
Commun. Math. Phys. 169, 441-461 (1995) Communications IΠ

Mathematical
Physics

© Springer-Verlag 1995

Elliptic Quantum Many-Body Problem and Double Affine
Knizhnik-Zamolodohikov Equation

Ivan Cherednik*
Department, of Math., UNC at Chapel Hill, Chapel Hill, N.C. 27599-3250, USA.
E-mail: chered @ math. UNC. edu

Received : 17 March 1994/in revised form: 22 August 1994

Abstract: The elliptic-matrix quantum Olshanetsky-Perelomov problem is introduced
for arbitrary root systems by means of an elliptic version of the Dunkl operators. Its
equivalence with the double affine generalization of the Knizhnik-Zamolodchikov
equation (in the induced representations) is established.

Section 0. Introduction 441
Section 1. Double Hecke Algebras 444
Section 2. Affine r-Matrices 447
Section 3. Dunkl operators and KZ 451
Section 4. Examples 455

0. Introduction

We generalize the affine Knizhnik-Zamolodchikov equation from [Chi,2,3] replac-
ing the corresponding root systems by their affine counterparts. To explain the
construction in the case of the root system of §ln, let us first introduce the affine
Weyl group S .̂ It is the semi-direct product of the symmetric group Sn and the lat-
tice A — Θ^Γ^Zε̂ -f-i, where the first acts on the second permuting {εz ,ε/y = εz — ε7}
naturally. This group is generated by the adjacent transpositions

s{ - (ii + 1 ) , 1 S i < n, and s0 = s[\\ where sf = (i/)(feι/) G S^ .

Setting

sf(b) = b- (Sij bXsy + kc\ sf{c) - c, b e B = e U Zε, , (0.1)
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we obtain an action of S^ in B = B Θ Zc. In particular,

so(b) = b + (b,ειn)(c-ειn)9 afa) = ε, - (a,fi f)c, a € A9\ ^ i ^ n .

Put
« « «

*£ = foCc + Σ * ί* i , Z£ = * £ + Σ *ί z * f θ Γ * = k c + Σ */βϊ
i = l i = l i = l

The double affine degenerate (graded) algebra § ' is generated by the group
algebra C [S*], pairwise commutative elements {JQ,, Z? G B}9 and central JCO satisfy-
ing the relations (depending on η G C):

xSί(b)Si + η(Biι+ubχ 1 <Ξ z < «, ΛΌ^ = x^yso + */(ε#ii,*) (0.2)

This algebra is a double affine generalization of that considered by Drinfeld and
Lusztig and a degeneration of the double affine Hecke algebra from [Ch8] (for gln).

Let us fix μ € C and set

ct|j] = ct(zij 4- kξ) for ct(/) = (exp(ί) - I ) " 1 , zυ = zx - Zj .

We introduce the differential operators of the first order:

- n Σ Σ (ct[*](ίί*] - μ) - *f(sf - μ)) + μη(n/2 - i + 1) ,

+ ημn, 1 g /,y <; n . (0.3)

We consider the sums formally as infinite linear combinations of the elements w €
S^ with the coefficients depending on {z, ξ} and one more complex variable ζ.
Assuming that JR(ξ) > 0, we can introduce a norm in this space to make all series
convergent.

The family of operators {β\ = Θι — xi9 <3'c = @c — xc} is commutative and S^-
invariant with respect to the following simultaneous action of this group on the
coefficients (that are from $ ; ) and the arguments {z^ζ}\

w(h) = whw~\ h e § ' , w(zs) = z{^B)γ beB ,

Si(O = ζ for 1 S ί < n, so(ζ) = ζ - ξ + zln . (0.4)

The invariance means that w(&a) = %(ύ), where 2f

aΰ+βΰ = a&a + β2'ϋ for ot,β e

Z,w, ί; G i?, and W G S J . Actually this family is invariant even with respect to the
action of the bigger group generated by W and B (instead of A). It leads to a
natural extension of the above § ; . The introduction of d/Bζ and the precise choice
of constants in (0.3) is necessary to ensure the ^-invariance. As to PF-invariance,
the central extension is not necessary.

The double affine KZ is the system {&UΦ = 0, u G B} for a function Φ(z) with
the values in § ' or its representations. Here ξ is considered as a parameter.

Let us factorize § ' by the ideal (xc). The symmetric polynomials in x\9...,xn

belong to the center of the resulting algebra §Q. Given a character of the algebra
of symmetric x-polynomials and a finite dimensional C [S^]-modules V9 the corre-
sponding induced §Q-module is finite dimensional as well. When considered in this
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representation, the series in (0.3) become convergent (at least for rather big
and turn into functions of elliptic type. The corresponding double KZ is equivalent
to a F-valued version of the elliptic quantum many-body problem from [OP]. It also
generalizes the spin QMB introduced in [Ch5] unifying the Calogero-Sutherland and
the Haldane-Shastry models.

To introduce the elliptic QMB let us start with the same formulas (0.3) assuming

now that s\j act on the arguments {z&, ζ} as in (0.4). We will write σ(w) and

σj^instead of w and sψ to emphasize this. The corresponding elliptic Dunkl op-
erators (which are scalar but not pure differential anymore) will be denoted by
{At,Ac,As} (instead of {2}). The map

w -+ σ(w\ X£ -* Δfr w e S*, b eB ,

gives a homomorphism from the algebra § ' into the algebra of operators acting on
the space of (scalar) functions of {z, ζ}. Imposing the relation Δc = 0 we obtain an
embedding of §Q. This theorem plays the key role in the paper.

Second, given an arbitrary symmetric polynomial p = p(x\,. . . ,*„), we use (0.4)
to represent

p(Δ\9...,Δn) = Σ Av0"(w), where D^ are differential.
west

Then we replace every σ(w) by the image of w~ι in Autc V setting d/dζ = —ημn
afterwards.

The resulting operators {Lp} are S^-invariant and pairwise commutative. We
emphasize that d/dζ is not present in the final answer but appears in the intermediate
calculations when we place σ(w) on the right (the action of S* on b e B involves c).

If V is one-dimensional, {Lp} coincide with the OP operators for μ = 0. When
μ = ±1 (with one-dimensional V of the same "sign") they are conjugated to these
operators (by proper remarkable scalar functions).

