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Abstract: We discuss a new general phenomenon pertaining to tiling models of
quasicrystal growth. It is known that with Penrose tiles no (deterministic) local
matching rules exist which guarantee defect-free tiling for regions of arbitrary large
size. We prove that this property holds quite generally: namely, that the emergence
of defects in quasicrystal growth is unavoidable for all aperiodic tiling models in
the plane with local matching rules, and for many models in R3 satisfying certain
conditions.

1. Introduction

In 1984 Shechtman, Blech, Gratias, and Cahn [1] discovered quasicrystals, a new
form of matter which exhibits an electron diffraction pattern with remarkable icosa-
hedral symmetry. This symmetry is extraordinary because icosahedral symmetry is
incompatible with atomic periodicity and therefore cannot exist for periodic crys-
tals. To account for the unusual diffraction patterns of quasicrystals various models
of their atomic structure have been proposed. Of these, the most extensively stud-
ied have been aperiodic tiling models (also known less precisely as deterministic
quasicrystalline tilings) based on the two and three dimensional Penrose tiles and
their variants (see for example Levine and Steinhardt [2]; Steinhardt and Ostlund
[3]; Jaric [4]; Senechal [5]. Aperiodic tilings are defined in detail in Sect. 2.) In
these tilings, points associated with each tile, perhaps the vertices, correspond to the
centers of the atomic scatterers, and (deterministic) local matching rules designate
how the tiles are to fit one next to the other.

To fix ideas consider the two dimensional Penrose model. In this model the two
basic (proto) tiles are the kite and the dart (see Fig. 1). Along the four edges of each
tile there are various "bumps" and "dents" which encode the local matching rules:
two tiles match along a given edge provided they fit flush along that edge without
gaps or overlap, much like the pieces of a jigsaw puzzle. A tiling of the plane (in
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Fig. 1. Left: A Kite (above) and a dart (below). Right: A portion pf the plane tiled with kites
and darts. The shaded region is a defect (hole) which can be filled by tiles satisfying the local
matching rules

the case of the two dimensional Penrose model) consists then of a collection of
tiles which covers the plane, wherein all pairs of tiles which touch must satisfy the
local matching rules. It should be noted that given a tiling model the (deterministic)
local matching rules can always be encoded as a series of bumps and dents along
the edges of the prototiles (prototiles are the basic tile shapes of the tiling model,
tiles are isometric copies of the prototiles; see Sect. 2 for further details).

Tiling models have, among other things, addressed two basic issues concerning
quasicrystals: their structure and their growth.

As to the first, success has been achieved in reproducing the Bragg peaks in
the diffraction patterns obtained by scattering of electrons, X-rays and neutrons
[2,6,7]. This success has largely contributed to the popularity of these tilings as
structural models for the positions of the atomic scatterers in quasicrystals, without
addressing the important questions concerning the possible details of quasicrystal
growth.

The second, more difficult question of quasicrystal growth has been more
problematic. Typically, a tiling model with local matching rules models growth
wherein tiles are added by accretion to an already existing patch of tiles pro-
vided they satisfy the local matching rules. (By a patch we mean a finite col-
lection of tiles satisfying the local matching rules.) The problem has been one of
trying to design such tiling models with local matching rules which can account
for the long range order of quasicrystals. However it seems that with such ape-
riodic tiling models it is difficult to produce defect-free quasicrystals which cover
the whole space. Without this ability one cannot guarantee the growth of perfect
single grain quasicrystals of arbitrary large size. Simple placement of tiles one
after the other (the correct matching rules being assumed) to a growing patch
of tiles often leads to a quasicrystal which cannot be extended to a tiling of
space.

