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Abstract: We discuss relations of Vafa's quantum cohomology with Floer's homo-
logy theory, introduce equivariant quantum cohomology, formulate some conjectures
about its general properties and, on the basis of these conjectures, compute quantum
cohomology algebras of the flag manifolds. The answer turns out to coincide with
the algebra of regular functions on an invariant lagrangian variety of a Toda lattice.

1. Introduction

Quantum cohomology of compact complex Kahler manifolds was introduced by
C. Vafa [V] in connection with the theory of mirror manifolds.

By Vafa's definition, the quantum cohomology QH*(X) of a compact Kahler
manifold X is a certain deformation of the cup-product multiplication in the ordi-
nary cohomology of X. Let α, b, c be three cycles in X representing three given
cohomology classes by Poincare duality. One defines the quantum cup-product a*b
by specifying its intersection indices with all c. Namely

(a*b,c) = Σ ±qd •
degree d discrete holomorphic maps: (C.pl,0,l,oo)—>(X,a,b,c)

In other words, the intersection index takes in account rational parametrized curves
in X with the three marked points - images of 0,1 and oo - on the three cycles, α,
b and c respectively.

This definition needs some explanations.

1. First of all, a rational curve contributes to the intersection index only if it
is "discrete" which means, by definition, that

c(d) + dimX = codim a -f codim b + codim c ,

where c(d) is the first Chern class c of (the tangent bundle to) X evalu-
ated on the homology class d of the curve, dimX is the complex dimension

* Supported by Alfred P. Sloan Foundation
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of X, and codim on the RHS stand for degrees of the cohomology classes
represented by a, b, c, also counted in complex units (so that a real hy-
persurface has codimension 1/2). The meaning of the LHS is the dimension
of the parameter space of such curves predicted by the classical Riemann-
Roch formula, while the RHS is the number of constraints imposed at 0,1
and oo. Thus in the situation of "general position," when the Riemann-Roch
prediction is correct (and under some further transversality assumptions) the
"discrete" curves can really be treated as isolated intersections and contribute
to (a * b, c) by άzqd each.

2. Here "qd" is, formally speaking, the homology class of the rational curve
and therefore the intersection index as a whole is an element of a group
ring of the lattice Hι{X,TL) ΠH\^(X, (C). The notation qd is chosen simply
to "tame" the group ring by means of coordinates on the lattice. If we choose
a basis of Kahler forms ωi, . . . , ωk in H2(X, Έ)ΠHlil(X,(C) and express the
homology class of a rational curve S by the string d = (du...,dk) of its
coordinates in the dual basis (so that dι — Js α)/ ^ 0) then the element qd of
the group ring can be identified with the monomial q\x ...qk

k of the formal
variables (q\,...,qk), a n d the intersection index (a*b,c) becomes a formal
series in q.

3. The constant term of this series counts constant rational curves with the
marked points in the cycles a,b,c, i.e. it counts ordinary intersection points.
The signs ± should be chosen in such a way that this term is the ordinary
triple intersection index (a Π b, c) of the cycles.

4. About the higher degree terms (they are called "instanton corrections" to
the classical intersection index) we only tell here that their signs ± are
defined to be pluses only in the case when the cycles a,b,c are complex
submanifolds in X (while the general case will be briefly discussed in 2.3).
In any way, the instanton corrections provide a ^-deformation of the classical
triple intersection index.

5. The double intersection index (a,c) of any two cycles, by definition, co-
incides with the ordinary non-degenerate Poincare pairing, and one can re-
cover the quantum cup-product a * b from the triple pairings as an element
of H*(X,Z[[q]]).

The above construction of the quantum cohomology ring is lacking many in-
gredients which could possibly make it mathematically rigorous, and we will touch
some mathematical aspects of the problem in the next section. On the other hand,
Vafa's construction is strongly supported by general ideology of Conformal Topo-
logical Field Theory and provides mathematicians with a bunch of interrelated con-
jectures. In particular, according to these conjectures, the quantum cup-product

• can be defined rigorously;
• is associative and skew-commutative;
• is a ^-deformation of the classical cup-product;
• respects the usual grading in the cohomology provided that one assigns the

following nontrivial degrees to the parameters of the deformation: deg qd =
c(d) in complex units).

In this paper, we do not have any intention to justify these properties mathe-
matically. Instead, our objective is to compute the quantum cohomology algebras
of the classical flag manifolds in the assumption that their properties expected on
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the basis of Topological Field Theory are valid. Therefore the results obtained in
this way, while "physical theorems," have the status of mathematical conjectures, or
better to say conditional theorems contingent to the general conjectures about quan-
tum cohomology of Kahler manifolds.1 With this reservation in mind we formulate
below the results of our computation as theorems.

Let Fn+\ denote the manifold of complete flags

C 1 C . . . C f

in (C"+1. The cohomology algebra H*(Fn+\) is known to be canonically isomor-
phic to the quotient of the polynomial algebra Z[uo,..., un] in n + 1 indeterminates
by the ideal generated by the elementary symmetric polynomials σ\(u),...,σn+\(u).
The generators ut are in fact the 1st Chern classes of the tautological line bun-
dles over the flag manifold with the fiber (Cz+1/£z They are constrained by
UQ + Yun — 0 and can be expressed through another basis as wz = pt — pi+\.
The generators (p\,..., pn) are 1st Chern classes of the determinant line bun-
dles with the fiber Λ*€ι over a point C 1 C ... C C" of the flag manifold. These
determinant line bundles are non-negative and the classes pt span the edges of
the (simplicial) Kahler cone in the 2n d cohomology of Fn+\. For a rational curve
S C Fn+χ we define its degree d — (d\,...,dn) with respect to the coordinates pt

as dj — (pi,[S]) ^ 0. Now the homology class of the curve is represented by the
m o n o m i a l qd — qdχ ...qd

n

n.

In order to describe the quantum cohomology algebra QH*(Fn+\) it suffices
therefore to exhibit the corresponding deformation of elementary symmetric poly-
nomials of uo,...,un by the parameters q\,...,qn. Notice that while the degrees
of Ui are equal to 1, the degrees of all q\ are equal to 2 (since the 1st Chern
class of the flag manifold is c — 2(p\ + — + pn))9 and the deformation should be
homogeneous with respect to this grading.

Consider the diagonal matrix with uo,..., un on the diagonal. Then the coeffi-
cients of its characteristic polynomial are elementary symmetric functions of u.

Consider another ( w - f l ) x ( w - h l ) matrix, denoted An,

u0

- 1
0

q\
U\

- 1

0 ..
q2 ..

. 0

. 0

. 0

0 ... 0 - 1 u

with Ui on the diagonal, qt - right above, and — Γs - right under the diagonal. Then
the coefficients of its characteristic polynomial are the deformations in question of
the elementary symmetric functions:

Theorem 1. The quantum cohomology algebra QH*(Fn+\) of the flag manifold
is canonically isomorphic to the quotient of the polynomial algebra Z[uo,...,un,
qι,...,qn] by the ideal generated by coefficients of the characteristic polynomial
of the matrix An.

Specialists on complete integrable systems will recognize in this answer some-
thing very familiar: in fact the coefficients of det(^w + λ) are conservation laws of
a Toda lattice.

1 A few weeks after this paper had been posted to hep-th, 9312096, one of the authors, B.K.,
and independently A. Astashkevich and V. Sadov, hep-th 9401103, using ideas of this paper,
computed the (equivariant) quantum cohomology of all partial flag manifolds.
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Namely, introduce "configuration" variables (x0, ,*«) of n -f 1 consecutive unit
masses on the line with qt = exp(xz — Xi- \) in the role of potential energy of neigh-
bors. Then

is the Hamiltonian of the classical Toda lattice (with incorrect sign of the poten-
tial however), and t r ( ^ ) , i = 1,...,« + 1, is the complete set of commuting first
integrals.

Corollary. The quantum cohomology algebra of the flag manifold Fn+\ is ίsomor-
phic to the algebra of functions on the common zero level of the first integrals of
the classical Toda lattice.

Making comments on the theme "How surprising is the result?" we should
say that one might not expect quantum cohomology of flag manifolds to have
no connections with other known objects attributed to flag manifolds. Moreover,
Topological Field Theory predicts deep relations (see for instance [D, W]) of moduli
spaces of rational curves in Kahler manifolds with hierarchies of integrable systems.
Moreover, Toda lattices have already occurred [CV] - in a "less surprising" manner
- in some dynamical problem related to quantum cohomology of protective spaces.
Nevertheless the authors should confess they did not foresee this particular relation
when they started the computation, and they do not know now how the answer can
be predicted. However some partial explanations should be given right away.

First of all, it can be viewed accidental that the relations in quantum cohomo-
logy of flag manifolds Poisson-commute. What is not accidental at all is that they
Poisson-commute modulo the relations themselves. Indeed, according to general
theory (see 2.4) quantum cohomology algebra of a Kahler manifold in some sense
always is (or is at least related to) the algebra of functions on some lagrangian
variety in the cotangent bundle of some torus. The parameters qt of the quantum
deformation are multiplicative coordinates on the torus. In the case of Fn+\ the
cotangent bundle provided with the coordinates q\,...,qnή=0, p\,..., pn (in above
notations) has the canonical symplectic form

q\

and the algebra g//*(F w + 1 ,C) must be the algebra of regular functions on some
quasi-homogeneous lagrangian subvariety L. In view of the group-theoretic nature of
Toda lattices [R], our theorem leads to the following geometrical description of L.

Let G = SLn+\((C), N- and JV+ be its strictly lower- and upper-triangular sub-
groups. Make JV_ and JV+ act respectively by left and right translations on the
cotangent bundle Γ*G of the group and consider the momentum map J : T*G —>
Lie*(N- x JV+) of the action. The trace inner product XrAB on the matrix algebra
identifies the dual of the Lie algebra of N- x N+ with the quotient of the space of
all square (n -f 1 )-matrices by the subspace of all diagonal matrices. Pick the value
of the momentum map as specified by the matrix

P =

* 1 0 0
1 * 1 0
0 1 * 1

. . . 0 0 1
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(O's everywhere except Γs right above and under the diagonal) and make the
symplectic reduction on this level of the momentum map. The reduced phase space

MP = T*G//P(N- x N+)=J-\P)/(N- x N+)

can be naturally identified with the cotangent bundle of the maximal torus in G.
Now, consider the cone C C Lie G of all nilpotent traceless matrices. The product

Cx Gc(LieG)x G = T*G

is a bi-invariant involutive subvariety. Its symplectic reduction

L = [J~\P) Π(Cx G)]/(N- xN+)cMP

is in fact a lagrangian subvariety in the reduced phase space.