The element pi = ]Γ^=i xf ^eac^s (UP t 0 a c o n s t a n t ) to the Schrδdinger operator

H = Σ d2/dzf + const £ p(z, - zy) (0.5)
i=l Kj

in terms of the Weierstrass elliptic function with the periods {(2m), ξ}.
In this paper we consider arbitrary root systems and any initial representations

V of the corresponding affine Weil groups. We note that the commutative families
of scalar //-operators for the A,B,D types (with certain uniqueness theorems) were
obtained recently by direct methods (due to Heckman-Opdam) in [OOS].

It is worth mentioning that for μ = 1 (and certain special η) the operators Lp

are expected to be the radial parts of Laplace operators for Kac-Moody symmetric
spaces at the critical level c + n = 0. The latter condition gives the existence of the
"big" center of the corresponding universal enveloping algebra (which is necessary
to start the Harish-Chandra, Helgason theory of radial part). It is directly connected
with the substitution d/dζ — —ημn.

Something can be done when d/dζ = ημv for arbitrary v G C (which corresponds
presumably to the "affine" harmonic analysis at arbitrary level). Let us introduce
one more operator

Δd = d/dζ -ηΣΣ* ( 4 ] ( 4 ] - /*) + C t / W - μ)) • (0-6)
i<jk>0 V 7
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It does not commute with {Λ}, but the operators Δβ = Ab + kΔc + lΔd for b —
b + kc + Id still satisfy the cross-relations:

σiΔb = As,{$)σi + η(£ιi+ub\ 0 ^ i < n, CQI=C- εin ,

*(c) - c, Sj(d) = d for 1 S j < n, so(d) = d - εoι , (0.7)

where the form (,) is extended to Rw + 2 in the following way:

(c,c) = (c,εf ) = 0 = (rf,fi/) - (J,d), 1 g i g π, (c,d) - 1 .

It gives that the operator 2AdΔc 4- ]Cί=i Δf is S^-invariant. Its reduction in the
above sense is also invariant and is conjugated to the parabolic operator H —
H + 2ημ(n + v)d/dξ in the setup of (0.5).

There is another way. We can exclude d/dζ from the construction (put v = 0)
considering the operators

Δk = exp(2πiAk/(ημn))

instead of Ak. The corresponding {Lp} will be pairwise commutative and S^-
invariant. It resembles the construction of the center of Kac-Moody algebras (after
a proper completion) due to Kac.

When μ = 1 and V is the corresponding one-dimensional representation, H was
introduced in [EK]. Presumably this operator and {Lp} and the double affine KZ
are related to the elliptic r-matrix KZ from [Chi] (with the additional equation from
[E]) and the so-called Bernard KZ equation (see [FW,EK]).

In conclusion we would like to note that all above constructions have difference
counterparts (based on the non-degenerate double affine Hecke algebras from [Ch8])
and hopefully ensure a basis for the elliptic Macdonald theory (see e.g. [M,R] and
[O,Ch6]). The latter is related to the Macdonald theory at roots of unity. The
connections with ^-deformations of the "double loop algebras" and the so-called
elliptic algebras are also expected (in the case of An).

This work was started at the Weizmann Institute (Israel) and completed at the
Laboratoire de Mathematiques Fondamentales (Universite Paris 6). Vά like to thank
A. Joseph, A. Connes, and R. Rentschler for the kind invitations and hospitality. I
am grateful to G. Felder for useful discussions.

1. Double Hecke Algebras

We follow [Ch 3] (see also [Ch 5,6,7]). Reduced root systems only will be discussed
here. All the definitions and statements can be extended to the general case. Minor
changes in formulas are necessary for divisible roots.

Given a Euclidean form (,) on Rn and a root system R = {α} c Rw of type
AmBn,...,CJ2, let sa be the orthogonal reflections in the hyperplanes (α,u) — 0, u G
Rn. Further, {αi,...αΛ} are the simple roots relative to some fixed Weyl chamber,
R+ the set of all positive (written α > 0) roots, W the Weyl group generated by

jα(or by Si=saι9\ ^ / ^ n), C[W] = ΘwCw the group algebra of W 3 w.
We introduce αz = α^, where oty=2oc/(oc, α), the dual fundamental weights

b\,...,bn satisfying the relations (bl9(x.j) = δ{ for the Kronecker delta, and the lat-
tices

A = 0"=1 Zα, CB = e;= 1 Zbt.
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Let us fix a FF-invariant set η = {ηa e C,oc e R}. The PF-invariance (wηa =
Vw(a),w € W) gives that η^ — ηf or η" respectively for the short and long roots
(R is supposed to be reduced). We put ηt — ηai and define the ^-generalization of
the p and the Coxeter number h:

α>0 ι=\

hn = r\θ + (pη,θ) for the maximal root θ G R+ . (1.1)

We will use the same notations for other JF-invariant sets instead of η.
The following affine completion is common in the theory of the Kac-Moody

algebras (see e.g. [Ka, Ch6]). Let us extend the above pairing to Rn+ι = Rn Θ Re
setting (c,c) = 0 = (c,w).

The vectors (affine roots) α = α + kc for αGi?,A:GZ? form the affine root

system Ra D R. We add oco = c — θ to the set of simple roots and put ηs. =
tja, *7o — Y\Θ — η"- The corresponding set R+ of positive roots coincides with

~ def

R+U{<x + ke9<xeR,k > 0}. Let B = BφZc. Given όc = oc + kc β Ra, a e A, ύ =

Sa(ύ) = ύ-(u,ocw)(θί + kc), a'{ύ) = ύ- (u,a)c . (1.2)

The affine Weyl group Wa is generated by all s&. One can take the simple re-
flections Sj = saj,0 ^ j g «, as its generators. This group is the semi-direct product
W xA' of its subgroups W and A1 = {a\a e A}, where

a' = sαS{α+c} = s{_a+c}sa for α = α v ,α G i^.

