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Abstract: The problem of constructing the central extensions, by the circle group,
of the group of Galilean transformations in two spatial dimensions; as well as that
of its universal covering group, is solved. Also solved is the problem of the cen-
tral extension of the corresponding Lie algebra. We find that the Lie algebra has
a three parameter family of central extensions, as does the simply-connected group
corresponding to the Lie algebra. The Galilean group itself has a two parameter
family of central extensions. A corollary of our result is the impossibility of the
appearance of non-integer-valued angular momentum for systems possessing Galilean
invariance.

Ever since the pioneering work of Wigner [1] it has been appreciated that the rep-
resentations of a symmetry group that are appropriate to quantum physics are the
projective unitary (or anti-unitary) representations. That is, representations in a pro-
jective space P of a separable Hubert space H that describes the state-space of a
quantum-mechanical system. This idea also finds a reflection in the domain of clas-
sical mechanics [2]. Indeed, Wigner showed us how to understand the appearance
of spin one-half particles in terms of the projective unitary irreducible represen-
tations of the Poincare group. It also meanwhile became clear that the projective
representations of a group are constructible from a knowledge of the ordinary (lin-
ear) representations of an associated group, which is the central extension of the
original group by the circle group. Thus Bargmann [3] carried out his path-breaking
analysis of the projective representations of continuous groups; in particular, of the
Galilean group in (3 + 1) space-times and showed how the concept of mass, with its
associated superselection rule, arises via the central extension of the Galilean group.
Later authors [4] provided further elaboration of the projective representations of
the Galilean group as well as of the concept of a non-relativistic zero-mass system
[4, 5].

The aim of the present paper is to solve the problem of finding central extensions
of the proper Galilean group in (2 + 1) space-time dimensions. There are several
reasons for studying this problem. First, it is intrinsically interesting; the structure
of the (2 + 1) dimensional Galilean group is significantly different from that of the
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(3 + 1) dimensional Galilean group. For the latter, the subgroup of homogeneous
transformations is perfect; not so for the former, where it is, instead, solvable.
Secondly, it is felt that the problem may throw some light on the structure of non-
relativistic systems that are effectively confined to two spatial dimensions (planar
systems). In this context, let us recall that it has been claimed [6] that the angular
momentum for a planar system need not be integer-valued and can have the spec-
trum integer +α, where α is any value in the interval [0, 1]. This proposal, made
by Wilczek [6], has been challenged by Divakaran [7], who notes that the planar
rotation group SO(2) does not admit a non-integer valued angular momentum since
the Pontryagin dual oϊ SO{2) is Z-the additive group of integers (failure to appre-
ciate this fact constitutes a widespread misconception among physicists, arising out
of the situation that , at the level of the Lie algebra, the planar angular momentum
is unrestricted. The restriction to integer quantisation follows from the representa-
tions of the group). So the only question that remains is whether non-integer-valued
angular momentum could arise via the projective unitary representations. The answer
is no; the group SO{2) does not possess any central extension by the circle group
[9], as Divakaran [7] notes. (This conclusion is also implicit in Theorem 7.2 of
Bargmann's paper [3] which we now quote: "Every continuous ray representation
of a compact connected abelian Lie group G is induced by a representation of G."
Thus although it is true that the universal cover of SO(2) is the group R (additive
group of reals) this fact is quite irrelevant, there being no connection between the
universal cover of SO(2) and its possible central extension, since SO(2) is not semi-
simple. To nail the situation down further, Divakaran [7] next studies the central
extension of the Poincare group in 2 + 1 space-times. The homogeneous part of this
group-the group SO(2, 1) — is isomorphic with PSL(2, R) and is semi-simple. Uti-
lizing, amongst other things, a general theorem due to Raghunathan [8], Divakaran
[7] next concludes that the universal central extension (for extensions by the circle
group) of the (2-f 1) dimensional Poincare group is a semi-direct product of the
subgroup of space-time translations with the universal covering group of PSL(2, R).
Unfortunately, this last object is a nasty beast. For instance, it cannot be realized
as a sub-group of GL(n, C), regardless of how large the positive integer n might
be, even its presentation is fairly involved [10], and its representation theory, at the
moment, unknown. Because of this reason, Divakaran [7] was unable to complete
his investigation in the manner he had originally set out to do.

It occurred to the author that questions concerning planar angular momentum
could also be addressed within the framework of the Galilean group in (2 + 1)
space-times. After all, this is what Bargmann [3] did to understand non-relativistic
particle with definite mass and spin in three spatial dimensions. Moreover, the
whole controversy has arisen in the context of physical systems that are entirely
non-relativistic.

