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Abstract: We prove that for SU{2) and SO(3) quantum gauge theory on a torus,
holonomy expectation values with respect to the Yang-Mills measure dμτ(co) =
Nfιe~Sγ M^lτ[Θώ] converge, as T [ 0, to integrals with respect to a symplectic
volume measure μo on the moduli space of flat connections on the bundle. These
moduli spaces and the symplectic structures are described explicitly.

1. Introduction

In this paper we prove that for SU(2) and SO(3) quantum gauge theory on a
torus, the holonomy ("Wilson loop") expectation values for the Yang-Mills measure
dμτ(ω) = Nγle~Sγ M(ω)/T[9ω] (the notation is explained in Subsect. 2.5 below)
converge, as T j 0, to integrals with respect to a symplectic volume measure μo on
the moduli space of flat connections on the bundle. We also show that for the non-
trivial SO(3)-bundle over the torus, the moduli space of flat connections consists
of just one point and the limiting measure exists and is thus, of course, just the
unit mass on this point (a similar situation exists in genus 0, which is treated from
a slightly different point of view in [Se 1]). The proofs are by direct computation
using the expectation value formulas derived from a continuum quantum gauge
theory in [Se 2,3] and by lattice theory in a number of works including [Wi 1]
(the work [Wi 2] also contains results of related interest), and the description of
the symplectic form obtained in [KS 1].

The most significant result related to the present work is the corresponding
result by Forman [Fo] for gauge theory on compact orientable surfaces of genus
> 1. Forman's proof relies on results of Witten [Wi 1]; a more direct proof of part
of Forman's result has been obtained by C. King and the author in [KS 2]. The main
case we work with in this paper, genus 1 and gauge group 51/(2), is singular in
two ways (thereby making the method used in [Fo, Wi, KS 2] inapplicable): (1) the
"partition function" goes to oo, as T j 0, and (2) no flat connection is irreducible.
The situation over the torus is singular for other gauge groups as well, but the case
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SU(2) (or SO(3)) may deserve this separate study because the symplectic structure
on the space of flat connections is, in this case, very simple and thus a completely
"hands-on" study is possible.

The techniques used in this paper rely on the geometry of SU(2). The author
hopes to address the case of a general gauge group in a future work.

2. The Limiting Expectation Values

2.1. The torus as a quotient of the disk. Let I be a torus equipped with a
Riemannian metric, scaled so that the total area of Σ is 1. The area of A C Σ
will be denoted \A\. As a manifold, Σ may be obtained from the closed pla-
nar disk D = {(x,y) e R2 : x2 + y2 ^ 1}, centered at O = (0,0), as follows. Let
xt = (cos(2πf), sin(2πθ), for t G R, and let Kt be the arc [^p, | ] -* 3D : t »-> JC,.
Thus the Ki(i = 1,2,3,4) split 3D into four congruent arcs. Identify K\ with Kτ>
reversed, and K-i with Kά, reversed, linearly; i.e. xt is identified with xt/ when-
ever t - ^ = *ψ - t' with i G {1,2}, / G [ ^ , {] and t' G [ ^ , ψ l The quotient
space is a torus which we take to be Σ, and we denote the quotient map by q : D —>
Σ. The two loops Si = q(x0O) • q(Kx) q(Ox0) and S2 = φo<9) 4(^2) i?(α*o),
where (9x0 is radial, generate the fundamental group π\(Σ, q(O)\ with S2S1S2S1
being homotopic to the constant curve at q(O). For technical convenience, we equip
Σ with the orientation induced by q from the standard orientation of D C R2.

2.2. Triangulation of Σ, and Lassos. We will work with a fixed triangulation 3~
of Σ. In order that we can apply some of the results of [Se 2,3] it is neces-
sary to put some restrictions, which we describe below, on 2Γ. We will not make
any significant overt use of these restrictions, and the reader may choose to pro-
ceed by viewing Theorem 2.10 as a "definition." In any case, every triangulation
of Σ has a subdivision which is isomorphic to a subdivision of a triangulation
which satisfies the restrictions. The requirement on the triangulation of Σ is that it
be the projection by q of a triangulation of D which satisfies : (i) each oriented
1-simplex is either radial or "cross-radial" (i.e. intersects each radius at most once),
(ii) each Kj is the composite of 1-simplices, and (iii) each 0-simplex is an end-
point of a 1-simplex which is part of a sequence of radial 1-simplices going from
O to a point on 3D (in particular, q(O) is a 0-simplex of the triangulation). If
A is an oriented 2-simplex of 3~ then there is a radial path Ox in D whose
projection by q is a path B, consisting of_oriented 1-simplices, from q(O) to a
0-simplex on 3A. The corresponding loop B.3A.B will be called a lasso. We will
let {A\,...9An} be the positively oriented two-simplices of the triangulation 2Γ of
Σ, and $ = {e\,~e\,...,eM^M} the set of oriented one-simplices of the triangula-
tion (wherein e, is e{ with the opposite orientation). We will often work with loops
Ci,. . . , C/c which are composites of 1-simplices.

2.3. The groups G and G, the Lie algebra g, and the metric ( , ) g . All through
this paper G will denote the group SU(2), while G will denote either SU{2) or
SO(3). Thus there is a (universal) covering map G -» G (which is the identity map
if G — G). The Lie algebra g of G will be equipped with a fixed ^-invariant
metric ( , ) g . We will write / to denote both the identity element in G and the
identity element in G.
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2.4. Principal G-bundle. Let π : P —> Σ be a principal G-bundle over 2λ This is
classified, relative to the fixed orientation on Σ, up to bundle equivalence by an
element h G ker(G —> G) (one may take Eq. (3.1) of Sect. 3 as defining h). Here
this kernel is either {/} or {±7} (/ being the 2 x 2 identity matrix); if h = / then
the bundle is trivial, while if h = — I (which is possible only when G = SO(3)) the
bundle is non-trivial.

2.5. The Yang-Mills measure on the space <€. Let si be the set of all connec-
tions on P and let ^m be the group of all bundle automorphisms of P, covering
the identity map Σ —» Σ, and fixing the fiber π~ι(m) pointwise, where m = q(O).
The group $m acts on si by pullbacks of connections : (φ,ω) ι—> φ*ω. The Yang-
Mills measure μr is a probability measure on a certain "completion" # of the
quotient space si/&m. The construction of μr is carried out in [Se 2,3]. Formally,
dμτ(ω) — Nfιe~Sγ M^ω^τ[S>ώ\, where Sy M is the Yang-Mills action functional,
\βoS\ is the pushforward on <€ of "Lebesgue measure" on si, and Nγ is a "nor-
malization constant."