Corollary. The quantum cohomology algebra QH*(Fn+\,<C) is isomorphic to the
algebra of regular functions on a lagrangian variety birationally isomorphic to L.

We should augment this corollary with an open question: Why is the quantum
cohomology algebra of the flag manifold G/B- isomoφhic to the algebra of regular
functions on a lagrangian variety birationally isomoφhic to LΊ We would expect
that a natural answer to this question will come along with a better understanding
of the general mirror symmetry phenomena (cf. [G3]).

The second argument that partially explains the theorem comes from its proof.
Our computation of quantum cohomology of flag manifolds is based in fact on
induction on n. It turns out however that the induction assumption that quantum
cohomology of Fm+\ with m < n is known, is insufficient for our puφose. What
we really need is an equivariant version of quantum cohomology of flag manifolds
considered as homogeneous spaces of unitary groups. Similarly to ordinary equivari-
ant cohomology of a £/-space X, quantum equivariant cohomology can be defined
(with similar reservations) as a skew-commutative associative algebra over the ring
of characteristic classes of the compact Lie group U.

In the case of U = Un+\ (acting on the flag manifold Fn+\), we deal with the
algebra Έ[c\,.. .,cn+\] of usual Chern classes, and the ordinary equivariant coho-
mology of the flag manifold is known to coincide with the polynomial algebra
Έ\UQ,. . ,,un] of characteristic classes of the maximal torus Tn+ι C Un+\ considered
however as a module over the subalgebra of Chern classes

- elementary symmetric functions of u.
In the same manner as H*(Fn+\) is obtained from the equivariant cohomo-

logy Hy {(Fn+ι) by specialization c\ — ... — cn+\ = 0, we deduce our theorem on
quantum cohomology of flag manifolds from a more general result describing their
equivariant quantum cohomology.

Theorem 2. The equivariant quantum cohomology algebra QH^ (F w + i) is cano-

nically isomorphic to the quotient of the polynomial algebra

Έ[u0,..., un, q\,..., qm cλ,..., cn+\\

by the ideal of relations obtained by equating the coefficients of the following
polynomials in λ :

+ λ) = λn+ι + cλλ
n + + cnλ + cn+ι .
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In other words, it is the free polynomial algebra in u and q but the subalgebra
of Chern classes, instead of symmetric functions of u, consists of their "quantum
deformations" from the previous theorem - first integrals of the Toda lattice.

Now we can figure out, why one might a priori expect quantum cohomology
of flag manifolds to be related with at least some integrable system.

According to our general theory (see 3.8), equivariant quantum cohomo-
logy of a compact Kahler ^/-manifold X is an algebra of functions on a la-
grangian subvariety i f in a Poisson manifold with ^/-characteristic classes in the
role of Casimir functions. Poisson structure lives in the space with coordinates
(qu...,qn,Pu>.',Pn9cu...,cn+ι) and is given by the formula

d d d d
q\-z— Λ — H +qn^— Λ —

dpi dq\ όpn όqn

so that the symplectic leaves c — const are in fact all isomorphic to the cotangent
bundle of the #-torus described above.

Our point now is that although equating Chern classes to non-zero constants
makes little "cohomological" sense, the ideal of $£ is a priori a Poisson ideal,
and therefore intersections of ££ with the symplectic leaves can be inteφreted as a
c -parametric family of lagrangian submanifolds in the same symplectic space - the
cotangent bundle of the torus.

Moreover, since the ideal of relations is generated by quasi-homogeneous
^-deformations of the classical relations c, = σ/(w), equations of the lagrangian sub-
manifolds have the following triangular form:

Ci = Ci(u9q,c\,...9Ci-ι)9 i = 1 , . . . , Λ + 1 ,

and can be resolved with respect to cι as c, = ct{u,q).
This means that the lagrangian submanifolds fit nicely into the phase space

as leaves of a lagrangian foliation - common levels of the functions Cj(u,q),
/ = 1 , . . . , « + 1 , which are therefore in involution, - and the lagrangian variety L
is a singular zero leaf of this foliation.

Our description of quantum (equivariant) cohomology of flag manifolds would
be incomplete without a formula for the intersection pairing (see 3.4)

Denote Σ^UQ,...,un9q\9...,qn),i= 1,...,«+ 1, the quantum deformation of ele-
mentary symmetric functions cr, (w) from Theorem 1 (i.e. the first integrals of the
Toda lattice). Let φ, φ G <C[u,q,c] be two polynomials considered as representatives
of cohomology classes from Hy (Fn+\).

Theorem 3.

1 Γ φ(u,q,c)ψ(u,q,c)du0A...Λdun

The integral here can be replaced by the total sum of (n + 1)! residues in the
w-space. In order to obtain the intersection pairing in non-equivariant cohomology
QH*(Fn) it suffices to put c\ = ... = cn+\ = 0 in this formula.

Consider the basis p\,...,pn of non-negative (l,l)-classes on Fn+\9 Uj —
pι — pi+\. Then (z,p) = z\p\ H h znpn with zt > 0 is represented by a Kahler
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form, and exp(z, p) can be considered as a non-homogeneous differential form whose
degree (k,k) term measures ^-dimensional Kahler volume. The corresponding quan-
tum generating volume function (see 2.3):

1 ( exp(z, p)dp\ Λ ... Λ dpn

U'*J-(2πi)"J U'UΣ^iuiplq))

has the geometrical meaning of the total Kahler volume of the "^-weighted" space

M = [jqdJ/d
d

of holomorphic maps (CP1 —> Fn+\ of all degrees d. The volume is computed in
fact with respect to the Kahler form induced by (z, p) on the loop space LFn+\,
where Jί can be naturally embedded. Combining our conjectures about general
properties of quantum cohomology with the "conditional" Theorem 3 we come to
the following "unconditional" prediction.

Conjecture. Kahler volume of the space of parametrized rational curves of degree
d — (d\,...,dn) with respect to the Kahler form with periods z\,... ,z;/ on the flag
manifold Fn+\ equals

dn

Vo\z(J(d) =
dλ\...dn\\dqλ) " '\dq.t

V{z,q).
q=0

At d = 0 this formula reduces to the total volume of the flag manifold it-
self and coincides with the fundamental anti-invariant of the permutation group.
The equivariant analogue Vcτ(z,q,c) of the generating volume function at q = 0,
c = σ(Λ:o,... ,x,i) turns into the asymptotic character of irreducible representations
of G — U,l+\ with "large highest weights" proportional to z (it can be found using
the Duistermaat-Heckmann formula [AB]). It would be interesting to figure out the
meaning of such generating volume functions with non-zero q and the role of Toda
lattices in the representation theory of loop groups. The last question seems to be
closely related to the recent paper [FF] on Toda Field Theory.

Structure of this paper. In Sect. 2 we give a more detailed review of quantum
cohomology theory. Although one can find a number of approaches to the general
theory in the available literature (see for instance [W] or a recent preprint [S] where
in particular the quantum cohomology of FT, has been computed), we hope that our
point of view is up to a certain extent complementary to them. It also should help
to clarify our construction of equivariant quantum cohomology (Sect. 3) as well
as those conjectures about its general properties which we exploit in our inductive
proof (Sect. 4) of the theorems formulated in this Introduction.

Conventions. Throughout this paper, we will assume for convenience that all di-
mensions are counted in complex units, and - for the sake of simplicity - that all
considered compact Kahler manifolds are simply-connected.

Thanks. We would like to express our sincere gratitude to all participants of the
seminar on mirror symmetry at the Department of Mathematics at UC Berkeley for
their stimulating enthusiasm, and especially to Dmitry Fuchs, Dusa McDuff, Nikolai
Reshetikhin, Albert Schwartz, Vera Serganova and Alan Weinstein for numerous
instructive discussions.
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2. Quantum Cohomology and Floer Homology

The objective of this section is to interpret Vafa's construction of quantum cohomo-
logy of a compact Kahler manifold as Floer homology of its loop space (to be more
precise - of the universal covering of the loop space) provided with multiplication
induced by composition of loops.

2.1. Additive Structure. Let X be a compact manifold provided with a complex
structure / and a riemannian metric ( , ) compatible with the complex structure
in the sense that the differential form ω = (J , ) is symplectic.

The space LX of contractible (say, smooth) loops Sx —> X inherits from X the
same structures:

• the complex structure / which transforms a tangent vector (= a vector field
t ι-> v(t) along the loop t H-> y(t) ) t o ί π > J(y(t))v(t);

• the ^/-compatible riemannian and symplectic forms

(v,w) = §(v{t\w(t)) dt, Ω(v,w) = §ω(υ{t\w(t)) dt;

and additionally carries
• the action of the reparametrization group Diff(Sι) and in particular the circle

action generated by the vector field V : γ κ-> y on LX; and
• the action functional s$ : LX —• IR:

which assigns to a loop y the symplectic area of a disk (φ : D —» X :
φ|s i = a D = y) contracting the loop, and thus is well defined only on the
universal covering of LX.

There is a remarkable relation between these structures, namely

1. the circle action is hamiltonian with respect to the symplectic form Ω and
the hamilton function is s$\

2. the gradient vector field of the action functional relative to the riemannian
metric equals βV and thus the gradient "flow" consists in analytic contin-
uation of loops from the unit real circle Sι c C - 0 to its neighborhood in
the complex circle.

By definition, Floer homology FH*(X) is Morse-theoretic homology of the loop
space LX constructed by means of the "Morse function" stf in the spirit of Witten's
approach [W2] to the Morse theory, i.e. using bounded gradient trajectories joining
critical points.

Historically Floer homology has been introduced [Fl] in order to prove Arnold's
symplectic fixed point conjecture and deals with Morse theory of action functionals
perturbed by a hamiltonian term. However the homology itself is simpler to compute
for the unperturbed action functional J / .

In fact the functional stf is a perfect Morse-Bott-Noυikoυ function on LX.
Here

• "Novikov" means that it is multiple-valued and thus the Morse-Smale com-
plex should be constructed from the critical points on a covering LX and
treated as a module over the group of covering transformations.
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• The critical points are in fact constant loops and thus the critical locus of
si on the covering consists of copies of the manifold X itself duplicated as
many times as many elements are in the covering transformation group. The
critical components are transversally non-degenerate so that si is a Morse-
Bott function.

• The group of covering transformations is in fact the lattice ΊLk — K2(X) Π
//2(X,1R) of spherical periods of closed 2-forms on X and thus the Morse-
Smale-Bott-Novikov complex can be identified with the homology group
H*(X,Έ[q,q~1]) of X where the coefficient ring is a group ring of the lattice
(in the first approximation it can be taken as the ring of Laurent polynomials
in k generators q = (qu... ,?*)).

