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Abstract: We establish a representation theorem for Toeplitz operators on the Segal—
Bargmann (Fock) space of C” whose “symbols” have uniform radial limits. As an
application of this result, we show that Toeplitz algebras on the open ball in C”
are “strict deformation quantizations”, in the sense of M. Rieffel, of the continuous
functions on the corresponding closed ball.

1. Introduction

In [R], Rieffel proposed a general scheme for producing “strict deformation quanti-
zations” of C*-algebras with R?" action. His scheme is modelled on classical Weyl
quantization. As one example, Rieffel showed, following earlier work of Sheu [S],
that the Toeplitz algebra 7(D) on the unit disc D arises from his scheme as a
strict deformation quantization of the sup norm algebra C(D) of continuous func-
tions on the closed unit disc. In this note, we extend Rieffel’s analysis to show
that the Toeplitz algebra t(B,,) of the unit ball By, (in C") is a strict deformation
quantization of the algebra C(B,,) of continuous functions on the closed unit ball.

Let C" be the vector space of n-tuples of complex numbers with elements
z=(z1,...,z,) and the usual norm |z| = (|z1]> + - - - + |z4|*)/2. We denote by B,
the (real) 2n-dimensional open unit ball in C", By, = {z € C" : |z| < 1}, and write
§2"~1 = {z € C": |z] = 1} for the unit sphere with By, = By, U S~

In what follows, we consider three related Hilbert spaces of functions on C”. The
first is the Bergmann space of Lebesgue volume (dv)-square-integrable holomorphic
functions on the open unit ball By,, H*(B,,). The next, is the space of Lebesgue
surface area (do)-square-integrable functions on the unit sphere $?"~! which extend
to be holomorphic in By,, H*(S?"~!). Finally we have the Segal-Bargmann space
H?*(C") of entire functions on C" which are square integrable with respect to the

Gaussian measure du(z) = e‘|z|2/2(2n)“”dv(z). Here dv and do are normalized by
v(By,) = n"/n! and o(S?*1) = 27"/(n — 1)\
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These spaces have the common feature that an orthonormal basis for each can

be constructed in the form
akzk 5
where k = (ki,...,k,) and k; are integers, k; = 0. Here a; is some complex scalar
and
2= zllqzlz‘2 ...zkn

is the standard monomial. Of course, the weights a; vary, depending on the space
of functions. It is known [C1, BC1] that on H?(B,,), we have the orthonormal
basis

1/2
& = (nn)-l/z{(|_k|];|!-_n)!} "

while on H?(C"), we have the orthonormal basis

e = (2|k|k!)—1/2zk ’

where |k| =k +hky+ -+ k, and k! = k) 1k! . k!
Our key technical result is that the canonical isometry ¥ from H?(B,) to
H?(C") defined by
Vék = €
induces a representation in ©(B,,) of Toeplitz operators on H2(C") whose “symbols”

have uniform radial limits. A related result, on Toeplitz operators whose symbols
vary in the radial direction only, was obtained in [G, Theorem 10.1]. See also [H].

2. Representation of Toeplitz Operators on H?*(C")

In [C1, BC1], Toeplitz operators on H*(S**~1), H*(B,,), H*(C") are defined and
studied. For f a bounded measurable function on the underlying space, the Toeplitz
operator T/(7r) is given by

where P is the orthogonal projection from L? onto the corresponding H? space.
There are natural isometries from H2(S**~!') to H*(B,,) and from H?(B,,) onto
H*(C") which map & — e;. In [C1, Theorem 1], it was shown that the natural
isometry from H2(S?"~!) to H?(B,,) “intertwines” Toeplitz operators in a suitably
weak sense. Here, we consider the corresponding problem for H2(C").

For f a bounded measurable function on B,,, we write T r for the Toeplitz
operator on H?(B,,). Similarly, for f bounded measurable on C”, we write T s for
the Toeplitz operator on H?(C").

