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Abstract: We present a new version of g-Minkowski space, which has both a coad-
dition law and an SLq(2, (C)-spinor decomposition. The additive structure forms a
braided group rather than a quantum one. In the process, we obtain a g-Lorentz
group which coacts covariantly on this g-Minkowski space.

1. Introduction

In recent years, there has been some speculation whether it could be possible to
regularise singularities in quantum field theories by making spacetime slightly non-
commutative. As well as the programme of A. Connes [3] based on the theory
of operator algebras, there is also a more naive approach based on the idea of q-
deformation. In this approach, which is the one we shall follow, non-commutativity
is controlled by a parameter q such that one recovers the commutative case for
q = 1. This programme is motivated by examples of "Feynman-type" integrals over
two-dimensional ^-deformed planes which are of the form /(. . . ) = ~χ—̂ ( finite),
i.e. are divergent only in the commutative case [7]. Moreover, one hopes in such
a g-regularisation scheme to preserve all symmetries as ^-symmetries, using the
standard techniques for ^-deforming Lie algebras, etc. One would then set q = 1
after intelligent renormalisation, although, to take account of Planck scale corrections
to the geometry, one might even keep q φ 1.

As an important element of such a g-regularisation scheme, many g-Lorentz
groups and g-Minkowski spaces have been recently proposed [17, 2, 16, 15]. One
of the points of view in these works, which will be our point of view also, is
that g-Minkowski space should have a g-spinor decomposition. Mathematically, q-
Minkowski space should be a ^-deformed version of 2 x 2 Hermitean matrices and
the g-Lorentz group should act on it by conjugation by two ^-deformed SL{2, C)
transformations. The role of such a ^-deformed SL(2, (C) can be provided by the
quantum double [17], but ^-Minkowski space and the g-Lorentz group itself are
less well understood so far.

Naively, one might try to construct g-Minkowski space as quantum 2 x 2 matri-
ces, but this algebra is not covariant under the coaction of the ^-deformed SL(2, C)
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[14]. The solution to this problem is to consider braided rather than quantum Her-
mitean matrices as ^-Minkowski space [10, 15]. Braided matrices are an example
of so-called braided bialgebras introduced by S. Majid in [9] as a generalization of
bialgebras, for which the ordinary tensor product in the bialgebra axioms is replaced
by a braided tensor product. Braided tensor products are like super tensor products
encountered in the theory of superspaces, but with ±1 replaced by braid statistics.
There is a general construction called transmutation [12] by means of which one
can convert any suitable bialgebra, such as a usual quantum matrix algebra, into a
braided bialgebra with better covariance properties. The algebra and coalgebra struc-
ture of such a braided bialgebra are covariant under the coaction of the quantum
group. Thus braided 2 x 2 matrices as the transmutation of the well-known 2 x 2
quantum matrices are a natural candidate for the algebra of g-Minkowski space. It
is covariantly coacted upon by the g-deformed SL(2,<C).

Braided 2 x 2 matrices have the same matrix coalgebra structure as quantum
matrices, but a different multiplication [10]. Similar as for 2 x 2 quantum matrices,
there is a braided determinant which is central and grouplike with respect to the
braided coproduct [10] to play the role of a g-Minkowski norm. Furthermore, these
braided matrices allow for a g-spinor decomposition [14] and can also be equipped
with a *-structure appropriate for Hermitean matrices [15].

Considering braided Hermitean matrices seems to lead in the right direction, but
a fundamental structure is still missing: so far there is no ^-deformed analogue of
the additive group structure of Minkowski space. In this paper we solve this problem
and generalize the group structure on Minkowski space as a braided coaddition in
the form of a new braided coalgebra structure for the algebra of braided matrices.
The required braiding for the coaddition is a new one and gives rise to a g-Lorentz
group which acts covariantly on ^-Minkowski space.

" An outline of the paper is as follows. In Sect. 2, we reformulate some classical
considerations about the Lorentz group and Minkowski space suitable for later q-
deformation. The ^-Lorentz group of function algebra type is presented in Sect. 3.
Section 4 discusses braided coaddition on ^-Minkowski space. Finally, Sect. 5
presents a deformation of the universal enveloping algebra of the Lorentz group
which is dual to the algebra discussed in Sect. 3.