• Finally, "perfect" means that the boundary operator in the complex is zero
so that FH*(X) ^ H*(X,Z[q±ι]) as a Zfo*^-module.

The latter statement is due to the fact that si is the Hamiltonian of a circle
action. The Atiyah convexity theorem [A] says in particular that the Hamiltonian of
a torus action on a compact symplectic manifold is a perfect Morse-Bott function.
A "scientific" explanation [G] is that the same manifold is the critical set of a
function (which leads to the Morse inequality) and the fixed set of a circle ac-
tion (which leads to the opposite Smith inequality in equivariant cohomology, see
also [Gl] where locally hamiltonian torus actions are considered). A geometrical
argument behind this property works pretty well in the infinite-dimensional Morse
theory if one deals with only bounded trajectories of the gradient flow.

Now we can describe geometrically the Morse-Bott cycles of Floer homology
theory. They are enumerated by ordinary cycles in the components of the critical
locus. Pick such a component X and a cycle a C X. The corresponding Morse-
Bott (co)cycle A C LX is the union of all the gradient trajectories outgoing (resp.
ingoing) the critical set a when time —» —oo (H-oo respectively). Since the gradient
flow of si consists in analytic continuation, we come to the following description
of the cycle A:

A — { boundary values of holomorphic maps of the unit disk D c C
to X with the center i n c c ί } .

2.2. Multiplication. After such an informal description of the additive structure in
Floer homology it is time to discuss multiplication. There are at least two reasons
why the analogue of the usual cup-product may not exist in Floer's theory:

1. intersections in general position of Morse-Bott cycles in LX which have
"semi-infinite" dimension would give rise to the cycles of finite dimension
rather than to "semi-infinite" cycles again;

2. finite-dimensional Novikov's cohomology is cohomology with local coeffi-
cients determined by periods \ogq of the closed 1-form; cup-product of such
cohomology is accompanied by tensor multiplication of the local coefficient
systems and would give rise to q2 in the product, instead of q again.

In fact the multiplicative structure in Floer homology is analogous to the convo-
lution in the homology of a Lie group induced by multiplication in the group. The
"group" operation on LX consists in composing parametrized loops at the marked
point / = 0 on the circle Sι. This operation is ill-defined since the loops we consider
axe free. However this operation considered as a correspondence can be described by
its graph in LX3, and the convolution multiplication A * B of Morse-Bott cycles can
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be defined through intersection indices (A * B, C) of the products A x B x C C LX3

with the graph.
By some technical analytical reasons it is more convenient to perturb the graph

and consider instead the cycle in LX3 which consists of triples of loops which are
boundary values of a holomorphic map of "pants" to X. More generally, one can
define multiple products A\ * * A^ through intersection indices (A\ * * A^, C)
in LXN+ι considering compositions of pants and their holomorphic maps to X.

In more detail, denote 77# the standard Riemann sphere CP 1 with N disks
detached and their boundaries left oriented and parametrized by the standard unit
circle Sι. Denote Γ^ the cycle in LXN which consists of Λf-tuples of boundary
values of holomorphic maps ΠN -+X. For N given Morse-Bott cycles A\,...,AN

in LX define their {A\\...\AN) as the intersection index of "semi-infinite cycles"
^ x x ^ C LXN and ΓN.

We should make a correction here: the intersection index should be defined as
Noυikoυ's one. This means that the product A\ x x AN should be considered as
a cycle on the diagonal Έk- covering (LXN)~. An important property of ΓN is
that it has a canonical lifting to this covering: an N-tuple of the boundary values
is provided with the homotopy type of the map ΠN —>• X. Novikov's intersection
index of two transversal cycles A and B on the covering, by definition, assumes
values in the group ring of the covering and counts isolated intersection points
of the cycles projected to the base, with signs and "weights" qd £ Έ[q±ι], where
d G Έk is the covering transformation that transforms the preimages in A and B of
the intersection point into one another.

Now we can describe geometrically an intersection event of A \ x x AN with
ΓN. The Morse-Novikov cycles At correspond to some finite-dimensional cycles
aι in X. An intersection point, on one hand, is an N-tuple of loops which are
boundary values of N parametrized holomorphic disks in X with centers respectively
in a\,... aN. On the other hand it is the N-tuple of boundary values of a holomorphic
map ΠN —> X. Due to the uniqueness of analytic continuation, the disks and ΠN
glue up to a single holomorphic map φ : Q2P1 —> X with the centers x\,... ,x# of the
(formerly detached) disks being mapped to the cycles a\,...,aN respectively. The
group element d in the definition of Novikov's intersection index, in our situation
measures the difference of homotopy types of the two holomorphic films attached
to the TV-tuple of loops and equals the homotopy type of the map φ, i.e. the degree
of the rational curve φ(<EPι). Thus we come to Vafa's formula:

{AX\...\AN)= Σ ± < 7 d e "
isolated holomorphic maps

φ (<£P] , \ j , . . . , v # )-*{X,aλ, ...,aN )

The assumption that the intersected cycles are transversal means that the number
of independent holomorphic sections of the induced tangent bundle φTx equals the
Euler characteristic c(d) + dimX prescribed by the Riemann-Roch formula, and the
constraints φ(Xi) £ a{ are non-degenerate (in the sense of implicit function theorem).
Thus the isolatedness implies

c(d) + dimcX = ^codim^ α, .

Notice that holomorphic spheres constrained at two points are never isolated (cir-
cle action! By the way it is that geometrical argument that makes s/ perfect)
and thus the double intersection index (A9B) coincides with the non-degenerate
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Poincare pairing of cycles a,b in X. One can identify a cycle a of codimension
α in X with the Poincare-dual cohomology class of degree α. The above formula
means that (A\\... \AN) defines in this way a "quantum" g-valued intersection pair-
ing H*(X)®N —> Έ[q±ι] which respects the usual grading in cohomology provided
that άegqd = c(d):

deg(«i I... \aN) = degcαi H h degcα# - dim^X .

The triple "pairing" can be used in order to define the "quantum multiplication"
a * b:

Vc (a*b,c) = (a\b\c).

The fact that this multiplication is associative as well as that the multiple pairings
can be expressed through *-oρeration and Poincare pairing with the fundamental
cycle [1] as

(a\\...\aN) = (a\ * --*aN, 1) ,

reduces to the principal axiom of Topological Field Theory:

If the surface ΠM is cut by a circle into a union of two surfaces ΠM+\
and /7jv_M+i, then the corresponding intersections satisfy

(aι\...\aN) = J2{ai\...\aM\bj)(cj\aM+i\...\aN) ,
j

where Σjbj <8) c} G H*(X x X) is Poincare-dual to the class of the diag-

onal X CX xX).

Rigorous justification of this axiom as well as of correctness of the above defi-
nitions is obstructed by a number of highly non-trivial problems.

First of all, in order to bring the cycles in LXN to transversal position one
needs, in general to perturb the complex structure on X toward almost complex
structures, and the whole story begins to depend on Gromov's theory [Gr] of pseudo-
holomorphic curves in symplectic manifolds and compactifications of their moduli
space.

Even in the additive Floer theory some difficulties (with multiple coverings
of holomorphic curves) has not been overcome so far. The situation seems to be
simpler, and the difficulty - resolved, in the case of almost Kahler manifolds with
positive first Chern class c and almost complex structure close to an integrable
one (see [O]). The case of zero first Chern class which also has been worked out
[HS], requires Novikov's completion of the group ring Έ[q±ι] (Vafa's formula may
contain infinite sums).

In the cases when the additive theory can be completed successfully, correct-
ness of the definitions of multiple intersection indices, their skew-commutativity,
independence on moduli of surfaces 77^, on the choice of cycles in the homology
classes, and so on, does not seem to exhibit further complications (see [R]).

At the same time, associativity of the quantum multiplication and the axioms
of Topological Field Theory have been verified, as far as we know 2, only in the
case of manifolds X with π2(X) = 0 (M.Schwartz) where instanton corrections do
not occur at all.

2 There is a new announcement, by Y. Ruan and G. Tian, Mathematical theory of quantum
cohomology, that the axioms are proven for all semi-positive symplectic manifolds
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2.3. Alternative Approaches. We briefly review here some other constructions of
quantum cohomology algebras. Later they will be described in more detail in con-
nection with equivariant theory.

First of all, instead of the ill-defined composition map LX x LX —> LX one can
consider a well-defined evaluation map LX —* LX x X:

(a loop t »-> 7(0) >-> (y £ L

It induces a linear map

and thus makes cohomology classes of X act on the Floer cohomology
H*(X,Z[[q±ι]]) of the loop space by Z[[^±1]]-linear operators. These operators,
along with operators of multiplication by q, generate some associative skew-
commutative operator algebra. Composition of such operators differs in fact from
the ordinary cup-product in H*(X). It is not obvious from this point of view even
that they should form an algebra closed with respect to composition. However inter-
pretation of matrix elements of such operators in terms of rational curves in X leads
directly to Vafa's definition of the quantum cup-product. Such a module structure
in Floer homology of LX over cohomology of X itself has been exploited many
times in the literature on symplectic topology [FW, Oh, F2, H, Gl, G2] (and in a
recent paper [S] on quantum cohomology).

A similar approach, based however on differential forms, was studied in [V].
A closed differential r-form p on X and a density p on the unit circle determine a
closed differential r-form P on the loop space LX:

P\y(vι,...,tv) = §P\y(t)(vι(t\...,vr(t))p(t)dt .

The ordinary cohomology class of P on LX depends, by the Stokes theorem, only
on the class of p on X and on the total "mass" §p{t)dt. However we are going
to integrate P over non-compact cycles in LX, so that the Stokes theorem does
not apply literally. The cycle we need is denoted Jίd and consists of algebraic
loops of degree d in X, i.e. degree d holomorphic maps (CP1 —> X which can be
considered as elements of the loop space if we restrict them to the unit circle in
(C — 0. The cycle Jίd - a "moduli space" of rational curves - can be compactified,
after Gromov [Gr], by reducible curves, and this is a reason to expect that the
integral converges. The reducible curves however do not correspond to any loops,
and the compactification can not be done inside LX.

One can define quantum intersection pairings as

assuming the corresponding densities pz, / = 1,...,//, being of unit total mass each
and generic. The integrals in this sum can be non-zero only if the total degree
r\ + + r^ of the differential form equals the dimension 2(c(d) + dimX) of the
cycle Ma and reduces to fx p\ A ... Λ pN for d = 0.

