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Abstract: We establish a representation theorem for Toeplitz operators on the Segal-
Bargmann (Fock) space of Cn whose "symbols" have uniform radial limits. As an
application of this result, we show that Toeplitz algebras on the open ball in Cn

are "strict deformation quantizations", in the sense of M. Rieffel, of the continuous
functions on the corresponding closed ball.

1. Introduction

In [R], Rieffel proposed a general scheme for producing "strict deformation quanti-
zations" of C*-algebras with R2" action. His scheme is modelled on classical Weyl
quantization. As one example, Rieffel showed, following earlier work of Sheu [S],
that the Toeplitz algebra τ(D) on the unit disc D arises from his scheme as a
strict deformation quantization of the sup norm algebra C(D) of continuous func-
tions on the closed unit disc. In this note, we extend RieffeΓs analysis to show
that the Toeplitz algebra τ(B2n) of the unit ball B2n (in C") is a strict deformation
quantization of the algebra C(B2n) of continuous functions on the closed unit ball.

Let Cn be the vector space of ^-tuples of complex numbers with elements

z = (z\,...,zn) and the usual norm \z\ = (\z\\2 H h \zn\
2)ι/2. We denote by B2n

the (real) 2«-dimensional open unit ball in Cw, B2n = {z e Cn : \z\ < 1}, and write
S2n~ι = { Z G C " : \Z\ = 1} for the unit sphere with B2n = B2n U S2n~x.

In what follows, we consider three related Hubert spaces of functions on Cn. The
first is the Bergmann space of Lebesgue volume (dι )-square-mtegrable holomorphic
functions on the open unit ball B2n, H2(B2n). The next, is the space of Lebesgue
surface area (ί/σ)-square-integrable functions on the unit sphere ^S2""1 which extend
to be holomorphic in B2n, H2(S2n~ι). Finally we have the Segal-Bargmann space
H2(Cn) of entire functions on Cn which are square integrable with respect to the

Gaussian measure dμ{z) = e~^ /2(2π)~ndv(z). Here dv and dσ are normalized by
v(B2n) = πn/n\ and σ ^ 2 " " 1 ) = 2πn/(n - 1)!.
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These spaces have the common feature that an orthonormal basis for each can
be constructed in the form

akz
k,

where k = (k\,...,kn) and kj are integers, kj ^ 0. Here ak is some complex scalar
and

7k=7h7h 7knz —zχz2 ...zn

is the standard monomial. Of course, the weights ak vary, depending on the space
of functions. It is known [Cl, BC1] that on H2(B2n), we have the orthonormal
basis

while on H2(Cn), we have the orthonormal basis

where \k\=kι+k2-\ Vkn and k\ = kx\k2\...kn\.
Our key technical result is that the canonical isometry V from H2{B2n) to

H2(Cn) defined by
Vek = ek

induces a representation in τ(B2n) of Toeplitz operators on H2(Cn) whose "symbols"
have uniform radial limits. A related result, on Toeplitz operators whose symbols
vary in the radial direction only, was obtained in [G, Theorem 10.1]. See also [H].

2. Representation of Toeplitz Operators on H2(Cn)

In [Cl, BC1], Toeplitz operators on H2(S2n~ι), H2(B2n\ H2(Cn) are defined and
studied. For / a bounded measurable function on the underlying space, the Toeplitz
operator T/(ff) is given by

= P(f g),

where P is the orthogonal projection from L2 onto the corresponding H2 space.
There are natural isometries from H2{S2n~x) to H2(B2n) and from H2(B2n) onto
H2(Cn) which map ek —• ek In [Cl, Theorem 1], it was shown that the natural
isometry from H2(S2n~ι) to H2{B2n) "intertwines" Toeplitz operators in a suitably
weak sense. Here, we consider the corresponding problem for H2(Cn).

For / a bounded measurable function on B2W, we write f f for the Toeplitz
operator on H2(B2n). Similarly, for / bounded measurable on Cn, we write 7/ for
the Toeplitz operator on H2(Cn).

Key Lemma 1. The operators Tz /\z\ — VTZj V~ι are compact for all j , 1 ^ j ^ n.