Preliminaries

When working with matrices, we use lower-case letters for indices which run
from 1 to 2 or n, and upper-case letters for multi-indices, e.g. A = (a§a\) =

For Hopf algebras, we use the notation and results from the standard textbooks
[1, 21]. Recall that a complex coalgebra is a (C-vector space A equipped with
a C-linear coassociative comultiplication A :A—>A®A and a (C-linear counit ε :
A —> C satisfying certain axioms. Elements a in A which obey Δa — a 0 a are
called grouplike. We use the notation Δa — a^ <g)0(2) for the coproduct and omit
summation signs for brevity. We also use M. Sweedler's shorthand notation [21],
where a suffix indicates the position in a matrix tensor product, e.g. ^12^23 means
AιJ ulm p t rΛklΰxyi e i C

A complex bialgebra is an algebra and a coalgebra in a compatible way, such
that both comultiplication and counit are algebra maps. If a bialgebra H also allows
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for a C-linear antipode S : H —> H obeying o(S ®id)o Δ = o(id ®S)o Δ =
η o e, then H is called Hopf algebra. Here ?/ denotes the injection of the identity. A
*-Hopf algebra [22] is a Hopf algebra equipped with an antilinear involution "*"
such that (S o * ) 2 = id, A o * = (* 0 *) o zl, and ε o * = * o ε.

Two *-Hopf algebras H and H' are called dually paired if there exists a bilinear
pairing ( , ) : H 0 / / ' -• C such that (αβ,x) = (a (8) j M * ) , (a,jry) = (zJa,x 0 y),
(l,x) = ε(x), (a, 1) = ε(a), (Sa,x) = (ot9Sx) and (α*,x) = (α, (&:)*) for all α, j8 in
77 and x, j in H1.

We shall also need the notion of a πgλί comodule, which is dual to the definition
of a left module: a right comodule of a coalgebra A is a pair (C,/J), where C is a
vector space and /? a linear map /? : C —> C 0 4̂ obeying (id ® A) o β = (β ® id) o β
and id = (/J 0 ε) o β. If /? is also an algebra map, then the comodule is called
comodule algebra.

Of particular interest to us are non-commutative bialgebras, for which the non-
commutativity is controlled by a so-called dual quasitriangular structure [11],
which is a convolution invertible map 9? : A ®A —> C such that fe(i)α(i)9t (a^2) 0
6(2)) = «(fl(i)0έ(i))α(2)6(2), M ( α * ® c ) = W(α®c(i))9l(δ<g>C(2)), and « (α ®
fee) = 9ί («(i) <8) c)SR (β(2) ® fe) for all a, fe, c in A. In other words, U is a bialgebra
bicharacter. This notion is dual to the maybe more familiar concept of quasitrian-
gularity due to DrinfeΓd [4].

One of the interesting properties of dual quasitriangular bialgebras is that
the right comodules of such a bialgebra A form a quasi-tensor or braided cat-
egory denoted by JtA. This means that MA can be equipped with a bifunctor
® : JΊA x MA —> MA, which was called "braided tensor product" in the introduc-
tion and which satisfies some associativity conditions. Furthermore, for any two
objects X, Y of MA (i.e. for any two comodules) there is a natural isomorphism
Ψχtγ : X(S)Y = Y&X, called braiding. For JiA, this braiding is given in terms of
the dual quasitriangular structure 91 and the coactions of the respective comodules
as [12] ΨB,B' — (τB,Bf ® ^ ) ° τA,Bf ° (β ® β'\ where τ denotes the twist map. If
we are now given two ^-comodule algebras B and B'9 we can use Ψ to define
their braided tensor product B®B' as B 0 B' equipped with the new multiplication
(a 0 b)(c 0 d) = αιί/(fe 0 c)d. Due to the properties of 0 and Ψ, the braided tensor
product of two comodule algebras turns out to be a comodule algebra again, i.e.
the braided tensor product provides a covariant way of combining two covariant
systems. Recall further that a braided bialgebra [12] is an algebra B living in a
braided category equipped with a braided coproduct A_\ B —• ^ 0 ^ obeying axioms
similar to the bialgebra axioms, but with A_ a homomorphism to the braided tensor
product B(&B. All maps are morphisms, i.e. covariant under the coaction of the
background quantum group A. The braided matrices mentioned in the introduction
and which form our g-Minkowski space are of this type.

2. The Classical Case

In this section, we reformulate some classical considerations about the Lorentz group
and Minkowski space in an algebraic language suitable for later generalization.
As familiar from other appications, we present Minkowski space as Hermitean
2 x 2 matrices. One usually chooses this description in order to give a simple ex-
position of the covering of the subgroup of proper orthochronous Lorentz transfor-
mations by SL(2,<C). This map also enables one to construct the well-known spinor



252 U. Meyer

decomposi t ion of Lorentz tensors. If Minkowsk i space is g iven as Hermi tean 2 x 2

matr ices , then the Minkowsk i metr ic can be expressed in terms of the SL{2, (C)

spinor metr ic

- 1 0

as gAB — €a^eaχiyλ, and the Lorentz group L is given as the subspace of real 4 x
4 matrices τl E M(4, R ) which satisfy A^A^gCD = gAB. We use the convention
£bc£ac = $1 f° r t n e definition of the inverse spinor metric.