The coincidence of such intersection pairings with previously defined ones be-
comes "obvious" if we interpret them in the spirit of integral geometry. Imagine that
the densities pi have been chosen as Dirac ^-functions concentrated at N generic
marked points x\,...,xN on the unit circle. Then

JPιΛ...ΛPN= fPιθ ..θpN,
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where pi is a differential form on XN obtained as the pull-back of pι on the /th

factor, and Ma is the closure in XN of the image of the evaluation map

(J(dCLX)-+XN : γ»(y(xι)9...9γ(xN)).

The fundamental class of the complex variety J(d in H*(Xd) is the same for generic
marked points. Taking the average value of such integrals, defined by means of
^-densities, over the torus (Sι)N in the configuration space (C — 0)^ of marked
points we conclude that the quantum intersection pairing of closed forms depends
only on their cohomology classes in H*(X) and does not depend on the densities
provided that they are, say, continuous. On the other hand, replacing the forms pt
by their Poincare-dual cycles we find the integral equal to an intersection index
in XN with the "moduli space" Jt^, and this leads back to the original Vafa's
construction - counting rational curves constrained at marked points. Notice that
this construction of (PI\- \PN) a s intersection indices in XN also explains how
the signs in Vafa's formula should be chosen.

The last construction of quantum cohomology algebras - via generating volume
functions - is most convenient in the case when the ordinary cohomology algebra
H*(X) is generated (as an algebra) by Kahler classes, and will be described below
under this assumption. Let p\,...,pk be an integer basis of non-negative (1,1)-
forms in H2(X), p{z) — z\p\ + + z^pk be a general linear combination. If p(z)
is a Kahler form on X the corresponding form P(z) is a Kahler form on the loop
space LX, and the following formal series

represents the Kahler volume of the "weighted moduli space"

J( = (J <f^d>
d

since the terms of the exponential series

expP = Σ~p Λ . . . Λ P (r times)

represent r-dimensional Kahler volumes with respect to P.
We call V(z,q) a generating volume function (in fact it is a simplified version

of the generating correlation function Φ from CTFT [W, D, K]).
It has the following properties:

1. V(z,q) becomes quasi-homogeneous of degree - dimX if we put degz* =
— 1, deg qx = Du where c = D\p\ + VD^Ph represents the 1st Chern
class of X in the basis (p\,...,pk);

2. F(z,0) = JχQxp(p(z)) is the volume function of X;
3. quantum intersection indices of the generators p\>...,pk can be expressed

in terms of V(z,q) as

δN

dzl} ...dztιN

V(z9q)
z=0

(this is due to the very property of the exponential function).
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This last formula implies that one can define the quantum cohomology algebra
QH*(X) as the quotient of the polynomial algebra TL\p,q\ by the ideal / of all
polynomials R(p,q) such that

R(d/dzu...9d/dzk,qι,...,qk)V(z,q) = O.

Example. QH*(<EPι). A holomorphic map CP 1 -> CP 1 of degree d is given by
the ratio f/g of two polynomials

/ = )[>,/', g = Σ.bj

of degree d. This means that the space Jίd of such maps compactifies to the
complex projective space Jίd — (ΠP2d+ι with homogeneous coordinates (CIQ : ... :
ad:b0:...bd). Evaluation at t = exp(2π/x) projects the space CP 2 ί / + 1 - €P2d~ι

of pairs (/ : g) with no common root / to CP 1 and the projective line of constant
rational functions (a : b) projects onto the target CP 1 with degree 1. This means
that the Fubini Kahler form on the target CP 1 pulls back to a closed (l,l)-form px

which represents the positive generator p in H2(€P2d+ι - C P 2 ^ 1 ) = # 2(<CP 2 ί / + 1).
The form P = §Pxdx pulled back from the loop space has therefore the same inte-
gral over a projective line avoiding (real codimension 3) singularities of P. Yet we
can not conclude - because of these singularities - that J ^ pΛ2</+i _ j However

the equations f(tj)/g(tj) — SjJ — l,...,2d + 1, describe intersection of Id + 1 hy-
perplanes in <EP2d+λ. This means that for generic evaluation points (ίi,...,*2ί/+i) the
evaluation map Jid —> (^CP1 ) l d + x has degree 1 and hence J^ Ptχ Λ ... Λ Pt2d+X = 1

(this itself means that (p\... \p) (2d + 1 times) equals qd). Integrating this equality
over the torus t} — exp(2π/xy) we obtain \M p2d+ι = 1. Finally we find the volume
generating function

It satisfies d2V/dz2 = qV and thus

QH*(<t:Pι)

We observe that it is indeed a ^-deformation of the classical cohomology ring
ι 2

2.4. Characteristic Lagrangian Variety. Keeping the assumption that the cohomo-
logy algebra of X is generated by Kahler classes, and the notations introduced in
the end of 2.3, we describe here QH*(X,(£) as the algebra of functions on some
lagrangian variety.

Since the quantum cohomology algebra is now identified with the quotient
<£[p,q]/I, its spectrum is a subvariety L in the space <ϋ2k with coordinates
(p\,...,Pk,qu- ,qk) with the ideal I(L) — / (strictly speaking, the variety can
be defined only over formal series if the 1st Chern class c of X is not positive). In
any case, it is quasi-homogeneous with deg/?z = 1, deg^ = Df. The space (ϋ2k has
the canonical Poisson structure

l=l

q* dpi dqt



Flag Manifolds and Toda Lattices 623

which is nothing but the extension of the canonical symplectic structure

on the cotangent bundle

ΓB = H2(X, C) x [H2(X,

of the torus B dual to the 2nd homology lattice ΊLk. We claim that the variety L is
lagrangian with respect to this symplectic form.

Indeed, interpret the Floer cohomology space

as the space of vector-functions of q with values in the vector space W — H*(X,(£)
and introduce the following operator-valued 1-form:

Here At — /?,-* is understood as the operator on W of quantum multiplication by pt

computed at a particular value of q. First of all, we claim that this 1-form satisfies:

AΛA = 0, dA=Q

(which means in fact that εd -f A A is a flat connection operator for all ε). The 1st

identity simply means that the operators Ax commute so as /?,-* do. The 2n d identity
means that the matrix elements of A are closed 1 -forms and does not follow from
any formal properties of quantum multiplication which have been discussed so far.
It can be reformulated, in terms of matrix elements of Au as follows:

For any two cycles a and b in X the quantum intersection indices (a\pi\b) are

partial derivatives qtψ- of a single (locally defined) function S = Sa,b(q)

Put

Σ ±/
lational cinves in X

with OErt,oo£&of degiee cl>0
and with c(d)+dιm X=cod\n\(^a+codm')(^b+\

The 1st sum is a potential for the constant terms in (a\pι\b) and involves classical
intersection indices. The 2n d sum counts non-constant rational curves, constrained
at two points, as if they were discrete. If such a curve contributes by ±qd to
Sajb then it contributes by ±diqd to qidSa,bldqi- Here dt is exactly the intersection
index of a complex hypersurface Poincare-dual to pi with this rational curve. This
means that there are exactly dj ways to parametrize the curve in such a fashion
that 0 e a, oo e b and 1 e Pi, and hence the curve contributes to (a\pi\b) with the
same weight ±dtq

d. This proves our assertion (modulo our usual reservations). In
fact this Sa,b is one of the "higher order" pairings considered in Conformal Field
Theory (actually it is the lower order pairing).

Now the lagrangian property of L follows from a general lemma (which we
learned from N. Reshetikhin).
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Lemma Let
A = ΣMOdtt

i

be a matrix-valued differential ί-form satisfying A A A = 0 and dA — 0. Let the
scalar differential \-form

p = ΣPi(t)dti
i

be its simple eigenvalue. Then p is closed.

Proof. The assumption actually means that the commuting matrices A((t) have com-
mon eigenvectors w(t) such that Ai(t)w{t) — pi(t)w(t). Being simple, the eigenvec-
tors can be chosen smooth in t, and the transposed matrices A* have a smooth field
of eigencovectors w*(t) (with the same eigenvalues) normalized in such a way that
(w,w*) = 1 identically. Now we have

d(pdt) = d((w,w*)(pdt)) = d(Aw,w*)

= ((dA)w,w*) - (AΛdw,w*) - (Aw,dw*)

= (dw,A*w*) - {Aw,dw*} = (d{w,w*))Λ (pdt) = 0 .

Applied to our quantum cohomology situation, this lemma shows that every
non-singular local branch of L over B is a lagrangian section of T*B. This implies
that / is a Poisson ideal at least in the case if / = \fl.

Below we explain how intersection pairings and generating volume functions can
be described in terms of geometry on L assuming for simplicity that / = V7 and
that the 1st Chern class of X is positive (so that L is indeed a quasi-homogeneous
affine algebraic subvariety in <C2k with coordinates (p,q)).

Consider the class in quantum cohomology algebra of X x X Poincare-dual to
the diagonal I c l x l . It can be considered as a function on the characteristic
lagrangian variety of X x X which is nothing but L x L. Restrict this function to
the diagonal L C L x L and denote the restriction A G C[L]. Let φ\,...,φN G
be some quantum cohomology classes. Then for generic q G B,

{φι\...\φN)(q) =
peLΠT*B Δ(P)

and

V(z9q) =
p£LΠT*B Ά(p)

The last remark: since L is lagrangian, the action 1-form on T*B restricted to
L is exact,

ΣA? = dC, C e

Using quasi-homogeneity of L and Cartan's homotopy formula one can easily show
that C = D\p\ H \-Dkpk is the 1st Chern class of X understood as a function
on L.

3. Equivariant Quantum Cohomology

3.1. Why "equivariant"? In our inductive computation of quantum cohomology of
flag manifolds we will encounter the following kind of problems. With a vector
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bundle over some base B one can associate a fiber bundle E —> B whose fibers are
flag manifolds - they consist of flags in the fibers of the vector bundle. Consider
the maps of CP 1 with N marked points to E whose composition with the projection
to B maps <£Pι to a point and which are holomorphic if considered as maps to the
fiber flag manifolds. We will call such holomorphic curves vertical.

One may pick N cycles in E and ask how many of such vertical parametrized
rational curves of certain homotopy type have the 1st marked point on the 1st cycle,
the 2nd marked point - on the 2n d cycle, and so on.

When the base B is a point, the problem (properly understood of course in terms
of intersection indices) becomes a question about structural constants of the quantum
cohomology algebra of the flag manifold. Our more general problem about rational
curves in flag bundles will not arise in its full generality - we will rather need a
sequence of special bundles of flag manifolds over Grassmannians and holomorphic
hypersurfaces in the role of the cycles.

On the other hand, this sequence of problems can be understood better in the
context of vector bundles over arbitrary finite cellular bases since in such generality
it can be replaced by a universal problem about the universal vector bundle over
the classifying space BG. The total space of the universal flag bundle E —> BG is
nothing but the homotopic quotient EG x G F of the flag manifold F by the unitary
group G. Therefore our universal problem reduces to the question about structural
constants of what should be called the equivariant quantum cohomology algebra of
the flag manifold.