2.6. Stochastic holonomy. Fix once and for all, a point u on the fiber π~ι(m), where
m — q{0). If C is a piecewise smooth closed curve on Σ, based at q(O), then cor-
responding to a connection ω on P there is associated the holonomy gu{C\ ω) G G
of ω around C with initial point u. The holonomy gw(C; ω) remains invariant if
ω is replaced by 0*ω, for any φ G ̂ w . If C is a closed curve on Σ, based at
#(0), which is the composite of oriented 1-simplices of ^, then (as shown in
[Se_2,3]) there is a μj—almost-everywhere defined measurable function ω ι-> g(C; ω)
G G on #. This function may be called the "stochastic holonomy around C" and is
defined by reinterpreting the classical equation of parallel transport as a stochastic
differential equation. If C i , . . . , Q are k such closed curves, and / is a bounded
measurable function on Gk

9 then the expectation value

Jf(9u(Cχ ω), . . . , gu(Ck; ω)) Jμ Γ (ω)

is of interest. We state in Theorem 2.10 below an explicit formula for the expec-
tation value. Part of the goal of this paper is the determination of the limit of this
expectation value, for continuous / , as T [ 0.

2.7. Notation (b »->^). As before, let {A\,...,An} be the positively oriented two-
simplices of the triangulation SΓ of Σ9 and $ — {e\,e\9...,eM,^M} the set of ori-
ented one-simplices of the triangulation. We shall use maps $ —>• G : b v-> xt> for
which χ^ = χ~ι

9 where "b denotes the orientation-reverse of the oriented 1-simplex
b. If C is a closed curve which is the composite br...b\ of oriented 1-simplices,
then we write x(C) to mean x^r ...Xbv Thus x(dAi) G G, where dAj is the boundary
of At with some choice of initial point. We write x^ for the element of G covered
by xb G G; so x(C) G G is covered by x(C) G G.

2.& ΓΛe Brownian Density (or "Heat Kernel") Qt(x\ Let Qt(x) be the density,
with respect to the Haar measure dx on G (of total mass 1), at time t(> 0) of
standard Brownian motion on G (governed by the ^d-invariant metric ( , ) g

on g).

2.9. Facts about Qt(x) Qt(x) is a multiple of the fundamental solution of the heat
equation on G. It can be expressed as Qt(x) = Σ^zle~Cnt^2nχn(x), where χn is the
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character of the ^-dimensional irreducible representation of G, and Cn = (n2 — 1 )/κ2

(wherein K, specifying the metric ( , ) g , is the length of the vector ί * _ .

g), the series being absolutely convergent. For any δ > 0, \imtιosvφ^x_^>δQt(x) =
0, wherein \x —I\ denotes the distance between x and /. If / is a bounded measur-
able function on G and is continuous near /, then lim^o JG f(χ)Qt{x)dx = / ( / ) .

We shall use the following result from [Se 2,3] (Eq. (5.5) in [Se 2], and the
Introduction in [Se 3]) :

2.10. Theorem. ([Se 2, 3]). Let {Δ\,...,Δn} be the positively oriented two-simpli-
ces of the triangulation ZΓ of Σ, and S — {e\,eι,...,eM,eM} the set of oriented
one-sίmplices of the triangulation. Suppose that C\,..., Q are loops on Σ9 all based
at m {which, recall, is assumed to be a 0-simplex of the triangulation), which are
composites of oriented l-simplices. Then, for every bounded measurable function

f on Gk,:

ff(g(Cύω),:..,g(Ck;ω))dμτ(ω)

m \ \ \

where \Δi\ is the area of Δi {measured by means of the metric on Σ), and

Zh

τ = fQτ{hb-ιa-ιba)da.db. •
G2

2.11. The variables y^. and the function F. Given b ι—> Xb, as above, it is pos-
sible, with an appropriate indexing of the 2-simplices as Δ\,...,Δn, to intro-
duce y^} G G, one for each oriented 2-simρlex Δu and a,b G G, such that :
(0 yΔ} — x{B)~λx{dΔi)x{B) for the lassos B.dΔι.B (for appropriate choices of
B)9 i e {2,...,w}, while for the remaining simplex Δ\ : y^x — hx{B)~ιx{Δ\)x{B) =
hb~ιa~ιba{yΔl . . . ^ / l ) ~ 1 , (ii) x{S\) = a, and x{S2) = b9 and (iii) each x(Q) is a
product of suitable powers of the yΔχ and a,b. The latter actually follows from
(i) and (ii) using the fact that every loop of the type Q can be obtained from the
composite of lassos and reversed lassos and the basic loops S\ and £2 (and their
reverses) by dropping certain l-simplices which are traversed in opposite directions
consecutively. These facts are proven in [Se 2] (Lemmas A2 and A3). Thus there
is a function F such that

(2.1)

where in w e have wri t ten F{{~yΔ},a, b) to m e a n F{~yΔ ,...,yΔn,a,b).

Thus F{{yA},a,b) is obtained from f{x{C\),...,3c(Q)) by writing each x(Cz)
as a product of powers of the yΔ and a, b. In particular, if / is continuous then
so is F. Moreover,

/ / ( ί C Q ) , . . . , * ( C i O ) β r μ ^
GM i=2

-ιa-ιba{yΔyAy
ι= jF{{yΔ},a,b)QτlAιl{hb-ιa-ιba{yΔ2...yAny

ι)

flQτ\Δi\(yΔi)dadb.dyΔl...dyΔn

i=2

This is proven in (Lemma 8.5 of) [Se 3] (and in [Se 2] in the case h = /) .

flQτ\Δi\(yΔi)dadb.dyΔl...dyΔn (2.2)
i=2
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2.12. Remark. If ω is a connection on P, then by setting ~yΔ. = gu(B.dAi.B;ω)
(notation as in Subsect. 2.11 above), and a = gu(S\',ω),b = gdβiΊoϊ), we can take
Xb to be the element of G describing co-parallel transport along b (as measured by
a suitable section of P over the bonds of the triangulation). Then x(Q) — gu(Q;ω).
In particular, if ω is flat, then Eq. (2.1) implies that :

2.13. Lemma. For T > 0, we have :

OO y (h\
zτ = Σe~CnT/2^— > ( 2 3 )

n=\ n

where Cn = (n2 — l)/κ2 (wherein K > 0 specifies the metric on g, as in Facts 2.9),
and ^vψ1 is 1 if h — I (i.e. when P is trivial) and is (— \)n+ι when h — —I (i.e.
when G = SO(3) and the bundle is non-trivial). In particular, the series above is
convergent. Moreover,

\imZh - / °° i f h = I ;

no τ ~~ \ \ if A = —/ .

