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Abstract. A way to study ergodic and measure theoretic aspects of interval maps is
by means of the Markov extension. This tool, which ties interval maps to the theory
of Markov chains, was introduced by Hofbauer and Keller. More generally known
are induced maps, i.e. maps that, restricted to an element of an interval partition,
coincide with an iterate of the original map.

We will discuss the relation between the Markov extension and induced maps.
The main idea is that an induced map of an interval map often appears as a first
return map in the Markov extension. For S-unimodal maps, we derive a necessary
condition for the existence of invariant probability measures which are absolutely
continuous with respect to Lebesgue measure. Two corollaries are given.

1. Statement of the Results

Invariant probability measures are the key ingredient of Birkhoίf s Ergodic Theorem,
which predicts the statistical behaviour of points in a dynamical system. Especially
measures that are absolutely continuous with respect to Lebesgue measure are of
interest, because in that case Birkhoίf s Ergodic Theorem holds for a large set
in Lebesgue sense. We will abbreviate absolutely continuous invariant probability
measure to acip.

Let us consider interval maps / : / — > / that are piecewise continuous and piece-
wise monotone. A special case are the unimodal maps, i.e. continuous maps having
a unique turning point c. In this paper we concentrate on two methods to construct
an acip for/.

First there is the notion of induced map. Let {•//}* be an interval partition of J C
/ such that \J\UjJi\ = 0. (I | denotes Lebesgue measure). The map F : |J/ t/z —»J
is an induced map of /, if F coincides on each interval Jz with some iterate fSl

of / . The integer sequence {•$•,•},• is called the stopping rule. F may be constructed
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in such a way that it satisfies a Markov property, i.e. F preserves the partition:
F(Ji) D Jj whenever F(JZ) ΠJ/Φ0. If the branches of F have bounded distortion
and |F(J,)| is uniformly bounded away from 0, F admits an acip m. There is a
standard way to derive from m an acip μ of / . In order to prove that μ is indeed
finite, it suffices to verify a summability condition:

ΣsMJi) <oo. ( i )

We like to know whether (1) is a necessary condition for the existence of an acip.
To answer this question we need a second tool: the Markov extension. The Markov
extension was developed by Hofbauer and Keller [H2,HK1]. (In the unimodal setting
this object is also known as Hofbauer tower.) It is a way to transform the map
/ : / — » / into a map / : / — • / that satisfies the Markov property. The price one
has to pay is that / is no longer compact. This makes it hard to find an acip on
(/,/), but it was shown in [H1,K] that if / has an acip μ, μ lifts to an acip μ on

7. This in itself is the wrong direction; we hoped to construct acips for (/,/). But
it is useful in proving that (1) must be satisfied if an acip exists. The main idea
is that induced maps, under some mild conditions, correspond to first return maps
in the Markov extension. Currently used induced maps, e.g. [B1,GJ,JS,M,V], fit in
this framework.

First return maps are in fact the simplest kind of induced maps; they allow an
easy transport of measures: An acip on (/,/) guarantees an acip for a first return
map, which in its turn can be projected to an acip of the induced map (J,F). In
this paper, we will show that condition (1) is equivalent to the existence of an
acip, provided the induced map is natural in some sense. The precise definitions of
natural and naturally extendible will be given at Lemma 2, Sect. 3.

Theorem 1. Let f : I —> I be piecewise continuous and piecewίse monotone, and let
μ be an acip such that the metric entropy hμ > 0. Assume that f is conservative
(see Sect. 2) with respect to μ. Let F be an induced map with stopping rule {si}t,
which preserves an acip m. If F is natural or naturally extendible, then

oo .

Remark. We will prove Theorem 1 for unimodal maps. This is the simplest case
combinatorially. Also the acip of an S-unimodal map automatically has positive
metric entropy. The necessary adjustments for the general case will be given at the
appropriate places as remarks.

Remark. Because we are mainly interested in acips, we have formulated Theorem 1
for acips. But in fact Theorem 1 holds for all invariant probability measures having
positive metric entropy. One must be aware however, that there is a fixed relation
between μ and m. Formula (6) shows that μ determines m, and vice versa.