3.2. "Classical" Equivariant Cohomology. Recall some standard facts [Hs, AB]
about equivariant cohomology.

Let X be a manifold provided with a left action of a compact Lie group G.
Consider the universal principal G-bundle EG —> BG - a principal G-bundle with
contractible total space EG, and define the homotopic quotient XG of X by G as
EGxGX = (EGxX)/G.

Examples. 1) If X is a point then XG = EG/G = BG.
2) If H C G is a Lie subgroup, X is the homogeneous space G/H, then

(G/H)G =EGxG (G/H) = (EGxG G)/H = EG/H = BE. For instance, if G is the
unitary group Un and H is its maximal torus Tn so that X is the flag manifold Fn,
then XG=BTn - (CP°°)W.

The equivariant cohomology HQ{X) of a G-space X is defined as the ordinary
cohomology H*(XG) of its homotopic quotient. The natural fibration XG —> BG
(with fiber X), induced by the projection of EG x X on the first factor, along
with Example 1), provide the equivariant cohomology with a module structure over
the coefficient algebra HG(pt) of the equivariant theory which is nothing but the
characteristic class algebra H*(BG) of the group G.

Example. For the flag manifold Fn its Un-equivariant cohomology can be identi-
fied with the polynomial ring in n generators (u\9...,un) since //*(CP°°) = C[w],
where u is the 1st Chern class of the universal Hopf circle bundle. The module struc-
ture over the algebra of universal Chern classes H*(BUn) = <C[c\,...9cn] becomes
more "visible" if we represent the equivariant cohomology of the flag manifold as
the quotient of the polynomial algebra C[w,c] by the ideal of relations cι = σz(w),
i— 1,...,Ή, where σ, are elementary symmetric polynomials of (wi,...,wπ).
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Similarly, equivariant cohomology of cartesian products of flag manifolds are
tensor products of equivariant cohomology of factors and they are modules over
characteristic class algebras of products of unitary groups. Of course, this is a
general property of products ΠXi of G;-spaces.

3.3. Equivariant Intersection Indices. Consider a D-dimensional compact oriented
G-manifold X and the associate X-bundle π : XQ —> BG. Since we are actually going
to apply our general constructions to homogeneous complex manifolds it is conve-
nient to make a convention right now that all the dimensions are complex ones,
and therefore dimensions of real manifolds or cycles can be Aα/f-integral. With this
convention in force, let us consider equivariant cohomology classes p\,...,pN of
X of total degree M and define their intersection index (/?!,...,/?#) with values in
the structural ring Hg(pt) of equivariant theory.

If C is a homology class of BG of degree K one can construct its inverse image
n~ι(C) which is geometrically the preimage of the cycle C in the bundle π : XG —>
BG and represents a homology class of degree K + D in XG. By definition,

This formula describes the intersection cohomology class through its evaluation
on homology classes and may give rise to a non-zero result only if M — K -f- D
of course. In the case when an infinite-dimensional manifold has been chosen on
the role of the classifying space BG one may also think of p\,...,pn as cycles
of finite total ctfdimension M, and of (...)[C] as the mutual intersection index of
PI,...,PN and π~ 1(C). In the case if C is a point our definition reduces to the
ordinary intersection index in X of cycles Poincare-dual to the restrictions of the
cohomology classes pt to the fiber of π.

The equivariant intersection indices HQ(X)ΘN —> Hg{pt) have the following
more or less obvious properties:

1. They are homogeneous of degree - dimX (with our convention in force);
2. They are /^* (p^)-multi-linear
3. They are totally (skew-)symmetric (notice that H*(pt) happened to be com-

mutative);
4. They are determined by cup-multiplication in HQ(X) and by the "intersection

index" HQ(X) -» H^pt) with N = 1 which is nothing but the direct image
operation π\ : H*(XG) —> //*(Z?G) dual to the inverse image in homology.

In terms of differential forms the direct image operation consists of fiberwise inte-
gration.

Our objective for the moment is to describe explicitly the direct image for
equivariant cohomology of flag manifolds.

Proposition. For the flag manifold Fn the direct image n\ : C[w] -+ C[c] is given
by the following Cauchy formula:

Γ f(u)du\ Λ ... Λ dun

The integral equals the total sum of residues in C". In other words, in order to
find the direct image of a polynomial f(u) one first constructs its total alternation

Alt/(«)= E ( - 1 ) £ ( H > ) / ( W M ) ,
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then divides it by the "fundamental anti-invariant" (=Vandermond)

Δn{u) = det

and expresses the ratio A\tf/An as a polynomial f(σ(u)) of elementary symmetric

functions: f(c\,...,cn) is then the direct image of / .
The main argument in the proof of this formula is "what else can it be?"
Indeed, due to linearity property the direct image operation is completely deter-

mined by its action on generators of C[w] as a (C[c]-module. The generators can be
chosen as homogeneous representatives of a linear basis in the ordinary cohomo-
logy (C[w]/(cri(w),.. .,σn(u)) of the flag manifold (Nakayama lemma!). Due to the
degree reasons these representatives all have zero direct images except the generator
Poincare dual to the fundamental cycle. The latter has constant direct image, and
the constant can be easily found equal 1 (evaluate the direct image at a point).
The residue formula (and the operation ^l"1 Alt) do have all these properties since
degAn "accidentally" equals dim/v

One more example. Consider the subgroup G' — Umx Un~m C Un = G and the
bundle BG' —> BG with the fiber G/Gf = Gr(n,m). The direct image operation

Direct image: H^BG') = Z[c[9...9cln9c'{9...9c^J^Z[cl9...9cn]=H\BG)

in this bundle somehow transforms partially symmetric polynomials of
(u',u") = ((u\,... ,um\(um+\,... ,un)) to totally symmetric ones, since

c\ = d (uf), c'j = σy(κ"), cr = ί > («>,_,(«") - ar(u)
1=0

(where σo = 1).

Corollary.

[Direct image f] (σ(u)) —
m\(n — m)\An(u)

Proof. We can represent f{c',c") as the direct image Π\g{u'9u") of some g(u)
in the product of bundles Π : BTm x BTn~m -> BUm x BUn^m and thus identify
[Direct image f] with mg.

3.4. Instanton Corrections. Let X be a complex Kahler manifold of dimension D
provided with a holomorphic action of the complexified compact Lie group G c G c
We will assume for simplicity that HlΛ(X) = H2(X). Notice that the lattice Έk is
a sublattice in the second homology group of the homotopic quotient XG and thus
classes of vertical rational curves in the total space of the bundle XQ —> BG are
canonically identified with elements of Έk.

We define quantum equiυarίant intersection indices as follows.
Let p\,...,pN be cycles in XQ of finite codimensions which add up to M.

Their quantum intersection index (P\\...\PN) will be an element of the alge-
bra Ha(pt,Z[[q]]). Given a AΓ-dimensional cycle C C BG, we define the value
{p\ ...\PN)[C] as the sum of contributions of rational parametrized curves φ :
(£P -> π~ι[C] in the fibers of the bundle π : XG -»BG restricted to C such that



628 A. Givental, B. Kim

N marked points X\9...,XN in (HP"1 map to the cycles p\,...,pκ respectively:
φ(xi) G pi. The contribution of φ is non-zero only if c(d) + D + K = M and equals
±qd in the assumptions of course that the cycles pt are in general position with re-
spect to the family of vertical rational curves φ of degree d, that the family indeed
has the dimension c(d) + D + K predicted by the Riemann-Roch formula, and that
the contributing curves are regular points in this family:

( P i \ . . . \ P N ) [ C ] = Σ ±/
vertical disci ete holomorphic maps:

(<ΓPKxι,...ΛN) -»• (π~HC), p\,...,pN )
of degree d

The sign ± in this formula can be defined naturally in terms of intersection
indices in moduli space; it is "plus" at least in the case if all the cycles pι and C
are holomorphic (the latter assumes that a complex manifold is taken on the role
of BG), and will be described in 3.5 for arbitrary C.

Rigorous justification of this construction, and in particular — verification that
the intersection indices actually depend only on the (co)homology classes repre-
sented by the cycles pt and C, encounters the same difficulties as in the case of
the quantum non-equivariant intersection indices. In particular, bringing to general
position may involve perturbations of the complex structure towards almost complex
ones which in our case should be done fiberwise in the bundle XQ —> BG and do
not have to be the same on all fibers.

Intersection indices ( | . . . | ) have the following obvious properties relating them
with "classical" intersection indices (, . . . ,) :

1. they are multi-linear and skew-symmetric;
2. (p\\... |/?jv|[l]) = (P\\- \PN)> where [1] represents the fundamental cycle

in XG;
3. (p\ I... \pN) \q=o = (p\\... \pn) — they are ^-deformations of classical inter-

section indices;
4. {p\\p2) — {p\>P2) s o that (/?|[1]) coincides with the classical direct image

operation; and a less obvious
5. //^(j9ί)-multi-linearity property (where "•" stands for the cap-product,

Poincare dual to the ordinary multiplication of cohomology classes repre-
sented by finite codimension cycles)

which means that a vertical rational curve in XQ which has a common point
with the preimage π~~ι(p) of a finite codimension cycle p C BG in the base,
is entirely contained in this preimage.

Similarly to ordinary quantum cohomology, quantum equivariant intersection
indices have a few other interpretations.

3.5. Intersections in "Moduli Spaces". Consider the product XN of N copies of
X as a G-manifold provided with the diagonal G-action. The homotopic quotient
XQ has Λf canonical projections X^ —> XG compatible with the projections XQ —>
BG, XQ —> BG to the classifying space. Let pι,...,pχ be equivariant cohomology
classes of X. One may think of them as represented by finite codimension cycles
in XQ, one in each of N copies. Pulled back to XQ they define N equivariant
cohomology classes of XN which we denote p\,...,pN too.
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Let Md denote the space of parametrized rational curves φ : C P " 1 —> X of
certain degree (= homology class) d. Evaluation map Jid -*XN,φ ι—• φ(x\),...,
ΨN(XN) at N generic points in (CP1 defines a G-invariant complex subvariety in
XN. Its fundamental cycle Jίd determines an equivariant cohomology class of XN:
it is the Poincare-dual to

EGxGJd cEGxGX
N .