In principle, we are interested in ^(X), the algebra of continuous C-valued
functions on a subset X of Rw, such as the Lorentz group L or Minkowski space
M. However, in order to avoid the discussion of convergence problems and other
complications due to the non-compact nature of these spaces, we consider only
0>(X\ the algebra of polynomial functions, which is almost the same as %>(X\
since on arbitrarily large compact subsets X' of X, the algebra 3P{X') is dense in

For the application to the Lorentz group, we are particularly interested in the
case where X is a subset of real or complex n x n matrices M(n, IR/C). For sake
of clarity, we recall some result of this special case: 0*(M(n, C)) is a commutative
and associative (C-algebra generated by 1 and the linear coordinate functionals t%
and their complex conjugates ta

b. It has the structure of a bialgebra with pointwise
multiplication, comultipication Δtb = ta

c 0 fb and counit stb = ba

h. A coalgebra struc-
ture of this type is called of matrix multipicatίon type. If we are given a matrix
group G C Af(n,C) then ^ ( G ) is a Hopf algebra.

For the special case of <SZ(2,C) one finds that ^(SL(2,C)) is generated by
1, ta

h and ΰ% with relations fct
b

de
cd = eab. It is a Hopf algebra with coalgebra

structure of matrix multiplication type, antipode given by St% = €bCt^ead and He-
structure If = t \ . One obtains &>{SU(2)) as a "real form" of &>(SL(2, C)). Using
these results, we find for the algebra of polynomial functions on the Lorentz group:

Proposition 2.1. The algebra of polynomial functions on the Lorentz group
is generated by the linear coordinate functional λβ on M(4,R) with relations
λ^λf)gCD — gAB. It forms a commutative *-Hopf algebra with pointwise multipli-
cation and

AλA

B = λA

c®λl SλA

B=gBCλ
c

DgAD, λB

A=λj.

A is shorthand for the twisted multi-index A — (a\ao). Furthermore, there is a *-
Hopf algebra homomorphism φ : &(L) -^ ^(5Z(2,C)) given by φ(λA

B) = t^b\ta

b\.

Its image is ^(SL(2, (C))Z2, the fixed-point set of the Έ2-actίon σ given by σ(t) =
-t and σ(t^) = -tf.

Composition with the map φ defines a. push forward of comodules, i.e. a covari-
ant monoidal functor Φ : M9^ -^ Jί^SL^2^\ This is the spinor decomposition of
Lorentz tensors on the level of polynomial function algebras.

Next, we come to Minkowski space M in this algebraic form. Minkowski space
has an additive group structure and not a multiplicative one as the matrix groups
discussed so far. This additive group structure of spacetime is recovered as a coad-
ditίon on &{M)\
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Proposition 2.2. The polynomial functions on Minkowski space form a commuta-
tive associative (C-algebra generated by 1 and 4 linear coordinate functionals xA.
g?(M) is a *-Hopf algebra with

ΔxA = xA 0 1 + 1 0 x A , SxA = -xA, εxA = 0, xA = xA .

Furthermore, we have xAXβgAB = 2detx = 2(xnx22 — *i2*2i)> *•<?• the norm is
given by the determinant.

The *-Hopf algebra 3P(M) is covariantly coacted upon by 5P(U) with right
coaction β^M) @*(M) —> ̂ ( £ ) 0 3P(M) given by x^ H ^ 0 | J , In particular, one
finds that the "norm" xAxsgAB is invariant under this coaction. Applying the functor
Φ establishes that &>(M) is also a right ^(SL(2,C))-comodule algebra with coaction
(id ® φ) o

3. ^-Lorentz Group of Function Algebra Type

In this section, we give a non-commutative generalisation of 3?(L\ making use
of the standard technique of deforming the commutative bialgebra of polynomial
functions on a matrix group as a non-commutative dual quasitriangular bialge-
bra [18]. The resulting algebraic objects are called quantum matrix groups. The
basic idea is to make the linear coordinate functionals t% commutative only up
to conjugation by an invertible solution R = ΣR{1) 0 R{2) € GL(d:n 0 <CΛ) of the
quantum Yang-Baxter equation (QYBE) R12R13R23 = RiiRnRu- Explicitly, one de-
fines A(R) to be the free associative C-algebra generated by 1 and n2 symbols
f£; a,b = \,...,n divided by the ideal generated by the relations Rnhti = ^1^12
(i.e. Rfdfet

d

f = tb

dt%Rc

e

d

f). It is known that A(R) is a dual quasitriangular bialgebra
with coproduct of matrix multiplication type and a dual quasitriangular structure
91 : A(R)®A(R) -> C given by 9t (ί 0 1) = 9t (1 0 f) = "* and 91 (tλ 0 t2) = Rn

extended as a bialgebra bicharacter [8]. The dual quasitriangularity of A(R) follows
from the fact that the so-called fundamental matrix representations p± : A(R) —>
M(4,C) defined by p+(%)b

d = Rfd and p-(ta

c)
b

d = R~λ

c

ba respect the relations in
A(R) and indeed extend to algebra maps [8]. This means that if we divide A(R)
by some further relations in order to obtain a generalisation of the Hopf algebra
of polynomial functions on a matrix group, then it is sufficient to show that these
additional relations are respected by p± in order to establish dual quasitriangular-
ity of the quotient. Note, however, that these additional relations usually fix the
normalisation of the dual quasitriangular structure.