Definition 1.1 The degenerate (graded) double affine Hecke algebra § ; is alge-
braically generated by the group algebra C[Wa] and the paίrwise commutative

ά f n

%u = Σfaai^t -f κxc for ύ = u + KC G R W + 1 , (1.3)

satisfying the following relations:

SiXu -X{s,(ΰ)}Si = m(u>u<ι\ 0 S i S n . (1.4)

restricted algebra §Q & the factor-algebra &/(xc) (the quotient by the central
ideal (xc)). D

Without / = 0 we arrive at the defining relations

s,Xι - (Xi - Xat >/ = ηu SiXj = XjSu where 1 ^ / Φy ^ Λ, ΛZ = OLV ,

of the graded affine Hecke algebra from [L] (see also [Ch 3,5]). We mention that
$$' is a degeneration of the double affine Hecke algebras introduced in (Ch6,7].

Let C [x] = C [x\9... ,xπ,j£c] be the algebra of polynomials in terms of {xa}. We
denote the subalgebra of JΓ-invariant polynomials (with respect to the action of W
on {ύ}) by C[x]^. Later the same notations will be used for other letters instead
of x.
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Theorem 1.2 An arbitrary element h G § ' can be uniquely represented in the {left)

form h = ΣύeWa fwW and the {right) form h = Σwew« ™a™> w h e r e f^Qw G C [x\

The center o/§o contains C[x\w.

Proof The first statement results from Theorem 2.3, [Ch7] established in the non-
degenerate case (see also [Ch6]). Following [Ch3] one can check that the center of
§o contains C[x]w. D

Induced representations. Let V be a C[fFα]-module, F° = Homc(T?C) its dual
with the natural action {w{l{v)) = l{w~ιv\ I G Homc(F,C)),τ and τ° the corre-
sponding homomorphisms from C[Wa] to Endc V and Endc V°. We will use the
diagonal action:

δ(w)(v <g> Xΰ) = τ°(w)(t {}

for υ ®Xύ G -T d= K° (8)C C[JC], w G W\ M G R " . (1.5)

The next proposition holds good for the entire § ; . However the latter has the
trivial center = Cxc (we need a "big" center to construct finite dimensional rep-
resentations). Till the end of the section, xc = 0 and Xβ are identified with the
corresponding xu.

Proposition 1.3 The universal (free) ^-module generated by the C[Wa]-module
V° is isomorphic to Y* with the natural action of C [x] by multiplications and the

following action of sι :

s, = δ(Si) + mx~l{\ - 5,), 0 ^ / S n, a0 = c - θy , (1.6)

where x~ι{\ - st){f) = x~\f - Si(f)) for f G r {Si acts only on x).

Proof follows [Ch3,5]. D

We fix a set λ = {λ\9...9λn} C C and consider the quotient Vλ of y by the
(central) relations p{x\,...,xn) = p{λ\,...,λn) for all p G C [ x ] ^ .

Finally, we introduce:

u)) = i{h\u)\ uerλje (rλf,

j? - si9 x? = jcf, (AiA2)° - ^A?, * u ^ θo . (1.7)

The anti-involution h —> A0 is well-defined because relations (1.4) are self-dual.
The above construction gives two canonical Wa-homomorphisms:

id :V°-^y-+ rλ, tr : V{λ) -* V .

Proposition 1.4. If a %'-submodule % c F(A) w non-zero then its image tr{^ί) is
non-zero too.

Proof It is clear, since Ψ*χ is generated by V° as an ^'-module. D
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If V is finite-dimensional then dimcF(A) = |PF|dimcK, where \W\\s the number
of elements of W. The main examples will be for one-dimensional representations
of Wa which are described by ίP-invariant sets ε C {±1}:

τε(Si) = εi9 τε(af) = 1, 0 ^ i S n, a € A . (1.8)

Let us denote the corresponding V, V(λ) by Cε, Cε(λ) for the latter reference.

2. Affine r-Matrices

Following [Ch 1,3,5] we introduce abstract classical r-matrices with the values in
an arbitrary C-algebra &* and show how to extend non-affine r-matrices to affine
ones. The notations are from Sect. 1. Let us denote Rά + RjS C Rn by R(α,β) for

a,βeRa.

Definition 2.1. a) A set r = {rα~ G ^ α G i ? ^ . } is an affine r-matrix if

[r*,rβ] = 0, (2.1)

t r « ' roί+β]+[r&, rβ] + [r~+β9 rβ = 0 , (2.2)

lr&+2β>

under the assumption that d,β e R+ and

R(α,jS) ΠRa = {±y},y rw^ m er α// /Λe indices (2.5)

/« ίΛe corresponding identities.
b) A closed r-matrix {or a closure of the above r) is a set {r$ £ J%α G

Ra} (extending r and) satisfying relations (2.1)-(2.4) for arbitrary {positive,
negative) d,βERa such that the corresponding condition (2.5) is fulfilled. If the
indices are from R+ (or R) we call r non-affine. D

We note that (2.5) for identity (2.1) means that

(α, β) = 0 and R(α, β)ΠRa = {±&, ±β} . (2.6)

It is equivalent to the existence of w G Wa such that α = w(^\β — w(iXj) for simple
αz=j=α7(0 ^ i,j ^ n) disconnected (not neighbouring) in the affine Dynkin diagram
of Ra. In the most interesting examples, (2.1) holds true for arbitrary orthogonal
roots.

The corresponding assumptions for (2.2)-(2.4) give that α,β are simple roots
of a two-dimensional root subsystem in Ra of type Aι,B2,G2. Here α,β stay for
αi,α2 in the notations from the figure of the systems of rank 2 from [B]. One
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can represent them as follows : α = w(θίi),β = W(OCJ) for a proper w from Wa and
joined (neighbouring) α/,αy .

Given an arbitrary r, we always have the following closures (the standard one
and the extension by zero):

r_α~ = -rα~, r_α~ = 0, & e R*+. (2.7)

If there exists an action of Wa 3 w on 3F such that

wfo) = ^w(d) for α, w(α) e R\ ,

then the extension of r satisfying these relations for all w is well-defined and closed
(the invariant closure).

Theorem 2.2 Let us assume that r is a closed non-affine r-matrix and the group
A3 a {see (1.2)) acts on the algebra 3F 3 f (written f —> a(f)) obeying the
following condition:

0(fa) = α̂ whenever (a, α) = 0,a G A, a 6 R . (2.8)

Then the elements

Γα = α(rα) for a such that α = «7(a) = a — (a, a)c (2.9)

are well-defined (do not depend on the choice of the element a satisfying (2.9) for
a given a G Ra) and form a closed (affine) r-matrix.