Proof. By symmetry, it suffices to consider j = 1. Direct calculation shows that

z\ek =
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where δ\ = (1,0,0,...,0). It follows that

TXι/\z\-VfgιV-ι=SδιD,

where

and
Dek = (oik - βk)ek .

Thus, it will suffice to check that D is compact, i.e. that for arbitrary ε > 0 ,

k-ΛI <ε

for k outside of some finite set of multi-indices Fε.
We need very precise estimates on ock - βk. It is not hard to check (as in [Cl])

that

The calculation of a useable value of α# is more complicated. Direct calculation
shows that

where
oo oo 2(^1+0+1 2^2 + l 2^

o o

Making a change of variables in the first two coordinates to polar form, and
proceeding inductively, we obtain

0 m=\ 0

It is a standard calculation [BC1] that

o

A beautiful classical result of Euler [WW] is that

ί θ 1 m m-
2 (m\ + m2

It follows that

w-iπ/2 1

Π / c o s 2 ( * l + - + ^ + m ) + 1 β sin2*'
w=l 0

Putting the pieces together, we have
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To complete our analysis, we need Stirling's Formula in the form [WW]

ml =

where 0 < θ(m) < 1. This gives

α* = (Jfci

where |δ( |£|) | ^ 1/6. Thus, we have

with \δ(\k\)\ S 1/6. Using e~x ^ 1 -x for x ^ 0, we see that

α* - βk ^ 0

and, using ex ^ 1 + 3x for 0 ^ x ^ 1, we can check that

This allows us to conclude that D is compact.
We also have

Lemma 2. If p is any polynomial in z\,...,zn9z\9...,zn which is homogeneous of
degree k, then

T / — VT

is compact.

Proof The functions zj/\z\ are ESV in the sense of [BC2,Theorem 3]. Note that by
[BC2, Theorem 11],

TfTg - Tfg

is compact for / , g in ESV and ESV is a *-algebra under the usual pointwise
operations on functions. It follows from [Cl, Theorem 1] and Lemma 1 that the
desired result holds.

For g in the sup-norm algebra C(S2n~ι) of continuous complex-valued functions
on S2n~ι, we define

g(z) = g(z/\z\)

on CΛ\{0}. Note that for p(z) SL homogeneous polynomial in z\,...,zn,z\,...,zn of
degree /,

p(z)=\z\-lp(z)

for all z in C*\{0}. It is known that g is in ESV of [BC2].

We write τ(B2Λ) for the C*-algebra generated by all 7/ with / continuous on

B2« = B2nUS2n-\ This algebra was studied in [Cl] and [V].
We will use the definitions of [BDF] without much discussion. Recall that an

exact sequence of C*-algebras

0 -> Jf -> s/ -> C(X) -* 0 ,

where Jf is the full algebra of compact operators and C(X) is the sup-norm algebra
of all continuous complex-valued functions on the compact, separable metric space
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X, defines an element of Ext(X). For a Hubert space H, let B(H) denote the
collection of all bounded operators on this space. Let π denote the quotient map
from B(H) to the Calkin algebra B(H)/κ. It is well-known that τ(B2/2) is an element
of Ext(S2n~ι) [Cl, V]. Indeed this element is represented by the *-isomorphism

τ(/) = π ( f / β )

from C(S2n~ι) into the Calkin algebra B(H2(B2n))/κ, where fe is any continuous
extension of / to B2 n.

We now have our main technical result.

Representation Theorem 1. For g in C(S2 n~ ι),

v-ιτsv-fβe

is compact for ge any continuous extension of g to ^in-

Proof This is immediate from Lemma 2 above and [Cl,Theorem 1]. We simply

choose a sequence of polynomials {pt} so that

—> 9

uniformly. It follows that
V~ιThV-> V~ιTάV

in norm. By Lemma 2, V~λTgV is in τ(B2Λ). Moreover,

and

in norm, and the desired result follows.
We now have, for Mr the full algebra of r x r matrices and matrix Toeplitz

operators defined in the obvious way:

Corollary 1. For g in C(S2n~ι)<S>Mr, T§ is Fredholm if and only if g is ίnvertίble-
υalued. If g is invertible-valued, then

index(Γ^) = (—l)wmapping degree(g) .