Key Lemma 1. The operators T, ;| — VT Z V=1 are compact for all j,1 £ j < n.
Proof. By symmetry, it suffices to consider j = 1. Direct calculation shows that

TZ] e~k = ﬂké/H-él s

T, 121k = %%€kto, >
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where 6; = (1,0,0,...,0). It follows that
Tl — VIV =85D,
where
So,€r = erys,

and
Dey = (o — Pr)ex -

Thus, it will suffice to check that D is compact, i.e. that for arbitrary ¢ > 0 ,
log — Bi| < ¢

for k outside of some finite set of multi-indices F..
We need very precise estimates on o — f. It is not hard to check (as in [C1])
that
Br = (ki + D)'P(Jk| +n+ 1)"12

The calculation of a useable value of a; is more complicated. Direct calculation

shows that
o = {20k + D} 22Kk~

where
2(k1+1)+1 2k +1
o oor(l ) I”22 ...I’zk"+l

jzg"...bfl

Making a change of variables in the first two coordinates to polar form, and
proceeding inductively, we obtain

J— 2 ces 2
e~ T g dr, .

r%+~~+r§

oo n—171/2
7= fs2(|k|+n)e—s2/2ds - T [ cos?bittmtmilg ginZbnii+lg g
0 m=10

It is a standard calculation [BC1] that

?S2(|k|+n)e—s2/2dsz {2k +m)}!V/x .
0 2Wk+n([k| 4+ )12

A beautiful classical result of Euler [WW] is that

oot t1g sinimtig g = L mim!
0 2(my +my+ 1)
It follows that
n=1m/2 1 kl(k+1)
2ky +-AhkmAm)+1 ) i 2k +1 _ (K
cos 0 sin“ 170 df = —_
g 21 (k] % )
Putting the pieces together, we have
{2(/k| +m)}!

_ 1/2
% = /alk +1) ARk + )
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To complete our analysis, we need Stirling’s Formula in the form [WW]
ml = mn 2 gmmm/12m [on
where 0 < 0(m) < 1. This gives
o = (ky + D)V2(Jk| + n)~ V2 RD/Ckm)
where |0(|k|)| < 1/6. Thus, we have
o — Br = (ki + DV{(Jk| + n) 72D _ (] 5+ 1)712}
with [8(|k|)| £ 1/6. Using e = 1 —x for x = 0, we see that
a— B 20
and, using ¢* < 1+ 3x for 0 < x < 1, we can check that
o — P < (k[ +n)7" .
This allows us to conclude that D is compact.

We also have

Lemma 2. If p is any polynomial in zi,...,2,,21,...,z, which is homogeneous of

degree k, then

T

7 -1
=t ~ VTV

is compact.

Proof. The functions z;/|z| are ESV in the sense of [BC2,Theorem 3]. Note that by
[BC2, Theorem 11],

TyTy — Ty
is compact for f, g in ESV and ESV is a x-algebra under the usual pointwise
operations on functions. It follows from [C1l, Theorem 1] and Lemma 1 that the
desired result holds.

For g in the sup-norm algebra C(S?"~!) of continuous complex-valued functions
on $?"~1  we define
4(z) = g(z/|z|)
on C"\{0}. Note that for p(z) a homogeneous polynomial in z,...,2,,21,...,Z, of
degree I,
p@) = Izl p(2)
for all z in C"\{0}. It is known that § is in ESV of [BC2].
We write ©(B,,) for the C*-algebra generated by all 7y with f continuous on
B, = B,, US>, This algebra was studied in [C1] and [V].
We will use the definitions of [BDF] without much discussion. Recall that an
exact sequence of C*-algebras

0O A >od—>CX)—0,

where " is the full algebra of compact operators and C(X) is the sup-norm algebra
of all continuous complex-valued functions on the compact, separable metric space
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X, defines an element of Ex#(X). For a Hilbert space H, let B(H) denote the

collection of all bounded operators on this space. Let © denote the quotient map

from B(H) to the Calkin algebra B(H )/k. It is well-known that 7(B,,) is an element

of Ext(§?"~1) [C1, V]. Indeed this element is represented by the %-isomorphism
(f) =n(Tr,)

from C($?"~!) into the Calkin algebra B(H %(By,))/k, where f, is any continuous
extension of f to B,,.
We now have our main technical result.