This paper is organized as follows. In the next section, the central extension
problem is studied at the level of the Lie algebra, that is, central extensions of the
Lie algebra by R the one-dimensional real vector space. A three parameter
set of central extensions is found. In Sect. 3, assorted known facts concerning the
Galilean group (denoted by G hereafter) and its universal covering group (denoted
G in the sequel) are collected under one roof. In Chapter 4 the problem of central
extension of G is solved. It is found that of the three (families of) central extensions
of the Lie algebra (denoted Lie(G)) only two "exponentiate" to the group G. The
central extension of G is considered next, in Chapter 4A. It is found, as expected
on general grounds, that all three extensions of Lie(G) get elevated to those of the
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group G. The mutual relationship between the central extensions of G and G is
explored further in this chapter. The final conclusions concerning our structure of
the extended groups are summarized in Sect. 4B. In Chapter 5, we make concluding
remarks.

A corollary of our results for the central extension of G is this. The rotation
subgroup of the extended groups continue to be SO(2). Thus in the linear repre-
sentation of the extended groups (and hence in the projective representation of the
original group G), the spectrum of angular momentum must be integral. Anyons
cannot arise via the projective unitary representations of G.

2. The Lie Algebra of the 2 + 1 Dimensional Galilean Group
and its Central Extension

Let G denote the Galilean group in (2 + 1) space-times and Lie(G) its Lie algebra.
We choose a basis for Lie(G) in which the infinitesimal generators of rotation, the
boosts along the two spatial directions, that of time translation and those of spatial
translation are denoted respectively as M.N^H and Pι (i = 1,2). The commutation
relations for these operators are

[M,Nι] = ειJ Nj, [Nί9Nj] = 0,

[Pi9H] = 0, [P z ,P 7 ] = 0 ,

[M9Pi] = eiJPj9 [Ni9Pj] = 0,

[M9H] = 09 [Ni9H]=Pt. ί2-1)

In the above, εz/ is the antisymmetric symbol with ε\2 = —£21 = 1. Summation
convention for a repeated index is implied. The physical significance of the genera-
tors are well-known. M corresponds to the angular momentum in the plane, H the
Hamiltonian and Pt the components of linear momentum.

To carry out the central extension of Lie(G), we have found it convenient to
relabel the generators. The six generators of Lie(G) are now denoted Lu with i
running from 1 to 6, with the following identification:

I , = M,L2 = HM = NUU = N2,L5 = PUL6 = P2 • (2.2)

Equation (1) may now be written in the form

[Ll9Lj] = CtjLk9 ij9k=l9...69 (2.3)

where the non-vanishing structure constants are

Qi = Q3 — C32 — Q i — Q5 = Q2 = 1 > (2-4)

and those that follow from the antisymmetry of C\} in the two lower indices.
Again, the middle Latin indices take up values 1 and 2 in Eq. (2.1), whereas in

Eq. (2.3) they take up values 1 to 6. This should cause no confusion.

We proceed to carry out the desired central extension of Lie(G). Let Zz together
with a set d^ of central operators, generate the extended Lie algebra. We have

[Li,Ll] = CfJLk+diJ, (2.5)
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where the central generators άy commute with Lt and with each other and possess

the antisymmetry property dυ = —dβ. Further, they satisfy the closure condition

ijdmk + Cjkdmi + Ckidmj = 0 (2.6)

that follows from the Jacobi identity for the extended algebra (2.5). Certain solution

of Eq. (2.6) are, for our purpose, trivial. These correspond to exact forms on the

Lie algebra, which can be set equal to zero by a suitable redefinition of the Lι

generators [2]. Thus we are representing each equivalence class of closed modulo

exact forms on Lie(G) by means of a typical representative from that class. To

solve Eq. (2.6) with the aid of Eq. (2.4), along the lines indicated, we proceed in

the following eight steps.

(1) By suitable redefinitions of the Lt generators we can set

dn = d\4 — d\$ = d\§ = 0 . (2.7)

The result just stated becomes intuitively obvious when we recall that the sets

(L\, Z/3, L4) and (L\, L$, L$) of operators generate two isomorphic copies of the Lie

algebra of the Euclidean group in a plane.