We denote this equivariant class \Jid\.
One defines the quantum equivariant intersection index using classical equivari-

ant indices in HQ(XN) as

It is easy to see what is the meaning of the RHS, evaluated at a cycle C C BG: it
counts the numbers of discrete rational maps φ to the fibers of the bundle π~ι(C) —>
C such that φ(xι) is in the cycle representing pt in XQ. The maps are "weighted"
by the factors qd and are counted with the signs prescribed by (co)orientations of
the cycles. In particular, this construction (being at least morally equivalent to the
first one) specifies how the signs ± in the previous definition should be chosen.

3.6. Integrals in loop spaces. The quantum intersection indices defined by means
of evaluation maps are (expected to be) independent on the choice of evaluation
points X\,...,XN on the projective line provided that the points are generic (and in
particular distinct). Therefore one can replace {pi,..., pN,[^d(x)]) by its average
value

where TN is a torus in the configuration space (CPι)N of N points x = (X\,...,XN),
namely the product of N standard unit circles in (CP1 = C ( Ί o o (notice that TN is
dense in Zarissky topology on ((CP1)^). This formula allows us to interpret the
intersection indices as some integrals of differential forms on loop spaces.

Suppose that the classifying space BG is chosen in the form of a infinite-
dimensional manifold and that the equivariant cohomology classes p\,...,pN a r e

represented by closed differential forms on XG. Such a differential form determines
a differential form of the same degree on the space of free loops in XQ. Namely, if
ί ι-> y(ί) is a loop, the average § ptdt is an exterior form on the space of vector
fields along the loop, and thus P = § pdt is a differential form on the loop space,
closed if p is closed on XQ.

Furthermore, we interpret a (vertical) rational curve φ : CP 1 —> XG as an "alge-
braic loop" restricting the map φ to the unit circle Γ c C - O c CP 1 . From now on
we may think of the spaces Jίd of rational maps, as well as of the spaces Jίd\C\
of such vertical rational maps to the fibers of the bundle XG —• BG over a given
cycle C C BG, as subsets (chains, cycles) in the loop space.

The above integral over the torus immediately turns into the integral in the loop
space,

(pu...,pN,[Jίd])[C]= J Λ Λ . . . Λ / V .
Jfd[C]

As usual, this formula assumes that the integral equals zero unless the total degree
M of the wedge product equals the dimension c(d) + D + K of the chain Jίd\C\
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We will make use of this construction in the special case when the equivariant
cohomology algebra HQ(X) is generated (as an algebra) by the classes of degree
2 - that is of degree 1 taking into account our convention that all the dimensions
and degrees are complex. Let p\,...,pn now denote a set of such generators, i.e.
a basis in HQ(X). We prefer to think of pt as closed differential 2-forms on the
infinite-dimensional manifold XQ, or even as symplectic (or Kahler) forms, taking
into account our assumptions about X and the fact that classifying spaces of unitary
groups have Kahler models. Denote

P(z) = zχPι + - - + znPn

a general linear combination of the differential (symplectic, Kahler) 2-forms Pι on
the loop space of XG corresponding to the forms p\ on XG. Let us define the
generating volume function V G HQ(pt,Έ[[z,q]]) - a formal series in q and z with
coefficients in the ring of characteristic classes, such that the value of V on a
homology class represented by the cycle C C BG is equal to the weighted oriented
volume

r\lQ = Σ<f I exp(P(z))
d Md\C\

of the space Jί[C] = \Jdq
dJid[C] of vertical rational curves over C Here exp(P)

stands for
oo I

Σ — PΛ...ΛP (k times)

so that the integral / ^ e x p ( P ) really represents the symplectic ^-dimensional vol-
ume of a A>cycle Jt if the form P is symplectic (we should notice however that
orientation of C contributes the sign of the "volume").

The generating volume function has not so many non-zero terms as one could
think: due to dimension reasons it is weighted-homogeneous of degree - D when
the degrees of the variables are assigned as

d e g / = c(d), degzz = - 1 ,

and characteristic classes from H^pt) have their natural degrees.
One of the applications of this function describes quantum intersection indices

of the generators pχ\

dN

(Pil\ \PιN) = . . dzlN

V(z)
z = 0

(it is just the property of the exponential series).
Another property of the volume generating functions that we are going to exploit

is their simple behavior under product, restriction and induction operations.

Product. Let X',X" be compact Kahler G'- and G/;-spaces respectively, and
Vf(z',qf) e H*f(pt), V"(z",q") G H*,,(pt) be the corresponding generating vol-
ume functions. Then the generating volume function V for the G' x G"-space

Indeed, the homotopic quotient of X' x X" is the product of X'G, and X^,,
fibered over the product BG' x BG" of classifying spaces. A holomorphic map to
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X' x X" is a pair of holomorphic maps to X' and X" respectively and hence the

chain Jίd'4" factors:

d'4"\y X C J = Jldt\L J X Mdn\L J .

Its volume with respect to P(z) = P'{z') 0 P"{z") is the product of corresponding
volumes and therefore

Σ idY'id'Y" J exp(P(z)) =

r , 1 Γ // Ί
L w i J e x Pv^ vz ; z^w y J expt^ ẑ n .

Restriction. Let X be a compact Kahler G-space and G' C G be a Lie subgroup.
Considering X as a G"-space, we obtain an JΓ-bundle XGι —» BG' (induced, as a
bundle, from XG -* #G by means of the natural map π : BG' —> 5G of classifying
spaces) and the corresponding map of total spaces ζ : X /̂ —> X^ with the fiber G/G'.
Then for the generating volume functions V(z,q) and V'(zf

9q) we have

Indeed, for a cycle C C 5 G ' the bundle Md\C'\ -+ C is induced by π from
Md\π*C\ -> π(C7) and therefore

/ exp(C*(P(z)) = / exp(P(z)).
Jfd[C] Jid\π*C>\

In particular, if G' is trivial so that π is £G —> BG and X /̂ = £"G x X, then the
homomorphism ζ* : H2(XG) -± H2(X), z y-+ z', is onto, and the generating volume
function V'(z'9q) coincides with the non-equivariant one and can be computed from
V(z,q) as its reduction Hg(pt) —» Z modulo G-characteristic classes of positive
degree.

This implies that non-equivariant quantum intersection indices (piχ \... \piN) are
obtained by such a reduction from the corresponding quantum equivariant intersec-
tion indices.

Induction. Let G1 C G be a subgroup with a simply-connected compact Kahler
quotient G/G', and 7 be a compact Kahler G'-space. We construct a compact Kahler
G-space X — G xG/ Y and call it induced from 7 (like induced representations). In
fact X is fibered over G/Gf with the fiber 7. The homotopic quotient spaces of X
and 7 coincide:

XG = EG xG (G xG, 7) - EG xG, Y = YG, ,

and thus their equivariant cohomology is the same, but the module structure
in HQ(X) is induced from the module structure in H^,(Y) by the natural map
BG; -> BG.

Let p" be a basis of non-negative classes in H2(G/Gf) lifted to X, and
i7 = (p',pn) be its extension to such a basis in H2(X). Encoding the homology
class of a rational curve in X by the string (d',d") = (d\,...,dk) of its degrees
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with respect to the dual basis in U2{X), we find that the curves vertical in the
bundle X —> G/Gf have d" = 0 and vice versa.

This means that the quantum deformation ring TL\q'\ for Y can be considered
as a quotient of the corresponding ring for X:

Remark. This identification may seem confusing, since the group algebra
is a subalgebra in C ^ 1 ] . In fact, replacing the algebra C ^ 1 ] of functions on
the torus by the polynomial algebra <£[q] defines, in geometrical terms, partial com-
pactification of the torus to <ϋk. Our description of £[#'] as a quotient corresponds
to the embedding of such a compactified torus <Ek for Y into the "boundary"
<C* - (C - 0 / of the torus for X.

Denote V'{z,q') and V(z9q) the generating volume functions for quantum equiv-
ariant cohomology of Y and X respectively. Then

V(z,(qf

90)) = Direct image V\z,qf) ,

where the direct image operation refers to the bundle π : EG' —• EG.
Indeed, when we evaluate V(z,q) on some cycle C C EG at q" = 0 w e simply

calculate the weighted volume of the space of vertical algebraic loops in XG over C,
but throw away contributions of all rational curves with d" φ 0. But a rational curve
in X with d" — 0 projects to G/Gf to a point. This means that the LHS actually
computes weighted volume of the space of vertical algebraic loops in YGι —> EG' —>
EG over the preimage C — π~ιC. Therefore

V(z,(q',0))[C] = V'(z,q')[C'] = [Direct image V'(z,q')][C]

by the very definition of the direct image operation.

3.7. Equivariant Floer Homology. We briefly discuss here quantum equivariant
cohomology from the point of view of Morse-Floer theory on loop spaces. This
discussion is supposed to motivate our conjecture that the general properties ex-
pected from quantum cohomology can be naturally generalized to the equivariant
case.

Let X, as above, be a compact simply-connected Kahler manifold provided
with a holomorphic action of the complexified compact Lie group Gc and with a
G-invariant Kahler form. The group G<c also acts by holomorphic transformations on
the loop space LX and its universal covering. Since the action functional j / on the
covering is G-invariant one can try to construct the equivariant Floer (co)homology
FHQ(X) by means of equivariant Morse-Witten theory for s4.

Usually one defines an equivariant Morse chain complex using finite-dimensional
approximations EGM —> EGM of the universal G-bundle. For example, if G is the
unitary group Un one can choose the complex Grassmann manifold Gr(N,n) on the
role of EG and the corresponding Stiefel manifold on the role of EG^. Mimicking
this approach, we can extend the functional si to the space EG^ x LX in the trivial
manner and thus construct a functional s^N on the manifold LN = EGN x Q LX
approximating the homotopic quotient space (LX)Q. NOW we can apply Floer's
semi-infinite Morse theory to the functionals s/N. Notice that the homotopic quotient
(LX)g is nothing but the space of vertical loops in the bundle XQ —* EG, and L^
is simply its restriction to EGN C EG.
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Taking care of the riemannian metric, add a G-invariant riemannian metric on
EGN as a direct summand to the Kahler G-invariant metric on LX induced from
that on X. Then the gradient vector field of stf on EGM X LX is tangent to the
second factor and is invariant with respect to the diagonal action of G. This means
that the gradient vector field of stfN relative to the factor-metric on LN is just the
projection of that G-invariant field, and the corresponding gradient flow consists
in fiberwise analytic continuation of vertical loops in the X-bundle LN —• BGN- In
particular, Floer cohomology of L^ will carry a module structure over the ordinary
cohomology algebra of BGN.

Notice that the G-action on LX commutes with both the circle action (= re-
parametrization of loops) and the action of the covering transformation group Zk (so
that both actions survive on L^). The first implies that S$N is a perfect Morse-Bott
function on L^ (see [G, Gl]). The second describes the action of the group ring
Z[q±ι] on the Floer cohomology on LN, which is therefore additively isomorphic
to the cohomology H*((X(j)N,Έ[q±ι]) of the critical point set.