Representation Theorem 1. For g in C(S*"~!),
voiTy — T,
is compact for g, any continuous extension of g to B,,.

Proof. This is immediate from Lemma 2 above and [Cl,Theorem 1]. We simply
choose a sequence of polynomials { p;} so that

pklszn—l —4g
uniformly. It follows that
VT,V — VY
in norm. By Lemma 2, V~!T;V is in ©(By,). Moreover,
(Tp,) — n(VT4V)
and . .
(Tp) — n(Ty,)

in norm, and the desired result follows.
We now have, for M, the full algebra of » x » matrices and matrix Toeplitz
operators defined in the obvious way:

Corollary 1. For g in C(S*"~') ® M,, T; is Fredholm if and only if g is invertible-
valued. If g is invertible-valued, then

index(Ty) = (—1)"mapping degree(g) .
Proof. Immediate from Theorem 1 above and [V,Theorem 1.5].

For z = (zy,...,2z,) in C", we write #;(z) = z; and

_(tii(z) -zl
t,-(z)—<fzj‘,, t;_lgz)>,

where [ is the 2/72 x 2/=2 identity matrix and 2 < j < n. Then the 2"~! x 2"~!
matrix function #,(z) is unitary on the unit sphere S*~! and generates K'(S**~1)
[V]. Moreover, the entries of #,(z) are either 0 or polynomials of degree one in
{z,z; : j = 1,2,...,n}. It follows that

t(z) = |2) " 1a(2)
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is a homogeneous function of degree 0 and

tISZn—l = tn‘sZn—l .
Corollary 2. The operator T, on H*(C") ® M,u—1 is Fredholm with
index(Ty) = (—1)" .

Proof. By Theorem 5.1 of [V], we have T, Fredholm with index(7T,,) = (—1)". It
follows immediately from Theorem 1 that 7; is also Fredholm, with

index(7;) = index(T,,) = (—1)" .

3. Rieffel Deformations

In the interest of completeness, we provide a brief discussion of certian aspects of
the Rieffel construction which are central to this application.

Suppose that 4 is a C*-algebra on which a vector space V of real dimension 2n
acts via a group of automorphisms a = {o, : x € V'}. Assume that V is equipped
with the usual topology which makes it a topological vector space and that the action
of o is strongly continuous. That is, for every a € 4,x — o,(a) is a continuous map
from V to A. Suppose that J is a skew-symmetric operator on V. Rieffel showed
in [R] that given such data {4, V,a,J}, one can always produce a new C*-algebra
A; by deforming the original product on a smooth subalgebra of 4. The C*-algebra
Aj is constructed in the following way.

Let &4 denote the collection of A-valued functions f on ¥ which, together with
its partial derivations of all orders, rapidly decrease to 0 at infinity. For f € %4,

define
1/2

171, = |

Let A% denote the collection of elements a € 4 such that the 4-valued function
x — ox(a) is C* on V. Each a € A* gives rise to an operator

Laf)x) = Qu)" ™2 [ o p(@) f(x + v)e™ " *dvdu
vy

Jfx)" f(x)dx

Vv

on &4, It is easy to check that for any a,b € A, we have
LaLb = Labe 5
where _ .
axyb=Q2n)y G2 [ o (a)u(b)e™ * dvdu .
4%

The above is known as an oscillatory integral and its convergence for a,b € A®
was shown in [R]. Rieffel also showed in [R] that

lall; = Ll = sup{liLafll, : f € L% NSl =1}

is a C*-norm on A*°. Therefore with the product x, and the norm | - ||,,4*°
becomes a pre-C*-algebra. The C*-algebra A4, i.e., the Rieffel deformation of 4,
is defined to be the completion of 4°° with respect to the norm || - ||,. We may,
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of course, also regard 4; as the completion of {L, : a € A} with respect to the
operator norm on 4.