In the next theorem, Theorem 1 is applied to a certain induced map, studied
by Martens. The point x is called a closest preίmage of the critical point, c, if
fn(x) = c for some n, and / y((x,c)) ^ c for 0 < j < n. The iterates n for which
this happens are called the cutting times. They are denoted by S^, where we start
counting at So = 1. Denote the closest preimages to the left of c by C-$k Then the
symmetric points c_sk of csk (i.e. f(csk) — f(csk)) a r e m e closest preimages
to the right of c. Let Ak = (csk_r c-sk)-
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derivative: Sf(x) = η ^ - § ( 7 ^ ) < 0 for all x + c. Let / be the order of the

A map / is called S-unimodal if it is C3 unimodal and has negative Schwarzian

^ § (7^)
critical point c, i.e. there exists a smooth coordinate transformation φ such that for
x close to c, f(x) = f(c) — \φ(x — c)\ι. f is called non-flat if / < 00.

Theorem 2. Let f be a non-flat S-unimodal map, then

ΣSk\Ak\ < 00 (2)
k

is a necessary condition for f to have an absolutely continuous invariant proba-
bility measure.

We will finish with a few corollaries. The first one gives a purely topological condi-
tion excluding acips. Let r(n) be the largest integer for which fr^ is monotone on
(c,cn), where cn — fn(c). If r(n) is very large compared to n (but finite), / is very
close to a saddle node bifurcation creating an ^-periodic point. This almost saddle
node behaviour is one of the processes that can prohibit the existence of an acip.

Corollary 1. Let f be S-unimodal If lims\xρn r(n)λn = 00 for all λ > 0, then f
admits no acip.

in [Bl] we construct an explicit example of this in the long-branched setting, as
we call it.

A second result involves the Fibonacci map. This is a unimodal map with a
special combinatorial pattern, discussed in [LM, KN, HK2]. A Fibonacci map is
characterized by the fact that the cutting times {Sk}k are the Fibonacci numbers:
So = l,S\ — 2 and Sk+\ = £* + «S*-i Let // be an S-unimodal Fibonacci map such
that its critical point has order /. It was proved in [BKNS] that if / is sufficiently
large, // has an absorbing Cantor set: ω(c) is a Cantor set, / is not infinitely
renormalizable but still ω(c) D ω(x) a.e. Because also \ω(c)\ = 0 [M], an acip
cannot exist. (The result in [BKNS] holds for C2 maps actually.) So the next
corollary follows from [BKNS] and [M].

Corollary 2. An S-unimodal Fibonacci map admits no acip if I is sufficiently large.

For simplicity of the proof however, we want to present it as a corollary of The-
orem 2. Also there may be values for / that are large enough for Corollary 2 to
hold, but not large enough for // to have an absorbing Cantor set. We conjecture
that there exist IQ < l\ such that:

- For / < IQ, fι has an acip. (An acip is proved to exist i f / < 2 + ε , ε > 0 suffi-
ciently small [KN].)

- For IQ < I < h, fι has no acip, and no absorbing Cantor set either.
- For / > /j, // has an absorbing Cantor set.

2. Invariant Measures and Induced Maps

Let X be an interval or a countable union of intervals. If / : X —> X is given, then
F : 7 C X —> 7, is called an Markov map if

i) there is a countable interval partition {Yΐ)i of 7 such that | 7 \ | J Yj\ = 0.
ii) If F(Yj)Π 7/Φ0 then F(Yj) D 7,. In other words / preserves the partition.

F is an induced Markov map if additionally
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iii) there exist integers Si such that F\Yj = fsSγ.

iv) F|y; is monotone for each i.

According to this definition, the first return map of / to 7 need not be an induced
Markov map. Conditions ii) and iv) need not be satisfied. If / is not conserva-
tive, condition i) may fail as well: We call / conservative with respect to μ if
for every forward invariant set A, either μ(A) or μ(Ac) = 0. (Notice that this def-
inition is somewhat different from the usual definition in ergodic theory, which
states that the wandering set has zero measure.) Without the conservativity con-
straint, F need not be defined a.e. Still many first return maps are induced Markov
maps.

Lemma 1. Let f : X —»X be conservative with respect to an acip μ. Let Y c X,
μ(Y) > 0 and let F : Y c X —* Y be the first return map. Then (Y,F) is conser-
vative with respect to μ and -jyτ is an acip on (Y,F).