Proof is the same as that of Theorem 2.3 from [Ch4] in the case of quantum
^-matrices. D

Theorem 2.3 a) Given an affine r-matrix, let us suppose that the algebra 3F is
supplied (as a C-linear space) with a norm \\f\\ and the following series are
absolutely convergent:

α̂ = rα + Σ (rjfec+α - nc-Λ oceR+ ,
k>0

« , « > « = Σ («,*)?*, ueRn. (2.10)

If any pairwise products of these series are also absolutely convergent, then r is
a non-affine r-matrix and [yu, yv] = 0 for any u, v G RW.

fe) Lei ίΛe f̂row/? Wa act in 3F by continuous automorphisms relative to the
norm and r be Wa-invariant\

w(rα~) = r* ( d 0 for all weWa,άeRa , (2.11)

for a proper closure of r. Then r is ^-invariant and

^l ί^) - ySι{u) = (w,α,)K + 5 , (r β | )), 0 g i ^ π, u e Rn . (2.12)

/ The commutativity in the non-affine case is established in [Ch 3], Proposition
3.2. As to (2.12), see [Ch 3], Corollary 3.6 and the end of Sect. 1 from [Ch 5]. The
considerations in the affine case are the same. We calculate separately the sums of
the pairwise commutators for any subspaces R(α, β) ΠRa. D
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Let us fix one more Wa-invariant set μ = {μ^oί G Ra}. Here are two examples
of the above construction.

Theorem 2.4. a) Using the variables {x} from (1.3), (1.5), let $F be the algebra
^ generated by C[Wa] and

C{x} = C [ct(xαv + kxc\α = α + kc e Ra

+]

with the cross-relations wxu = Xw(u)W, where ct(ί) = (exp(ί) — I ) " 1 . Then

r\ = η*Qt(xa + kxc)(μά ~ ss), α = α + kc e Ra,a = α v , (2.13)

is a Wa-invariant closed r-matrix and s^ + r^Sj = ηi(sι — μ) for 0 ^ i ^ n.

b) Now ^ = J^# is the algebra generated by ^ and C{z} = C [ct(zα~)], where

zu+κc = Σ{uM)zι + κξ,ue Rw, for complex z = {zu. ..,zΛ9zc = ξ}
i>0

commuting with C[Wa]. The following functions of z

4 - ηsQX{za + kξ)(Sόί - μά) + r\, ά = (x + kceRa , (2.14)

also form an r-matrix which is invariant relative to the diagonal (simultaneous)
action δ of Wa that is the product of the action of Wa on {x} and the analo-
gous action σ on {z} : σ(w)(zu + Kξ) = z^u) + xξ. Moreover δ(si)(r^) + r^ = 0
for 0 S i ύ n.

Proof The theorem for μ = 1 is a straightforward affine extension of Corollary 3.6
from [Ch 3] (see also the end of Sect. 2, [Ch 5]). These r-matrices are quasiclassical
limits of the quantum ^-matrices from [Ch 4], Propositions 3.5,3.8 ((1.6) is a
rational counterpart of one of them). Calculating the corresponding commutators
(2.1-4) we obtain a set of relations that are the coefficients of s& and s$,ss (the

latter never coincide with the first). If sasz = 1 then α = β and the corresponding
commutator equals zero. Hence if the r-matrix relations are checked for one non-
zero μ they are valid for all of them. D

We regard {xi,xc,zt,£} as the coordinates of the space Cn+ι x C n + 1 , where Wa

acts on the first component in the obvious way. The following proposition intro-
duces a completion of the semi-direct product of C[JΓα] and a proper "functional"
extension of the algebra C{x, z} = C [ct(*αv + &xc),ct(zα~ -f kξ)]. This definition al-
lows us to apply Theorem 2.3. We will use it permanently in the next sections as
well. The discussion will be continued in the next paper.

Proposition 2.5 Let ce ^ ε > 0, M > 1, m E Z+,

Ξa(M) ={(x9xC9z,ξ) such that 9t(ξ),SR(xc) ^ ce,

\oX(xa + kxc)\, |ct(zα + kξ)\ < M > exp |
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for all k G Z, oc e R, a = α v . A formal series f = J2^f^(x9xc,z,ξ)w for scalar
fw, w G fFα w called m-convergent if the following norm is absolutely convergent
for any ce, M, ε:

def

11/11= Σ>p{|/w| in Ξa(M)}\\w\\ ,
w

where \\w\\ = exp(O - ε)/(w)(2A - 2)~ 1 4 1 ~ m ) , (2.15)

l(w) is the length ofwE Wa with respect to the generators {^,0 S ^ = n}> h the
Coxeter number, \ \ the absolute value. Then products of any m series from (2.10)
are m-convergent (for both r° and r#). The diagonal action of Wa is continuous.

Proof Let us start with μ = 0. Without rb, (2.15) follows from the estimate

Ksa+kc) ^ kl{d) + const ^ k(2h - 2) + const, for k ;> 0, α = α v , (2.16)

(see e.g. [Ch4], Proposition 1.6 and [Ch7], (1.15)). Here the factor 4ι~m does not
appear. Given α(l), ...,oc(m) G R+, let us consider the product ^α(i) ^α(m) that is
the sum of

ϊϊ .., t(m)} C Z + ,α(ι) = *(/) c ± α(/) G i?β

+ .

We should fix C > 0 and calculate the number of the terms such that ||Π^|| > C.
Now {s$} from {rb} act on the arguments {x/} moving them from Ξ

Πit = ( - 1 Γ Π ^ « ( i ) ( e x p ^ - l ) " 1 ^ , where w = Usd(ι)>

ά1 = α ( l ) , flP=^i)(α(2)),...,όT = (^i) . . .^ M _i))(α(ι» i)) . (2.17)

Lemma 2.6. Lei <? = α' + ifc'c, αz G Λ , ik± = max{0, ±A:Z, l g / g m}. Then

cmk+ £ ^_ /or cm - (v + I ) 1 " " 1 - 1 , (2.18)

where v is 1 for A, D, E, 3 for G2, and.2 for the other root systems. The number
of the terms Π^ with given k+ is less than {cm + l)m(k+)m. The length of the
corresponding elements w is not more than (2h — 2)(cm +

Proof We argue by induction on m. The inequality for k± is clear for m = 1 since
kx = k(l) is always non-negative. Supposing that (2.18) is valid for m, let us add
one more factor f̂ 0̂  on the left and denote the new pair of extreme values of
{±k\ 0 S i ύ n] by k'±. Then

k+ - vk° ^ k'+ ^ k°, k'_ g k- + v£° ,

cm(l + v)^c; ^ c m ( ^ + v^:0) ^k.^k'_- vk° ^kf_- vkf

+ .