Proof With χn as in Facts 2.9,

fχn(hy~ιx~ιyx)dxdy = ~^χn(h) (2.4)
G

 n

(see Ex. 2.4.17.3 and Proposition 2.4.16 (iii) in [BrtD]), where the integration is
with respect to Haar measure of total mass 1. Equation (2.4) is a consequence of
Schur orthogonality (specifically Proposition 2.4.16 in [BrtD]). The expression (2.3)
for Zγ follows upon integration term-by-term of the series for Qτ(hy~ιx~ιyx) given
in Facts 2.9. Term-by-term integration is valid by dominated convergence, since (see
Facts 2.9),

oo oo

Σe-c"τ/2nJ\χn(hy-ιχ-ιyx)\dxdy S Σe~C"T/2n.n = QT(I) < oo .
n=\ G n=\

Next, if h = / then Eq. (2.3) gives Zι

τ = Σ^λe~CnT^2, and thus, by monotone con-
vergence, Zj> —* oo, as T I 0.

To evaluate irnirioZ^1 we use the theta function identity :

1 + 2 § cos(2πnx)e-πn2t/2 = y/2Γι/2 Σ e~2π(x~m)2/t ,
n=\ m<EZ

wherein Z is the set of all integers. Setting x = 1/2 we obtain :

i γ e / = I Lf
2 Λ/2

The left side of this equation is e~πt^2Z~I

2. Letting t j 0, we obtain l im^io^ 7 = \

In Sect. 3 (following Theorem 3.15) we will calculate limτ^oZf7 = \ by a dif-
ferent method. •
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2.14. Lemma. Let Ci,...,Q be a collection of loops as above, f a continuous
function on Gk, and let F be the function described in Eq. (2.1). Then:

hm Jf(g(Cx ω),..., g(Ck\ ω)) dμτ(ω)

= lim XfF({yA = I},a,b)Qτ(hb-ιa~ιba)dadb ,

provided the limit on the right-hand side exists.

Proof By continuity, F({~yA},a,b) is uniformly close to F({I},a,b) when the yΔj

are close to /. Let Uδ = {yΔi : \y^ —1\ > δ,i = 2,...,n}, for any δ > 0, wherein
I M —/| denotes the distance between yΔι and /. In view of the expectation value
formula given in Theorem 2.10 and Eq. (2.2), it will suffice to show that, for any
δ > 0,

i=2

converges to 0, as T [ 0.
The integral appearing above is dominated by

n

Π S U P
i=2\yi-I\>δ

and by Facts 2.9, this goes to 0, as T [ 0. The desired result now follows by taking
into account Lemma 2.13. •

2.15. Remark. In view of Theorem 2.10, Eq. (2.1) and (2.2), and Remark 2.12, we
see that Lemma 2.14 says essentially that \\mTιoμτ, if it exists in a suitable weak
sense, lives on the space of flat connections on P.

2.16. Remark. Lemma 2.14 also shows that the determination of the "weak limit"
of μj, as T I 0, is essentially reduced to the determination of the limit

lim \ jF(ayb)Qτ(haba-ιb-ι)daJb,
T G 2

for continuous functions F on G .

2.17. Lemma. If F is continuous on G2, then

\im\fF(a,b)Qτ(b-ιa-ιba)dadb= lim n.fF(a,b)χn(b-ιa-{ba)da.db,

provided the limit on the right-hand side exists (as a finite number).

Proof. This is an application of the LΉopital rule. Using Facts 2.9, we have as in
the proof of Lemma 2.13 :

oo

fF(a,b)Qτ(b-ιa~ιba)dadb = j > ~ 7 W 2 α / t >
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where
απ = n.fF(a,b)χn(b~ιa-ιba)da.db .

G2

Taking F to be 1, we have, as in Lemma 2.13,

oo

n=\

Assume that an —» L, a finite number, as n —* oo. Let ε > 0, and choose iV so
that |αM — L| < ε when n ^ N. Then :

. 4

where 0 < ε ; < ε,

where we have used Lemma 2.13 in the second equality.
So

\\ $F(a,b)Qτ(b-λaΓλbά)dadb - L\ ^ O(T) + L.O(T) + ε.(l -
Z Γ G 2

The required result follows upon taking lim sup as T [ 0, since ε > 0 is arbi-
trary. •

2.18. Notation {kt,aθ9K)lSome facts about SU{2). Every element a e SU{2) can
be written in the form :

g = kφdokφ (2.5a)

with 0 -^ φ < 2π, 0<0<π, 0^ψ<2π (these correspond to the "Euler an-
gles" for 5(9(3)), where

(^ e ^ (2.5b)

and

r\ !) (2.5c)
sin I cos I )

We denote by Λ' the maximal torus {kt : t e R} in G.
Moreover, the Haar measure dg on G of unit total mass can be expressed as :

dg= ~ sin θdφdθdφ. (2.5d)
on1

To be precise, the map (0,2π) x (0, π) x (0,2π) -^ G : (φ,θ,ψ) H-* kφaokφ is a
two-to-one smooth local diffeomorphism onto a dense open subset of SU(2), with
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Jacobian -—^ sin θ (the expression for dg has a further factor of | because of the

two-to-one nature of (φ.θ.φ) H-» kψaokψ).
If // is any bounded measurable function on SU(2) which is central (in the

sense that H(gxg~ι) = //(*) for every x,g e SU(2)) then :

/ H(g)dg = - / Λ sin2ί . # ( * , ) . (2.5e)
51/(2) π 0

The reader may consult [BrtD] (1.5.20.6 and 2.5.2) or [Waw] for these facts. •

2.19. Proposition. If F is any smooth function on SU(2) x SU(2), then :

lim n / F(a,b)χn(b-ιa-ιba)dadb= f F(k,k')dkdk', (2.6)
n-^oo SU(2)XSU(2) KxK

where dk and dkf are the Haar measure of unit total mass on K, and F(a,b) is
the "average" Jsu{2)F(gag-\gbg-ι)dg.