Given {4, V,a,J} a Poisson bracket { -, - } can be constructed on 4> as fol-
lows. Fix a basis xj,...,xg for V so that J is represented by a skew-symmetric
matrix (Jj;) with respect to this basis. Let Xj,...,X; be the basis dual to xi,...,xg
in the Lie algebra L of V. Accordingly, we have the infinitesimal generators

ox;,...,0x, of the automorphism group o. That is, for any a € 4°°,

1
ax,(a) = lim —(uz, (@) — ) ,

1 =j =d. Then
{ab} = X
Jk

ijaX,(a)an(b)a a’b €4~ >
1 d

I\

=

defines a Poisson bracket on 4°°.

For A a real parameter, J is also a skew-symmetric operator on V. Therefore
we also have the deformed product xj; and the norm || - ||;, on A%. It was shown
in [R] that the family {(4°°, x4/, || « ||;;) : 0 < |A| £ 1} forms a strict deformation
quantization of A* in the direction of { -, - } in the following sense:

(1) For every a € A*, the map % — ||a||;, is continuous.
(2) For every pair, a,b € A,

. 1
}Ll_r% HE(Q Xpy b —ab) — {a,b}HhJ =0.

It turns out that the deformed algebra 4; can be quite interesting even when 4
itself is rather ordinary. For example, if one takes 4 = A(R?) to be the collection
of continuous functions /' on C = R? such that the limit

i f#)

exists uniformly on the circle {z € C: |z] = 1},a to be the natural translation of
R?, and J(x, y) = (¥, —x), then, as was shown in [R], 4 = 4 j(R2 ) is isomorphic
to the Toeplitz algebra on the Bergmann space of the unit disc. The main purpose
of this paper is to show that the analogous result holds for C" = R*".

We now make precise the connection to Rieffel’s construction of 4;(R*"). To
ease notation, we will simply write 4, instead of 4 J(R*) for the rest of the section.

From now on we let 4 be the collection of continuous functions f on R*" which
have the property that the radial limit

fradial(w) = REEIOO f(RW)

exists uniformly on the sphere $%"~!. The vector space ¥ = R*" acts on A by the
natural translation. Let J be the standard simplectic operator on R*". That is,

J(xl,,)’l,---,xmyn) = (yla_xlw",yn’_xn) .

Let A denote the collection of f € 4 such that z — f(.+z) is a C°°-map from
R inta 4 Accordinelv %4 consists of A-valned. smooth functions on R?* which.
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together with all their derivatives, are rapidly decreasing. By Rieffel’s construction,
each f € A gives rise to an operator Ly on S

2n
Lrg)x,z) = Q2r) ™" [ [f(z +x +Ju)g(x + v,2)e™ * "dudv .
RZnR

(For each x € R*,g(x, - ) denotes the value of g at x, which is an element in A4.)
The C*-algebra A; is defined to be the completion of {L; : /' € A} with respect to
the norm |1, = 1L/l = sup{IILsglly : g € %%, llgllps = 1}. Let F(R*") denote
the collection of smooth, rapidly decreasing functions on R*". For each f € A
and each z € R*, we can define a Weyl operator
Win)(x)=Q2n)™" [ [ f(z+x+Ju)n(x + v)e™ " *dudv

R2nR2n
on L (R™). W7 extends to a bounded operator on L*(R?). Indeed because ¥(R*")
is actually a subset of %4, by the definition of the norm on % and the definition
of the L?>-norm, it is obvious that W7 < |ILs|l. The norm [|W7]| is independent
of z. This can be seen in the following way.

Define the unitary operator (U,&)(x) = &(x +z) on L*(R*"). Then it is straight-

forward to verify that

UWPU_, = W5 .
This equality also implies that

W7l =Lyl -

Indeed by the definition of the norm on %4, we have

sup [|Q2n)™" [ [ f(z+x+Ju)g(x +v,z)e™ *dudv|*dx
zeR2ZR2n R27R27

2 2 2
sup |Wig:ll; < (WPl sup gzl = 1% 2l llgllgs -
ZERZ” ZGRZ"

2
IZ gl

where g, denotes the element g,(x) = g(x,z) in F(R™).
It is straightforward to verify that for f, f, € 4°°,