Passing to the limit N —> oo, we conclude that G-equivariant Floer cohomology
FHQ(X) of LX should be a H^pt, Z[^r±1])-module canonically isomorphic to the
equivariant cohomology of X with coefficients in the group ring Έ[q±ι].

A multiplicative structure in equivariant quantum cohomology of LX can be
defined by means of the evaluation map at the point 1 G ^ 1 :

LX -> (LX x X), (y : Sι -* X) ^ (y,y(l)) .

This map is G-equivariant and induces an action of equivariant cohomology classes
of X by module endomorphisms on equivariant Floer cohomology FHQ(X) of the
loop space LX. Using our explicit description of the gradient flow on (LX)G as
fiberwise analytic continuation of loops, one can compute this action in terms of
vertical holomorphic curves and quantum equivariant intersection indices (|... |)
introduced in 3.3. Namely the action of p £ HQ(X) on a £ FHQ(X) satisfies

(p*a,b) = (a\p\b)

for any b £ FH£(X), where the pairing on the LHS is the classical equivariant
intersection index on Hg(X,Z[q±ι]) with values in Hg(pt,Έ[q]).

The multiple quantum equivariant intersection indices (a\p\\ ...\pr\b) can be
expressed in a similar manner in terms of evaluation maps LX —» LX x Xr at
r distinct points x\,...,xr on the circle Sι. We conjecture that they satisfy the
"principal axiom" of Topological Field Theory (see 2.2). This conjecture implies
that the multiple intersection indices represent matrix elements of compositions of
the endomorphisms corresponding to p\,...,pr £ HQ(X). Finally, if one defines
quantum equivariant cohomology of QH*(X) as the algebra generated by these en-
domorphisms and operators of multiplication by q, then our conjecture means that
this algebra

• is additively isomorphic to Hc(X,Z[q]) (or may be "[[q]]"),
• provides a "quantum" deformation of the classical equivariant cohomology

algebra H£(X)9

• inherits the module structure over H£(pt) ® Έ[q], and
• allows to express the multiple pairings through quantum multiplication and

the classical direct image functional:
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It is difficult to say now whether a rigorous justification of these hypotheses
should be even more sophisticated than in the non-equivariant case. On one hand,
general position arguments should require introducing almost complex structures
on X which are not G-invariant. The most natural way to handle this problem -
by considering the space f of all almost complex structures and constructing
G-equivariant Floer cohomology of LX x / - involves one more "infinity" and
seems to raise the level of technical difficulty. On the other hand, the finite-
dimensional approximations BGM of classifying spaces have Kahler models, and
quantum equivariant cohomology of X seem to be expressible in terms of non-
equivariant quantum cohomology of the approximations (XG)N —> BGN ' it suffices
to "throw away" contributions of non-vertical rational curves in (XG)N, i.e. put
some of "#"s equal zero. This approach can possibly reduce the problem back to
the axioms of non-equivariant Topological Field Theory.

We are not ready to discuss further this problem here. We also leave for the
reader to think out the parallel construction of equivariant quantum multiplication
which is based on composition of loops.

3.8. Characteristic Classes as Casimir Functions. Here we interpret the quantum
equivariant cohomology algebra QHQ(X) as the algebra of functions on some la-
grangian variety in the assumption that the ordinary cohomology algebra H*(X) of
the simply-connected Kahler manifold X is generated by non-negative (l,l)-classes
pι,...,pk (in notations of 2.3). This assumption along with the spectral sequence of
the X-bundle XQ —> BG implies that the equivariant cohomology algebra HQ(X) is
additively isomorphic to H*(BG)®H*(X) and is generated, as an //^(jσί)-algebra,
by k elements representing 1 <8) /?;, which we will denote p\,...,pk again.

Its quantum deformation QHQ(X) has been defined in 3.7 by means of the
identity

(a*b,c) = (a\b\c).

Considered as //^(/tf)-algebra, it is generated by (p\,...,Pk,q\,- ,qk) and is there-
fore isomorphic to the quotient of the polynomial algebra H£(pt)[p9q]] by some
ideal of relations.

Passing to complex coefficients and introducing temporary notations c i?

/ = l , . . . , r , for generators of the polynomial algebra H*(pt,<C) = <E[c] of
G-characteristic classes, we interpret the quantum equivariant cohomology algebra
QHQ(X9<E) as the algebra of regular functions on a (quasi-homogeneous) subvariety
JS? determined by the ideal of relations J> in the complex space with coordinates

(P\, > Pk, q\, J Vk, c\,..., cr) .

This complex space has a natural Poisson structure

ϋq\ dpi dqk 6pk

due to the constant coefficient pairing between H2(X) = H2(XG)/H2(BG) and Zk =
U2{X) C H2{XG) (we assume of course that the basis in the lattice Ίίk is dual to
the basis (pu...,pk) in H2(X)).

We observe that the characteristic classes cz play the role of Casimir functions
of such a Poisson structure and claim that the characteristic variety if is lagrangian
in the sense of Poisson geometry, i.e. its intersections with the symplectic leaves
c — const, q\ ...qkή=0 are lagrangian at their regular points.
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Similarly to the non-equivariant case 2.3, this statement is based on the prop-
erties of the matrix-valued differential 1-form A — Σ(pi*)(dqi)/qi to satisfy dΛ =
0,A A A = 0, but now the Casimir functions ct are treated by the differential d and
by the operators pt* as constants. Mimicking 2.3, we introduce a C[[c, q]]~valued
bilinear form on HG(X,<E[[q]]) by the formula

Sa,b\ίC]= Σ ± < Λ
degree </ isolated vertical rational curves

in XQ-^BG restricted to CCBG

with two marked points in a and b

which evaluates the bilinear form of two finite codimension cycles a,b C XG on a
finite-dimensional cycle C C BG.

Thinking of cz as of the preimage in XG of a finite-codimension cycle in BG,
we immediately conclude that S is (C[c]-bilinear:

Scja,b\[C] — Sa,b\[CinC] — (CiS

Thinking of pt as a complex hypersurface in XG we find, as in 2.3, that

is a potential for the (α,6)-matrix element of the 1-form A:

qij-Sa,b = (a\pi\b) - (a9pl9b) .

This is equivalent to dA — 0 and together with commutativity A Λ A — 0 and the
lemma in 2.3 implies that each non-singular branch of <£ Π {c — const} over the
torus with coordinates q is lagrangian in the cotangent bundle of this torus (= the
symplectic leaf with coordinates p,q).

4. Computation of QH^(Fn)

In this section, we compute quantum (equivariant) cohomology of flag manifolds.
The results here are mathematically rigorous corollaries of the following conjectures
about general properties of quantum cohomology of Kahler manifolds:

• Quantum equivariant cohomology is a skew-commutative associative algebra
over the characteristic class ring;

• It is a weighted-homogeneous ^-deformation of the classical equivariant co-
homology;

• Equivariant generating volume functions satisfy the product, restriction and
induction properties from 3.6.

4.1. Root Systems. The structure of the 2n d (co)homology lattice of flag manifolds
can be understood better in terms of root systems. The flag manifold Fn is the space
G^/B of all Borel subalgebras in g<c = sIM((C). Therefore its tangent bundle splits
canonically into the direct sum of line bundles (£§)α La indexed by positive roots a
of the root system An-\. Recall that this root system can be described as the set of
linear functions JC/ — Xj on the lattice Έn with coordinates x\,... ,xn, and the positive
roots are those with i < j . The n — 1-dimensional lattice spanned by the roots can
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be identified with a finite index sublattice in the 2n d cohomology group H2(Fn) by
the map

a line bundle H-» its 1st Chern class .

Therefore the 1st Chern class of the flag manifold is represented by the total sum 2p
of positive roots. According to Borel-Weil theory, finite-dimensional representations
of SUn can be realized in spaces of holomorphic sections of non-negative line
bundles over Fn and correspond in a 1 — 1 fashion to their 1st Chern classes. This
theory implies that the Kahler cone of Fn is the Weyl chamber spanned by the
1st Chern classes p\,..., pn-\ of the fundamental line bundles det* Λ/<Cn, / = 1,...,
n — 1, called - in terms of the root system -fundamental weights.

The fundamental weights pt = x\ H h xl9 i = 1,...,« — 1, form a basis in the
lattice H2(Fn). The vectors αi, . . . ,α n _i of the dual basis and their non-negative
integer combinations represent, in the homology group H2(Fn), classes of holomor-
phic curves in Fn. Identifying the space // 2 (F n ,Q) with its dual by means of the
Weyl-invariant inner product (the Cartan matrix is its matrix in the basis of fun-
damental weights) we find that (αi, . . . ,α π _i) becomes the basis of simple roots
cti = Xi — xi+\ under this identification.

Now the famous identity

Σa = 2p = 2(pι + •-• + Pn-\)
α>0

along with (/?/,αy ) = δjj means that in our representation of classes ]Γ)<iz αz of ra-

tional curves by monomials q\x ...qn"_Γι the degrees of the variables qι are

gf i=c(α i) = <2p,α / >=2.

4.2. Auxiliary Bundle. According to general theory,

where the ideal IUn is generated by some quasi-homogeneous ^-deformation of the
relations

Ci = σi(u\i = 1,...,«, degM/ = l,degc/ = ι,deg^ = 2 ,

which can be written (using a formal variable λ of degree 1) as a single quasi-
homogeneous identity of degree n:

(MI + λ)... (un + λ) = λn + σxλ
n-χ + + σn .

We find this deformation by induction on « = 2 ,3 ,4 . . . , based on the following

obvious

Lemma 1. For n > 2, suppose that a quasi-homogeneous relation of the form

(uo + λ)...(un + λ)-[λn + σιλn-1 +... + σn] = O(qι9...9qn-ι)[λ9q,u9σ]

is satisfied in quantum equiυariant cohomology algebra of the flag manifold Fn

modulo qι for each i = l , . . . ,n— 1. Then this relation holds identically (i.e. for
all q).
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Proof. Indeed, since the LHS of the relation in question is homogeneous of degree
n, the hypothesis of Lemma 1 means that the difference LHS - RHS is divisible
by q\...qn-\. But degqt = 2 and

degq\ ...qn-\ — 2n — 2 > n for n > 2 .

This implies that LHS - RHS = 0.

Remark. This lemma is the only place in our proof where we use some specificity
of the group Un. It also holds for flag manifolds of series C and D but fails for
other compact simple Lie groups. For their flag manifolds one can easily give a
hypothetical description of the quantum equivariant cohomology algebras in terms
of generalized Toda lattices, but a proof should involve some additional argument.