Proof Since the integral on the left in Eq. (2.6) is unaltered if F is replaced by F,
it will suffice to assume that F, in addition to being smooth, is a central function,
i.e. that F(gag~ι,gbg~ι) = F(a,b) for every g E SU(2). Denote by In the integral
on the left of Eq. (2.6). Since b H-» fsu,2)F(a,b)χn(b~ιa~λba)da is central, we have
by Facts 2.18 (specifically, Eqs. (2.5e, α, d)) :

In π

r , . 2 r dφ sin(θ)JΘ rfι/r „ , , v / τ ,
/II = — Jdt sin ί J —2 F(kφaθkφ,kt)χn(ktaθk-ta-θ) .

π 0 [0,2π]x[0,π]x[0,2π] δ π

Now the character χn is given by :

f »

where 7> denotes trace of a matrix, and the same range of cos" 1 is used in numer-
ator and denominator. Calculation shows that :

A ( θ , t ) = λ-Tr(ktaβk-ta_θ) = 1 - 2 f s i n 2 0 s in 2 /.

From these formulas we have the following useful relationship (which is verified
by working out the derivative in the right side):

n sin 2(0 sin θ χn(ktaθk-ta-θ) = ~ ^ c o s [n ' cos

In view of this, integration by parts yields:

dφ dθ - dφ dF(kφaθkφ9kt)nln=D.l.-\—J at J
π 0 [0,2π]x[0,π]x[0,2π]

(2.7)
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For the boundary term B.T. we have:

B.T. = --fdt J ^ ^ { F ( V π ^ , * ί ) c o s ( 2 / i O - F ( * φ + ^ , f e ) }
7 1 0 [0,2πp * π

—>• —/ί/ί / 2—F(kφ+ψΛt\ as fz —>• ex),(Riemann-Lebesgue lemma)
7 1 0 [0,2π]2 8 7 Γ

/ -
£ o π

= / F(k,k')dk dk' ,
KxK

where in the last step we used the conjugation-invariance property of F and, for
instance, aπkta~ι = k-t.

The rest of the argument is to show that the second term on the right in Eq. (2.7)
goes to zero as n —> oo. To this end it will suffice to show that the integral

jdt - Jdθ H'(t,θ) - cos[n cos~ιA(θ,t)]
0 0

goes to 0 as n —» oo, for every continuous function H' on [0,π] x [0,2π]. The
second factor in the integrand above is invariant under t»-» π — t and θ *--*• 2π — 0;
thus we can reduce the integral to the form:

, f π/2 π

Λ = JdtfdθH(t,θ) COS[M cos~^(ί,θ)] .
0 0

where // is continuous on B = [0,π/2] x [0,π]. Thus, we wish to show that
Λ -^ 0, as n —> oo. It will be convenient and sufficient to assume that H vani-
shes near the boundary of [0,π/2] x [0,π]. (To see that it suffices to assume that
H vanishes near dB, choose, for each integer k ^ 2, a continuous function φk
on B which equals 1 on [£, | — £] x [^,π — ̂ ] and decreases to 0 in a neighbor-
hood of dB\ then | / 5 //cos[«cos~U(.)] - JBHφk cos[ncos-ιA(- )]| ^ /^ | / / | ( 1 -

supf, and therefore l i m s u p n _ j Λ | ^ ||//||suPf + I l i m s u p ^ JβHφk

ί )]|. Observing that Hφk vanishes near dB and letting k —* oo, we
conclude the argument.)

For ί E [0, f ] and θ £ [0,π], introduce ξ G [0, f] c [0, f ] by:

sin ξ = sint sin(θ/2) .

Then (t,θ) ι-» (ξ,θ) is a diffeomorphism of the open set (0,π/2) x (0,π) onto
the open set {(ξ, θ) : 0 < ί < | < | } , and the inverse map is of the form (ξ,θ) ι-»

We have

cosξdξ Λdθ = d(sinξ) Λdθ = cos t sin(θ/2)dt

= \Jύn2(θ/2) - ύn2ξdt Λ dθ ,

where the positive square-root is taken because cos* ^ 0 and sin | ^ 0, since

ί,f G[0,π/2].
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Thus

Jn = Kfdξ{]dθH(ξ9θ)} . cos(2/iί),

where // is the continuous function on {(ξ,θ) : 0 ^ ξ ^ | ^ f }, zero near the
boundary of the domain, and given in the interior by:

~ cosξ H(t(ξ,θ),θ)

Thus ξ i—» f2ξίϊ(ξ9θ)dθ is also continuous. Therefore, again by the Riemann-
Lebesgue lemma, it follows that lim^oo Jn = 0.

Putting all this together, we obtain Eq. (2.5). •
Combining Lemma 2.17 and Proposition 2.19 we obtain (after uniformly

approximating continuous F by smooth ones):

2.20. Proposition. If F is continuous on G2 then:

lim - ^ jF(a,b)Qτ(b-ιa-χba)dadb = J F(k,k')dkdk' ,
Πo ZTG2 KXK

where dk and dk' are the Haar measure of unit total mass on K, and F(a,b)
is the 'average' Jsu(2)F(gag-\gbg-{)dg. (If F(gag~\gbg~x) = F(a,b) for every

g e SU(2), which is the case of main interest, then F = F.)

3. The Symplectic Structure on Flat Connections

3.1. Tangent vectors to stf . Let si be the space of all connections on a principal
G-bundle π : P —> Σ. The space of tangent vectors to si is naturally identified as
the space of g-valued 1-forms A on P satisfying: (i) A((Rg)*X) = Ad(g~ι)A{X)

for every g e G, p E P (we have written Rgp to denote the action of g E G on
p e P arising from the principal G-bundle structure of P), and X e TPP, and (ii)
A(Y) = Q whenever π*F = 0.

