defined by s(H) = -H, S(X) = -sX, S(Y) = -s~lY (see Sect. 3.16 in [11]), it is
not hard to show that R~l = R~l(h) = R(—h)9 and so R~l is of bounded degree as
well. D

Remark. The index set J can be chosen explicitly to be the set of triples (n, α, 6) of
non-negative integers, with a^ab ® @nab = XnHa ®YnHb, and

00 / ΛΣ <- >"(ί
\

This formula is not essential for what follows, although it can be useful to note that
X and Y occur in cx^ab and β^ab with the same degree.

Now suppose that a framed knot K has been presented as the closure of a braid
B on n strings. The universal J?-matrix and its inverse can be used to represent B by
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α+(x)

Fig. 1. x y x

an automorphism Bk of the tensor product V®n for each irreducible ^-module Vk.
In particular, if B is written as a word in the braid generators σf , for 1 < i < n and
ε — ±1, then Bk is the corresponding composition of automorphisms ]Rξ = (P^)ε,
where Pi is the interchange of the ith and (i + l)st factors of Vjfn, and Λ2 is the
action of R in the same factors:

The invariant Jκ fc can then be calculated as a weighted trace of Bk, namely

where μ is the element exp (| ft/Z") regarded as an endomorphism of the module Vk

by the action of H on Vk. In other words, we must compose Bk with μ 0 . . . 0 μ and
then take the ordinary trace on V^n, as described in [11]. (For more general quantum
group invariants, an orientation is required on K\ the preceding construction is for
the downward orientation through the braid, and a dual construction is needed for the
opposite orientation. This distinction disappears for SU(2)q since the modules Vk are
self dual.)

We next produce a states sum for JKk. By the previous proposition, each

automorphism Rf can be written as an infinite linear combination

endomorphisms Rε

τy Explicitly fit maps x <g> y (in the iih and (i -f l)st factors of

V^n) to βf(y) 0 α+(z) while #~ maps it to aj(y) 0 /?~(x). The effect of this
endomoφhism at a crossing is illustrated (suppressing the subscript j) in Fig. 1 by
showing the crossing with a± on the overcrossing string and β± on the undercrossing
string.

This yields the state sum Bk = Σ (ĉ 1 R^ . . . c^R%°jc)9 where each choice
JlvJcGJ

of indices j l5 . . . ,jc in J, corresponding to a choice of one term in R±l for each of
the crossings of B, is to be thought of as a state. To obtain Jκ^k we must compose

Bk with μ®n, and so we extend the state to include a choice of non-negative integers
m l 7 . . . ,mn specifying one term in μ — ΣcmMm at me toP °̂  eac^ braid string.
Thus a state S of the braid B consists of a choice of indices jl , . . . , jc in J for the
crossings and of non-negative integers m1 ? . . . , ran for the tops of the strings. Setting
^ = . . . . . . 0 , w e have

where £5 is the endomorphism (7Jmι 0 . . . 0 Hrnn)(Rε

i

l

ιh ...βf^) of V^0n

determined by S. Observe that the coefficient cs does not depend on the colour
k, whereas the endomoφhism Bs does.
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Fig. 2.

We now show how to replace Bs by a monomial Ms in &, regarded as an
endomorphism of Vk, with Ίr(Bs) = Tr(M5). This method has been discussed by
Lawrence [8] and developed in a diagrammatic form by Kauffman [5].

To define Ms, recall that the endomorphism Bs is built up from endomorphisms

otf ® βf of Vk ® Vk at each crossing of B, as shown in Fig. 1, together with
endomorphisms μm of Vk at the top of each string. Following Kauffman, view the
monomials α^, βf and μm as "beads" which are free to move along the strings past
the individual crossings, and may be multiplied when they occur next to one another.
Thus the endomorphism Bs will take a vector of the form x{ ® . . . <g) xn to a tensor
product yl 0 . . . 0 yn of vectors, each of which is the result of operating on one of
the vectors xτ by the beads which it has passed on its way from the bottom of the
braid to the top. In particular, if B induces the permutation π in the sense that the
string at position i at the top of the braid is joined to position π(i) at the bottom, then
yi = V^Tφ)' where rφi is the product (from top to bottom) of the beads on the iίh

string. Now define

which is just the product of all the beads on the single string K obtained by closing
the braid B. For example, in the state of the diagram for the figure-eight knot in
Fig. 2, the monomial Ms is μvβ^θί^ μ^β\ <^

Proposition 1.2. For each state S, the trace of the endomorphism Bs ofV®n is equal
to the trace of the monomial Ms on Vk, and so

summed over all states.

Proof. Choose a basis e l 7 . . . ,e fc for Vk and denote the associated matrix for any
endomorphism ψ of Vk by (ψj), so that ψβj = £) ψfa. Then Bs maps e^ 0... ®ejn

to
k
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and so

Tr(Bs)= Σ ^(1)-..^π(tl)

J l v ,Jn = l

fe

- l>ι ^(i) - - ̂ n-ι(1))J - Tr(Ms). D
J = l

Each state 5 thus makes a contribution csTr(Ms) to the invariant Jκ^k. The
coefficient cs does not depend on the colour k, nor does the monomial Ms.
Dependence on k arises only on taking the trace of Ms in Vk. The polynomial nature
of the dependence on k will already appear in the contribution of each individual state,
and will be determined by a calculation of Tr(Ms) in terms of k. Before making this
calculation, we note a restriction on the degree of Ms which arises from the bounded
degree of the terms in the universal .R-matrix. This will eventually give the desired
control on the degree of k relative to that of h in Jκ^k(h).