Proof. Suppose by contradiction (Y,F) is not conservative. Then there is a forward
F-invariant set B C Y which is half measured in 7, i.e. μ(B), μ(Y\B) > 0. Let A —
UJGN / ι(B)- A is forward /-invariant and half measured, because A Π (Y\B) = 0.
This contradicts conservativity of (X,f).

Let Yk = {x e Y\F(x) = /*(*)}. By conservativity Y = \JkYk modulo null sets.
Let B CY. For any k, fι(Yk)ΠB = 0 if 0 < / < k. Moreover, μ(B\\JkF(Yk)) =
0. Let Bo = B and Bj = f~ι(BHl)\Y, so Bj = {x e X\fj(x) G B,f(x) £ Y for
0 g i < j}. By /-invariance of μ, μ(B) = £ ^ 0 μ(f'ι(Bj) ΠY) = Σ ^ i μ(F'ι(B)
Γ)Yj) — μ(F~~ι(B)). -tjr is clearly a probability measure. D

If a Markov map satisfies certain metric properties, it has an acip. This result is
often called a Folklore Theorem. We will use a version based on distortion. If /

is a C1 map on an interval J , then the distortion dist(f,J) = supx > ; G /log DJf\

Theorem 3 (Folklore Theorem). If a Markov map F : (J. 7 ; —> 7, has the addi-

tional properties:

- Fn has bounded distortion for all n ^ 1 and on each interval of monotonicity,
- F(Yj) = Y for all j ,

then F has an acip m and dm is bounded and bounded away from zero.

For the proof of Theorem 3 we refer to [MS]. We emphasize that similar results
can be obtained under weaker conditions. In many cases, e.g. the induced map that
emerges from the next theorem, boundedness of distortion follows from the Koebe
Principle [MMS] and extendibility of the branches. A branch of / " is the restriction
of fn to an interval J on which fn is monotone. If δ > 0 is given, a branch fy
is extendible with respect to δ if there exists T D J such that f?τ is monotone and

both components of fn(T\J) have length ^ δ\fn(J)\.
In the next theorem, we use a measure theoretic interpretation of attractor. Let

Ac I. The basin B(A) of A is the set {x\ω(x) C A}. A is an attractor if \B(A)\ > 0,
and there is no proper subset of A with the same property. In the S-unimodal case
the possible attractors were classified in [BL1]: An attractor can be i) a periodic
attractor, ii) a periodic interval, iii) a solenoidal attractor (e.g. the Feigenbaum
attractor), or iv) an absorbing Cantor set.
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Theorem 4 (Martens). Suppose f is non-flat, S-unίmodal and has no periodic
attractor, solenoid attractor or absorbing Cantor set. Then there exist symmetric
neighbourhoods Y' D % 3 c with the following properties:

- fk(d%) C dr for some k and p(<%) Π f = 0 for 0 < j < k
- fJ(d^) $• V for all j ^ 0.

- for Lebesgue a.e. x e I, there exist neighbourhoods Tx D Jx 3 x and s(x) G N

such that fs(x)(Jx) = % fs{x\Tx) = r and f™ is monotone.

In particular, it can be proved that / is conservative if and only if / has no attractor
of type i), ίii) or iv). Moreover, these kind of attractors have zero Lebesgue measure
(see [GJ] and [M]). The proof of Theorem 4 can be found in [M, MS].

The first two properties of Theorem 4 imply that fJ(d%) φ %. For this reason
d°U is called nice. The sets {Jx\x e $/} form a countable partition of %. Let us write
this partition as {£/,},. Due to the niceness of d%, these intervals are indeed pairwise
disjoint. The map F : \Jι Uf —> °U defined as F(x) = fs^x\x) for the appropriate
iterate s(x) is an induced Markov map. All branches of F are extendible to branches
that cover V. In order to apply the Folklore Theorem, the branches must have
bounded distortion, but this is guaranteed by the Koebe Principle. Because the
Schwarzian derivative is negative, the Koebe Principle may be used.