For example, it has long been known that the two dimensional Penrose model
could not guarantee the growth of perfect single grain quasicrystals of arbitrary
large size (see for example Gardner [8]; Onoda, Steinhardt, DiVincenzo, and So-
colar [9]; Jaric and Ronchetti [10]; Onoda et. al [11]; Ingersent and Steinhardt
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[12]; Penrose [13]; Socolar [14]). If one naively builds up a patch by simply
adding kites and darts one after the other, as a jigsaw puzzle might be assem-
bled, a configuration is soon reached which cannot be extended to a tiling of the
plane. There are two ways by which this may be manifest. The first, of less physi-
cal interest, is defects within the patch itself, consisting of "gaps" or "holes" which
cannot be filled by kites or darts. The decapod seed cluster is one such defect
in the Penrose model. It is important to note that local matching rules (in gen-
eral) do allow the possibility of holes being filled whenever possible. For exam-
ple, when adding kites and darts to a given patch we allow ourselves to lift the
tiles off the table as it were - they do not have to push their way through other
tiles on the table in order to gain access to the hole (see Fig. 1). Although not
physically realistic, permitting such a possibility allows us to prove that the sec-
ond kind of obstruction to a perfect quasicrystal tiling always exists under certain
conditions.

This other kind of obstruction without defects we call a deception. A "deception
of order r" (defined more precisely in Sect. 2 below) is a patch without holes,
not belonging to any tiling of the space, for which we cannot decide by local
inspection (looking around within a distance r) whether the patch itself belongs
to some tiling of the space. In other words a deception of order r is a defect
free patch which cannot be extended to a tiling of the space, but for which any
subpatch of diameter less than 2r belongs to some tiling of the space. We have
then the following suggestive interpretation. Considering the local matching rules
as nearest neighbour interactions between tiles, local inspection (within a distance
r) is tantamount to a finite range interaction amongst tiles: a tile may be added to
a patch provided every subpatch of diameter less than 2r containing it belongs to
some tiling of the space. Thus the existence of deceptions of order r would imply
that augmentation of the local matching rules to a finite range interaction of distance
r would be insufficient to guarantee the growth of defect-free patches of arbitrary
large size. This phenomenon was known to be true for the two dimensional Penrose
model [13].

In recognition of the problem of modelling defect-free quasicrystal growth,
various modifications to the usual models have been suggested. For instance,
Onoda, Steinhardt, Divincenzo, and Socolar [9,14] added an additional proba-
bilistic element to the usual local matching rules. In these models tiles are not
added simply by accretion, but according to some preassigned probabilities, so
as to ensure a high probability for the growth of perfect quasicrystals of limited
grain size.

All the tiling models considered thus far have centered upon the Penrose tilings
and its variants. Attempts to overcome the growth problem have lead to the intro-
duction of various additional features to the basic aperiodic tiling models with local
matching rules. A question which naturally arises is whether or not aperiodic tiling
models with local matching rules (in the absence of any additional features such as
probabilistic interactions), other than those based on the Penrose tiles and its vari-
ants, could perhaps eliminate the difficulties encountered with the growth problem.
The answer is no; in this work we demonstrate that for all aperiodic tiling models
of the plane, the emergence of defects in quasicrystal growth is unavoidable. In-
deed, we prove that for all aperiodic tilings of the plane it is impossible, using only
local matching rules, to guarantee the growth of perfect single grain quasicrystals
of arbitrary large size. In addition, we prove that under certain conditions this is
also true for aperiodic tilings of R3.
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2. Basic Definitions and Notation

By a tiling space V(S) of Rm we mean a representation of Rm as a union of "tiles"
where:

a) there is a fixed finite set S = {pu P2, > /fy} of "prototiles," which are pairwise
noncongruent homeomorphs of the closed m-ball;

b) each tile is an isometric copy of some prototile, that is, it is the image of a
prototile by a symmetry operation (translation and/or rotation);

c) the interiors of the tiles do not overlap; and
d) given a tile, its boundary can be covered by other tiles, with no overlapping, in

only a finite number of ways.

Loosely speaking, prototiles fit together much in the same way as jigsaw puzzle
pieces. Again we emphasize that we do not restrict the placement of tiles to the
exterior surface of a patch; holes may be filled if the local matching rules are
not violated. A tiling is nonperiodic if it admits no translational symmetry other
than the identity. Tiling models of the atomic structure of quasicrystals involve sets
of prototiles which force nonperiodic tilings of the plane. We call S an aperiodic
protoset if each tiling in the (nonempty) set V(S) is nonperiodic. As an abuse
of terminology, V(S) is sometimes referred to as an aperiodic tiling (space), or a
quasicrystalline tiling. The most familiar example of an aperiodic protoset is the set
of two Penrose (proto)tiles [8,15].