Proposition 1.3. deg(Ms) < 2ord(cs)for each state S.

c n

Proof. The coefficient cs is the product Π cj* Π cmτ

 and so

*

αrd(c5) = ̂ σrd(c*«) + 2
ι=\ i=l

since order is additive on products. Now each term cε

3a
ε

3 ® βj and cmμm in the state
S is chosen from a sum of bounded degree, so deg(α|) < ord(c|), deg(/3|) < ord(c|)
and deg(μm) < ord(cm). The monomial Ms is the product in some order of the
monomials α|, βj and μm chosen by the state S and so

c c n

deg Ms = y^ deg α^ -f Y^ deg /3*1 -f ̂  deg μm.
i=l i=l i=\

c n

< 2 y ord(c z) H- \ ord(crn ) < 2ord(cs). D

We now analyse the dependence on k of the trace of an arbitrary monomial M in
X, Y and H, when operating on the ^-module Vk.

Proposition 1.4. Let M be a monomial in X, Y and H, and consider the trace of
M on the irreducible ^-module Vk of dimension k, expanded as a power series

00

Tr(M) = Σ ^ι(k}hl in h. Then the coefficient M^k) of h1 is an odd polynomial

in k of degree at most I -f deg(M) -f 1.

Proof. Following [6], but with slightly modified notation, set m = k/2 and choose
a basis for Vk consisting of weight vectors e_m+1, e_m+2 ? em

 with the property
that

= [m- j-f

Hej =
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where [n] = sinh (^ hn)/sinh (^ ti). These relations extend to all j = m(mod 1) by

setting ej = 0 for j < —m and for j > m. The definitions given in this way of
Xe__m and of Y~em+1 are consistent, since [0] = 0.

The monomial M can be represented diagramatically by its profile, consisting
of a sequence of rising, falling and level edges corresponding to the sequence of
appearances of X, Y and H in M, read from right to left. For example, when
M - H2XY2X3H the profile is

Now set d(M) = degx(M) — degy (M), which is just the final level of the profile
with initial level zero. We claim that Tr(M ) = 0 if d(M) φ 0, and otherwise that the
vectors e are eigenvectors for M on Vk with eigenvalues Λ^ (depending on k), so
that

m

Tr(M)= \.

Indeed, it is clear from the effect of X,Y and H on ej that Me- is a multiple of
ei+d(Mγ anc* me claim follows immediately. Thus we need only consider those M
for which d(M) — 0. (Note that all the monomials Ms defined from the states of a
knot diagram have this property, because of the balance between the degrees of X
and Y in each pair a ® /?.)

Let us then assume that d(M) = 0, and compute the eigenvalues λ j defined by
Mβj = λjβj. Suppose that there are p rising edges in the profile, starting at levels
α 1 ? . . . , ap and q horizontal edges at levels 6 l 5 . . . , bq. There must also be p falling
edges finishing at levels α 1 ? . . . , ap9 since the net change of level is d(M) — 0. Now
each horizontal edge at level b contributes 2(j + b) — 1 to λ^ , as H then appears at
level &, to feature as HeJ+b. A rising edge from level α to level a + 1 contributes
[ra -f (J + α)], from the appearance of XeJ+a, while a falling edge from level a + 1
to level α contributes [m - (j + α)], from the appearance of YeJ+a+l. Thus

p q
X. = J|[m + (j + α.)] [m - (j + αt)] [|(2(j + 6 ) - 1) .

ι=l ι=l

Now it is an easy calculus exercise to show that the coefficient of hl in the power
series expansion of [n] is a polynomial in n of degree at most / + 1, and it follows
that the corresponding coefficient \^ in the expansion

is a polynomial in j and k of degree / + 2p + q = I + deg(M). In fact, λ j / is even
in k. This is immediate from the fact that [m 4- (j 4- α^)] [fπ, ~ 0 + ̂ )] is an even

function of k = 2m, which follows from the identity 2 sinh(m H- n) sinh(m — n) =
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cosh(2m) — cosh(2n). Since

771
Mι(*> = Σ A,.,,

j=-τn+l

the proposition is a consequence of the following lemma.

Lemma 1.5. Let p be a polynomial of degree a. Then the function f defined on integers
kby

ra

/(*)= p(j),

where m = k/2, is an odd polynomial of degree d + 1.

Proof. First observe that there exists a polynomial P of degree d+ 1 such that p(x) —
P(x) — P(x — 1), a "discrete integral" of p. For example, for pd = xd+l — (x — l)d+1

the polynomial Pd = xd+l will do. But p can be written as a linear combination
d

p = Σ anPn> smce Po> »Pd clearly sPan me space of polynomials of degree < d,
n=Q d

and so P = ̂  anPn is the desired integral.
Now n=°

which proves the lemma, and thus the proposition. D

We now give the proof of our main theorem on the dependence of the coloured
SU(2)q invariants Jκ k of a framed knot K on the colour k, the dimension of the
module Vk.