Recall that g is equipped with an ^d-invariant metric ( , ) g . If ξ and η are

^-valued 1-forms on a space we denote by (ξ A η) the 2-form defined by:

(ξ Λ η)(X9 Y) = (ξ(X)MY))g_ ~ (ξ(Y),η(X))β_

3.2. The symplectic form on stf . If A^ and A^ are tangent vectors to stf then,
as is easily verifiable, (A^ ΛA^) is π* of a smooth 2-form on Σ; the integral
of this 2-form over (the oriented surface) Σ will be denoted Θ(A^ι\A^). Thus Θ
itself is a 2-form on si. In fact, it is a symplectic form.

3.3. Notation Ωω (curvature) and s/° (flat connections). Recall that the curvature
of ω is the g-valued 2-form Ωω specified by Ωω(X, Y) = dω(X9 Y) + [ω(X\ ω(Y)l
for every X,Y E TpP and every p € P. We denote by s/° the space of flat con-
nections on P, i.e. those which have zero curvature.
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3.4. Symplectic form on stf° and Ή0. Let 0 be the group of all bundle automor-
phisms of P which cover the identity on Σ, i.e. & consists of diffeomorphisms
φ : P —> P for which φ(pg) = φ(p)g for every p G P and g G G, and πφ = π.
Then 9 acts on ja/ by pullbacks of connections: (</>, ω) H-> 0*CO. The symplectic
form 6> induces a "symplectic form" Θ on the quotient space ^° = J / 0 / ^ in the
sense that if A^ and A^ are vectors in s/ tangent to s/° (i.e. they are tangent to
paths in j/°) then:

<9(Λ(1),Λ(2)) - Θ(φ*A{l\φ*A{2))

for every φ e &.
Let Σ be the torus, as before, and recall from Subsect. 2.1 the two basic loops

JSI and S2 which generate the fundamental group π\(Σ,m) subject to the relation
S2S1S2S1 = 1, in homotopy. Recall (Notation 2.4) that principal G-bundles over Σ
are classified by h G ker(G —> G).

3.5. Notation (&,&', ^sιng^
f/G). Recall (Notation 2.3) that G = SU(2), G is

either SU(2) or £0(3) = SU(2)/{±I}9 and G -> G : x ^ x is the covering map.

/ = {(fl,i)GG : i " 1 α " 1 * α = A" 1 } . (3.1)

The group G acts on #" by:(g,(x9y))±> (gχg~ι,gyg~ι).
Thus we have a quotient p \ 3F v-* #'/G : (fl,&) H->- [α,Z>].
If h = I (i.e. the bundle P is trivial) then we write

where # " ^ = & Π ({V?} x {λ/7}) (here {Vϊ} = {xeG:x2 = /}), and #"' =
^ \ ^sing. Thus if G = G = ^t/(2), then &sing = Z{G) x Z(G), while if G =
50(3), then #"5 ί ̂  is the union of Z(G) x Z(G) = {(/,/)} and the two-dimensional
manifolds consisting of all points (I,gxg~λ\ all points (gxg~*9I), and all points
(gxg~ι, gxg~ι%_3S g runs over SO(3) and x is any fixed 180° degree rotation. Note
that the #'Smg/G consists of a finite number of points. If h — —/, we set 3F' — 3P'.

3.6. Fact/ Notation (Θ,Θ). The map ^°/^m -> & : [ω] ^ (fif«(Si;ω),gfM(S2;ω))
is a bijection (see 2.5 for ^ w ) , and induces a bijection:

^° -> J^/G : [ω] ^ to«(Si; ω),^(S2; ω)] . (3.2)

Using these bijections it is possible (as described in Theorem 3.7 below) to
transfer the form Θ to a 2-form on #"', which descends to a 2-form on 3F1 jG. In
general, J^ and J^/G are not naturally smooth manifolds and so care needs to be
taken in working with "2-forms" on these spaces. For the case we are interested
in, where Σ is the torus and G = SU(2), we will describe the structure of ^ and
3P'/G and the corresponding 2-form explicitly.

The following description of Θ is a simple special case of Eq. (2.23) in [KS1].
(A group cohomological approach to the symplectic structure of the space of con-
jugacy classes of representations of %\{Σ) was developed in [Go] and, aside from
questions of smoothness and bundle topology, this is equivalent to the symplectic
structure on the moduli space of flat connections; the description of Θ given below
should thus also be a consequence of the results, specifically Eq. (3.4), in [Go]).
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3.7. Theorem [(KS 1]). Let (a,b) G #", and let A^\A^JB^\B^ G g be such that
(aA^ι\bB^) and (aA^2\bB^) are tangent to 3F at (a,b); i.e. they are the initial

2

tangent vectors of smooth paths in G lying on 3F and passing through (a,b)
initially. Then each of these paths corresponds to a path e ^ ω e in jrf° such
that (e,x) »-> ω € | x is smooth (here x G P). Moreover, Θ evaluated on the "tangent
vectors'" (i.e. the corresponding l-forms -^\e=Q) to these paths in J</° equals

. (3.3)

The following result describes the smooth structure of #"' and #~;'/G. (See also
Sect. 2.2 of [EMSS] and Sect. 5a of [AdPW] for a discussion of the moduli space
(L x L)/W for simply connected gauge groups.)

3.8. Theorem. Suppose h = I (i.e. the bundle P is trivial). Let L be a maximal
torus in G, to be definite: L — K the corresponding Weyl group is W — N(L)/
L = {L,aL}, where a G N(L)\L Let L' = L\{\/Ί}9 and let (L x L)' = (Lf xL)U
(L1 xL) = (LxL)Π &'.
We consider the action of W on

(L x L)r x G/L specified by aL.(l\J2,gL)_ — (al\a~x ,al2a~x ,ga~xL)\ the image
of (h,h,xL) in the quotient {(L x L)1 x G/L) /W will be denoted [l\,l2>xL]ψ.
Then:

(i) G acts smoothly on ((L x L)' x G/L) /W by g [luh,xL]w = Uuh,gxL]w',

(ii) <F' is a connected smooth 4-dimensional submanifold of G , and the map
Ψ : ((L x L)1 x G/L) /W -> &' : [!u h,gL]w •-> (ghg-\gl2g~ι) is a well-defined
G-equivariant diffeomorphism;
(iii) p' : ((L x L)' xG/L) /W -> (L x L)f/W : [lu l2,gL]w H-> [lu I2]w is a smooth

fiber bundle over the smooth manifold (L x L)'/W with fiber G/L and structure
group W\

(iv) the map ψ : (L x L)r/W -> &'/G : [lu I2]w *-* [h, h] is a well-defined
homeomorphism; _ _

(v) the map p : ^' —> #"'/G is a smooth submersion if and only if 3F1 /G is
equipped with the differentiable structure making φ a diffeomorphism;

(vi) pψ = φpf, and thus, by transferring smooth bundle structure by means of
Ψ and φ, p : #"' —> IF'/G is a smooth fiber bundle with fiber G/L and structure
group W, and (Ψ,φ) is an isomorphism of such bundles.