By a patch we mean a finite set of nonoverlapping tiles. As mentioned above,
with Penrose tiles it is impossible to decide by local inspection whether a patch
belongs to some tiling of the plane [13]. This leads us quite naturally to embody
this fact in the following notion of a "deception."

Let us first introduce some technical definitions. A patch will be regular if it
is a homeomorph of the closed m-ball, and is of order r if it covers some disc
of radius r ^ max{r,3rA}9 where A — supi{dίam(pι)} (where the diameter of a
subset ^FCR" 1 is given by dίam{W) = svφWχWieW\\w\ — w2 | |). Regular patches
serve as models of perfect single grain quasicrystals. A regular patch P of order r
will be a deception of order r if:

a) every connected subpatch of P of cardinality less than r is a subset of some
tiling of the plane, and

b) P is not a subset of any tiling of the plane.

In other words, a deception of order r is a regular patch of order r for which local
information (i.e. subpatches of tilings of the space) of "size" ^ r is insufficient to
guarantee that the patch itself belongs to some tiling of the space.

In this paper we provide a criterion for aperiodic pro to sets of R3 which guar-
antees the existence of deceptions of order r; further, we prove that each aperiodic
protoset of the plane, R2 admits deceptions of all orders. This latter result demon-
strates that, at least in the plane, no amount of local information is enough to
guarantee that a given regular patch belongs to some tiling of the plane. In other
words, no choice for local matching rules can guarantee perfect crystal growth in
aperiodic tiling models.

For the proofs of the following theorems we will need to introduce the following
definitions and notation.

Let W be a subset of Rm. Denote the translation of W by a vector t e Rm by

PW = {t + w \w e W}. For W a subset of the plane, R2, denote the rotation of
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W about the origin by an angle α G R by RaW. Given a patch P which covers fF,
P is a minimal patch covering Γ̂ if no subpatch of P covers W. Given two regular
patches A and B, and a subset W of Rm, let C be a minimal simply connected patch
covering W such that AU B U C is a regular patch. Then we call C SL matchmaker
between A and B and covering W. A tiling Ω G F(S) contains s + 1 siblings of
order r if there exists a regular patch ^ c Ω o r order r such that:

a) there exist a set of vectors {ί7-1 ίz G Rm; z = 0,... ,̂ } such that {fz — f0 | / =
l,...,s} are s linearly independent vectors in Rm

b) U=o r ^ c Ω> a n d

c) ΓM Π PiA = 0 for 0 ^ / < y ^ j .

In particular we call a set of two siblings twins and a set of three siblings triplets.

Given a patch A, we call the isometric patch PR? A for t G R 2 ,β G (0,2π) a cousin

oϊ A. For ε > 0, siblings are ε-mce if ιuCπ| |if~πι < ε f°r a ^ ^ - / Intuitively,

siblings are ε-nice if pairs of vectors {(Vz — to), (tj — to)} are almost orthogonal for

We say that F(*S) admits a patch JF if there exists some Ω G V(S) such that
ffcα

Let Bp(r) denote the open ball of radius r centered at /?, and Lajb denote the
line segment from point a G A to point b G B. Denote the right circular cylinder of
radius r and with axis Lap by Ή(r9 Laj,).

We say a tiling enjoys the local isomorphism property if for every patch P in
the tiling there is some distance r(P) such that for any point p the ball Bp (r(P))
contains an isometric copy of the patch. Radin and Wolff [16] proved that if a set
of prototiles admits a tiling of the space, it must admit a tiling satisfying the local
isomorphism property (we use this fact in the proof of Theorem 2 below).

We say a nonempty closed translation invariant subset X of V(S) is minimal if
there are no proper closed subset of X which is invariant under translations.

3. Results

Lemma 1. Let S = {pt \ i = 1,..., η} be a finite set of prototiles of Rm. Given a
(finite) patch P C Bo (r\) and r2 ^ n there exists at most finitely many patches
P such that Bo (rλ) C P C Bo (r 2) and P C P.