Theorem 1.6. Write the coloured Jones invariant Jκ k of a framed knot K as a power
series

d=0

in h, where q — exp(/ι). Then Jd(k) is an odd polynomial in k of degree at most 2d+l.
Furthermore, the coefficient ad of k2d+l in Jd(k) depends only on the framing a on
K, namely ad = ad/(4ddl).

It suffices to construct, for each d, a series J^ k(h) which agrees with Jκk(h)
up to degree d in /ι, and which is an odd polynomial in k of degree at most 2d+\
with coefficient of k2d+lhd equal to ad/(4ddl). To accomplish this, consider the state
sum JKjk(h) = Σ cs(^)Tr(Ms) given in Proposition 1.2. Expand each trace as a

S oo
power series Tr(Ms) = Σ,Msl(k)hl in Λ, and write Ίr(Ms)\d for the partial sum

ΣMsl(k)hl. Now set
1=0
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where for convenience we write os for ord(c^). Observe that this sum is finite since
ds = deg(Mg) < 2os < 2d, by Proposition 1.3, and there are only finitely many
monomials of any given degree.

It is clear that Jκ^k(h) and Jχ^k(h) agree up to degree d in h. The last proposition

shows that each Msι(k) which appears in Jχjk(h) is an odd polynomial in k with

deg(M5/) < / + ds + 1 < 2d + 1 ,

where the last inequality follows from the inequalities / < d — os, ds < 2os (by
Proposition 1.3) and os < d. Thus J^ k(h) is an odd polynomial in k of degree at
most 2d +1.

It remains to compute the coefficient ad of k2d+lhd in J^ k(h). To get any
contribution of degree 2d -h 1 in k from a state S, all the inequalities above must
become equalities, giving os = d, ds — 2d and / = 0. Thus

ad = as »
S,ds=2os=2d

where as denotes the coefficient of k2d+lh° in the expansion of Tr(M5). We will
show that this sum depends only on the framing a of K.

First observe that since ds = 2d for the states S in the sum, the coefficient
as is independent of the order of the variables in the monomial Ms. Indeed, for
any monomial M, write aM for the coefficient of fcdeg(M)+ι^,o jn the expansion of
Tr(M). Now if Mf is a reordering of M, then it follows from the commutation
relations [H, X] = 2X, [H, X] = -2Y and [X, Y] = [H] = H + O(ft) that
M — M' + TV -h O(/ι), where TV is a sum of monomials of degree less that deg(M).
Since TV does not contribute to αM, by Proposition 1.4, we have αM = αM/.

Since ds = 2os for the states S under consideration, it follows from the proof of
Proposition 1.3 that 5 must select the term μ0 = 1 from the sum μ for each of the
strings of the braid representing K. Now let K' be any knot presented as a braid with
the same number of positive and negative crossings as K. Fix a bijection φ from the
crossings of K to the crossings of K* ', respecting sign. This induces a bijection φ
between the states of K and of K' which select μ0 from each appearance of μ, namely
if S assigns α^ 0 β? to a crossing x of K, then φ(S) makes the same assignment
to φ(x). The coefficients cs and cφ(S^ are then equal, but the monomials Ms and
Mφ(S) are m general different, because of the different order in which the crossings
appear on the two knots. These two monomials are however the product of the same
elements aε

3 and βε and differ only in the order of these elements. It follows from

the observation above that as = &φ(sγ an(^ so ad *s tne same f°r K and for K' . Now
it is clearly always possible to choose K' as the unknot with the same framing as
K, given by the sum of the signs of the crossings, and so ad depends only on the
framing.

Thus it suffices to compute the coefficient ad of k2d+l for the α-framed unknot
O It is well known that

(cf. Sect. 3.27 in [6]). An easy exercise shows that the power series sα(/c ~
and [k] = Σ ^(fyh1 satisfy deg(s^) = 2ί and deg(6t) < i -h 1. It

follows that adk
2d+l is the leading term in the product sd(k)bQ(k). Since sd(k) =

ad(k2 - l)d/(4ddl) and bQ(k) = k, we have ad = ad/(4ddl). D
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Remark. The function «/#•&(/&)/[&]» which is multiplicative under connected sums of
knots, may be considered in place of JKjk(h). It follows from the analysis above that
Jκ k(h)/[k] can be written as a power series in h and A, where the coefficient of

hd is an even polynomial in k of degree at most 2d. The coefficients of k2dhd are
exactly the coefficients ad calculated above, and hence vanish for the zero framing
when d > 0.

Links. The methods used above can be readily extended to cover the case of framed
links. Let L be a framed link with \L\ components {L^. Write JL k for the SU(Ί)q

invariants of L in which the component Li is coloured by the irreducible ^-module
of dimension k^ where k = (fc1 ? . . . , fc|L|).