We shall now give a non-commutative version of 3P(L) as a dual quasitriangular
*-Hopf algebra of the form

££q = A(Rι)/(q-άQformed metric relation),

where Rι is an invertible solution of the four-dimensional QYBE which we in-
troduce. This algebra S£q should generalise all features of SP(L) from Proposi-
tion 2.1. In order to obtain such a matrix Rι and a ^-deformed metric, we make use
of the important role which 0>(SL(2,<C)) plays as a building block of
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A non-commutative version of ^(£L(2,(C)) can be constructed as a "complexifica-
tion" of the standard ^-deformation of 0>(SU(2)) from [18]: Let

(1)

be the well-known invertible solution of the two-dimensional QYBE. This matrix
is of real type, i.e. obeys Rab

d = Rd

b

c

a. The algebra SUq(2) is then denned as A(R)
with generators τa

b and relations τa

cτ
b

de
ab, where

q
0
0
0

0
1
0
0

0
q - q~ι

1
0

0
0
0

q

is the ^-deformed spinor metric with inverse defined by Cbcc
ac = δb. The algebra

SUq(2) is a dual quasitriangular *-Hopf algebra with antipode Sτa

b — ebcτde
ad, *-

structure τa

b — Sτb and standard dual quasitriangular structure defined in terms of
the rescaled i?-matrix q~x^R.

We deform &>(SL(2, C)) ^ 0>(SU(2)) ®0>(SU(2)) as SUq(2) \xi SUq(2)9 the
double cross product Hopf algebra [6] of two copies of SUq(2) acting on each other
in a compatible way. This double cross product coincides with SUq(2) 0 SUq{2) as
a coalgebra, but has a different algebra structure given in terms of the compatible
actions. By applying the general construction from [13, Sect. 4] one obtains cross
relations Rab

d(\ 0 τc

e)(τd

g 0 1) = (τ^ 0 1)(1 0 τa

c)Rc

e

d

g. The double cross product has
a *-structure given in terms of the new generators tb = 1 0 τa

b and ΰab — Sτb 0 1
as ύa

h = fb

a. One obtains SUq(2) as a real form of 51^(2, C).

Definition 3.1. 77?̂  q-Lorentz group ££q is defined as the algebra A{Rι) with
generators λβ divided by the ideal generated by the relations λ^)?DgCD — ̂ . In
terms of the SUq(2) R-matrix and the q-deformed spinor metric the R-matrix Rι
and the preserved metric aAB are given by

l/q
0
0

q

-q 0
0

-q3

0

0
-q
0
0

q
0
0
0

and g*B = qeaϋaR
a

β

ιζε^bK Here we used the notation R = ((R'2)~1)'2, where t2 de-

notes transposition in the second tensor component. Explicitly, one finds

aAB_
9 ~

for the q-deformed metric. Its inverse is defined by gBcQΛC — <5#.

For this algebra to be a quantum group, we need to show that RL is an invert-
ible solution of the QYBE, which can easily be established by explicit calculation.
However, by making use of a result from [10], one can show more generally that
any composed R-matrix of this form is a solution of the QYBE provided R is a
Hecke type solution of the QYBE, i.e. obeys 0 = (PR - q)(PR + q~ι), where P is
the permutation matrix.
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Lemma 3.2. Let R be an ίnυertible Hecke type solution of the n-dimensional
matrix QYBE. Then

R AB p c 0 α

 Ώb\ β τ>a\ 7 D δdo
CD=Rβb0

Rya0

Rδdι

Rcιa

satisfies the n2-dimensional QYBE.

Proof. It is known from [10, Lemma 3.1] that the matrix Ψ^ = RfζRaof*1 Kd\
obeys the QYBE. (We use the notation from [10]: Ψ is a matrix and not the braid-
ing!) This means that also ΘJ?D = Ψβ% satisfies the QYBE. However, using the
Hecke property of R, one finds

i.e. R looks like Θ but with R~ι + (q - q~λ)P substituted for R~λ. It is easy
to see that R~ι + (q - q~ι)P obeys the QYBE and acts like R~ι in mixed
QYBEs with R and R. Thus the proof in [10] for Ψ implies that also R obeys the
QYBE. D

With this lemma, we can now prove a generalisation of Proposition 2.1 for the
algebra 5£q\

Proposition 3.3. (i) The q-Lorentz group 5£\ is a dual quasitriangular *-Hopf
algebra with matrix coalgebra structure, and antipode and ^-structure

SλB = gBcλDy , λ*B = λβ .

The standard dual quasitriangular structure Jl on A(κRι) descends to a dual
quasitriangular structure on <£q, where we have to choose a normalization factor
K = l/q.