Hence (cm(l + v) + v)A:| ^ A:̂ , which provides the necessary estimate. As to the

length, l(w) — /(w~ι), w~ι = ^αw * -^i 5 and we can use (2.16). D

The lemma gives that ||Π^|| < const exp(—k+ε) for a rather big k+. Here
const = (Mmax\η\)m. Finally, the sum of the norms of the terms Π^ with given k+

can be estimated as C(k+)m exp(—k+ε) for a constant C. It gives the convergence.
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If we have a "mixed" product (2.17) where some of x are replaced by z, then the
reasoning is quite similar. We apply again the induction taking into consideration
mostly the first term (with k(l) = kι). The changes of the arguments of the others
can be controlled in the same way. When μφO, we can use the estimate without
μ for smaller m. D

Corollary 2.7. Let us denote the operators y from (2.10) considered for r° by
{y^, u G Rn} and introduce

< = yl + (Pημ,u)> 4 = hf

ημ = hημ(θ, θ)/2, xt+κc = xl + κx\ . (2.19)

Then the group algebra C[Wa] and {x\} satisfy relations from Definition 1.1 and
form a representation of $&' ( which is faithful in S$'/(xc — h'nμ)). D

3. Dunkl operators and KZ

Let us extend C-linearly the standard pairing (,) to Cn and then to Cn+2 =
C θ Q θ Cd setting (c, d) = 1, (c, c) = (c, ύ) = 0 = (d, u) = (d, d) for u e Cn

(see e.g. [Ka], Chapter 6). Given a = a +kc e Ra, (X e A, the formulas

ss(ύ) =ύ- {(K, α) + vk}(xv - {v^2(αv, α v )/2 + (M, αv)A:}c ,

a!(ύ) = ύ + va- {v(a9 a)/2 + (u, a)}c9 ύ = u-\-κc + vd e C n + 2 ,

«̂ = Σ ( w ' ^ ) ^ + ̂  + vC, σ(w)(ztf) = z^β)} , σά = σ(jα) (3.1)

define an action oϊweWa on ύe Cn+1 and W£d= σ(Wa) on ztf.
The linear functions zι = zαi , 1 ̂  / ̂  «, ξ, ζ will be regarded as coordinates of

C"+ 2. For instance, dz^/dzi is the multiplicity of α, in ά = oc + k € i?α, dz$/dξ =
k, dzά/dζ = 0. We will also use the derivatives

3s = att + κd/dζ, du(zβ) = (v, u), u = u + κce Cn+\ v e Cn+2 ,

with the following evident properties:

drΰ+tΰ = rda + tdΰ, σ(w)(du) = d^h r, t G C, w G f ,

δbι = d/d2i9 l£i£n9 dc = d/Bζ . (3.2)

We extend (pημ, ) to a linear function on u — u + KC e C"+ 1 by the formulas
(see (1.1))

pημ(u) = (pημ + hημ(θ, θ)d/29 u) = (pημ9 u) + κh'ημ9 tiημ = hημ(θ, 60/2 , (3.3)

to ensure the relations pημ(<Xι) — ^μ/(α/, α;)/2 for all 0 ^ i'^ n.
Following Theorem 2.4, let us introduce the algebra J^J generated by C[W£] and

C{z} = C[ct(zα~), α G R+l We will need another Wa (without σ) commuting with
z and the corresponding algebra 3Fa generated by Wa instead of W%. The definition
of the sequence of norms (in terms of m, M) from Proposition 2.5 remains the
same (but there is no dependence on {x}!).
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We can write &a = C{z} ® c C[Wa], As to #"£, it is the semi-direct (smash)
tensor product where the second algebra acts naturally on the first.

The algebra of differential operators in d\,...,dn, dc with the coefficients in ZF^
will be denoted by #^[<9]. We will also use ^a[d] (the derivatives are always with
respect to z, ζ).

Theorem 3.1. The following family of differential-difference Dunkl operators de-

fined for ύ = u + κc e Rw + 1 :

An = du + κd/dζ - Σ *?«(«> α)ct(zα~)(σα - μa) 4- Pημ(u) , (3.4)
ά>0

is commutative. Moreover, {σ? = σ(ίί)} / # r 0 ^ z ^ « α/zd {zί^} satisfy relations
(1.4), flmί ίήe mα/?

Σ : Sα »-» σ«, XM^^^W (3.5)

gives an infective homomorphism from $$' into the algebra of convergent series
from ^a

σ\d\ The convergence of differential operators is coefficient-wise with re-
spect to the norms for sufficiently big m, M. If Δc = d/dζ + h'ημ is replaced by

θ) then Σ maps via i%.

Proof Without {$#}, the commutativity follows from Corollary 2.7 (x are to be
replaced by z). The contribution of the derivatives to the commutators of Λ^ is
trivial since [da, r | ] = 0 if (w, α) = 0 and

[da, (ΰ, &)r%] - [dΰ9 (u, α)r |] = [%,ά)u-(u,s)ΰ, r%] = 0 for all u, ΰ.

Here (see (2.13))

r\ = γ\ac\{za + kξ)(μa - s&)9 & = α + kc e R\ a = α v .

The other properties of Σ follow from the same Corollary 2.7. D

The theorem is valid even when the map σ satisfies the following weaker prop-
erties:

σ&Zΰ = ZtfGfo σddu = d^σ^ for u = s&(u)9 u G C Λ + 1 , (3.6)

<rsxσs2 = σβι

σβ2

 i f ^ ^ 2 = sβx

s~β2> *> β e Ra ( 3 7 )

Indeed, the necessary relations are written in terms of commutators (cf. [Ch 5],
Sect. 2).