(2) Take / = 1, j = 2 and k = 5 to derive from Eq. (2.6) that

d26 = 0 . (2.8)

(3) Take / = 1, j = 2 and k = 6 to conclude from Eq. (2.6) that

d25 = 0 . (2.9)

(4) Take i = 3, j = 6 and k = 2 in Eq. (2.6) to derive

6/56 = 0 . (2.10)

(5) Take i = 1, j = 2 and k = 3 in Eq. (2.6) and use Eq. (2.7) to derive

ί/24^0. (2.11)

(6) Take / = 1, j = 3 and & = 4 use Eqs. (2.6) and (2.7) to obtain

d23 = 0 . (2.12)

(7) Take the combinations / = 1, j = 3, k = 5 and z = 1, j = 5, k — 3 to derive

two equations that together lead to

<̂45 = ύ?36 = 0 . (2.13)

(8) Take / = 1, j = 3 and A: = 6 to derive

ί/35 = J46 . (2.14)

It is now a matter of straightforward, if somewhat tedious, calculation to verify that

all the remaining components of Eq. (2.6) are now identically satisfied. Thus we

are left with three independent central generators dγ2, d34 and di>s{= d46). We have

thus proved the

Theorem. The vector space of central extensions of Lie (G) is three-dimensional.
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Finally, we may note that in terms of the notation of Eq. (2.1) the structure of
our centrally extended algebra is given by

[H9Pi] = O9 [Pi9Pj] = O9

[M^Pil^SijPj, [NhPj] = δ t i m 9

[M9H]= A [Ni9H]=Pi (2.15)

where we have set d\2 = A 3̂4 = d and rf35 = m.

3. The Galilean Group in 2 + 1 Dimensions

Let x denote the coordinate of a space with two dimensions and t that of time. The
Galilean transformations are

x' — wx + tv + u,

t' = t + η. (3.1)

Here u and v are two-dimensional vectors signifying space translation and boost
respectively and η a real number (time translation), w represents rotation in the
plane. The set of all transformations (3.1) form the Galilean group G, under com-
position. If we write the element r of G in the fashion (w,η,v,u), then the multi-
plication law is

(w, η9 v, u) o (w\ η\ v\ uf) — ( W , η + η\ v + wv\ u + wuf 4- η'v) . (3.2)

Notice that r —> M(r) is a faithful representation, where M(r) is the 3 x 3 matrix

( w v u\
0 \ η) . (3.3)

0 0 \)
The unit element of G is (1,0,0,0) and the inverse of r is

r~λ — (w~ι,—η, — w~xυ, — w~ι(u — ηυ)j . (3.4)

Let us look at the subgroups of G. The subgroup A of all translations in
space-time

A = {(\,η,0,u)} (3.5)

is normal and closed in G. The closed subgroup Go

G0 = {(w,0,ί;,0)} (3.6)

is the homogeneous Galilean group. It is a solvable Lie group with degree of
solvability equal to 2. Every r G G admits the decomposition

(w,η,v,u) = (l,*7,0,κ)o(w,0,i;,0)

and further

(w,0,ι;,0)(l,f/,0,w)(w,0,ί;,0)~1 = (l,η,0,wu + ηυ), (3.7)
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which displays explicitly the fact that G is semi-direct product of A with Go. The
subgroup Go is a (closed) Lie subgroup of G (under the quotient topology). The
subgroup A is naturally isomorphic with R?. We can analyze Go further. Let M and
H denote the subgroups of Go,

H = {(w, 0,0,0,)}- (3.8)

M is closed, normal subgroup of Go and

(w,0,0?0,)o(l,0,ι;,0)(w,0,0,0Γ1 = (1,0,WU,0) . (3.9)

Thus Go is a semi-direct product of M with H, with respect to the above action.
M is naturally isomorphic with R2 and H with the group SO(2). Finally, note the
subgroup E{2) of G

{(w,0,0,w)}> (3.10)

which is the Euclidean group on the plane. It is a semi-direct product of
U — {(1,0,0,w)} -the subgroup of space translations - with H, given explicitly by

(w,0,0,0)(l,0,0 ? W)(w,0,0,0Γ 1 = (1,0,0, ivκ) . (3.11)

The action wu and wv that appears in the foregoing expressions (3.2)—(3.11)
can be made explicit by choosing suitable coordinates in G (canonical coordinates).
We display H - the subgroup of rotations - as the multiplicative group of complex
numbers of unit magnitude. The element r of G is now written as

r = (z,η,υ,u), (3.12)

where η,v,u are as before and z a complex number with \z\ — 1. The action, wu, wv
are now given explicitly by

wv — p(θ)v,

where θ is the argument of z(z = exp(/0) ] and p(θ) is the 2 x 2 matrix

sinθλ /o i i\

cosβj ( 3 - 1 3 )

that act on the two component vectors u and v by the matrix rule.