Theorem 1.7. Write

d=0

as a power series in h, where q = exp(fo). Then Jd(k) = kl . . . k\L\Pd(k), where Pd(k)
is a polynomial in k of total degree at most 2d which is an even function of each
variable k^

Proof. As in the case of a knot, there is a state sum

associated with a closed braid presentation for L. A state S is a choice for each
crossing of a term c^(h)af <S>βf from a bounded sum for the ^-matrix or its inverse,
and a choice for the top of each braid string of a term cπl(h)μm in a sum for the
enhancement μ. The product of the coefficients defines cs(h), a power series in h of
order os. The choice of monomials a^ ®βf and cm(h)μm defines an endomorphism
Bs of a tensor product of modules Vk once a colouring k of L has been chosen. This
is determined by colouring each braid string with the module chosen for its component
of L. Now JL k = Σ cs(h) Ύr(Bs). As before, we may picture the selection of terms

5

made by a state S as a collection of individual monomials &f >βf and μm attached

to the strings. Each component Ll of L determines a monomial MJ, of degree dl

s,
given by composing the monomials attached to that string in the order in which they
occur. It follows that Ίΐ(Bs) = ΠTr(MJ) by the same argument we used in the case
of a knot, which gives the state sum above with

\L\

Proceeding as in the proof of Theorem 1.6, consider the trace of each monomial
oo

Ml

s on Vk as a power series Tr(M£) = Σ Mg^k^h1. The product of these series
ι=o

oo

gives an expansion Σ M5/(k)/r for Ύrs whose finite truncation up to degree d in
ι=o

h will be denoted by Ύΐs \d. By Proposition 1.4, the coefficients M^(^) are odd
polynomials in ki of degree at most l + (Ps + l. Thus Msι(k) is a sum of products of
odd polynomials in the ki of total degree at most / + ds + n, where ds = Σ dl

s is
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the total degree of 5. It follows that Tr5|d / ( k l . . . kn) is a polynomial in k of total
degree at most d + ds which is an even function of each kτ.

Now consider the state sum

S,os<d

which evidently agrees with JLk(h) to degree d in h. The use of bounded degree sums

for R^ and μ ensures that ds = Σ dl

s < 2os, and so this sum is finite. The remarks
in the last paragraph show that each Tr5 \(d_0 ) is the product of kl . . . kn with a
polynomial in k, even in each kτ, of total degree at most d~os + ds < d + os < 2d.
Hence so is Jf k, which completes the proof. D

Remark. It is interesting to note that a further restriction arises on states S in this
case in that the profile of each individual monomial Ml

s must return to level zero in
order for the state to contribute anything to the sum. While the form of the J^-matrix
guarantees this for every state in the case of a knot, it is not always the case for states
of a link, and many states may thus be immediately excluded from the sum.

Even for a knot K (or link) with few crossings and a small value of d, this
state sum is not a practical method for calculating JKk. It does however give the
theoretical bounds on the information carried by Jκ k for any knot, when we retain

only terms up to hd, as it is evident that knowledge of the coefficient Jd(k) for
d+ I values of k will determine Jd(k) completely. We take up this theme in the next
section, where we discuss the Vassiliev invariants of degree d which can arise from
the coloured Jones invariants. Some calculations in this setting prove to be feasible
using the states approach and lead to results about the independence of the invariants
Jd(k) as k varies.

2. The Space of Jones Invariants of Degree d

Let 3K denote the real vector space of formal linear combinations of oriented framed
knots in the 3 -sphere. Any real- valued invariant of oriented framed knots can be
viewed as an element of the dual space 3K* . Most of the invariants considered here
will be evaluations J(a) = evα o J of polynomial invariants J,

where J is a linear map to the space & of all real polynomials, a is a real number
and evα(p) = p(ά). One may then consider the subspace & of 3K* spanned by all
real evaluations of J, and use the following standard result from linear algebra to
compute its dimension when J is of finite rank. In particular dim & — rk J.

Lemma 2.1. Let T : V — > &n be a linear map from a vector space V into the space
&n of polynomials of degree at most n, and let &~ be the subspace ofV* spanned by
all real evaluations ofT. Then dim^ = rkT.

Proof. For any set F of n + 1 real numbers, the evaluations evt for i £ F generate
the dual space of &n. Indeed, any polynomial p in ̂ n is determined by its values
on F, and so p = ΣitFP^Pi* where the p^ are the unique polynomials in ̂
with pτ(j) = δ for all i and j in F /explicitly p^x) = Π (x — j ) / ( i — j)\.

V j£F\i J
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Thus for e in ̂ * we have e = Σ eίp^ev^ It follows that ̂  = im(T*), and so

D ieF

Now for each choice of d, consider the polynomial invariant Jd : 3K — > ζp whose
value on a framed knot K is the coefficient of hd in the coloured Jones function of
K, denoted Jd κ (the subscript K was suppressed in the last section since we were
not considering the knot as a variable). Our goal in this section is to study the space
&d spanned by the evaluations Jd(k) for all fc, whose elements will be called framed
Jones invariants of degree d. In particular, we will compute the dimension of &d.

We shall also consider the "unframed" invariants Jd = Jd o π:3& — > 3? and their
evaluations Jd(k), where π:3& — > 3& is the projection which changes all framings
to the zero framing. In other words the value of Jd(k) on a framed knot K is the
coefficient Jdκ(k) of hd in the coloured Jones invariant Jχ^k(h) of the knot K with
the zero framing. These invariants, which are insensitive to framings, span the space
β^1 of unframed Jones invariants of degree d.

The results of the last section provide the following upper bounds on the
dimensions of and .