Definition 3.2. Let us take C[Wa] which commutes with z, ξ9 ζ (we omit σ to
differ it from C[Wg]). Given A e #^[<9], we represent it in the form

A = J2 Av^(w), where D^ are differential, (3.8)
w£Wa

and introduce the operator from J*α[d]

d l (3.9)

with the coefficients in the completion of the group algebra ^ a = C{z}(g>c
C[Wa]. Replacing dc = d/δζ by -tiημ in Red(J) we obtain Redo(^l) G Pa[du..., dn].
Both operations are continuous. D
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Theorem 3.3. Given arbitrary A and W%-invariant A' from #"£[<?],

Red(JJ') = Red(zl)Red(zl/)

If p e C[x\,...,xn]
w, then the (differential) OP operators

are pairwise commutative and W%-invariant with respect to the diagonal action
S(w) = σ(w)®w, where w act in C[Wa] by conjugations (cf. (1.5)).

Proof We completely follow [Ch 5], Theorem 2.4. D

It is worth mentioning that the operators ρ(Abv. .,Abn) for p € C[x\,...,xn]
w

are not Wa -invariant. Therefore Red destroys their commutativity and has to be
replaced by Redo that can be done for a special value of dc — d/dζ only.

We can exclude δ/δζ from the construction considering the operators

Δh = Gxp(2πiAbk/tiημ)

instead of Δbk. The corresponding p(Δbv...,Abn) will be JP*-invariant. Hence we
can use Red (and do not need the central element c at all). However [Abk] are
rather complicated to deal with. They are similar to the difference elliptic Dunkl
operators which will be discussed in the next paper.

Theorem 3.4. Let us introduce the KZ operators that are differential operators of
the first order with convergent coefficients from C{z} 0Q § ' :

α > 0
s«~ - μ&) + pμη(ύ) -x^ύe Cn+ι . (3.10)

They are pairwise commutative and satisfy the following invariance property with
respect to the above diagonal action δ extended to § ' D C[Wa] :

δ(wχ®a) = 2*w, w e W\ ύ e Cn+ι . (3.11)

Proof First of all, the contribution of the derivations is zero (see the proof of
Theorem 3.1). Then the commutators \βu,Q)^\ and the differences δ(w)(βu) —
@w(ΰ) for all ύ, v, w belongs to C[JFα]. We have to check that they vanish. Theorem
2.4 gives that they really equal zero in the representation of § ; from Corollary 2.7.
But the latter is faithful when restricted to C[Wa]. D

The isomorphism. We will show that KZ considered in certain induced represen-
tations of § 7 is equivalent to the proper eigenvalue problem for the above Dunkl
operators. It generalizes the constructions from [Ma] and [Ch 5]. Let us start with
the following general remark. If w G Wa are bounded operators in a certain algebra
with a norm Jί, then the series for 2 and A and the products of any m among
them are convergent for rather big 9ί(<5;). Indeed, (2.15) leads to the estimate

sϊ)9 0 g i ^ n} .

The norm always exists if Wa and {x} act in finite dimensional representations.
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Thus the KZ equation, which is the system

..9zn) = 09 ueσ, (3.12)

is well-defined when the values of φ are taken in any finite dimensional represen-
tations of § ' . The extended KZ is obtained for ύ instead of u:

9uφ(zu...,zn, 0 = 0, dφ/dζ + h'ημ = 0, h'ημ = hημ(θ, θ)/2 . (3.12a)

If φ satisfies (3.12) then φ = φ exp(—h!ημζ) is a solution of (3.12a). But this trivial
extension is important for the main theorem below.

We may use standard results about the solutions of differential equations (as-
suming that 9l(ζ) is rather big). Here and further ξ is considered as a parameter
(d/dξ does not appear in Q), Δ).

Following Sect. 1, let V be a finite dimensional C[PFα]-module, τ the corre-
sponding homomorphisms from C[PFα] to EndcK We fix a set λ = {λ\,...,λn} c C
and consider the §Q-module V(λ) introduced in (1.17) with the C[Wa]-
homomorphism tr : V(λ) >—>• V. The homomoφhism §Q I—>• ΈnάcV{λ) will be
denoted by τ.

Main Theorem 3.5. Let J f fe /fe ^ίzce of solutions φ(z) of (3Λ2) in V(λ) defined
in a neighbourhood of a given point ( its dimension coincides with dimcF(A) =
IWI dime V). Then the map tr: φ \-> ψ = tr(φ) is an isomorphism onto the space
Jί of solutions of the quantum many-body problem

Lpφ(z) = p(λl9...9λn)ψ(z)9 p(xu...,xn) € C[x]w , (3.13)

for the operators {L} introduced in Theorem 3.3.

Proof The statement is a direct generalization of Theorem 4.6 from [Ch 5]. We
will remind the main type steps of the proof (adapted to the aίfine case).

In the set up of Theorem 2.5, let us pick a set Z c C"+ 1 obtained from Ξ^(M)
by certain cutoffs and obeying the following conditions. It is connected and simply
connected. The image of the intersection f)^w(Z) in the quotient Ξ ^{M^jWa is
connected. Assuming that 9t(ξ) is rather big, we can fix an invertible analytical
solution Φ(z, ζ) of (3.12a) for z G Z and arbitrary ζ with the values in Endc^(A).

The functions σ(w)Φ, w G Wa, are well-defined in open subsets of Z, we may
introduce the "monodromy matrices" T:

τ(w)Φ(z, 0 = σ(w-χ)(Φ(z, ζ))T*(z, ζ), w e Wa , (3.14)

which are well-defined for almost all z G Z and locally constant (use the invariance
of Sin). They satisfy the one-cocycle relation

Tw^2 = σ{w2λ)(Tύλ)Tύ2, wu w2 e Wa ,

which results in the following action σ of Wa\

σ(w)(F(z, ζ)) = σ(w)(F(z, ζ))T#-ι(z, Q, weW\ (3.15)

on Endc^(Λ)-valued functions F defined for almost all z £ Z.
Substituting σα = σ(sa) for τ(sα) for τ(.sα) we rewrite KZ for Φ as the system

Δΰ(Φ) = τ(xΰ)Φ9 ύ G C Λ + ι , (3.16)
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where the operators A$ are introduced by formulas (3.4) with σ replaced by σ. The
latter obeys relations (3.6), (3.7), which ensure the validity of Theorems 3.1,3.3.
The operators Lp constructed for σ (by replacing σ(w) on the right with w~ι)
coincide with Lp for σ. Hence,

Lp(Φ) = p(λ)Φ for p(xu...,xn) G CM* . (3.17)

The last formula contains no {x} and therefore commutes with tr. More pre-
cisely, given e G V(λ),

tr(Lp)(φe)) = p(λ)tr(Φe) .