3A. The Universal Covering Group of G. For the sake of completeness of dis-
cussions and also because of the fact that we propose to discuss this concept in
the next section, we consider G the universal covering group of the Galilean
group in (2 + 1) dimensional space-times. The group G is the semi-direct product
of A (subgroup of space-time translations) with Go, which is the universal covering
group of the homogeneous Galilean group Go. The subgroup Go is the semi-direct
product of M (subgroup of boosts) with the universal cover H of H; H{— SO{2))
is naturally isomorphic with R the additive group of reals.

An explicit coordinatisation of G is afforded by

G = {(z,fj, !>,«)}, (3.14)
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where η, υ, u are as before and z is a real number. The multiplication rule is

(z,η,v,u)o(z',η',vf,u') = (z + z',η + η',v + zvf,u + zu1 + η'v) , (3.15)

and the actions zu ~ p(z)u,zv = ρ(z)v with

( z ) / c o s z s inzλ
r y ; y-smz coszy v 7

In summary, the description of the two groups G and G run parallel. The only
difference is that the group parameter z for G in (3.12) is a complex number of
unit magnitude, whereas z is a real number for G in (3.14).

4. Central Extensions of the Galilean Group in (2 + 1) Dimensions

Let G denote the Galilean group in (2 + 1) space-times. We consider central
extensions of G by T the circle group. Recall that a central extension is

a triple (G,/,π),where / and π are (continuous) homomorphisms such that the
sequence

is exact, and i(T) is central in G, which is the centrally extended group. It is clear
from above that i is injective (exactness at T) and π is surjective (exactness at G).
We recall now the basic result in the theory of group extensions: Central extensions
of G are numbered by the elements of H2(G, T)-the second cohomology group of
G with coefficients in T. In other words, H2(G, T) is the group of group extensions.
Let Z2(G,T) denote the group of 2-cocycles, its elements y(x,y) are Γ-valued
(continuous) functions on G x G that satisfy the cocycle identities:

y(xy,z)y(x,y) = y(x,yz)y(y,z) , (4.1a)

y(l,x) = y ( x , l ) = l (4.1b)

for x,y,ze G, that follow from the associativity of multiplication in G. Let B2(G, T)
denote the subgroup of 2-coboundaries consisting of those functions y : G x G —> T
for which there exists β : G —> T such that

γ(x, y) = β{xy)β(yrxβ(x)-χ (42)

for all (x,y) G G x G. The second cohomology group H2(G, T) is the factor group
Z2(G,T) modulo B2(G,T). Its elements are equivalence classes in which two
cocycles that differ by a coboundary

y\x9y) = y(χ,y)β(χy)β(yΓιβ(χΓι (4.3)

are identified.
The facts that we have cited above are standard knowledge and can be found in

books [11,12] or in the article of Raghunathan [8]. It should also perhaps be noted
that in the theory of projective representations of groups [13] the 2-cocycles are
called multipliers (and coboundaries the exact multipliers). With these preliminaries
out of the way, we can now proceed to tackle the problem at hand.
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We will adopt the following procedure. For each equivalence class of 2-cocycles,
we shall select a typical representative. Then our task will amount to finding solu-
tions to the cocycle identities (4.1a) and (4.1b) and making sure that the cocycle
that we have found is not a coboundary. For the latter purpose, a very simple cri-
terion has been given by Bargmann [3]. Let y{x,y) be a Γ-valued 2-cocycle and
ζ(x,y) the corresponding 7?-valued cocycle

y(x,y) = exp{i a ξ(x,y)} a e R\ (4.4)

where a is a non-zero real number. Then y(x, y) is trivial, ξ(x, y) cohomologous to
zero, provided

ξ(x,y) = ξ(y,x) (4.5)

whenever the elements x j G G commute with each other xy — yx. This follows
easily from Eqs. (4.4) and (4.3). As far as construction of y(x9y) is concerned, we
will again follow the procedure of Bargmann [3] which involves the construction
of suitable homogeneous polynomials in the group elements.

We present our results. Let r,r' e G be as follows

r = (w,η,υ9u), r' = (w1\ηι\v'\u') . (4.6)

Then there is a Γ-valued 2 cocycle y\(r,r') given by

yι(rj) = exp{ί a mi(r,r')} a e R* (4.7)

with

mι(r,r') = {u,wυ') - (v,wuf) + η''(v,wvf) , (4.7a)

where (, ) denotes the Euclidean inner product on 2-space.