(ii) There exists a *-Hopf algebra map φ : S£q —• SLq(2,<£) given by φ(λβ) =

fih\tlι

χ. As in the commuting case, Im(φ) = SLq(2,<E)Έ2 is the fixed-point set of

a Z2-action.

The Hopf algebra map φ induces a push forward of comodules, i.e. a g-spinor
decomposition of g-Lorentz tensors.

Proof (i) We know from Lemma 3.2 that Rι satisfies the QYBE since the
SUq(2) R-matrix (1) is of Hecke type. Thus, apart from a simple check of Hopf
algebra axioms, there remain two non-trivial statements to be shown: firstly that the
operation "*" is a *-structure on a Hopf algebra, and secondly, that $R defines a
dual quasitriangular structure, i.e. that it is compatible with the ^-metric relation.
In order to show that "*" respects the algebra relations in $£q, note that using

the relations R% = Rfc and εab = -εb\ one can show: RfCD = ^f/yitfaZ^
aoγ Rdxδ β*cx _ RBA A ΛB _ f R

a\* £βbλ _ a€ocao RbOβ _ BA
βb^ κyaι κd^δ — κLβ£, ana g* — qeao<χKβbQ e — qe κaaι tb]β — g .
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Therefore,

rnAB iC o£>\* _ nAB φ oC
V KL CD AEAF ) ~ KL CD Ap E

_ nBA φ iC
-KLDCAFAE

_ )A )B nDC
— ACADKLFE

— 1^ iB nCD

— ( ltB 1A J?CD Λ*
K A A K )

and also {λA

cλ
B

DgCDγ = λ^λig00 = gM = {^Y. Thus, "*" can be extended as

an anti-algebra map. The other axioms can be easily checked, e.g. (So *)2(/l^) =

S o KQBC^DQ^) = 9BC0DE49OF9AD = 4-

In order to s h o w that 9? descends to a dual quasitr iangular structure on ££q, w e

only have to p r o v e that the fundamental representat ions defined above respect the

metr ic relation. B y explicit calculat ion one can s h o w q~2RjE

CM^BLMDFQCD — ABf

and q2R-L

x^R-LψD

B9CD = ^δf, and hence

P+(λA

cλ
B

DgCD)ϊ =
_ n-2τ>AE pBM CD

- q KLCMKLDFQ

This is the place where one needs the normalisation factor K.
(ii) We have to prove that φ can be extended as a *-Hopf algebra map. Using

the algebra structure on SLq(2, (C), which can also be written as t^b

dR
a

c

d

gfe = ta

cR
cb

dΰ
d

g

or t^gR
c

e

b

dt
a

c = feR
a

c

d

gΰ
b

d, one can show:

fθtb

ao Λg0 pe{b0 ax fx nbxhλ n9\CQ
\ f l O eot b^axfQ% lbx

 Kg\cx

Kdxh0

_ ngoaθ ne\b0 nf\a\ Ad0 Ah0 ng\cQfbXfhx

- Kboeo

Kaxfo

Kbxhx

 l go1 aoKdxhQ

lgx

 lcx

_ ngoaθΌelbO of lal Όbxh0ΛdQ ΛIΛCQ fhx

-Kboeo

 Kaxf0

Kbxhx

K gXaQ

l gO

ldx

l hhx

,_ / nFE IGI//\

— Ψ\KLGHADAC) '
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λAλBaCDΛ - af t ^ taiRc^ t^dou A fβd\

-q£cχt at d κ b t β t d e

This also implies φ(l) = 1 and φ(Sλ) = S(φ(λ)). Similarly we find for the copro-
duct:

A(φ(λA

B)) = Δ{tϊ\/b\ ) = P\fc\ ® t*\tc

h\ = φ(λA

c) ® φ(λc

B) = (φ ® φ)(AλA

B) ,

the counit ε(φ(λβ)) = δB = φ(ε(Λ^)), and the *-structure:

Thus φ can be extended as a *-Hopf algebra map. D

4. ^r-Minkowski Space

We follow the general approach of [13] to construct a g-Minkowski space with
braided coaddition: Let R be an invertible solution of the TZ-dimensional QYBE and
let Rf be a second matrix such that they satisfy the mixed QYBEs,

*i2*13*23 = ^23^13^12> ^12^13^23 = ^23^13^12 (2)

Define an algebra of quantum covectors V*(Rf) as the free associative C-algebra
generated by 1 and n generators xa with relations xaXb =XdXcR'ab- Similarly, the
algebra of quantum vectors V(R') is generated by 1 and υa's with relations vavb =
R'^vdvc. The algebra V*(R') is a right ^(^)-comodule with coaction xa ^ χh 0 tb

a

and the braiding between two copies of V(R') is given by Ψ(xa ®Xb) = Xd ®χcRCab-
For V*(Rf) to be a braided Hopf algebra in with braided coaddition Δxa = xa 0
1 + 1 Θxβ, &xα = 0 and *Sxβ = —xa in JiA^R\ the two matrices 7̂  and /?' have to
satisfy the relation

0 = (PR + \)(PR' - \) = (PR' - \)(PR+ 1), (3)

where P denotes the permutation matrix. This relation ensures that Δ_ extends as an
algebra map.