The proof is elementary.

Nice Lemma. Let V(S) be a space of tilings of Rm which admits s -f 1 siblings
of order r. Then either V(S) admits a deception of order r or admits s + 1 ε-nice
siblings of order r, for any ε > 0.

Proof The proof will be by induction. Assume Ω G V(S) contains s -f 1 siblings
of order r, namely: ThA, i = 0,...,s. Consider the sequence of regular patches of
order r given by:

Pn= LJ LJ Γ'V'-^iBjUT'iA],
7=0 i,=-n

where Bo — 0 and Bt is a matchmaker between TtoA and PιA and covering the line
segment LtQith i = 1,... ,s. If for some TV G N Λv £ ^ for any Ω' G ^(5), then PN
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is a deception of order r; else suppose {TtoA,...,Ttk-ιA} are A: ε-nice siblings of
order r, k ^ 1. We will show it extends to k + 1 ε-nice siblings of order r.

Consider the continuous function fk : Rk \ {0} —• R given by

k =

 kyl \{[xk(tk - to) - Yjllxjjtj - to)]9(ti - tp))\

- i \\[xk(tk - to) - Y*llxj{tj - to)] || \\ti - to\\

By the Gram-Schmidt orthogonalization process there exists ct E R, z = 1,...,£
such that fk (c\,..., ck) = 0, for ct =f= 0 for some z. By continuity of fk, given ε > 0
there exists {«/ = pjqi\pι E Z\{0},#z E N,z = 1,...A:} such that |/*(tfi,...,fljθ|
< ε. Take mι=aiγζ =ιqj E Z for z = l,...,Jt,/w0 = 0. Then {r^o+^d—Ό))^|/
= 0,...,k} are k + lε-nice siblings of order r.

Q.E.D.

Theorem 1. Lei F^S) &e a space of tilings of R3 with aperiodic prototile set S.
If V(S) admits 4 siblings of order r, then V(S) admits a deception of order r.

Proof The proof will be by contradiction.

Assume V(S) does not admit deceptions of order r; (1)

in particular every regular patch of order r is a subset of some tiling in V(S).
By the Nice Lemma we may assume Ω E V(S) contains 4 ε-nice siblings of order
r, namely: A,TliA, i— 1,2,3 and A a regular patch of order r containing B0(r).
Let Γo = A [fi=ι [TUA UBi] (see Fig. 4), where Bι is a matchmaker between A and
PιA and covering the right circular cylinder of radius rA with axis L0Ji, i = 1,2,3
(see Fig. 2). (This latter condition is necessary to ensure that when we join two
"faces" at near right angles (as we do below), given a subpatch P of cardinality
r bridging two faces, P C Ω" for some Ω" E V(S) (see Fig. 3). The Nice Lemma
is necessary to ensure the near perpendicularity of the "faces," and consequently
simplifies certain calculations below.)

Step 1. We will prove that V(S) admits a patch Fι which can be extended peri-
odically to cover a plane ^ i ? 2 , spanned by {ίi,^}. Intuitively, Fι will serve as a
temporary bottom to a certain "cube" we wish to construct.

Let Eι =AUBλUT^A and Zι =EιUT^Eι (see Fig. 2 and Fig. 5). Con-
sider the sequence of regular patches given by Γx

n = Γo (J" =o TlχtχZx (see Fig. 6).

(Although not used in the proof per se, these patches-and the Γj

n to follow-
are given to assist the reader in following the constructions of the proof.) Let
H\y2 be the union of the convex hull of {0,t\,t29t\ + tι) with the two cylin-
ders %(rA,L0,t2) and T^[^(rA,L0,t2)]. Let J^1 = {Fλ

u\u = 1,...,^} denote the fi-
nite set of all minimal patches, F*, covering H\^ such that F^ UZ 1 is a regular
patch of order r for all u. (Intuitively, we construct patches Fx

u which roughly
fill the space between the bounding sides of Z 1, and having "fat edges" cov-
ering right circular cylinders of radius rA (see Fig. 7.) That 3FX is finite fol-
lows by Lemma 1. It follows from supposition (1) that there exists some map
u : N - > { 1 , . . . , ^ } such that ( J / i € N r i ' i [ / ^ UZ1] C Ω for some Ω E V(S) (see
Fig. 8). Thus there exists λ\ < λ[ E N such that u(λ\) = u(λ\) (for given a se-
quence of n symbols of length m, m > n, then at least two symbols must re-
peat). Let F 1 = \JilZlλ Γ ^ - ^ ' i [Fx

u{h) U Z 1 ] . Then Fx is a regular patch of order
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Fig. 2. Eι

Fig. 3.