Proof (i) The mapping G x ((L x L)' x G/L) - > ( L x L)r x GJL : (g,(lul2,xL))
•-> (h,h,gxL) is smooth and JF-equivariant. Since (L x L)' x G/L is a cover of
((L x L)' x G/L)/W, the latter equipped with the smooth structure making the_cov-
ering map a local diffeomorphism, it follows that the induced action of G on
((L x L)1 x G/L)/W is smooth.

(ii) The mapping ΨL: LxLx G/L —> G : (l\J2,gL) H-> (ghg~\gl2g~ι) is a
well-defined G-equivariant smooth map with image #", and maps (L x L)' x G/L
onto #";. Its derivative at (l\J2,gL) G L x L x G/L is specified by the map (wherein
/ is the Lie algebra of L)

l_ x / x ^ - ΨL{h,l2,gL)-χTΨLihj2,βL)G
2

{A,B,X)^(Ad{g){A + {Ad(l^)-\)

Examination of this shows that Ψι on (L x L)' x G/L is an immersion.
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We show that ΨL restricted to (Z x L)f x G/L_-* 3F' is a_closed map.
Let C be a relatively closed subset of (Z x L)' x G/L, and let C be its clo-
sure in Z x L x G/I. Then C Π ( ( L x Z)' x G/L) = C. Moreover, Ψlx(^sing) =
{(Z x I)\(L x Z)'} x G/L. It follows that !PL(C) = ΨL(C) Π #Λ Thus since *FL(C)

is closed (being compact) in G_, ΨL{C) is closed in J^'.
The map Ψ : ({L x L){ x G/L)/W -» J ^ js a continuous bijection. Since Ψ^

takes relatively closed subsets of ( I x 1 / x G/L into relatively closed subsets of
#"', *F is also a closed map. Therefore Ψ is a homeomorphism. Since ΨL is an
immersion, it follows that Ψ is smooth and is an immersion. Since Ψ is a homeo-
morphism onto its image ^\ and Ψ is also an immersion, 3F1 is a submanifold of

2

G and Ψ is a diffeomorphism. From dim ((Z x Z)' x G/L) = 4, we conclude that
dim #"' = 4. Since ^ is G~equivariant, so is Ψ.

(iii) The smooth manifold (Z x Z)' is a two-fold cover of (Z x L)'/W, and
so the latter has the smooth manifold structure induced from that of (Z x L)1.
If {lull) £ (Z x Z)' we can choose a neighborhood (7 of [l\Ji\w ύi (£ χ L)'/W
whicb_is covered once by a neighborhood U of {l\Ji) G (Z x L)r. Consider / :
UxG/L-* ((Z x L)f x G/L)/W : ( [ / i ^ ] ^ ) ^ \j'i,J2,xL]w, where (/ί JO ^ ^
covers (J\Ji) ^ ^ The map / is a smooth G-equi variant mapping onto {p')~ι{U).
Moreover, f~ι is also smooth since it is obtained by means of the smooth map
(L x L)' x G/L -^{Lx L)'/W : (h, I2,xL) *-> [lu h\W Taking the maps / as local
trivializations, p' becomes a smooth bundle with fiber G/L. Now W acts on G/L
by : {aL,xL) ι-» xa~ιL. If /i and /2 are local trivializations of the type / , defined
on the same domain, then f^ιf\ is smooth and f^1 fι{[h,h]w,xL) equals either
itself or ([/i,/2V,mL). Thus the bundle specified by pf has structure group W.

(iv) It is clear that φ is well-defined, and that φp' — pψ. Since p is open, and
since p' has continuous local sections, it follows that φ is continuous. We show
now that φ is injective. Suppose [I1J2] — \hΛ*\ in 3F/G. Then there is a g 6 G,
for which gl\g~ι = /3 and ghg~ι ~ U- Since /1 or I2 is in L', it follows from
the structure of the elements of L = K, that either g £ L or that # = /? for some

he G of the form j -5 ^ ) with |j8| = 1. In either case, g e N(L). Therefore,

[^15/2]^ = [HJA\W- SO φ is one-to-one. Since Ψ is closed and p is closed (this is
a general fact about quotients of Hausdorff spaces by compact groups) it follows
that φ is closed. Therefore φ is a homeomorphism.

(v) If p is a smooth submersion, thereby having smooth local sections p ^ , the

map φ~ι, being expressible locally as p'Ψ~ιpjjc, is also smooth. Conversely, if 1̂

is a diffeomorphism then /> = φp'Ψ~x is a smooth submersion.
(vi) It is readily verified that pψ = 1^//. •

3.9. itemαrfc The bundle p1 : ((Z, x L)' x G/L)/W_-> {L x L)1/W is, as is seen
directly from the definition, the bundle with fiber G/L associated to the principal
^-bundle (L x V)' -> {L x L)1\/W : {lu l2) •-> [h, hλw\ for this, note that W acts on
the left on G/L by : yL xL = xy~ιL (for every yL G W = N(L)/L, and xL G G/L).
Since (Z x Z) r —> (Z x L)'/W is non-trivial (because (Z x Z ) ' is connected and £F
is discrete and has more than one element), it follows that p1 is non-trivial. Hence
the bundle p : J^ ; —> J^/G £$• non-trivial, and is a fiber bundle, with fiber G/Z,
associated to the principal /^-bundle (L x L)f -^ (L x L)r/W. •

3.10. Proposition. Let (K x K)f = {{x,y) e K x K : (x,J) e (L x L)'}, and let p
denote the composite of the covering projection {K x K)f —> (Z x L)1 with the
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covering projection (L x L)' —> (L x L)'jW. Recall from Theorem 3.8(iv) the dif-
feomorphism φ:(Lx L)'/W -» ^ ' / G . ΓAen ίλe /orw (^p)*6> ow ( £ x £ ) ' is
given by:

In particular, the corresponding volume measure \(φp)*Θ\ is the restriction
to (K x K)r of the Riemannian measure on K x K induced by the (restriction to
K x K of the) metric ( , ) g . Thus, if f is a bounded measurable function on

K x K such that f(wx,wy) = f(x,y), for all (w,x,y) e WK X K2, wherein WK is
the Weyl group of K, then:

J f d\(φp)*θ\ = \K\2 J f(k,k')dkdk' ,

where dk and dk' are the Haar measure on K of unit total mass, and \K\ is the
"volume" of K as measured by the restriction of the metric ( , ) g to K.