Theorem 2.2. dim^ = dim^n - 1. If d > 0 then im(Jd) C ̂ fd+1 and im(J£) C

&2d-ι> where &n denotes the space of odd polynomials of degree at most n with 1 as
a root, and so dim^ < d and dim^n < d — 1.

Proof. The last statement of Theorem 1.6 shows that JQ(k) = J$(k) = k for all knots,
and so 3% = ̂ u is the 1 -dimensional space of constant knot invariants.

Now assume d > 0. In Theorem 1.6 we showed that the values of the Jones
invariants of degree d are odd polynomials of degree at most 2d + 1 in the framed
case and of degree at most 2d — 1 in the unframed case. Furthermore Jκι = I for
any knot K since the .R-matrix acts trivially on the 1 -dimensional representation (cf.
Sect. 4. 14 in [6]), and so Jd(l) = Jd(l) = 0 for d > 0. The last statement follows
from Lemma 2.1, since dim&fd+i = d anc* °^m^2d-ι = d— I. Π

Remarks. (1) To obtain an explicit formula for the dependency of the invariants Jd(k)
as k varies, apply the proof of Lemma 2.1 with F — P U — P for any set P of d + 1
positive integers. Since Jd is odd, this gives

Since Jd(l) = 0, we may choose P to contain 1 and obtain a sum over the d values
in P\l.

(2) Evidence points to the polynomials Jd having degree at most d + 1, which
would imply dim^n < [d/2\, where [ J is the greatest integer function (see the
conjectures at the end of the paper).

We now turn to the question of independence of the coloured Jones invariants, in
quest of lower bounds for the dimensions of &d and &d '.

It is known that the framed and unframed coloured Jones functions of a knot K with
framing α differ by a phase, namely Jκ^k(h) = eaxhJχ^k(h)9 where x = (k2 — l)/4
(see for example Sect. 3.27 in [6]). It is instructive to expand these series to see
the effect of the framing on the coefficients, and also to squeeze out a little more
information about the spaces ^ for small d. First write Jd(k) = kjd(x), where
JQ = 1 and jd (for d > 0) is a polynomial invariant of unframed knots of degree < d
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with no constant term. One then computes

d n n

Jd(k) = k _^ , -n '
n=0

where as above α is the framing and x = (k2 — l)/4.
For example Jγ(k) = kax = ak(k2 — l)/4, and so j^ is 1 -dimensional, generated

by the framing. For d = 2 we have j2(x) — bx for some knot invariant 6 (independent
of the framing), and so J2(k) = k(a2x2/2 + bx) = a2k(k2 - l)2/32 + bk(k2 - l)/4. It
is not hard to show that 66 = 1 — 24λ, where λ is the Casson invariant of +1 surgery

on the knot (or equivalently λ = ^ Λ"(\\ where Δ is the Alexander polynomial of

K). Hence ^ζ is 2-dimensional, generated by the Casson invariant and the square
of the framing. For higher values of d, one must work a little harder to establish
independence of the invariants which arise.

In general, we will show that dim^ > d by calculating the invariants Jd for
d suitably chosen linear combinations of framed knots. A similar calculation will
show dim^ff > [d/2\. The use of linear combinations of knots rather than single
knots is a matter of convenience, encouraged by the behaviour of invariants such
as Jd on certain alternating sums of knots derived from Vassiliev 's theory of "finite
type" invariants. For the reader's convenience, we now give a brief review of this
theory following the excellent account of Bar-Natan [2], which should be consulted
for further details.

Vassiliev Invariants. Consider the space 3%*^ of linear combinations of immersed
curves, that is framed immersions of the oriented circle in the 3-sphere with a finite
number of transverse self-intersections or nodes. Write 3Kd for the subspace generated
by immersed curves with exactly d nodes. Thus 3& = 3K§, and 3K^ is the direct sum

Now any framed knot invariant V can be extended to an invariant of immersed
curves by defining

inductively on the number of nodes. This invariant on 3K^ can be thought of as a
restriction of the original invariant. In particular 3Kd can be viewed as a subspace of
3K for each a by identifying any immersed curve in 3&ά with the alternating sum of
the 2d framed knots obtained by resolving each node, and the invariant on 3Kά is just
the restriction of V to this subspace. Observe that these subspaces form a descending
sequence, 3& = 3&Q D 3&λ D 3K^ ^ —

A real valued framed knot invariant V will be called a (framed) Vassiliev invariant
of type d if V \ 3&3 — 0 for all j > d, that is V is zero on all immersed curves with

more than d nodes. The Vassiliev invariants of type d form a subspace ^ of J^Γ*,
the annihilator of the subspace 3Kd+\ C 3K, and clearly ^ C 9f C ί%f C — The
invariants in S^\^_ι, that is of type d but not of type d — 1, will be said to be of
degree d.

Birman and Lin [3] have shown that the Jones invariants Jd(k) and Jd(k) are
Vassiliev invariants of type d (in fact they are of degree d, as will be seen below),
as is the coefficient of hd in the power series expansion of any other quantum group
invariant of framed knots. Thus the spaces ̂  and &£ of Jones invariants of degree d
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Fig. 3.

are subspaces of %. It will be shown below that <7d Π 9£_j = 0, and so all non-trivial
Jones invariants of degree d are of degree d in the Vassiliev sense.