Proof Immediate from Theorem 1 above and [V,Theorem 1.5].

For z = (z\,...,zn) in C", we write t\(z) = z\ and

where / is the 2J~2 x 2J~2 identity matrix and 2 ^ j ^ n. Then the 2n~x x 2n~ι

matrix function tn(z) is unitary on the unit sphere S2n~ι and generates Kι(S2n~ι)
[V]. Moreover, the entries of tn(z) are either 0 or polynomials of degree one in
{zj,Zj : j = 1,2,...,«}. It follows that
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is a homogeneous function of degree 0 and

t\s2n-\ = tn\s2n-\ -

Corollary 2. The operator Tt on H2(Cn)<g>M2n-\ is Fredholm with

index(7τ

/) = ( - l ) π .

Proof. By Theorem 5.1 of [V], we have Ttn Fredholm with index( f , J = (-1)". It
follows immediately from Theorem 1 that Tt is also Fredholm, with

index(Γ,) =

3. Rieffel Deformations

In the interest of completeness, we provide a brief discussion of certian aspects of
the Rieffel construction which are central to this application.

Suppose that A is a C*-algebra on which a vector space V of real dimension In
acts via a group of automorphisms α = {αx : x G V}. Assume that V is equipped
with the usual topology which makes it a topological vector space and that the action
of α is strongly continuous. That is, for every a e A,x \-> <xx(a) is a continuous map
from V to A. Suppose that J is a skew-symmetric operator on V. Rieffel showed
in [R] that given such data {A, V,OL9J}9 one can always produce a new C*-algebra
Aj by deforming the original product on a smooth subalgebra of A. The C*-algebra
Aj is constructed in the following way.

Let έfA denote the collection of ^-valued functions / on V which, together with
its partial derivations of all orders, rapidly decrease to 0 at infinity. For / G SfA>
define

1/2

v
Let 4̂°° denote the collection of elements a G A such that the ^-valued function
x t-> 0Lx(a) is C°° on V. Each a G A°° gives rise to an operator

(T f\(v\ CΊ~τ\—(dimκ)/2 Γ Γn / Λ \ ^ v i ,,WM U,,Λ,

{Laj ){x) = (zπ) J J ocx+Ju(a)j (x + i je dtww

on «9^. It is easy to check that for any a,b G ̂ °°, we have

where
a xj b = (2π)-{dimV)/2JJ(Xju(a)(xv(b)eiu ' vdvdu .

vv

The above is known as an oscillatory integral and its convergence for a,b e A°°
was shown in [R]. Rieffel also showed in [R] that

| |α | | y = | | I f l | | = sup{||Zα/||2 : / e ^ , | | / | | 2 = 1}

is a C*-norm on ^4°°. Therefore with the product Xj and the norm || ||j,^4°°
becomes a pre-C*-algebra. The C*-algebra Aj, i.e., the Rieffel deformation of A,
is defined to be the completion of A°° with respect to the norm || | | y. We may,
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of course, also regard Aj as the completion of {La : a G A00} with respect to the
operator norm on SfA.

Given {A, V,oc,J} a Poisson bracket { , } can be constructed on A°° as fol-
lows. Fix a basis x\,...,Xd for V so that J is represented by a skew-symmetric
matrix (Jjk) with respect to this basis. Let X\,...,Xd be the basis dual to x\,...,Xd
in the Lie algebra L of V. Accordingly, we have the infinitesimal generators
UX\ > J &xd °f m e automorphism group α. That is, for any a £ A°°,

ocXj(a) = lim -(octXj(a) - a) ,

1 S j S d. Then

{a,b} = Σ Jjk<*>x,{μ)*xk(b\ a,beA°° ,

defines a Poisson bracket on A°°.
For h a real parameter, /jJ is also a skew-symmetric operator on V. Therefore

we also have the deformed product x%j and the norm || | | ^ on A°°. It was shown
in [R] that the family {(A°°, x%j, || H^) : 0 < \%\ ^ 1} forms a strict deformation
quantization of A°° in the direction of { , } in the following sense:

(1) For every a G ̂ 4°°, the map ft ι—> ||β||^j is continuous.
(2) For every pair, a,b G ̂ °°,

lim — (a Xfub-ab)-{a,b} = 0

It turns out that the deformed algebra Aj can be quite interesting even when A

itself is rather ordinary. For example, if one takes A = ^ ( R 2 ) to be the collection

of continuous functions / on C = R2 such that the limit

lim f(Rz)

exists uniformly on the circle {z G C : \z\ = l},α to be the natural translation of
R2, and J(x,y) = (y,—x)9 then, as was shown in [R], Aj = 4 / ( R 2 ) is isomorphic
to the Toeplitz algebra on the Bergmann space of the unit disc. The main purpose
of this paper is to show that the analogous result holds for Cn = R2".

We now make precise the connection to RieffeΓs construction of Aj(R2n). To
ease notation, we will simply write Aj instead of Aj(R2n) for the rest of the section.

From now on we let A be the collection of continuous functions / on R2" which
have the property that the radial limit

/radialθ)= 1™

exists uniformly on the sphere S2n~λ. The vector space V = R2n acts on A by the

natural translation. Let J be the standard simplectic operator on R 2 w . That is,

J(χuy\,...9χn,yn) = (yu-χu'"9yn,-χn)

Let A°° denote the collection of / G A such that z ι-» / ( . + z ) is a C°°-map from
P n into A Ar.r.πrrlincrlv ffA consists of /ί-valned. smooth fiinctions on R 2 w which.
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together with all their derivatives, are rapidly decreasing. By RieffeΓs construction,
each / G A°° gives rise to an operator Lf on SfA\

(Lfg)(x,z) = (2πΓn J Jf(z + x + Jύ)g(x + v,Zy
u ' vdudv .

R 2«R

(For each x G R2n,g(x, ) denotes the value of g at x9 which is an element in A.)

The C*-algebra Aj is defined to be the completion of {Lf : / G ̂ 4°°} with respect to

the norm \\f\\j = \\Lf\\ = sup{ | |Z / f f | | ^ :ge#>A

9 \\g\\yA = 1}. Let ^ ( R 2 w ) denote

the collection of smooth, rapidly decreasing functions on R2". For each f £ A°°

and each z G R2π, we can define a Weyl operator

(Wz

fη)(x) = (2πyn f J f(z+x + Ju)η(x + v)eiu ' vdudυ
R2nR2n

on ^ ( R 2 w ) . Wx

f extends to a bounded operator on L2(R2n). Indeed because ^ ( R 2 " )

is actually a subset of £fA, by the definition of the norm on £fA and the definition

of the ZΛnorm, it is obvious that \\Wf\\ ^ | |^/| | The norm \\Wf\\ is independent

of z. This can be seen in the following way.

Define the unitary operator (Uzξ)(x) = ξ(x + z) on Z 2(R 2 w). Then it is straight-
forward to verify that

UzWfU-z = W} .

This equality also implies that

11*711 = \\Lf\\ •

Indeed by the definition of the norm on £fA, we have

\\Lfg\\2

yA= sup f\(2π)-nJ f f(z+ x+Ju)g(x + v,z)eiu ' vdudv\2dx
2

= sup \\W}gz\\2

2 ί \\W}\\ sup
2 2

where gz denotes the element gz(x) = g(x,z) in
It is straightforward to verify that for / i ,/2 G A°°,

where f\ Xj fi is the deformation product described earlier. Hence for every z G
R2n, the map

π z : L f ^ W}

extends to a C*-algebra isomorphism from Aj onto a subalgebra of B(L2(R2n)). We
will next show that each nz(Aj) is isomorphic to a C*-algebra of pseudo-differential
operators of order zero on Z2(RW). Obviously it suffices to do this for the case z = 0.

For each j = 1,..., n, define

t\9...9sn, tn) = Sjf(su ti,...,sn, tn) ,

(M2f)(su tι,...,sn, tn) = tjf(su tu...,sn9 tn) ,

(d)f)(su tι,...,sn, tn) = -i—f(su tι,...,sn, tn) ,
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a n d

( < 9 y / ) O i , tι,...,sn, tn) = -t-Qffisi' *i> > sn, tn) .