Proof. By explicit verification that (4.7), (4.7a) satisfy the cocycle identities (4.1a),
(4.1b), which is a matter of elementary calculations. D

The next task is to verify that the above y\(r,r') is not trivial. Choose r = (1,0,0,u)
and r' = (l,0,t/,0), then rr' = r'r = (l,0,t/,w) but

rnι(ry)-mι(r\r) = 2(u,vf), (4.8)

and the right-hand side of (4.8) need not, and in general, does not vanish. D

There is a second solution to the cocycle identities. This is

y2(r,r') = exp{i* m2(r,r')} b £ R* (4.9)

with

m2(r, r') = vΛ wvf , (4.9a)

where Λ connotes the determinant of the two vectors. That is, for any pair q and p
of two-dimensional vectors q Λ p — q\ p2 — qip\ in terms of the components of the
vectors. Proof of the above assertion, again, is by explicit verification (of the cocycle
identities) which is elementary. Next select r = (1,0,v,u) and r' = (l,0,v\u) so
that rr' = r'r = (1,0, v -f- ί/, u + u'). Now, rri2(r,rf) — v Λ v' and m2(r\r) = v' Λ v
and thus m2(r,r/)Φm2(r/,r) for non-parallel vectors v and v'. Thus our 2-cocycle
is not trivial. D
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There is no other non-trivial 2-cocycle for G.
The central extension of G that corresponds to the 2-cocycle y\(r,r') is the

global version of the central extension of Lie (G) that is heralded by the central
generator m in Eq. (2.15). It is the analogue, in the present case, of that found in
the case of the Galilean group of (3 -f 1) space times and has the same interpreta-
tion (the Bargmann superselection rule for mass). The additional central extension
corresponding to the 2-cocycle yi{r,rf) is specific to the present case, it has no
counterpart in the (3 + 1) dimensional Galilean group. Furthermore, it is the global
analogue of the Lie algebra extension that corresponds to the central generator d in
Eq. (2.15). So far as the central generator D in Eq. (2.15) is concerned, it has no
global extension from Lie (G) to_G. However, it does elevate to a central extension
of the universal covering group G, as we show next.

4A. Central Extension of the Universal Covering Group. Let G be the universal
covering group of the Galilean group in (2 + 1) space times, as before. Bearing in
mind our results in Sect. 2, we know that G possesses exactly three (families of)
central extensions, in view of a general theorem [14] that we now quote: " For a
connected and simply-connected Lie group G, the central extensions of G (by T)
are in bijective correspondence with those of Lie (G) (by R)."

First of all, it is easy to check that the 2-cocycles yi(r,r') and y2{r,r') possess
lifts from G to G. Let r9r' G G, be as follows:

r = (z,η9υ9u) , rf = (z\η\v\uf), (4.10)

then the lifts of y\(r,r') and yi{^^') are obtained by substituting (4.6) by (4.10)
and (3.13) by (3.16) in the expressions (4.7a) and (4.9a). The remaining 2-cocycle
is easily found. It is given by

y3(r,r /) = exp{/c/(r,r/)} c e R* (4.11)

with
f(rS)=zη'-z'η. (4.11a)

The proof is again by direct verification of the cocycle condition, Eqs. (4.1a),
(4.1b). It is also easy to check that f(r,r') is not equivalent to zero. Just take
r = (z,77,0,0), rf = (z',7/,0,0); then rr' = rfr but / ( r , r ' ) Φ / ( r ' , r ) , in general.

We wish to understand in some detail as to why the cocycle ys(r,r') does not
survive the passage from G to G. Let h be the projection h : G_-^ G, and let h*
be the induced homomorphism of cohomology groups, h* : H2(G, T) —> H2(G, Γ);
and set h*f = /* . The homomorphism h is given explicitly by

h:(z,η,v,u)^(e2πιz

iη,v,u). (4.12)

The kernel of h consists of elements

ker λ = {(/!, 0,0,0)}, neZ, (4.13)

and thus f*(r,r') must vanish (see Eq. (4.1b)) whenever r G G is of the form r —
(n, 0,0,0), n G Z and r' arbitrary. From bilinearity of/(r ,r 7 ) it follows immediately
that f*(r,r') vanishes also, for arbitrary r,r' G G. D