Thus we need to find a g-Minkowski R-matrix RM which satisfies (2) and (3)
with Rι. We solve this problem more generally for any composed R-matrix R from
Lemma 3.2.

Lemma 4.1. Let R be a Hecke type solution of the QYBE. Then the R-matrix

KCD - Kboa
 Kβa0

Kγdι

Kcιδ > W

and the matrix R from Lemma 3.2 satisfy (3) and the mixed QYBEs (2).
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Proof We have to show PRPR' = PR'PR = PR - PR' + 1. The first term can be
rewritten as

' \AB ¥> &4 τ» /CD

) E F = κ D C κ ^ F

\λ/?clμ ί? v /θ Λ
μcQ

Rvfx

Re\!)

-Kyb0

Kδcι

Kβa0

Kd0oc Kvfx

Kexε

^ R R R λ δ 5v/o
°eoKybQ

Kδcι

Kvfι

Keιβ '

and indeed equals the second term

rK)
EF — κ D C κ £ F

_ n—ladθnaιβnb\yτίδcQ DeQε nd\λ nC\μ nv/n

aoβ
 K b K δ K d K f K

Using the Hecke property PftP = Z?"1 + (^ - g - 1 )P of the matrix 7?, we can further
simplify this expression as:

This is equal to the third term:

δfF + FB!§ - FB§ = δfF

Hence, R and R' satisfy (3). In order to show that R and R ; satisfy the mixed
QYBEs, recall from [10] that Θ and R ; satisfy (2) and use an argument similar to
the one employed in the proof of Lemma 3.2. D

Thus for any Hecke type solution R of the QYBE, the algebra of quantum covec-
tors F*(R ;) is a braided Hopf algebra with braided coaddition Ax A — ̂ 0 1 + I0x^
in the braided category yfflΛ^\ However, F*(R7) is nothing but the algebra of
braided matrices B(R) from [10]. Denoting R ; from (4) in the case of the SUq(2)
R-matrix by RM, we define q-Minkowski space Mq as 2 x 2 braided matrices
V*(RM) — B(R). It is necessary to introduce a new name for this algebra in order
to avoid confusion: braided matrices B(R) were constructed as the transmutation of
the algebra of quantum matrices A(R) and have the structure of a braided bialgebra
with a braided coalgebra structure of matrix multiplication type. g-Minkowski space
Mq on the other hand is a braided Hopf algebra with braided coaddition and lives
in a different category. It has the same algebra structure as B(R) which is sufficient
to ensure a q-spίnor decomposition as an algebra map Mq —> V(R)®V*(R) [14].



g-Lorentz Group and Braided Coaddition on ^-Minkowski Space 259

The explicit algebra relations in Mq were given in [10] as

ab — q~2ba, ac = q2ca ,
ad = da, be = cb + (1 — q~2)a(d — a) ,
bd = db - (1 - q~2)ab, cd = dc + (1 - q~2)bc ,

where x = (a,b,c,d). Central elements in this algebra are the braided trace qd +
q~xa and the braided determinant det = ad - q2cb. Reflecting the fact that ordinary
determinants are multiplicative but not additive, the braided determinant is grouplike
only in B(R), but not in Mq.

The appropriate *-structure on B(R) was discussed in [15]. Its axioms are slightly
different from the ones recalled in the preliminaries. The main difference is that for
braided bialgebras one requires Δ_o * = τ o ( * ( g ) * ) o 4 where τ is the twist map.
In [15] it was shown that {XA)~ = xA~ defines such a *-structure on B(R) and it is
easy to see that this also defines a *-structure on Mq as braided group with braided
coaddition.

Similar to the commutative case, where the norm on Minkowski space is given
by the determinant of the corresponding matrices, we find

Proposition 4.2. The q-norm on q-Minkowski space is given by XA%B9AB — (q~ι +
g)det, is central and also real with respect to *.