_ z
W}1 sz - Wf1><Jf2 >

where f X, f> is the deformation product described earlier. Hence for every z €

R*", the map
T, . Lf — W}

extends to a C*-algebra isomorphism from 4; onto a subalgebra of B(LA(R*™)). We

will next show that each n,(4,) is isomorphic to a C*-algebra of pseudo-differential

operators of order zero on L*>(R"). Obviously it suffices to do this for the case z = 0.
For each j = 1,...,n, define

(Ad 'lf)(sly UseeesSns tn) - S'f(.Sl, By osSn, tn) s

J J

(Im'zf)('sls tl,---,sn, tn) - t'f(sls t19~"9 n»s tn) >
J J S

0
(aj]-f)(S], tla"wsna tn) = _-ia_f(sls tla"‘asn) tn) b
Sj
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and

0
(B F)S1, tseesSny ) = _ia_f(sl, Hyevns Sny tn)
i

Furthermore, we define
1 1 2
D;=M; — 6j

and
2 2 1
Dy =M;+0;,

j=1,...,n. We have the commutation relations
12 21l _ o
DiD} — DD} = 2i )

for all j and
DD} —D{D! =0 (2)

for all j+k and p, g =1, 2. Let e} (resp. ejz.) be the vector in R* whose

(2j — 1) (resp. 2j™) coordinate is 1 and whose other coordinates are 0. Then
it is straightforward to verify that

. 1 . .
(exp(is; D} n)(x) = ﬂl{i{exp(lsj(xzjq + ) )N(x + vj€7 )expliuy;v; )du;dvy;

and
(exp(it; D7 n)(x)

1
= %ffexp(itj(ij — g 1)IN(x + voj 1] )exp(iuzj1vaj—1 duzj_1dva;_
RR

for every n € #(R*). By the commutation relation (1), we have
(exp(is; D, exp(it; D} )n)(x)
= exp(istjl- )exp(itijz)%Ij{‘fRexp(—it]uzj_1 m(x + U2j_1e})
X exp(iugj_1vzj—1 )duz;_1dvy;_
= exp(—is;t;)exp(it;M} Yexp(is;D; )%gl{exp(_itjuﬁ—l (x + v3;-1e))

X exp(iug;—1zj—1)duj1dva;

= exp(—is;t; Jexp(it;x; )(2n) "2 [ [ [ [exp(is;(xa;—1 + up; ) )exp(—itjuz;_1)
RRRR

1 2 .
XN (x + vyj—1€; + vajey) exp (i[uzj—102j—1 + Uy, ])dtiz)—1dvyj—1dur;dvy;

= exp(—is;t;)2n) 2 [ [ [ [ exp(i(sje]1 + tjejz) - (x +J(uzj—1e} + uzjef)))
RRRR

xn(x + Uzj—lejl + vzjef.) exp(i(uzj_w} + u2jejz')

1 2
. (UZJ-—]e/ + Uzjej))duzj_ldUQj_lduzjdvzj.
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Suppose that s = (s1, ..., s,) and ¢ = (¢, ..., t,). By the commutation relation (2)

and the above identity, we have

< ﬁ exp(is;D} ) exp(it;D; )'1) (x)

— e-—is . t(zn)—n f f ez(As+Bt) . (x+Ju)’1(x+ v)eiu . Ydudv .
R27R2n

Here, 4, B: R" — R*" are the linear transformations defined by the formulas

A(syy ..y 8p) = (51,0, ..., 5,,0)

and
B(tl, cely t,,)= (0, t,...,0,t,) .

If b e L(R" x R")(= L(R*™)), then

([ f fb(s,t)H exp (is;D; ) exp (zt,Dz)dsdt] )(x)

R” R" Jj=

=(Q2n)™" f j‘ [ffb(s,t)ei((As+Bt) © (x+Ju)—s ° ’)dsdt] ”(x+v)eiu * Ydudo .