The value of any invariant of type d on an immersed curve with d nodes can be
readily shown to depend only on the way in which the 2d points in the pre-image of
the d nodes are paired in the circle, and not on any other features of the immersion
(including the framing). This information can be coded in a "chord diagram," which
consists of a circle with d chords indicating the pairs of points to be identified in
the immersion. The chords are simply used as combinatorial guides to the eye; any
intersections between chords are quite immaterial.

For example, the two immersed curves shown in Fig. 3 both determine the same
chord diagram. Any invariant of type 3 will have the same value on these two curves,
although invariants of higher type may well differ.

An invariant V of type d thus determines a linear functional on the space spanned
by all chord diagrams with d chords, which in turn induces a functional &dV on a
certain quotient ^&d of this space by a set of explicit linear relations, called the 4T
relations by Bar-Natan. As the notation suggests, it is often helpful to think of V as a
polynomial of degree d and of &dV as the ίfh derivative of V. Following Bar-Natan
we write ̂  for the dual space of ̂ d, and call the elements of W*d (framed) weight
systems of degree d. The function

is clearly linear with kernel 9d_ι. In fact &d is onto by a result of Kontsevich (see
[2] for a proof), and so W*d = ^/^_ι Indeed, by using an integral construction to
find an element of ̂ d for every knot, Kontsevich produces a section W^ — > ̂  to

which is an isomorphism onto a complement of ^_j in 9£.
The preceding discussion can be understood in terms of the commutative diagrams

inclusion

where i is the inclusion and p is the projection sending any immersed curve to its
chord diagram. Observe that p* is 1 - 1 and so the projection &)d: % —> W*d can be
regarded as the restriction of i* to 9J

The Weight Systems Determined by the Jones Function. We now investigate the weight
systems Hd(k) = &dJd(k) of the Jones invariants Jd(k\ and the subspace 3%d of ̂ d

which they span. These weight systems can be regarded as evaluations of a polynomial
valued weight system Hd\^d —> SP for the polynomial Jones invariant Jd, and there
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is a commutative diagram

for each d. Observe that Hd is of finite rank since Jd is, by Theorem 2.2, and so
dimβ%d = τkHd by Lemma 2.1.

Theorem 2.3. The image of the polynomial "weight system Hd contains the space &id+\
of all odd polynomials of degree at most 2d+l with I as a root, and so dimJ$d > d.

Combining this result with the inequality dim^ < d of Theorem 2.2 shows that
the projection

®d\:Pd-+.&d

is an isomorphism of rank d. Thus we have

Corollary 2.4. (a) The space ^7d of framed Jones invariants of degree d > 0 and the
corresponding space 3@ά of weight systems are both of dimension d. Their associated
maps Jd and Hd have common image equal to the space of all odd polynomials of
degree at most 2d -f 1 with I as a root.
(b) ̂  Π 9ύ_ι = 0 (since ker&d = ^_ι) In other words, the non-trivial Jones
invariants of degree d are ofVassίliev degree d.

Proof of 2.3. It is enough to exhibit d linearly independent polynomials in the image
of Hd, since im(Hd) C im(Jd) C ^2^+1 » by Theorem 2.2. It is convenient to allow d
to vary, and we shall simply write J(D) for the polynomial Hd(D) when D has d
chords. This defines a map

j:Λ = ®Λd^>0>
which encodes all the weight systems under consideration, with J ^>d — Hd. For
convenience we denote the variable in the polynomial P(D) by fe.

Thus we must exhibit chord diagrams Dλ, . . . , Dd, each with d chords, such that
the polynomials J(Dl)^ . . . , J(Dd) are independent.

A simpler version of the state sum calculation for knots in the previous section
allows calculation of J(D) as a sum of traces of monomials. In its final form it is
the special case of a more general result of Bar-Natan determining a weight system
from any representation of a classical Lie algebra. Here we use a method based on
the quantum group and the knot invariants.

Start with some immersed curve Γ with chord diagram D, presented as a closed
braid with d nodes. If Γ is regarded as an alternating sum of knots by the embedding
3&d C 3&, then J(D) is the coefficient JdjΓ(k) of hd in JΓ^k(h), the corresponding
alternating sum of Jones functions. Instead of using this alternating sum, however, we
can work directly with the braid presentation of the immersed curve Γ and represent
each node by the endomorphism R — R~l, as explained in the previous section. This
endomorphism maps x®y to Σ βι(χ)®aι(y)> where ̂  az ®βz is a bounded degree
sum for the element Q = R - P(R~l) in ̂  <g> ̂  (P is the interchange map). The
invariant JΓ k(h) can then be calculated by a state sum as before, and we are interested

in the coefficient of hd.
To compute this coefficient, observe that ,R±1 = / ® I ± (X 0 Y + \ H 0 if) h +

O(/ι2), and so Q = Q{h + O(/ι2), where Q^^X^Y + Y^X + ̂ H^H. Every
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Fig. 4.

state involves a choice of a term from Q for each node, together with terms for the
crossings in the braid and the ends of the braid strings. Since each term in Q has a
factor of at least h, the resulting invariant must have a factor of hd. To get a non-zero
contribution to the coefficient Jdr of hd, we therefore need only consider states 5

which assign one term from Ql to each node, namely X 0 Y9 Y <8> X or ^ H ® H,

and which make trivial assignments to every crossing or end of braid string. There is

an associated monomial Ms of degree 2d in X, Y and — p 72", obtained by reading
round the immersed curve, and ^ 2

5

where M5 operates on the module V^. and Tr0(M5) is the value of the trace when
Λ = 0.