Furthermore, we define

and

D)=Mj-dj

Dj = Mj + d) ,

j = \,...,n. We have the commutation relations

D)D)-D)D)=2i (1)

for all j and

j k k j v >

for all y'φA; and p, q = 1, 2. Let ej (resp. ej) be the vector in R2" whose

(2j — l ) s t (resp. 2/h) coordinate is 1 and whose other coordinates are 0. Then

it is straightforward to verify that

1 - l 2

j 2 π R R

 J 2j~l 2j 2j J 2j 2j 2j 2j

and

(exp(itjD])η)(x)

I

2 π R R J J J J J J J J J

for every η G ̂ (R 2 / 2 ) . By the commutation relation (1), we have

= Qxp(isjD})Qxp(itjMf)—fJRQxp(-itJu2j-ι)η(x + υ2j-\e))
a.

x Qxp(iu2j_ i v2j-1 )du2j-1dυ2j-

exp(—isj tj )Qxp(ίtjMJ )exp

X eXp(/M2y_ 1 V2j-1 )du2j-1

isjDj )—ffexp(-itjU2j-\)η(x + v2j-\ej)
z π R R

RRRR

ij-iβj +v2Je
2)Qxp (i[u2j-\v2j-\ + u2jv2]\)du2]-\dv2j-idu2jdυ2j

Sjβj +tjej) - (x
RRRR

x η (x + ϋ 2 y _ i e, + ϋ2yβy) exp (ί(u2j-1

• {v2j-\e) + υ2je
2j))du2j-\dυ2j-χdu2jdυ2j.
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Suppose that s = (s\, ..., sn) and t = (t\, . . ., tn). By the commutation relation (2)
and the above identity, we have

11 expysji
/=1

- e~is ' H2πΓn ί f e
— e \Δl1) J J e

ι(As+Bt) ' (X+Ju) η(x + i*)*1'" * vdudv .

Here, A, B : Rw —>• R2w are the linear transformations defined by the formulas

and

If b e

. . . , sn) = ( J I , 0 , . . . , J Π , 0 )

, . . ., ίΛ) = (0, ίi, . . ., 0, ίn) .

2 n ) \ then

,t)U exp(wyDJ)exp (lϊyZ^

R2«R2« l_R"R"

In other words, if we define

(Φb)(x) = J fb(s,t)eιaAs+Bt) ' x~s ' t]dsdt ,

then

//6(J,OΠ exp(iSjDj)exp(itjDj)dsdt = W%h .

Suppose now that α,fe e ^(Rn x Rw). Then, by (1) and (2), we have

vv{Φa)xj(Φb) — π Φaπ Φb

= JJJJa(s',t')b(s,t)

x exp (ίSjDj) exp (itjDJ ds'dt'dsdt

= ffffa(s',t')b(s,t) π

x ex p(itj£ή) ds'dt'dsdt

ιmφi'ms't)e2is"
exp (i(t'j + ίy )DJ) ds'dt'dsdt

i(ή + Sj)D))

(3)
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= Jf\ffa(sf

9t')b(s-s'9t-t')<?*s-s') ' ''ds'dλ
RnRn LRnR« J

\ n 1
x Π e x P (isjDj) e x P (itjDj) dsdt

L/=i J
Γ Λ 1 2 1

= J J (a * 6)(5 , O i l e x P yiSjDj) e x P vh^j) " 5 ' " ̂  J

where

(a * b)(s9t) = f ja(sfjf)b(s -s\t- ί > 2 z W ) " ''ds'dt1 .
RnRn

Hence

(Φa) xj (Φb) = Φ(a * b) .

We will now establish the relations between Wj and the Weyl operators on

L2(Rn). Following [R], we define a Weyl operator on L2(Rn) with symbol function
α e ^(Rn x Rn) by the formula

(?PαO(*) = (2πΓnffa(x + ^ , 1 ; ) ^ - ^ * Όξ{y)dydυ
RnRn

for ξ G ̂ ( R n ) . Also recall that for oc9β e S?(Rn x Rn% the Weyl symbol calculus
α x«/^ is defined by the relation

This relation is still valid if one of α, β is only a function in A°°.