Fig. 4. Γo

T
 ι 2Ά

Fig. 5. Z1

r which, because opposite edges are identical, can be extended periodically to cover
a plane ^ Ί > 2 spanned by {ίi,^}-

Step 2. We will prove that V(S) admits a patch F 2 , related in a certain way to
F 1 , which can be extended periodically to cover a plane 2̂,3> spanned by {/2?̂ }
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Fig. 7. Fx

u U Z 1

u(λ.)

Fig. 8.

Intuitively, F2 will serve in the construction of the front and back faces to a certain
"cube" we wish to construct.

Let B2 be the matchmaker covering ^(rzJ,L0,/2)
 a n d contained in F 1 . (B2 is

a "fat edge" of Fι parallel to t2.) Let E2 = A U B2 U T^A and Z2 = E2 U
Consider the sequence of regular patches given by Γ2

n = B3 | J " = 0 Γ ί2ί2 [F 1 U Z2]
(see Fig. 9). Let H23 be the union of the convex hull of {0,̂ 2,̂ 3^2 + 3̂} with the
two cylinders <#(rΔ9'LOft3) and F^irA,^)]. Let &2 = {F2\u = l,...9q2} denote
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Fig. 9. T\

u(λ2)

Fig. 10.

the finite set of all minimal patches, F 2 , covering H2τ, such that F 2 U Z 2 is a regular
patch of order r for all u. (Intuitively, we construct patches F 2 which roughly
fill the space between the bounding sides of Z 2, and having all four "fat edges"
covering right circular cylinders of radius rA.) It follows from (1) that there exists
some map M : N - > { 1 , . . . , 0 2 } such that \J. e N Γ 2 ' 2 [F1 U F 2

( Z 2 ) U Z2] C Ω for some

Ω e V(S) (see Fig. 10). Thus there exists λ2 < λf

2 e N such that u(λ2) = u(λ'2).

Let F 2 = \j?2Zi2 T
{h~h)t2[Fl{l2) U Z 2 ]. Then F 2 is a regular patch of order r which,

because opposite edges are identical, can be extended periodically to cover a plane

^2,3, spanned by {̂ 2̂ 3}-

Step 3. We will prove that V(S) admits a patch C which can be stacked periodically
in the t3 direction. Intuitively, C will serve in the construction of the four side
faces (front and back, and left and right) to a certain "cube" we wish to construct.
C will have the property that front and back faces will be identical, as will left and
right faces.

Let Z 3 = F 2 U Γ^ /i~ / 1~1^1F2 (front and back faces) and F 1 = I I , i n 2 Ί

(bottom face). Consider the sequence of regular patches given by Γ 3 = Fι[j" =0

Γ3'3Z3 (see Fig. 11). (It is necessary to include λ2 - λ2 - 1 translates of F\F\
so that the bottom face is of the same length in the t2 direction as that of the
front and back faces Z3.) Let H\^ be the convex hull of {0,(λ[ — λ\ — 1)̂ 1,̂ 3,
(λ[ -λ\-l)tι+ t3}, and J^3 = {F3|t/ = 1,... ,q3} denote the finite set of all min-
imal patches, F 3 , covering H\3 such that F 3 UZ 3 is a regular patch of order r for
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(λ2-λ2-i)llt2ll

Fig.11. Γ\

u(λJ

Fig. 12.

all u. (Intuitively, we construct side faces F\ which meet the "edges" of Z 3 nicely.)