R2n RZn R"R"

In other words, if we define

(Db)(x) = [ [b(s,t)eUsTBN = x=5 = Dgggy
R"Rﬂ

then

[ [5G, z)[[ exp (is;D} ) exp (it;D} )dsdt = Wg, .
R”R” j=1

Suppose now that a,b € #(R” x R"). Then, by (1) and (2), we have

0 0 1370
W(dia)x,(qbb) = WeWa

= [ [ [ [a(s',t)b(s, 1)

R"R"R"R"

H exp (is] D1 ) exp (it;Djz.)

x exp (is jD} ) exp (itjD]%) ds'dt' dsdt

= [ [ [ [a(s',t)b(s,t)

R”R"R"R"

X exp (itjDJZ- )] ds'dt' dsdt

= [ [ [ Ja(s',)b(s, )€™ * '[ﬁ exp (i(s} + 5,)D;))

R"R"R"R" J=1

exp (i(t] + £;)D; )] ds'dt' dsdt

H exp (is; D1 )exp (ist} ) exp(it;Djz.) exp (2is;t})

(3)
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A
= ff ffa(S/,t/)b(s —S',t _ t/)em(s—s) tdsldtljl
RIIR" an
n

x [ [1 exp(is;D;) exp (it; D’ )} dsdt
Jj=1

n
:RfRf(a *b)(s,t)[' 1exp (ist})exp(itijz-)J dsdt
npn j=

where

(axb)(s,t) = ffa(s', l")b(s — s — t/)ezi(s—s') . tlds’dtl ]
R"R"

Hence
(Pa) x; (Pb) = P(axb) .

We will now establish the relations between W7 and the Weyl operators on

L*(R"). Following [R], we define a Weyl operator on L2(R") with symbol function
o€ L(R" x R") by the formula

(V.O)x) = Q)" [ [olx + y,0)e® " *&(y)d ydv
R'R"
for £ € S(R"). Also recall that for o, f € S(R" x R"), the Weyl symbol calculus
o Xy p is defined by the relation
Vs = Pa P .

This relation is still valid if one of &, f is only a function in 4.
It follows from (1) and (2) that there is a unitary operator Y (LR —
L2(R*) such that
YD}Y* =2M} and YD;Y* =0} . 4)
(Because of (2), one only needs to prove this in the case » = 1. But in this case
such a ¥ can be constructed explicitly. See, for example, [X].) We can identify M jl
with m; ® 1 and 0} with d, ® 1, where m, and d, are the operators

(mif)x1, ooy X0) =% f(x1, ..., Xn)

and

d;f)xe, ooy xp) = —ia%jf(xl, s Xp)

on L2(R"). Thus, we have shown that for any b € #(R" x R"),
YWY = | [ fb(s,t)n1 exp (2is;m;)exp (it;d;)dsdt| @ 1 . (5)
Ran ,/=

Since

b(s,t) = exp(is - )2n)™" [ [(®b)(Au + Bv)e ™ "+ " dudy ,

R"R"
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for any ¢ € #(R"), we have

R"R" J=1
= [ [b(s,t)e* * *E(x + t)dsdt
R"R"
— (zn)—nferis . x[eis .t
R”R"

x [ [(®b)(Au + Bv)e™ * “* " "lgydy)E(x + t)dsdt
R"R"

([ [ (s, )TT exp (2isjmj)exp(itjdj)dsdt] 5) (x)

=Q@2n)™" [ [ [ [(®b)(Au + Bv)e 'l = =0+ tlg(1ydyudvd sdt
R"R"R"R”

=Q@Qn)" [ [ [ [(®b)A(u+t +x)+ Bo)e ™ * =) () dudvd sdt
R"R"R"R"

= (2n)™" [ [(Pb)A(t + x) + Bv)e'™™) * °&(t)dvdt
Ran

= Q2nr)™" [ [(TPb)(t + x, v)e'™™) * *&(t)dvdt .
R"R"

Here, we use the notation
(TF)(u,v) = F(Au + Bv), u, ve R" ,

for functions F defined on R* ( 1). Hence it follows from this calculation and (5)
that

YW(ng* =Y ®1. (6)
It follows from (4) and the commutation relations (1) and (2) that, for any a,b €
F(R" x R"),

¥ (r6a)x y(ror) = Yrea'Pron

= [[ [ [Ja(s' t)b(s,t)

R"R"R"R"

n
x [ exp (2is;m;) exp (it;d;) exp (2is;m;) exp (it;d; )] ds'dt' dsdt
Jj=1

[ [(axb)s,t) [ ﬁ exp (2is;m;) exp (itjdj)] dsdt
R"R" '

J=1

= Yr1owss) = Yrisayx (on)] -

That is,
(T®a) xw (TOb) = T[(Pa) x; (Pb)] .