Our inductive step will make use of the following construction. Consider the sub-
group G' = Um x Un-m C Un = G and the G'-space Y — Fm x Fn-m. The induced
G-space (in the sense of 3.6) is nothing but the flag manifold Fn. Its fibration over
G/G' — Gr(n,m) sends a flag in C" to its m-dimensional component.

Let Vm denote the generating volume function for quantum equivariant coho-
mology of Fm.

Lemma 2.

Vn(z9q,c)\qm=0 = Direct image [Vm(z>\q>\cf) . Vn-m(z",q",c")] ,

where

z = ( z i , . . . , z n ) are coordinates on H2((Fn)G) with respect to the basis u\,...,un

(see 3.2),z' = (zu...,zm)9z" = (z m + 1 , . . . ,z Λ ),

q = (q'9qm,q") = (qu...,qm,...,qn-i) ,
c,c' and c" are Chern classes of UmUm and Un-m respectively, and "Direct

image" refers to the direct image operation Z[c',c"] = H*(BGf) —> H*(G) = Z[c]
for the bundle BG' —• BG with the fiber Gr(n,m) (see 3.3).

Proof It is a straightforward corollary of the product and induction formulas: fac-
torization (Fn)Uη = (Fm)Um x (Fn-m)Un_m identifies the basis (uu...,un) in the 2n d

equivariant cohomology of the product with the union (u'ι,...9u'm,u",...,u"_m) of
such basises of factors since both are the standard generator sets in the cohomo-
logy of (CP°°)", and pm G H2(Fn) is represented by the 1st Chern class of the
determinant line bundle over Gr(n,m) and therefore the vertical rational curves in
Fn —» Gr(n,m) are exactly those with dm = 0.

4.3. Theorem 2 implies Theorem 1. Indeed, according to the restriction property
of equivariant generating volume functions (applied to the trivial subgroup in Un),
if a relation

R(d/dz,q,c)V(z,q,c) = 0

is satisfied, then R(d/dz,q,0) annihilates the non-equivariant generating volume func-
tion V(z,q,0), and thus the relation R(u,q,0) = 0 holds in QH*(Fn). This proves

Lemma 3.

Fn) = QH*Uπ(Fn)/(cu...,cn).
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4.4. Equivarίant Quantum Cohomology of (DP1

Lemma 4.

ι = Έ[uι,U2,q,cuc2]/(uι + u2 = cuuλu2 4- q = c2) .

Proof. Quantum equivariant cohomology of the projective line F2 is isomor-
phic to the quotient algebra of Έ[u\,u2,q,cι,c2] by the ideal generated by quan-
tum deformations of the relations u\ +u2 — c\,u\u2 = c2 in the classical equivari-
ant cohomology. These deformations can be taken quasi-homogeneous and since
deg# = 2, the only possible deformation should replace the RHS in u\u2 — c2 — 0
with a scalar multiple of q.

In order to determine the scalar it suffices to reduce the relations modulo (ci,c2),
i.e. to compare, by Lemma 3, with relations in the ordinary, non-equivariant quantum
cohomology of F2 — CP 1 . Then u2 — —u\ represents the 1st Chern class of the
"hyperplane" bundle over CP 1 , i.e. simply a point. Since the relation u\ — q holds
in the quantum cohomology of CP 1 (see 2.7), the scalar coefficient we are looking
for equals 1.

4.5. Step of Induction. Denote

the characteristic polynomial of the n x «-matrix with u\,...,un on the diagonal,
qι,...,qn-ι right above and — 1,..., —1 right under the diagonal.

Lemma 5. Suppose that the relation

is satisfied identically in λ in the equivariant quantum cohomology of flag mani-
folds Fk for all k < n. Then the relation with k — n is also satisfied modulo qm

for every m = 1,...,«— 1.

Proof First of all, notice that Dn\qm=0 = Dm(u\q\λ)Dn-m(u//,q/\λ), where
(uf,u") = u,(q'90,q") = q.

Denote
Σn = λn + cxλ

n-γ + + cn = fo + λ).. .(xn + λ)

the RHS of the above relation with the Chern classes c\,...,cn written for con-
venience as elementary symmetric functions of the formal variables x\,...,xn. The
conclusion of Lemma 5 means that

[Dn(d/dz,q,λ) - Σn(x,λ)]Vn(z,q,σ(x)) \qm=0 = 0 .

It is the same as

( έ ) ] Vn({z',z"Uq)Mx))\qm^ = 0

By Lemma 2, the function Vn\qm=o in the last formula can be replaced with the
Direct image of

Vm(z\q\σ(x')) F Λ - M ( Λ ? ' ' , σ ( * " ) ) ,

explicitly described in 3.3.
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Since the derivations in DmDn-m are with respect to z1\z" which are not involved
into permutations in the operation Alt, and the variables x\xf/ which are involved do
not show up in coefficients of the operators Dm,Dn-m, the Direct image operation
commutes with our differential operator.

Applying the inductive assumption we find that the conclusion of the proposition
is equivalent to the identity

image [Vm(x')Vn-m(x»)]

= Direct image [(Σm(x\λ)Vm(x'))(Σn-m(x'\λ)Vn-m(x"M .

But
Σm(x\ λ)Σn_m(x", λ) = (jci + λ)... (xn + λ) = Σn(x, λ)

is totally symmetric (x\,...,xn)l.
Since multiplication by a symmetric function commutes with the alternation

operation, we conclude that the required identity does hold.
Combining Lemma 5 with Lemma 1 completes the proof of Theorem 2 from

the Introduction.

4.6. Volume Functions. We have found the relations in quantum cohomology of
flag manifolds using general properties of the generating volume function. Now we
compute the quantum volume functions using our knowledge of the relations and
of the classical volume functions.

Proposition The quantum equiυaήant generating volume function Vn(z,q,c) of the
flag manifold Fn equals

_ 1 n exp(z,u)duχ Λ...Λdun

n~ (2πι)»J(2πι)»J (Σι(u,q)-cι)...(Σn(u,q)-cn)
9

where Σt(u,q) are the quantum deformations of elementary symmetric functions,
i.e. the coefficients of the polynomial det(v4w_i + λ).

Proof By the deformation property and the proposition in 3.2, the formula holds for
q — 0. We will prove the formula using the homogeneity property deg Vn — —dim Fn

(where degz, = — 1, degg, = 2, degc/ = /) and the differential equations

Σi(d/dz,q)Vn(z,q,c) = ctVn(z,q,c), i= l , . . . , n .

First of all, the function Wn does satisfy the homogeneity condition and the
differential equations (due to the famous property of residues).

Due to another property of residues (see [GH]) Wn is an analytic function of
its variables and can be expanded into a power series (Vn is a formal series by
definition). Represent the difference Vn — Wn as a sum Σ^^QJ^Q R^j(z)qdcι. The
coefficient Rdj is a homogeneous polynomial in z of degree (in the usual sense)
dimFn + Σ2dι + Σjlj and i?o,o — 0, since Vn coincides with Wn at q — 0.

Let us pick R as the coefficient of minimal degree among non-zero Rdj. The
differential equations for V — W mean that

Gi(d/dz)R(z) = some operators applied to Rdj with smaller d, I ,

and hence that σi(d/δz)R(z) — 0,/ = l,...,n, since all those Rdj are zeroes. Now
the following lemma completes the proof.
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Lemma 6. If all symmetric differential polynomials S(d/dz) in n variables annihi-
late a polynomial R(z), then degT? ^ άimFn.

Proof. The quotient of the algebra of all differential polynomials S(d/dz) by the ideal
generated by elementary symmetric functions is canonically isomorphic to the co-
homology algebra H*{Fn). This implies that the ideal contains the power rnd i r ϊ l j F λ 7 + 1

of the maximal ideal m = (d/dz\,...,d/dzn). This means that all derivatives of R of
order > dim Fn vanish and thus degi? ^ dim/v

The proposition also implies Theorem 3 from the Introduction (describing quan-
tum intersection indices), since by definition of Vn,

(f\g) = \f(d/dzMd/dz)vn(z,q,c)]\x=0.

4.7. Symplectic Reduction. Here we carry out the symplectic reduction described
in Corollary 2 of Theorem 1.

Let G = SLn+\9 let N- and JV+ be its lower and upper-triangular unipotent sub-
groups, and g,n_,n + be their Lie algebras. We identify a traceless matrix ξ with
a linear function on g such that ξ(x) = tr(^x). Then n l and n+ become quotient
spaces of the matrix space by upper and lower-triangular subspaces respectively.
We denote P+ (resp. P_) the coset of the matrix with l's strictly above (resp.
under) the diagonal and 0's otherwise. Therefore P+ φ P _ 6 n_ Θ n + represents
the momentum map value P from Corollary 2.

Consider the left action of G x G by left-right translations on G : (x, y)g =
xgy~x. The velocity of this action is xg — gy. Trivializing the tangent bundle to G
by means of left translations we obtain g~ιxg — y G g. In other words, the action
of G x G on the cotangent bundle T*G = G x g* is

while the momentum map of this action is

Now restrict the action to the subgroup iV_ x N+ C G x G and notice that the
covectors P+ and P- are fixed points of the coadjoint action of N- and 7V+. Denote
G the principal Bruhat cell in G. It consists of unimodular matrices g = g~Dg+ with
Q± G N± and D = diag(ex°,...,eXn). Let us carry out the symplectic reduction of
T*G by the action of N_ x N+ on the momentum level P, i.e. compute

J-\P)ΠT*G/(N- xN+).

The condition J(g-Dg+,ξ) = P means that Dg+ξg+ιD~ι = P+ modulo lower-
triangular matrices while g+ξg+ι = —P_ modulo upper-triangular matrices. In other
words,

{(g9ξ)\g = D9ξ = ( - P _ ) θ diag(uo9...9un)Θ D~ιP+D}

(where M, are arbitrary entries with zero sum) is a transversal slice to all orbits.
The action 1-form restricted to the slice turns into Y^uidxi.

Matrices ξ from this slice coincide with An from Theorem 1 with qι = e*7"*7-1,
and thus the symplectic quotient can be identified with the space of all such matrices
with nonzero #'s.
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The conical variety G x C (recall that C is the nilpotent cone in g*) reduces to
the Zarisski open dense set in the variety of all nilpotent matrices of the form An.
This proves Corollary 2.
According to the Adler-Kostant reduction scheme (see [R]) coadjoint invari-
ants of G reduce to Poisson-commuting hamiltonians in the reduced phase space
T*G//p(N- x N+). This gives a proof of involutivity of our relations in quantum
equivariant cohomology of flag manifolds independent of our conjectures about gen-
eral properties of quantum cohomology.
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