Since an arbitrary solution φ e Jf can be represented in the form Φe for a proper
e, the image of Jf* belongs to J(. The dimension of the latter is not more than
d i m c ^ However tr has no kernel due to Proposition 1.4 (as it was checked in
[Ch5]). D

It is worth mentioning that one can introduce the monodromy of KZ more
traditionally. It is necessary to fix a point z° and to replace Φ in right-hand side
of (3.14) by its analytical continuation along a certain path from z° to w(z°) (see
[Ch 2,5]). This approach gives a representation of the "elliptic" braid group which
is directly connected with the induced representations of the double affine Hecke
algebras from [Ch 7,8].

4. Examples

We will calculate the first (quadratic) L-operators for the simplest μ C {±1} and
μ — 0, and discuss their basic properties. More complete analysis will be continued
in the next paper(s).

The following elliptic functions ς, ϋ "almost" coincide (but do not coincide) with
the classical ζ, ϋ\. To avoid confusions we changed a little the standard notations.
Let

k=0 k=\
oo

ϋ(t) = (exp(ί/2) - exp(-//2)) ΠO - exp(-^ + 0)0 ~ exp(-^ - 0) ,
k=\

oo

ρ(0 = £ k(ct(kξ + t) + ct(kξ - /)) . (4.1)

Here t, ξ € C, 9l(ξ) > 0. All these functions are 2πzZ-invariant. One has the fol-
lowing relations (which can be deduced from the corresponding properties of ζ and
ΰ\ or proved directly):

ς(t + mξ) = ς(ί) + m, ϋ{t + mξ) = -exp(< + ξ/2)ΰ(t),

ς(ί) + ς(-ί) = -1, 0(-f) = -0(0, β(-0 = Q(t),

d(ϊogΰ(t))/dt = ς(t) = ς(t) + 1/2, d(logΰ(t))/δξ = ρ(t),

ρ(t -ξ) = ρ(t) + ς(0, ς' = dς/dt = w- ς(tf - 2ρ(t) . (4.2)
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As to the latter (up to a constant w), check that the difference of the two functions
has no poles and is periodic with respect to the shifts by ξ (everything is periodic
relative to 2πzZ).

Let us take μ = ±1 and the corresponding one-dimensional V = Cμ (see (1.8)).
Our first aim is to determine L2 = LP2 (Theorem 3.3) for

The calculations are rather simple because Redo(σ£ — μg) = 0

^α,) = didΛι + (pημ, α, )δ, + ( p ^ , 6/)da,+

Red o {- Σ ^α~(^ , ά)ct(zα~)(σα - μα~)dα,} , (4.3)
α>0

where the last term equals

OL+kc > 0

Here we applied (3.1), (3.2) and replaced d/dζ by —hf

ημ. To sum up the terms (4.3)
with respect to /, we use the definition of pημ and the relations

b = Σ(b, b,)at =
ί = l 1=1

Finally,Z,2= Redo(Σf=1 AbiAa,)

n

= Σ dA, + 2dPημ 4- (pημ, ρημ) + 2 Σ nφ*(s(z*)d* ~ A^β(^))
Ϊ = 1 α€i?+

= Σ 5^α, + ( p w , P W ) + 2 E ηaμa(ξ(.za)da - h'ημρ(za)) . (4.4)
i=l aeR+

The next calculation will be a reduction of L2 to the Schrόdinger operator (with-
out linear differentiations). We will introduce the following elliptic generalization of
the "standard product" playing the main role in the Macdonald theory, Heckman-
Opdam theory, and the theory of integral solutions of KZ:

Actually we will need in this paper only the formulas (see (4.2):

du(ω) = ω Σ *?αμα(w, α)ς(zα), for u e Cn ,

dω/δξ = ω Σ n*μ*Q{z*) ( 4 5 )
oc<ER+
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def

The first gives that H2 = ωL2ω~ is free of linear differential operators. More pre-

cisely, H2 = Σ"=l did*i + (Pημ> Pημ) ~ U(Z% w h e r e

U(z) = 2 Σ η*μa(ξ(za)d*(ω)ω-1 + tiημρ(za))

= Σ n*μ*((^ α)ς'(
α>0

+ Σ η*μaηβμβ(oc, β)ς(zOL)ς(zβ). (4.6)
a, β>0

Lemma 4.1.

, Σ n«ξ\z«) + C(η) . (4.7)
α>0

Proof Let us fix b G B and replace zu by zy^ — zu-(btU)c — zu ~ (b,u)ξ for u —
α, β in (4.7). The change of the left-hand side is

i, α)ς(zα) + (
α,j9>0

= tiη Σ 2η.(b, α)ς(zα) + (/*;)2(Z>, i ) . (4.8)
α>0

Here we used the main property of h'η :

Σ ηΛu, oc)(v, α) = hf

η(u, v) for u9 v e Cn .
α>0

The same holds for the right-hand side. Hence, their difference is ^-periodic and
has no singularities. The latter can be checked directly or deduced from (4.8) with
t~ι instead of ξ(t) (use the r-matrix relations). Thus the difference is a constant C
depending on η. D

Finally, applying the lemma and replacing 2ρ(zα) + ς(zα)2 by w — ς7(zα) (see
(4.2)), we arrived at the formula for U and the following

Theorem 4.2. a) If μ c {±1} ond V = Cμ is the corresponding one-dimensional
representation of Wa, then the reduction procedure for p2 = Σι χΐχ^ a^ves t n e

operator L2 conjugated (by ω) with

n

Hi = Σ <3A + Σ n*μ>Λhw ~ ^ α)}?/(zα)
z = l α > 0

+ (pημ, Pημ) ~ mh'ημ Σ V^a ~ C(ημ) . (4.9)
α>0

b) The operator H2 can be included into the family of pairwise commutative

differential operators Hp = ωLpω~λ, p e C[x]w, which are W-invariant. Their co-
efficients are B-periodic with respect to the action zu —> zu — (u, b)ξ, b G B. They
are self-adjoint relative to the complex involution taking zu to —zu and leaving du

invariant.
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c) Operators {Lp} are W-inυariant as well Moreover, they are B-invariant
for the action:

zu->zu- O, b)ξ, δu -> du + (u, b)hημ, b <G B, u e Cn ,

and formally self-adjoint with respect to the following pairing:

(/(z), g(z)) = fω2f(z)g(-z)dzι...dzn .