It follows from (1) that there exists some map u : N U {0} —> {1,... ,g3} such that

Fl U3eNu{o} Γ 3 / 3 [ f i 3 ) u z 3 ] c Ω for some Ω G V(S) (see Fig. 12). Thus there

exists λ3 < λ'3eN such that u(λ3) = u(λ'3). Let Z* = F 3 U r( ;2- ;2-i>2 jp3 ( l e f t a n d

right faces) and let C be the "collar" given by C = \J^Iχ3 T^[Z3 U Z j 3 )] (see
Fig. 13). C permits a periodic stacking of itself in the t3 direction; and right and
left faces are identical, as are front and back faces.

Step 4. We will prove that V(S) contains a "cube" A which can be extended
periodically to cover all of R3
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(λV-λ3-i)l|t

(λ2-λ2-i)||t2ll

Fig. 13. C

(λ'2-λ2-l)||t2 | |

Fig. 14. J

(λ3-λ3-l)llt3ll

(λ'2-λ2-l)||t2 | |

Fig. 15. Γ\

Let J = Fλ IJ^io υ Ti3t3[Z3 U Z^(l 3 ) ] . (J is a "box without a top" (see Fig. 14).)

Consider the sequence of regular patches given by ΓA

n = J |J* = 0 r ^ ' ^ - i t e c (see

Fig. 15). Let H\χ$ be the convex hull of

{0,(λ[ - λ x - \ ) t u ( λ f

2 - λ 2 - 1 ) ^ , ( ^ 3 ~ h - l)ts ,
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and # " 4 = {F^\u = 1,...,#4} denote the finite set of all minimal patches, F*9

covering #1,2,3 such that F* U C is a regular patch of order r for all u. (In-

tuitively, the patches F* are "solid blocks" which, roughly, fill the interior of

collar C.) It follows from (1) that there exists some map w:N—»{1,. . . ,#4}

such that (Jf G N Γ3(4-λ3-i)'3[τr;J(.3) UC]cΩ for some Ω G V(S). Thus there ex-

ists 2 4 < ^ N such that u(λ4) = u(λ'4). Let A = U ^ 4 Γ ^ - ^ - υ ' a ^ . ^ U C].

Then /I is a regular patch which, because all opposite faces are identical, can be

extended periodically to cover the entire space R 3. This contradicts the fact that

S is an aperiodic protoset, and therefore V(S) must admit a deception of order r.
Q.E.D.

Corollary. Let V(S) be a tiling space of R3 with aperiodic prototile set S. If
there exists Ω G V(S) such that Ω admits only finitely many orientations of the
prototίles of S, then V(S) admits deceptions of all orders.

Proof Since Ω admits only finitely many orientations of the prototiles of S,
each patch contained in Ω may occur with only finitely many orientations. Given
r > 0 let 3? be the set of all regular patches of order r contained in some
ball of fixed radius R {R > max{2r,6rA}; see definition of regular patches of
order r). It follows immediately that & has finite cardinality. Since there ex-
ist infinitely many mutually disjoint balls of radius R in R , one of the patches
belonging to 3P must occur infinitely often, not all the patches corresponding
to this choice intersecting a fixed plane. Thus Ω admits 4 siblings of order r.

Q.E.D.

Remark 1. We believe the proof of Theorem 1 can be generalized quite naturally
to prove a similar result for higher dimensional tiling spaces. Namely, we believe
the following is true: Let V(S) be a tiling space of Rm with aperiodic prototile
set S. If V(S) admits m + 1 siblings of order r, then V(S) admits a deception of
order r. The authors have not pursued a rigorous proof of this proposition as we
believe the details would prove quite tedious. The corollary above would then also
generalize accordingly.

Remark 2. Although it is possible for deceptions to exist in a periodic tiling
space V(S) of Rm, m ^ 2, such deceptions cannot be of all orders. If r is chosen
larger than the diameter of the unit cell, then clearly deceptions of order r do not
exist.

Theorem 2. Any space of tilings V(S) of the plane R2 with aperiodic protoset
S admits deceptions of all orders.

Proof The proof will be by contradiction.