Proof The expression for (ψp)*Θ follows from Theorem 3.7 and the definitions
of φ and p. •

3.11. Lemma. If f is a continuous function on G x G which is invariant under
the conjugation action of G, then:

l i m j r / f(χ,y)Qτ(y-1χ-ιyχ)dχdy^ * / fd\Θ\,
ΠO ZTGxG vo l^O^VG)^

where on the right we have written f to denote the function on 3F1 IG (corres-
ponding to h = I in Notation 3.5, 3.6) induced by the conjugation-invariant func-
tion / , \Θ\ is the measure corresponding to the "volume form" (9, and (with \K\
the "volume" of K as measured by the metric induced from G):

^ . f ς =

Proof This follows from Proposition^. 10 and proposition 2.20, and the observation
that φp is a two-to-one cover of ^'/G in case G = G = SU(2\ while if G = SO(3)
then φp is an eight-to-one cover. The factor vo\-^(^'/G) is the volume of J*Γ /G
as measured by the symplectic form Θ. •

3.12. Theorem. Let μj denote the YM measure, described formally by dμτ(co) =
γ-e~SγM^Ί\βω\ on the "moduli space" <€ of (generalized) connections on
a principal SU(2)-bundle or the trivial SO(3)-bundle, over the torus Σ. Let
Ci, . . . ,Q be loops on Σ (which are composites of 1-simplices of a triangula-

tion as in Subsect. 2.2). Then, for any continuous function f on G , invariant
under the conjugation action of G,:

lim Jf(g(Cλ; ω),.. .,g(Ck; ω))dμτ(ω)

J = r J f(g(Cι;ω),... ,g(Ck;ω))d\Θ\(ω),

Gj
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wherein G is SU(2) or 50(3), as before, and we have identified the space of flat
connections with $F.

Proof. This follows directly from Lemma 2.14, Lemma 3.11, and Eq. (2.1') in
Remark 2.12. •

3.13. Lemma. Suppose a,b £ SU(2), and b~xa~xba = —I. Then there is a g £
SU(2) with

0
0 -i

and
1
0

An element x £ SU(2) commutes with both a and b if and only if x £ {±/}.

Proof Without loss of generality, assume that a — kφ, with φ £ [0,π]. Then, calcu-
lating b~xa~xba, we see by direct computation that this commutator equals —/ if

0( 0 e^\ _i
and only if b is of the form [ _ iψ 0 ) and φ is | . Now let g — A^/2. Then

gag~ι = a, and, as calculation shows, gbg~ι = I i n

If x £ G commutes with ( ^ _ . ] then x £ K, i.e. x = ί ^ _ j , for some

α with |α| = 1. Direct calculation shows that if this x commutes with ί . ^

then α2 = 1, and sox = ±1. •
Combining Fact 3.5 and Lemma 3.13 we obtain:

Proposition 3.14. There is, up to bundle automorphism, exactly one flat connection
on the non-trivial S0(3)-bundle over the torus. •

3.15. Theorem. Let μr be the Yang-Mills measure for the non-trivial SO(3)-
bundle over Σ. Then:

for any continuous S0(3)-invariant function f on SO(3)k (i.e. f(gx\g 1 , . . . ,
gxkg~ι) = f(xx,...,xk) for every g,xu...,xk £ SO(3)) and loops Cx,...,Ck on Σ
(satisfying the conditions of 22), and ω° is "the" flat connection on the bundle.

Proof As in the proof of Theorem 3.12, it will suffice to show that for every
continuous SU(2)-invariant function F on SU(2) x SU(2):

1
lim ~ J F(x,y)Qτ(y-χχ-χyxh)dxdy = F(a,b), (3.4)

SU(2)xSU(2)

wherein h = —I, and α = . _ . 1 and b — i _ ,

Let M : G x G -» G : (x,y)*-+ y~xx~xyx. We write M[xy) : g x g —• g for the

"translated derivative" of M at (x,y) £ G2; i.e.

M! }(X, Y) = M(x,y)-χdMiXfy)(xX,yY) .
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Thus:

M^y)(X,Y) = {1 -Ad(χ-ιy~ιx)}X + {Ad(x~ι)-Ad(χ-ιy-ιxy)}Y . (3.5)

So if (x,y) G M~ι(z), wherein z + / , then Mr^y) is surjective; for, as some alge-
braic manipulation shows, any Z orthogonal to the image of M^y^ satisfies both Ad
(x)Z — Z and Ad(y)Z = Z, which, since x and >> do not commute, imply that Z
is zero (recall that we are working in the Lie algebra of SU(2)). Therefore, for
every z e SU(2)\{I},M~ι(z) is a smooth 3-dimensional closed submanifold of
SU(2) x 51/(2).