! It may seem that the introduction of T does nothing but create inconvenience. After all, why
don’t we simply identify F(u,v) and F(Au + Bv)? What is implicit in such an identification of
functions, however, is an identification of R” x R” with R*" through a rearrangement of coordi-
nates. There are (2r)! ways to do so. The presence of T serves as a reminder of our particular
rearrangement of coordinates which was actually dictated by the choice of the operator J.
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If / € A° (technically, elements of 4> are functions on R*", not functions of
the form F(u,v), u, v € R"), then for any b € #(R" x R"), we also have

(Tf) xw (T®b) = T[f x; (®b)]

and
Yrryxwron)y = Yrr¥rav -

Hence it follows from (6) that

YWIWY* = YWy any Y™ = Wrirx, can) ® 1
=Y¥Yrryxpaery @1 =[Prr¥rops] ® 1

for any f € 4% and b € #(R" x R"). By choosing a sequence {b,} C #(R" x R")
such that {¥rgp, } converges to the identity operator strongly, we may conclude that

YWY =¥, ®1 .

It follows from Rieffel’s construction that {L; : ' € A} is dense in 4;. Hence the
map
ny Ly Yy, [ €A™,

extends to a C*-algebra isomorphism from 4, into B(L*(R")) .
For f a bounded function (or matrix of such functions) on C", we recall that
the Bargmann isometry [B; F, p. 40; BC3]

B: L*(R",dv) — H*(C",du)

has the property that
B7'T/B =W,

where
BEx) = Fa = i8) = [ fome e aut), x, ceRY,
Cn

is defined to be the solution of the heat equation at time ¢ = 1/4 with initial-value
f, and Wj is the Weyl operator on L*(R",dv) given by

Wpg)x) = @m)™ [ [ ﬂ(é, ’%)e'@‘—” “Sg(y)dyde
RnR’l
[F, p. 141; BC3].

The definition of the Weyl operator Wy with the symbol function B is slightly
different from the definition of ¥g. However the two sets of pseudo-differential op-
erators {¥ry : f € A®} and {Wrs : f € A} are identical and, therefore, generate
the same C*-algebra. This fact can be seen from a transformation on 4. For any 4 >
0, define the linear operator S; on R* by the formula S;(x1,...,X5,Xn115..-,X00) =
(Xnt1s- - > X2ms AX1, -+ > AXy). Also define (Sy. /) (x) = f(S;x) for f € A. If we denote
((f)(x) = f(x +2z), then we have o,(S;«f) = Sicas,.(f). Hence if z — a,(f)
is an A4-valued C*°-function, then so are z — ag,.(f) and z — S, as,z(f). In other
words, the operator S;, maps 4 to itself. For any f € 4°°, we have

lI/TSuz*f =Wry and  Wrs,,r=¥711 . 7
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Let / denote the ideal Co(R*") in 4. We have an exact sequence
0-1—A4—CES™HY-o0.

It is clear that / is invariant under the action of R* and that the induced action of
R?" on the quotient algebra C(S*~!) is trivial. Hence by Theorem 7.7 of [R], we
have an induced exact sequence

01 -4, —»CS*"1H)—=o0.
If 7 denotes the quotient map from A, onto C(S*"~!), then, by Rieffel’s construction,

W(Ly) = fradial

for every f € A>°. We have shown that 7, is an isomorphism from 4, onto the C*-
algebra generated by {¥r,: f € 4°}. Because n;(Ls +1;) = Y1y + m;(Iy), we
see that the image of W7, under the quotient map 7;(4,) — m;(4;)/ms(L;) is also
Sradial for every f € 4.