The state S can be indicated on the chord diagram by labelling the endpoints of
each chord according to the term chosen for the corresponding node; for example if
X <8> Y is assigned to the node then the endpoints are labelled X and Y. Then Ms is
given by reading round the circle. This can be seen as a special case of Bar-Natan's
prescription for finding a weight system from a representation of a semi-simple Lie
algebra; the essential link with his work is that the linear term Ql in the quantum
group is a multiple of the quadratic Casimir of the Lie algebra. This fact is used by
Piunikhin [10] in identifying the weight systems arising from quantum group knot
invariants with those found directly from the use of Lie algebras and chord diagrams,
as it is a feature of general quantum groups and not just SU(2)q.

We shall now make use of this state sum in calculating J(D) explicitly for some
diagrams D. The simplest diagram is trivial diagram Q with no chords, and evidently

J(O) = Tr0(/) - k ,

since Vk is A -dimensional.
Next consider the diagram F with exactly one chord. The value of J(F\ which

can be thought of as the "framing contribution" for the coloured Jones invariants, can

be calculated from the state sum on F as Tr0 (XY + YX + | H ® H) (the Casimir

again). This trace can be determined by direct computation or by observing that J(F)
is the coefficient of h in the coloured Jones function for the planar immersed curve

Γ with one node. Since JΓ^k(h) = (exh — e~xh)[k]9 where x — ^ (k2 — 1), we have

J(F) = Tr0 (XY + YX + \ HH) = \ k(k2 - 1) .

More generally consider the diagrams Tτ with i chords, one horizontal and the rest
vertical, as shown in Fig. 4.
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In particular T0 = Q and T\ = F We wiU snow now to calculate J(Tτ) below,
but first we describe an operation on chord diagrams that will be useful for building
further examples.

Construction. From two chord diagrams Dλ and D2, construct a connected sum
D — D1D2 by breaking each apart at some point on the circle, and then joining
the two together (preserving orientations). The new diagram depends on the choice of
breaking points, but it can be shown that any Vassiliev invariant will have the same
value on all the connected sums of Dl and D2 In particular, for the Jones invariants
we have:

Lemma2.5. J(Dl)J(D2) = kJ(DlD2).

Proof. Choose immersed curves Γλ and Γ2 corresponding to the diagrams Dλ and D2.
Then a connected sum Γ1Γ2 in the obvious sense corresponds to a sum DλD2. Now
calculate JΓjΓ >fc in terms of the alternating sum of knots, each of which will have
the form KλK2, the connected sum of two knots. Since the coloured Jones function
satisfies the relation JKλ^kJκ^k = \.^\Jκlκ2,k f°r framed knots, the lemma follows
readily. D

It follows from the lemma that adding a trivial chord to any diagram D has the
effect of multiplying the polynomial J(D) by the factor J(F)/k,

J(FD)=\(k2-\)J(D).

There is a similar result, needed for the calculation of J(TJ, when certain non-trivial
chords are added to D.

Lemma 2.6. Let D be a nontrivial chord diagram. Construct a new diagram D+ by
adding a chord that ((crosses" exactly one chord of D near one of its endpoints p.

Then J(D+) = \(k2 - 5)J(D).

Proof. It is enough to show J(FD) — J(D+) = 2J(D\ where the trivial chord in
FD is added just to one side of the point p as shown below.

FD =

(Note: Bar-Natan proves a general result [1] that V(FD) — V(D+) is a multiple of
V(D) when V arises from a Lie algebra representation.)

Fix a state S on D, and suppose that S assigns the generator α to p. Then starting
at p, the monomial Ms can be written as a product αM for some monomial M, and
so S contributes Tr0(αM) to J(D).

There are exactly three states on FD, and equally on D+, which extend 5,

according to the three possible choices X®Y,Y®X and ^ H ®H for the extra chord.

The sum of the monomials for these states is (aXY + aYX + | aHH]M on FD

and (XaY + YaX + \ HaH)M on D+. The difference of their traces is Tr0(άM),

where ά = [α, X}Y + [α, Y]X + \ [α, H]H. Since ά = 2α + O(/ι2) for α = X, Y

and H, as is readily verified, these states contribute 2Tr0(αM) to J(FD) — J(D+).
Summing over all states S on D now gives the lemma. D
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Finally consider the diagrams Di = Fl~lTd_i+l for i = 1, . . . ,d, each with d

chords. Observe that Dl can be constructed from Fl by adding d — i parallel chords

as in the lemma, and so «/(£>-) - (\ (k2-5)}d~l J(Fl\ Since J(Fl) = k(\ (k2-l)}\

it follows that

Any linear relation among these polynomials will give a relation J^G^/% where the
a% are real numbers and f ( k ) — (k2 — l ) / ( k 2 — 5). This is impossible unless ax = 0
for all i, since otherwise the polynomial Σ a^1 has only a finite number of roots
while f ( k ) takes on infinitely many values as k varies. Thus the polynomials J(Di)
are independent, and Theorem 2.3 is proved. D