Next, we have to address the question of the coaction of Sέ\ on ^-Minkowski
space. The problem is that Mq is an J^-comodule, but not a braided Hopf algebra
in Jί^q because we had to rescale Rι in Proposition 3.3 with a normalization factor
K = Xjq in order to obtain a dual quasitriangular structure on ££q. This normalization
is different from the one required in Proposition 4.1, which ensures that Mq is
a braided Hopf algebra in JMA^RL)'. This problem of different normalisations was
already encountered in [13]. It can be solved by extending <£q by a single invertible
grouplike element ς which commutes with λ. Let CZ denote the C-vector space
with monomials ςa, a G TL as basis. It has the structure of a commutative and
cocommutative Hopf algebra with Δς — ς 0 ς, ες = 1, Sς = ς" 1 . We form the tensor
product of S£q with CZ and denote this extended g-Lorentz group by <£q. The
advantage of this construction is that one can define a dual quasitriangular structure
on CZ by $1 (ςa 0 ςb) = κ~ab, a, b G 7L, which extends to a dual quasitriangular
structure on <£q and "absorbs" the normalization factor K. With the g-Lorentz group
thus extended, one finds:

Proposition 4.3. q-Minkowski space Mq is a right £?q-comodule ^-algebra with

coaction βM : XA ̂ i β ( 8 ) λ%ς. Moreover, it is a braided Hopf algebra with braided

coaddition in Jί^v. The braided coaddition is a right 5£q-comodule morphism

between comodule algebras, i.e. S£q-covariant.

Proof One can show by explicit calculation that the generators λ of ££q obey

RMλ\λ2 = λ2λ\RM. This then implies that Mq is a right if^-comodule algebra with

coaction β : XA I—> XB 0 λB

A. Since ς commutes with the generators of ^£q, we im-

mediately find that g-Minkowski space is also a right J^-comodule *-algebra with

coaction βM : XA »—> XB 0 λ^ς. The coaction by ς measures the degree (scaling di-

mension) of monomials in x, and is often called dilation element [20, 13].
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It remains to show that A_: Mq ^ Mq(£Mq is a right J^-comodule morphism.

On the generators of Mq, the coaction βM satisfies (A®id)oβM — βM 0 M o A

Since both Δ_ and the coactions βM and βM ^M are algebra maps this extends to
Mq. Thus the entire structure of ^-Minkowski space is covariant under the coaction
by the g-Lorentz group. D

Next note that the ^-metric g48 does not only determine a g-norm in Mq, but
it can also be used to raise and lower indices of g-Lorentz tensors in a covariant
fashion:

Proposition 4.4. There is a q-metric induced braided *-Hopf algebra isomorphism
G : V*(RM) = V(RM) given by xA \-+ v4 = XβgAB, which is also an &\-comodule
morphism.

Proof. V(RM) is a braided Hopf algebra in Jt^i with generators v4, braided coaddi-

tion Av4 = ι/*0l + 101/4, *-structure (i/4)- = ir4, and coaction β : v4 i-̂  vB <S> SλβQ.

In order to prove that G extends as a *-Hopf algebra isomorphism, note that one

can show by explicit calculation that RMLEF ~ QFpgεQR^ABd^ 9LB'• This implies

R^EFG(uF)G(uE). Furthermore, G is a *-homomorphism: G(xκ)- = XA9KΛ =
G(xκ) = G((xκ)~). On the generators, we can also immediately verify that G o Λ_ —
Λ_ o G and So G = G o S. Because of the algebra homomorphism properties of G,
Δ_ and S, this result extends to products. It remains to show that G is a right
J^-comodule morphism. On the generators, we have β o G(xκ) — XA ® ^igKBQ =
uAg

BΛ 0 SλβQ = (G 0 id) o βM (XK), and since βM , β and G are algebra maps, this
extends to Mq. D

For sake of completeness, we also list the explicit form of the braiding between
two copies of Mq, which is quite different from the braiding on B(R) with its
multiplicative braided coalgebra structure [10]:

Ψ(a 0 a) =q2a 0 a ,

Ψ(a 0 b) =b 0 a ,

ψ(a 0 c) =q2c 0 α + (q2 - 1 )α 0 c ,

) =d 0 α + (^2 - 1)(* 0 c + (1 - #~2)tf 0 fl),

0 α) =^2α 0 b + (^2 - 1)6 0 a ,

Ψ(b 0 c ) = c 0 H ( l - ^

+ (1 - #~2)6 0 c + (2 - #-2)α 0 α),

Ψ(b ®d)=d®b + (q2 - \){b 0 (d - q~2a) + (1 - ^~2)β 0 b) ,
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ψ(c 0 a) —a 0 c ,

ψ(c 0 b) =b 0 c + (1 - q~2)a 0 α ,

!P(c 0 c) =q2c 0 c ,

Ψ(c 0 d) =q2d 0 c + (q2 - 1 )c 0 a ,

Ψ(d0a) =a0d + (q2 - l ) (60c + (l -q~2)a0a) ,

-q-Δa)0c-(l-q-Δ]

Ψ(d 0 d) =q2d 0d + (q2 -\)(c0b- q~2b 0c- q~2{\ - q~2)a

Finally note that since Mq is a braided group in the category of right J£q-
comodules, one can apply the results of [13] and construct a q-Poίncarέ group as a
semidirect product Mq x &q. Similar to the double cross product, the algebra struc-
ture is given in terms of compatible actions. The resulting Hopf algebra structure
is given explicitly in [13].