The result that we have established by explicit construction above may also be
seen on somewhat more abstract grounds. The subgroup of G, generated by elements
of the form (w, η, 0,0), is isomorphic with T x R. The corresponding subgroup of
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G is R x R. The result of the previous paragraph would imply that H2(T x R, T) is
trivial, whereas H2(RxR,T) is not. Bearing in mind known facts [9] that H2(T,T)
and H2(R, T) are trivial, an application of the Kϋnneth formula to T x R yields the
isomorphism H2(T x R, T) — Hι(T,R). Now, the first cohomology group Hι is the
group of "crossed homomorphisms" [11]. In the present case, because T and R
mutually commute (Γ action on R trivial), HX{T,R) becomes the group of ordinary
homomorphisms. But there is no non-trivial homomorphism T —> R. Thus Hλ{T,R)
and hence also H2(T xR,T) is trivial. The same argument when applied to the
subgroup R x R of G leads to the isomorphisms H2(R xR,T) = HX(R,R) = R.

4B. The Extended Groups. Corresponding to the two cocycles y\ and y2 that we
have found for G, there are two centrally extended groups. We may assemble these
into one big group G. The elements of G are of the form (r;t\,t2) where r is as
in (4.6) and (tι,t2) € T x T with the multiplication rule

(r\tut2)(r'\ t[,t'2) = (rr'', yi(r,r')tιt[,γ2(r,r')t2t!1) (4.14)

and the inverse
(r, h,hTγ={r-' t~\ςι), (4.15)

since yι(r,r~ι) — y2{r,r~λ) — 1, as follows from Eqs. (3.4), (4.7) and (4.9). Thus

G is the extension of G by the torus T2.
As far as the universal covering group G is concerned, it will havejthree centrally

extended groups. We can construct an universal central extension U(G) in the sense
of reference [8] as follows. The elements of U(G) are of the form (r;x\,X2,X3)9

where r is as in (4.10) and (xi,X2>*3) £ R χ R χ R The multiplication law is

( r ; X\ ,X2? ^3 ) ° v ? ̂ l? ̂ 2 ' ^3 ) — v ^ ' ^1 ~ί~ -̂ 1 ~l~ ^ 1 v ? ̂  )? ̂ 2 ~Ί~ -̂ 2 ~̂~ ̂ 2 v > ^ ) >

X3+X3+f(r,r')), (4.16)

where the real-valued cocycles m\,m2 and / have been described before, in
Sect. 4A. Note U(G) is simply-connected, and has, as its Lie algebra, the Lie
algebra central extension of Lie (G), given by Eq. (2.15).

5. Concluding Remarks

We have carried out the central extensions of the (2 + 1) dimensional Galilean group
G, of its universal cover G and of their Lie algebra. The questions concerning the
physical significance of the results is tied up with the problem of representations of
the group extensions. We shall address this question on a separate occasion. How-
ever, one corollary of our results is quite obvious. The structure of the centrally
extended group is such that its rotation subgroup continues to be the group SO(2).
Consequently, non-integral angular-momenta cannot arise as projective representa-
tions of G.

What moral should one draw from the above exercise concerning the question
of the possible existence of anyons? We did not prove that anyons cannot exist;
only that they cannot appear via representations of the Galilean group. To accom-
modate anyons, then, one possibility will be to dispense with group representations
altogether. This presumably implies that anyons are not conventional structureless
particles. Indeed, all known, models of anyons show internal structure; e.g., solitons
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in 2 + 1 dimensional non-linear σ model [15], vortices of an abelian Higgs model

with a Chern-Simons term [16], to quote two examples. Actually, the absence of

group representation i.e., the lack of unitary implementability of the group opera-

tions is not, by itself, a new phenomenon. It has appeared before in the context

of (compact) internal symmetry groups in the grab of "spontaneous breakdown" of

symmetries. On the other hand, giving up group representations also means giving

up a framework which provides us, unambiguously, with the concept of angular

(and linear) momentum. A second possibility for anyons would be to discard the

Galilean group and replace it with its universal covering group. Although the justifi-

cation for such a procedure cannot validly be made from considerations of projective

representations of the Galilean group, the effect itself could conceivably take place

in any event; for instance, as a result of special dynamical properties of a model.

Our analysis, needless to say, does not throw any light on the question of exotic

statistics [17-20], which is the other distinguishing characteristic of anyons.

The author wishes to thank Siddartha Sen and E.C.G. Sudarshan for conversa-

tions and P.P. Divakaran for communicating his results prior to publication.
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