For the sake of computational convenience it will also be convenient to assume
that the metric ( , ) g on g is scaled so that G has unit total volume; in this case,
the Haar measure dx is the same as the Riemannian volume measure (this rescaling
does not alter either side of Eq. (3.4)). We claim that:

fF(x9y)Qτ(y-ιχ-ιyxh)dxdy= f dz - Qτ(zh)\ J ψl^-dυ^y)] , (3.6)
G2 G\{I} ιM-i()J(χ>y) J

\

where dvz is the Riemannian volume measure on M~ι(z) corresponding to the
metric induced by means of ( , ) g , and J(x,y) is the Jacobian factor \det{M{xy)

(M(x,y))*}\l/2' A s w e h a v e s e e n a b o v e > J > ° o f f M~\I). Since M~\l) has mea-
sure zero (by Fubini's theorem, since for every x G G\Z(G), the set
{y G G : M(JC, y) = /}, being a two-dimensional torus in G, has Haar measure
zero) we can use a monotone limit argument to see that it suffices to prove
(3.6) under the assumption that F vanishes in a neighborhood N of M~ι(I) (ac-
tually this, in essence, is the only case we really need for our purposes). Con-
sider any (x,y) G G2\N9 and let M(x,y) = z φ / ; then by the inverse function theo-
rem, there is a neighborhood W(c G2\N) of (x,y) in G2 and a diffeomorphism
Φ : W —> V x U, where V is a neighborhood of (x,y) in M~ι(z) and U is a neigh-
borhood of z in G such that Φ, on JF, is of the form (*,M( , )). To prove
Eq. (3.6) it will be sufficient (by a partition of unity argument) to assume that F
has support in W. However, for F supported in W, Eq. (3.6) is just a "change-of-
variable" formula, and / M - i ( r ) jr^dvz(x,y) depends continuously on z G G\{/}.
Thus (3.6) is proved for all continuous F, and the integrand fM-ι,z\ ju) dvz{x, y)
depends continuously on z G G\{/}.

Therefore, Eq. (3.6) and Facts 2.9 imply (by splitting the integral on the left
below into a sum of two integrals, one outside a small neighborhood of M~X{I)
and another, contributing zero in the limit, over the small neighborhood):

lini fFQc,y)QT{y-lx-lyxh)dxdy = J ψ^dvh-^y) (3.7)
Tί°G2 M-^Λ-1) ^ ' ^

wherein h = —I. Setting F = 1, we see again that l i m r i o ^ 1 exists and is fi-
nite; dividing both sides of Eq. (3.7) by this we obtain Eq. (3.4) by means of
Lemma 3.13. •

Another proof of the second part of Lemma 2.13. The aim is to calculate
lmiT^oZf . We will use the notation and conventions introduced in the proof
of Theorem 3.15 above. By Lemma 3.13 and the observation that J(JC, y) =
J(gxg~ι,gyg~ι) for every (g,x, y) G G3, we see that the right-hand side of Eq. (3.7)



The Semiclassical Limit for SU(2) and SO(3) Gauge Theory on the Torus 313

equals F(a,b)J(a,b)~x /A f_1 (_ / )dι>_ /(*,j0. Thus

1 ^ Q2 υyu,υj

( _1 \

where the volume v o l ( M (—/)) is with respect to dv-i. By Lemma 3.13,

for (a,b)eM-ι(-I), the smooth map Ψ : G-* M~\-I) \ x v-> (χaχ-\xbχ-χ)

is surjective and two-to-one. Let Ψf

x : g ^> g x g : X >-> Ψ(x)~ιdΨx(xX). T h e n cal-

culat ion shows that (Ψf

x)*(Ψ'x) = Mf

{ab)(Mf

{ab))* (both have the s a m e diagonal ma-

trix, wi th diagonal entries ( 4 , 4 , 8 ) , relative to the basis III . J , ( 1 π

l\υ ~ιJ \~ι υ

. ~ j > of g). Therefore, YO\(M~1(—I)) equals |j(α,fr). Therefore,

lim JQτ(y~ιx~ιyxh)dxdy — - . •
Acknowledgements. The works [AdPW] and [EMSS] were brought to my attention by the referee,
to whom I am also grateful for suggesting some improvements in presentation. It is a pleasure
to thank Chris King for many useful conversations. Part of this work was done in July 1991 at
Cornell University, and I thank Leonard Gross for arranging support for me at that time through
NSF Grant DMS-8922941. Some of the results of this paper were presented at the U.S.-Japan
Bilateral Seminar on Stochastic Analysis on Infinite Dimensional Spaces, held in Baton Rouge,
January 1994; a report appears in [Se 4],

References

[AdPW] Axelrod, S., Delia Pietra, S., Witten, E.: Geometric Quantization of Chern-Simons Gauge
Theory. J. Diff. Geom. 33, 787-902 (1991)

[BrtD] Brόcker, T., Tom Dieck, T.: Representations of Compact Lie Groups. Berlin, Heidelberg,
New York, Springer 1985

[EMSS] Elitzur, S., Moore, G., Schwimmer, A., Seiberg, N.: Nucl. Phys. B326, 108-134 (1989)
[Fo] Forman, R.: Small volume limits of 2-d Yang-Mills. Commun. Math. Phys. 151, 39-52

(1993)
[Go] Goldman, W.: The Symplectic Nature of Fundamental Groups of Surfaces. Adv. Math.

54, 200-225 (1984)
[KS 1] King, C, Sengupta, A.: An Explicit Description of the Symplectic Structure of Moduli

Spaces of Flat Connections. J. Math. Phys. Special Issue in Topology and Physics 10,
5338-5353 (1994)

[KS 2] King, C, Sengupta, A.: The Semiclassical Limit of the Two Dimensional Quantum Yang-
Mills Model. J. Math. Phys. Special Issue in Topology and Physics 10, 5354-5361 (1994)

[Se 1] Sengupta, A.: The Semiclassical Limit for Gauge Theory on S2. Commun. Math. Phys.
147, 191-197 (1992)

[Se 2] Sengupta, A.: Quantum Gauge Theory on Compact Surfaces. Ann. Phys. 221, 17-52
(1993)

[Se 3] Sengupta, A.: Gauge Theory on Compact Surfaces. Preprint, 1993
[Se 4] Sengupta, A.: A limiting measure in Yang-Mills theory, In: Stochastic Analysis on Infinite

Dimensional Spaces, H. Kunita, H.-H. Kuo (eds.) Pitman Research Notes in Mathematics
Series 310, Longman Scientific and Technical, 297-307 (1994)

[Waw] Wawrzynczyk, A.: Group Representations and Special Functions. D. Reidel Publishing
Company 1984

[Wi 1] Witten, E.: On Quantum Gauge Theories in Two Dimensions. Commun. Math. Phys.
141, 153-209 (1991)

[Wi 2] Witten, E.: Two Dimensional Quantum Gauge Theory Revisited, J. Geom. Phys. 9,
303-368 (1992)

Communicated by R.H. Dijkgraaf