Suppose F : {JjJj —> J, MΛU/^I ~ 0> is an induced Markov map having the
stopping rule {̂  }z and an acip m. Then there is a standard way to find an acip μ
for/:

μ(^)-ΣΣ^ nΓ^)). (3)

The proof that μ is absolutely continuous and invariant is straightforward. Applied
to the whole interval /, (3) yields μ(I) = ]Pz^ra(J,). So if

Y^s.miJi) < oo , (1)
I

then μ is finite. If m has a bounded density, then one can replace (1) by

ΣΦi\ < oo. (4)

In the next section we will show that (1) is often a necessary condition for the
existence of a finite measure too.

3. The Markov Extension of f

Let / : / - » / be unimodal. Following Hofbauer and Keller [HK1] we discuss the
Markov extension (/,/). / C / x N consists of a countable union of intervals Dn =
(Dn,n). The end-points of Dn are forward iterates of c, one of which is cn. D\ —
[c,c\] and inductively

_J/(A0 if Dnjc,
[ [ci,cΛ+i] if A, 3 c.

By definition of closest preimages, the second case only happens if n = Sk for some
k. So if Sk-\ < n S Sk,Dn = [cΛ,cΛ-^_,] and Dn C Dn-Sk_x In particular c G
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DSk C Dslc-sk_ι = DSk,, for some cutting time Skr < Sk Therefore one can define

the kneading map g : N - > N U o o as SQ^) — Sk — S/t-\. f acts on / as follows:

If (*,«) = i G ί)n then

v J (f(x),n + 1 ) if x and cw lie on the same side of c,

I (/(*)>*Sg(fc) + 0 ^ x a n c^ c« ^ e o n different sides of c,

where in the latter case n = 5*. Let π : / —> / be the natural projection, then / o π =

no f. Observe that if / c / is an interval,

/fj is continuous, whenever /fπ (j, is monotone. (5)

Hence / * can move J upwards or downwards in the Markov extension, but / is
never cut into pieces if fk\π(J) is monotone. For more details see [B2, H2, HK1].

Remark. We briefly sketch the construction of the Markov extension for the
case that / is piecewise continuous and piecewise monotone. A generalization of
kneading maps is possible, but needlessly complicated for the scope of this pa-
per. Let Zui — l,...,Λf, be the maximal intervals on which / is continuous and
monotone. I is the disjoint union [_\Mej^M, where Ji is a collection of inter-
vals defined as follows: /(Z,) G Ji for / = 1,...,7V, and if M e Jί, then also
f(M (Ί Z, ) G Jί. The action / on / is defined as: if x G M Π Zu then f(x) = f(x) G
/(MΠZj). Observe that / : / — > / is indeed a Markov map, and that (5) is still
satisfied.

Theorem 5. Let f be an S-unimodal map, having an acip μ. Then there exists an
invariant probability measure μ on (/,/) such that μ = μoπ~ι. Moreover, f is
conservative.

Proof. The proof of the first statement can be found in [HI], under the assumption
that the metric entropy hμ > 0. However, we prefer to sketch the argument from
[K]. In that paper Keller generalizes results from [HI].

Let inc : [c2 ?ci] —> ([c2 ?ci],2) be the natural inclusion, take μ = μι o inc and

Pn Σ
n /=0

The measure μ on / lifts to a measure on /, i.e. the sequence {μn}n has a weak
accumulation point μ^ which is an acip. The invariance of the weak accumulation
point is clear. Notice that by invariance of μ,μn(π~ι(A)) = μ(A) for each n. This
yields the absolute continuity of μ if μ is absolutely continuous.

The assumption hμ > 0 is used to show that 0 is not a weak accumulation point
of {μn}n But if / is S-unimodal and hμ = 0, then / is essentially injective on the
support of μ. One can show that c is a density point of this support [BL2]. So hμ

is automatically positive. BirkhofΓs Ergodic Theorem implies that if / has an acip,
/ and / are both conservative with respect to μ and μ. D

Remark. If / is piecewise continuous, piecewise monotone, Theorem 5 is still
valid. In [K] no restrictions of this kind are made. However, we have to state the
assumption hμ > 0 explicitly.
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We want to tie the notions of Markov extension and induced map together. Let
us consider the following diagram,

. y x Λ first return / r ZT-Λ

. \J ( 6 )