5. q-Lorentz Group of Enveloping Algebra Type

Instead of deforming the function algebra 0*(L), we would also deform the universal
enveloping algebra of the Lorentz group. However, the standard procedure for q-
deforming enveloping algebras is not applicable in this case, since the Lorentz group
is not simple. We shall rather use the relation U(so(3,1)) = U(su(2)) 0 U(su(2))
and the standard ^-deformation Uq(su(2)) of the enveloping algebra of the simple
Lie group SU{2) to construct a ^-deformation of U(so(3,1)). We also investigate
how this algebra is related to the g-Lorentz group of function algebra type.

For sake of clarity, we first recall some standard constructions: For any algebra
of quantum matrices A(R), there is a canonical dual given by the bialgebra U(R)
[18, 8] with generators if" and relations Rlflf = iflfR and 7W+/f = /f/+R.
The dual pairing is given by (t\,lf) =R±, where R+ — Rn and R~ = R^\ - This
bialgebra is universal in the sense that there exists a bialgebra map to any other
bialgebra dually paired with A(R) [8].

In the special case of the SU(2) R-matrix, U(R) is known to be related to a
deformation of the universal enveloping algebra of su{2). The algebra Uq(su{2)) is
defined as U(R) with the further relations implied by the ansatz

Using M. Jimbo's convention [5] and the usual *-structure for Uq(su(2)) one finds
explicitly:

q"χ±q-% =q±X±, [X+9X-] = * ~ q_χ , H* = H, X^ = Xψ .
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This algebra is a quasitriangular *-Hopf algebra with coalgebra structure of matrix
multiplication type and a well-known quasitriangular structure M and is dual to
SUq{2) as a *-Hopf algebra (i.e. not only as bialgebras). The generators of U(R)
are given by /+ = ^ ( 1 ) ( τ , ^ ( 2 ) ) and /" = ( τ , ^ ~ 1 ( 1 ) ) ^ ~ 1 ( 2 ) in terms of the pairing
and the dual quasitriangular structure and we also have (τ\ §§τ2,M) = q"ι/2R\2,
where τ denotes the generators of SUq{2). We used the notation 31 = M(l) 0 ^ ( 2 )

and omitted summation signs.
A natural ^-deformed generalization of U(so(3,l)) is given by the twisted

square [19] Uq{su{2)) <g>% Uq{su{2)) of two copies of the standard ^-deformation
of the universal enveloping algebra of su(2) [5]. The twisted square has the
tensor product algebra structure and a "twisted" coalgebra structure given in
terms of the standard quasitriangular structure M on Uq{su{2)) as A%{x 0 y) = .
&231 Δ\3(x)A24(y)&23 and corresponding antipode S@ = ^21 (S 0 S)&2\ - ft als° n a s

a *-structure defined by {if 0 if)* = St2\{lf* 0 lf*)&ϊι T ^e *-Hopf algebra
pairing between Uq{su{2)) and SUq{2) then extends to a *-Hopf algebra pairing be-
tween the twisted square and the double cross product SUq{2) cxi SUq{2) [13]. The
twisted square is quasitriangular, but has more than one quasitriangular structure,
one of which was given in [19]. For our purposes we need a different quasitriangular
structure:

Lemma 5.1. 0tι — ̂ j 1 ̂ 24^13^23 defines a quasitriangular structure for Uq(so

(3,1)).

Proof Using the fact that 01 obeys the axioms of a quasitriangular structure (as
given e.g. in [8, Sect. 1.5]) we obtain:

{id

The proof of (A 0 id){0ίι) — $L\3$L23 is similar. Thus ^ is a quasitriangular
structure for the twisted square. D

By virtue of the *-Hopf algebra map φ, 5£q is then also dually paired with the
twisted square Uq{so{3,l)), and one finds

Proposition 5.2.



g-Lorentz Group and Braided Coaddition on g-Minkowski Space 263

Proof.

(φ(λA

c)®φ(λB

DX@L) =(Sτc

ao®τa

cl <8> ft J ® τ £ , # ; '

—4 κβb0

κya0

κδdι

κcιoi

-1 KLCD »

using (τi 0 τ 2 , ^ ) = q~ι/2R\2 and # ^ = q~ιεdmRa

c™εbn and the properties of quasi-
triangular structures as given in e.g. [8, Sect. 1.5]. D

On the other hand, however, there is the canonical dual of ££q given by the

algebra U{κRL). This bialgebra maps into the twisted square with a bialgebra map

φ:U(κRL)->Uq(so(3,l))

defined according to the general construction from [8] by φ(lβA) = &^\φ(λβ),

m^) and φ(l~A)= {φ(λΛ

B),M~x{λ))@lx{1\ With Proposition 5.2 it follows that

this map has the property (φ(λ\),ιj/(L^)) = KR^, i.e. the restriction of the pairing

between the double cross product and the twisted square to the images of φ and φ

recovers the standard pairing between S£q and its canonical dual.
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