Assume V(S) does not admit deceptions of some order r (2)

in particular, every regular patch of order r will belong to some tiling of the plane.
Choose Ω G V(S) belonging to some minimal subset X C V(S), and let A c Ω be
any regular patch of order r containing Bo(r).

Step 1. We will prove that V(S) admits twins and a cousin of order r. By
the local isomorphism property (l.i.p.) of X [16] there exists A U TtχR*A C Ω for
t\ G R2, ||ίi II > [2diam(A) + 1] (this condition guarantees that A and TtχA are dis-
joint), α G (—τfo? τ§o) (see Fig. 16).
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G. = AUBUT ι iR A

Fig. 16. G2

If α = 0 then Ω has twins, and by another application of the l.i.p. we may assume
there exists a cousin P2RβA C Ω as well; we then proceed to Step 2 below.

If αφO we may assume without loss of generality that α > 0 by interchang-
ing the roles of A with PιRaA, t\ with —t\, and the origin with t\. Let B be
a matchmaker between A and PlRaA and covering the line segment L0A. Let
Gx = AUBU piR*A be the resultant regular patch in Ω (see Fig. 16).

Again by the l.i.p. of X there exists P2RβGχ C Ω such that:

b) P2RβGχ Π Gx = 0;
c) ||/2sin(α)|| > 3diam(A);

1

Let C be a matchmaker between A and P2R^A and covering the line segment
L0tt2. (Then d{CJ-^R~ΛB) > r and d{BJ-^Rr^C) > r by (d) above. This then
prevents the possibility that regular subpatches of cardinality ^ r join TtιRaC to
5 or Tt2R$B to C, respectively. For instance, points x3 and x4 in Fig. 16, below,
cannot belong to a regular subpatch of cardinality ^ r, as is also the case for x\
and X2.)

Then the regular patch (see Fig. 16)

= Gλ U C U

i U ThR*[C U

C U T'2RβB U U T(t2+Rβ(tι))R(a+β)A

contains twins and a cousin.

2. So without loss of generality assume Ω contains twins of order r, namely

9 and a cousin P*R?A with j8 e ( - ^ , Ϊ ^ ) . We will prove then that
admits triplets of order r.



350 S. Dworkin, J-I Shieh

"new origin'

"old origin"

(a) P n for β < 0
( b ) P n for β > 0

Fig. 17.

AUBUT l iAUCUT t 2 R P A

Fig. 18. G2
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If β = 0 then V(S) admits triplets of order r. But by the proof of Theorem 1,
Step 1, this contradicts the assumption that S is an aperiodic protoset. Hence we
can assume without loss of generality that βφO.

Consider then sequence of regular patches (see Figs. 17 (a), (b))

Pn=\J {Tsgn(β)itι [AUBU Γ'M]} U {T(t2+S9n(β)JRβ(tι )}Rβ[B U T'ιA]} .
i=0 7=0

From supposition (2) it follows that for all n G N, Pn C Ωn for some Ωn G V(S).
So we may assume without loss of generality that:

a) ||*i || > [diam(A) + nΔ];
b) \\Rβ{tx)-tλ\\ > 2dίam(A);

1 ^

Let G\ =AUBU T'*A U C U P2RβA, where B and C are chosen as in Gλ above.
Then the regular patch (see Fig. 18)

G2 = Gx U T'2Rβ[B U T'ιA] U Th [C U T'2RβA]

Tt2RβB UΓ ? 1 CU T'2RβA U T{t2+Rβ{tχ ])RβA

contains triplets and, by (2), belongs to some Ω e V(S). Hence V(S) admits triplets
of order r. But by the proof of Theorem 1, step 1, this contradicts the assumption
that S is an aperiodic protoset. Hence, given r > 0, deceptions of order r exist.

Q.E.D.

4. Concluding Remarks

Aperiodic tiling models with (deterministic) local matching rules have been used
successfully as models of the structure of quasicrystals. However we show that for
a large class of such models, including all those that have been investigated thus
far, the problem of guaranteeing the growth of perfect single grain quasicrystals of
arbitrary large size is unavoidable; local matching rules alone (i.e., without added
features such as probabilistic interactions) are insufficient to guarantee defect-free
growth.
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