(/, J ) inducing (./, F )

and ask ourselves to what extent it is well-defined. The projection π<j and the

first return map F : / —> / are well-defined as soon as / is defined. We will try
to choose J such that it is compatible with the induced map F : J —> J. By this
we mean that n^joF = F o π,j. In other words, / c n~ι(J) is such that the re-
turn time of x G π~x(x) Γ)J is independent of the level Z)#. If we succeed in do-
ing this, then it is easy to transport measures. The acip μ on (/,/) lifts to μ on
(/,/) by Theorem 5. Due to Lemma 1, m — ~^γ is an acip on (J,F), and be-

cause (6) commutes, m = moπ~} is an acip on (J,F). Note also that (J,F) is

conservative.
Presently we formulate conditions on the induced Markov map that will guar-

antee that (6) commutes. Let F be an induced Markov map F :{JιJι -^ J with
stopping rule st. F is called natural if

i) for every / e N and 0 < k < si9 there exists no set A such that both AΓ\Jiή=Φ
and fk maps A monotonically onto fs'(Jj) for any j G N.

Often one is interested in induced maps with extendible branches. For the induced
map from Theorem 4, or for instance the induced map obtained in [JS], this allows
the use of the Koebe Principle. Let Tt D J\ be the domains of the extensions: fL

is monotone. F is naturally extendible if,
ii) all branches of F are extendible,

iii) fs'(Ti) D Tj whenever fSi(Jt) D Jh and
iv) for every i G N and 0 < k < sl9 there exists no set A such that AΠJiφΦ,

fk(Ji)(Λ fS)(Jj)"¥$ and fk maps A monotonically onto fSj(Tj) for any
' G N .

Briefly stated, F is natural (naturally extendible) if the stopping rule is as small as
possible, and the branch-domains are as large as possible.

Lemma 2. If the induced Markov map is natural or naturally extendible, then
there exists J such that (6) commutes.

Proof Define F | π _ i ( J ) = / ^ _ , and set / = (J*>i Fk(ίnc(J)). We need to show

that F is the first return map to / . Let Jt = π~ι(Jι)ΠDa be such that j t C / .
Formula (5) implies that π(Da) D <Λ, and if F is naturally extendible, property iii)
even gives π(Da) D Tt. Again by (5), and the definition of J,f%T is a continuous

K;

and, if F is naturally extendible, extendible return to J.
Let us show that it is also a first return. Suppose that there exists 0 < k < st

such that fk(Ji)Γ)Jή=0. Because k < si9f
k

f is continuous, so fk(Jj) C L>b, for

some b € N. Suppose by contradiction that fk(Jι) Π π~1(/5-/(J/ ) ) φ 0 for some j .

By definition of J,n{Db) D fSj(Jj). Because (/,/) satisfies the Markov property,
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there exists B such that // C B C Da and fk(B) = Db. In particular, there exists
AcB such that / / Π i φ 0 and fk(A) = π~ι(fs^(Jj))nDb. Hence F cannot be
natural, because π(A)ΠJιφΦ and fk maps π(A) monotonically onto fSj(Jj). If F
is naturally extendible, we change Jj into 7), and use the same argument. D

Remark. In this proof we only used the Markov property of (/,/) and (5). So
Lemma 2 also holds for piecewise continuous, piecewise monotone maps.

Theorem 6. If μ is an acip on (/,/) such that f is conservative and (6) commutes,

then Σ / ^ m ( Λ) < °° and

— 1 — = μ(J) = lim -#{0 ^ i < n\f'(x) G J} μ-a.e. (7)

Proof of Theorem 6. We have seen that μ and m are acips on (/,/) and (J,F)

respectively and that / and F are conservative. \J\ > 0 and by conservativity also

μ(J) > 0. Indeed, if μ(J) = 0, then U/>o/~ 7 (^) ^s backward invariant and zero

μ-measured. On the other hand, as \J\ > 0, \JJ>0 f~J(J) = I modulo null sets.