The Unframed Case. The weight systems H%(k) = &dJ%(k) for the unframed Jones
invariants J^(k) span a subspace 3$£ of the space W^ of all degree d weight systems,
whose dimension can be calculated as the rank of the corresponding polynomial weight
system H% : ̂ d — > ̂ . As in the framed case, these weight systems can be encoded
in a single linear map

defined on a chord diagram D with d chords to be the coefficient on hd in the
unframed Jones function J^fe(fe), where Γ is any immersed curve with diagram D.
To calculate JU(D) using a state sum, we must alter the matrix Q used for the nodes
of Γ to incorporate a correction factor for the framing. Indeed the endomorphism

associated with a node is now e~xhR — exhR~l, where x = ^ (k2 — 1), and so we

replace Q by Qu = Q^h + O(/ι2), where Qf = Ql- 2x1 0 /. Thus we must include
states in which both ends of some chords are labelled with \/—2xL

We then have JU(Q) = k and JU(F) = 0, as expected, and the same multiplicative
formula for connected sums of diagrams as in the framed case. In particular JU(FD) =
0 for any D. There is an analogue of Lemma 2.6 as well, giving the polynomial
JU(D+) in terms of polynomials for simpler diagrams. It should be observed, however,
that this polynomial depends on which chord of D is "crossed" by the new chord
of D+.

Lemma 2.7. Let D be a nontrivial chord diagram with a chosen chord C. Construct
two new diagrams D_ and D+, where D_ is obtained by deleting the chord C, and
D+ is obtained by adding a new chord to D that "crosses" C near one of its endpoints

p, as shown below. Then JU(D+) = -2JU(D) - (k2 - l)Ju(D_).

Proof. It is enough to show JU(FD)-JU(D+) = 2Ju(D) + (k2- l)Ju(D_) since
JU(FD) = 0. As in the framed case, we fix a state S on D with label a on p, and
write Ms = aM.

The contribution to JU(FD) - JU(D+) of the corresponding states on FD - D+ is

Tr0(άM), where ά - [a,X]Y + [a,Y]X + ± [a,H]H-2x[aJ]I (for x = \ (/c2-l)
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as usual) . Now a equals 2a + O(/ι2) for a = X , Y or —= H, but vanishes for
\/2

a — V— 2x1, and so the contribution is 2 Tr0(αM) in the former case and nothing in
the latter. Summing over all states gives JU(FD)-JU(D+) = 2(Ju(D)+2xJu(D_))\
the right-hand side is the result of omitting those states for which C is labelled by
— 2x1 (8) /. Since 4x = k2 — 1, the proof is complete. D

Using this lemma, we give a lower bound for the dimension of the space β$^ of
weight systems of unframed Jones invariants.

Theorem 2.8. The image of the polynomial weight system H% contains the space °̂+1

of all odd polynomials of degree at most d-\- 1 with I as a wot, and so dim 3$% > [d/2\ .

Proof. Set X — T2 and consider the d-chord diagrams D% = Xτ~λTd_2^_γ^ for
i = 1 , . . . , \_d/2\ , where the chord diagrams Ti are defined above. Observe that Di

can be constructed from X1 by adding d — 2i parallel chords which "cross" exactly
one of the chords C in X\ By the lemma we have JU(D^ = (-2)d~iJu(Xi\ since
deleting C from X1 leaves one trivial chord. Applying the lemma again we have
JU(X) = -2JU(F) - (k2 - l)Ju(Q) = k(l - A:2), and so Ju(Xl) = k(l - k2)1 by
the multiplicative property of Ju. This gives

and these polynomials clearly span ̂ +1 since they are of different degrees. D

Combining Theorems 2.2 and 2.8 gives the following estimate for the dimension
of the space &£ of unframed Jones invariants of degree d.

Corollary 2.9. [d/2j < dim^n < d - 1.

It is likely that in fact dim. 9^ = [d/2\ , which would be implied by Theorems 2.2
and 2.8, together with the following conjecture on the degrees of the coefficients in
the unframed Jones function J£ k(h).

Conjecture 1. The coefficient J%(k) of hd in J% k(h) has degree at most d + 1 in k;

equivalently, the coefficient of hd in J£ k(h)/[k], which is an even polynomial in k,
has degree at most d.

Assuming Conjecture 1, extract the terms in hdkd from JK k(h)/[k] to write

Jκ^k(h)/[k] = ]Γ bdk
dhd -h terms in klhd , / < d ,

and set Jκ(ti) = Σbdh
d.

Conjecture 2. The Alexander polynomial Δκ(t) of a knot K is determined by the
coloured Jones function of K. In particular, Δκ(eh) — l/JK(h).

These conjectures have been verified for torus knots by the second author [9].
Recent results of Steve Sawin [3] suggest the possibility of a complete proof of
Conjecture 1 using the multiplicative structure of Vassiliev invariants.
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Note added in proof. Both conjectures have now been proved. Path integral arguments were first
given by L. Rozansky (A contribution of the trivial connection to the Jones polynomial and Wίtten 's
invariant of 3d manifolds, 1993 preprint), and a mathematical proof has been given by D. Bar-Natan
and S. Garoufalidis (On the Melvin-Morton-Rozansky conjecture, 1994 preprint).
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