The ideal m;(l;), which is generated by {¥r, : f € I*°}, is the collection of
compact operators on L2(R"). In fact, if o € #(R" x R"), then obviously ¥, is a
compact operator. From this it is easy to see that m;(/;) at least contains all the
compact operators on L*(R"). Now, because /; is the completion of /°° with respect
to the J-norm, to establish that every operator in 7;(I;) is compact, it suffices to
verify that {L; : f € S#(R™)} is dense in {L; : f € I*°}. For this purpose, we fix
a C*-function 0 < n < 1 on [0,00) such that # =1 on [0, 1] and such that n =0
on [2,00). For each k € Z,, define n,(¢) = 1 if [¢] < k and n,(¢) = n(Jt] — k) if
[t| > k. Let

ety tan) = me(t1) .. mi(tan) -

Then straightforward differentiation shows that for any f € I°°, any mixed partial
derivative of (1 — &)/ of arbitrary order tends to zero uniformly on R*" as k — oo.
By Proposition 4.10 of [R], this means

Jim |lLe, =Lyl =0

Hence {L;: f € L(R*™)} is dense in {Ly: f€I*®} and m;(I;) consists of the
compact operators on L?(R").

4. Main Result

We have, for Rieffel’s algebra 4,(R*") discussed in Sect. 3,

Theorem 2. The C*-algebras A;(R*") and ©(By,) are -isomorphic via ad;' oadg o
ny. Here, as usual, ady denotes the conjugation by U.

Proof. Recall that every element in t(B,,) is the sum of a Toeplitz operator whose
symbol is continuous on B, and a compact operator. We also recall that for f in
C( S2n—1)’

-1 _
B™'T;B=W,, ,
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where Wy was defined earlier as was the Bargmann isometry B and

ap(Ex) = f(x —it) .

We consider the C*-algebra Weyl(S**~!) generated by the full algebra " of com-
pact operators on L?(R") and the operators

Wy, - fecs™ D).

Using Theorem 1, it is not hard to check directly that conjugation by the unitary
operator
B~'V : HX(B,,) — L*(R")
implements an isomorphism from Weyl(S**~') on L?*(R") onto t(B,,) on
HZ(BZn )
In Sect. 3, we checked that Rieffel’s algebra 4;(R*") is *-isomorphic via 7; to
the C*-algebra 7,(4,;(R*")) on L*(R") generated by the operators

(Pr9)x) = Qr)™" [ [(Ty)x +y, &)™ " Sg(y)dydé ,
R"Rﬂ

where y is in 4% with (uniform) radial limit function ygia in C(S**~!). Moreover,
comparing [R] and Sect. 3, 1(¥Y7,) = Yradual-

Because o is convolution of f with a Gaussian, it is easy to check that 7o/
is in 4% of [R] for arbitrary f in C(S?"~!). This fact was already observed for
n =1 in [R]. Using Eq. (7) of Sect. 3 and the fact that

(01 radiat(x, &) = f(&, —x) ,

it is easy to check that Weyl(S%"~ ') = m;(4,(R®")). Hence, A;(R*") and 1(B,,) are
*-isomorphic.

5. Problems and Remarks

It would be of some interest to know if other standard Toeplitz algebras arise as
strict deformation quantizations of commutative algebras. In this connection, we
should mention [BLU] where an “intrinsic” Toeplitz quantization on bounded sym-
metric domains is described following earlier work of [KL] and [C2]. The Toeplitz
quantization of [KL, C2], [BLU] satisfies a weaker version of the strict deformation
conditions required by [R].

Problem 1. Can the Toeplitz algebra on the polydisc, 7(D x D), be realized as a
strict deformation quantization of C(D x D),
While we have exhibited a *-isomorphism

1 As(R™) — o(Bay)

it is not obvious precisely what elements of ©(B,,) are in u{4°(R*")}.

Problem 2. Can u{A°(R*)} be precisely identified?
J
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