This is a contradiction. So it suffices to prove (7), assuming that μ(J) > 0.
BirkhofPs Ergodic Theorem immediately yields the second equality of (7). Write

s(χ) = si if x e Jt. Let Vk = {x G J\s(x) = k] and let {ttj(x)}j be such that Fj(x) =
fnΛx\x) for ally ^ 0. {nj(x)}j is defined μ-a.e. As (6) commutes, Vk = π~ι(Vk) =

{i G / | F ( i ) = /*(*)} . If {ήj(x)}j for x e J is such that F^(x) = / ^ ( i ) ( x ) , then
simply nj(x) = «7(π ( i(x)) μ-a.e.

Because F is the first return map to /,#{0 ^ / < « 7 (x) |/ z (i) G /} = / . Hence

for μ-a.e. x G π~j(x),

ΣsMJi) = fs(y)dm(y)= lim V Σ V

^(x) n7 ( i)
= hm . = lim .

y y->oo y

1

my-.oo ^ # { 0 ^ I < Λyί i ) !/^) € J}

1

It follows that μ exists if and only if Σ /

 S/'WW) < °° ^

Proof of Theorem 1. Combine Theorem 6 and Lemma 2. D

Proof of Theorem 2. Let F be the induced map that emerges from Theorem 4.
Due to the conditions on d^t and dΨ*\ F is naturally extendible. The Folklore
Theorem guarantees that F has an acip m with density 0 < mo < dm < m\ <
ex). Let <% = \J.Ut modulo null sets. Then if Uj C (c-sk,c-sk)>Si > &> simply
because p(Ui) ^) Φ fory ^ ft. Hence ΣnsMUi) > woΣ^i ' l^Ί > ^
Now use Theorem 1. D
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4. Corollaries

In this last section we prove the corollaries stated in Sect. 1. Corollary 1 relies on
the notion of almost saddle nodes. At a saddle node, the central branch of fn is
tangent to the diagonal. The point of contact q is an «-periodic one-sided attractor.
Its immediate basin is [q,q], but on the other side of q still an infinite sequence of
closest preimages, accumulating on q, exists. If the central branch of fn is almost
tangent to the diagonal, the closest preimages retain an intermittent behaviour, which
causes \c — c-sk\

 t 0 be large compared to Sk. This is the key idea in the proof of
Corollary 1.

Proof of Corollary L We know a priori that there exists λ > 0 such that, unless
/ has a periodic attractor, \c — cn\ > λn for all n ^ 1. Indeed, if this were not
the case, then for every C > 0, we can find n such that \c — cn\

ι~λCl2ιLn~ι rg 1.
Here L — max^/ \Df{x)\ and / is the order of the critical point. Let x be such that
cn G (c,x) and |c — x| = 2\c — cn\, then

"(c) - f"(x)\ Z jDf"(z)dz

'-ιL"-1^ \c-x\Cl\c-x\'-ιL

ύ\c- cn\ .

Hence fn((c,x)) C (c,x), yielding a periodic attractor. (Notice that in fact λ ^
£-i/(/-1) g 0 jf w e h a v e a bound for L, we can weaken the assumption accordingly.)

r(n) = Sk if and only if cn G Ak ΌAk. Choose M > 0 arbitrary, take n such
that r{n)λn > M and let Skt — r(n) correspondingly. Since cneAk/UAk/,
c-c-sk,_x\ έ λn, so

ΣSk\Ak\ ^ ΣSk>\Ak\ ^ Sk,\c - csk,\ ^r(n)λn ^M.
k k^k'

As M was arbitrary, this concludes the proof. D

Proof of Corollary 2. Let // be an S-unimodal Fibonacci map such that the order
of the critical point is /. The cutting times grow asymptotically as γk

9 where γ is the

golden ratio ^^-- We may assume that Theorem 4 applies. Otherwise there is an
attractor of zero Lebesgue measure, and therefore no acip whatsoever. For k large,

j~z—~ x i is bounded away from 0 if / > 2 and this quotient tends to 1 as / —> oo.

The details of these estimates can be found in [BKNS, KN]. Choose / so large that

for k sufficiently large . _c ~Sk . ^ β > - . I t follows that \c — C-sA_, | ^ Cβk for

all k and some C > 0. Checking the summability condition of Theorem 2,

ΣSk\Λk\ £ Sk, Σ \Λk\ - Sk,\csk, {~c\^ C{yβ)k' ,
k k^k' k - 1

for any k1'. Now take the limit k' —> oo. D
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