Proof The previous calculation gives a). Begining with c), the invariance relative
to Wa (generated by W and A) is due to Theorem 3.3. It can be naturally extended
to the bigger group with B instead of A. We will not discuss this extension in this
paper. The self-adjointness results from the same property of Δ^ which can be
checked directly using the definition of ω. It gives the analogous properties of H.
For instance, let us check the periodicity:

ώ~ιduώ = du + Σ ηaμa(b, α)(α, u) = du + h'ημ(u, b),
α>0

where ώ = ω(zα -» zα - (b, <x)ξ) == ω exp(- Σ ηaμa(b, α)ξ/2). D

Without going into detail we mention that one can generalize the construc-
tion of the shift operators from [Op, He] to the elliptic case. It is connected with
Theorem 3.5 for Cμ (see [FV]). The most interesting applications of these opera-
tors are expected when μ — 1 because in this case the operators Lp preserve certain
subspaces of PF-invariant elliptic functions.

To define these spaces let us fix m £ Z + and introduce the set

K={β = *iωi + +knωn +kc, OS, θ) g m1}, m' = m(θ, θ)/2 ,

where ωz = (α, , α, )i//2, k\,...,kn e Z+, k e Z. (4.10)

The linear space generated by the orbit sums

T ί = Σ exp(z^) for ^ G P ^ (4.11)Σ

over the algebra of formal series Σι<ι cι e x P ( ^ λ c/ £ C, (convergent for
0) will be denoted by ££m. This construction is due to Looijenga and closely related
to the characters of Kac-Moody algebras. The operators {Lp} for μ — 1 leave S£m

invariant if m' = —h'η. Moreover they preserve subspaces i?w(/?+) for β+ e Pm

generated by

Ύ> such that y+=β+~Σ hod e P^, {h} C Z + .

It results directly from the corresponding properties of the elliptic Dunkl operators
and allow us to introduce the elliptic Jacobi-Jack-Macdonald polynomials Jβ as

eigenfunctions of {Lp} in J£m(β+) with leading terms ϊ « . A further discussion

will be continued in the next papers.



Elliptic Quantum Many-Body Problem 459

Parabolic operator. A demerit of the above constructions is the constraint d/dζ +
h'ημ = 0 corresponding to the condition xc = 0 in the Hecke algebra § ' . We will
show that something can be done even without this restriction.

Let Δu = ΔQ + vAd for ύ = ύ + vd e Cn+2

Σ η,kct(za^kξ)(σ^kξ-μa). (4.12)

The operators Δ^ are not pairwise commutative but still satisfy the following cross-
relations (see (1.4)):

GiΔu - A{Sι(ύ)}σt = ηt(ύ9 α f), 0 g i g /ι, β € C*+2 , (4.13)

relative to the action from (3.1). It gives (together with the previous considerations)
the following theorem.

Theorem 4.3. The operator Jί = 2ΔdΔc -f Σί=o^i^«7 and its reduction M —
d( are Wa-invariant IfV = Cμ,μ=U d/δζ = m',rne Z+, then

M = 2(mf + h'η)d/dξ + Σ ^ A + (PΨ Pn) + 2 Σ *7«(ς(*«)δ« + m7ρ(zα)),
1 GΛ

D

- 2(m; + h'η)d/dζ + H2{see (4.9)). (4.14)

operator M preserves the spaces J£m and ̂ m(β+) for arbitrary β+ e Pm.

The operator N was introduced by Etingof and Kirillov in [EK] for sln together with
its certain eigenfunctions (the generalized characters that are the traces of proper
vertex operators of βl n ). In a recent work, they extended the definition of N to
arbitrary root systems and proved directly the properties mentioned in the theorem.
To be more precise, their formulas are different but with certain minor changes
seem to be equivalent to (4.14) (e.g. they use more special parameters). If it is
so, then our approach (based on the Dunkl operators) gives another proof of their
result. The construction of the generalized characters is still known for *ln only.

Matrix Schrδdinger operator. The next application (which is a straightforward
extension of Corollary 2.8 from [Ch 5]) will be for arbitrary representations and μ =
0. Let us calculate L\ = L^~ for p = pi (see above). Applying Red and imposing
the condition d/dζ = 0, one has:

= Σ \ <?α, - Σ *«(«, α)cf (z« K-
ι=\ ά

Σ (4.15)

where ct'(O = Bct(t)/dt = -(exp(ί/2) - exp(-ί/2))~2. Following [Ch 5], Lemma
2.7, we check that the contribution of the terms with αφj? in the last sum equals
zero. Hence we arrived at the follwing theorem:
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Theorem 4.4. The differential C[Wa]-valued operators

βA α^αCt'CzίXf/. - ss) (4.16)
i=l α > 0

and Lψ^ defined for p e C[x]w are pairwise commutative. Moreover they are
Wa-invariant with respect to the δ-action on z and on C[Wa] (by conjugations).
When considered in finite dimensional representations of the latter, the coefficients
are convergent matrix-valued functions for sufficiently big 9l(ξ). •

We can obtain the scalar OP operators (for arbitrary root systems) from this
construction as well. Let {s$} be taken in one-dimensional representations Cε (see
(1.8)). Then

L\ = Σ fyA + Σ (α, oc)ηa(ηa - β«)ς'(z«) . (4.17)
/=1 α>0

The corresponding Lp are ^Γ-invariant and their coefficients are elliptic = B-
periodic (cf. Theorem 4.2). Generally speaking, the coefficients are "matrix" elliptic
functions with the values in the endomorphisms of vector bundles over elliptic
curves. Ignoring the differential operations in (4.16) and substituting "good" z, we
obtain "periodic" generalizations of Haldane-Shastry hamiltonians. Presumably the
points of finite order of the corresponding elliptic curve and the critical points
of the scalar hamiltonians ((4.17) without the differentiations and after a proper
normalization) lead to integrable models (see [BGHP, F, P]).
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