It follows from (1) and (2) that there is a unitary operator 7 : L 2 ( R 2 w ) ^

L2(R2n) such that

7DJ7* = 2M) and 7D?7* = d) . (4)

(Because of (2), one only needs to prove this in the case n — 1. But in this case
such a 7 can be constructed explicitly. See, for example, [X].) We can identify Mj
with rrij 0 1 and δj with <i7 (g) 1, where my and dj are the operators

u ...9xn) =xjf(x\, . . . , x « )

a n d
d

(djf)(xu ...,xn) = -i—f(χu ...,χn)
j

on L2(Rn). Thus, we have shown that for any b e ^(Rn x R"),

YWφb?* = \jfKs>t)fl exp (2isjmj)Qχp(itjdj)dsdt\ 0 1. (5)

Since

6(j,0 = exp (is 0(2πΓΛ//(Φέ)(^M+5t;)e- l [ 5 ' M+ί * v]dudv ,
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for any ξ e ^ ( R w ) , we have

(2isjmj) exp (itjdj )dsdt \ξ)(x)

= J fb(s,t)e2is'xξ(x + t)dsdt
RnRn

= (2π)~n J Je2is ' x[eis ' ι

x / /(Φb)(Au + Bv)e~i[s ' u+t ' v]dudv]ξ(x + t)dsdt

= (2πynf f f f(Φb)(Au + Bυ)e~ι[s " («-*-'>+('-*) ' v^ξ{t)dudvdsdt
RnRnRnRn

= (2πynjJ J J(Φb)(A(u + t +x) + Bv)e~i[s ' u+{t~x) ' v]ξ(t)dudvdsdt
RnRnRnRn

= (2πyn J J(Φb)(A(t + x) + Bv)ei{χ-ι) ' vξ(t)dvdt
RnRn

= (2n)~n J J(TΦb)(t +*, ϋy ( j c-° " vξ(t)dvdt .

RnRn

Here, we use the notation

M + Bυ), u, v e Rn ,
for functions F defined on R2w (x). Hence it follows from this calculation and (5)

that

^ l (6)

It follows from (4) and the commutation relations (1) and (2) that, for any a,b G
n x R"),

Ψ(TΦa)xw(TΦb)

= JJJfa(s',t')b(s,t)
RnRnRnRn

Γ n

x γ\ exp (2isfmj) exp (zYjί/y ) exp (2isjmj) exp O'ί/rf/) ds'dt'dsdt

Γ /I ]

= f f(a* b)(s, t)\ Π exp (2wy/wy ) exp (#,-</,-) rf srfί
R«R« Ly=l J

That is,

β) xw(TΦb) = T[(Φa) xj (Φb)] .

1 It may seem that the introduction of T does nothing but create inconvenience. After all, why
don't we simply identify F{u,υ) and F(Au + Bυ)Ί What is implicit in such an identification of
functions, however, is an identification of Rn x Rn with R2n through a rearrangement of coordi-
nates. There are (2n)\ ways to do so. The presence of T serves as a reminder of our particular
rearrangement of coordinates which was actually dictated by the choice of the operator J.
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I f/ eA°° (technically, elements of A°° are functions on R2w, not functions of
the form F(u,υ), u, v £ Rn\ then for any b £ 6f(Rn x Rw), we also have

(Tf)xw(TΦb) = T[fxj(Φb)]

and
x^β{Tf)χw{TΦb) =

Hence it follows from (6) that

YW°fW°ΦbY* = YW°fxΛΦb)Y* =

for any / £ Λ°° and b £ ^ ( R w x RΛ). By choosing a sequence {&„} C ό?(Rn x R")
such that {ΨτΦbn} converges to the identity operator strongly, we may conclude that

YWJY* = ΨTf®l .

It follows from RieffeΓs construction that {Lf : / £ A00} is dense in Aj. Hence the
map

πj : Lf ^ Ψτf9 feA°°,

extends to a C*-algebra isomorphism from Aj into B(L2(Rn)) .
For / a bounded function (or matrix of such functions) on Cn, we recall that

the Bargmann isometry [B; F, p. 40; BC3]

B : L2(Rn,dv) -> H2(C\dμ)

has the property that
B-λTfB=Wβ ,

where

0(&JC) = / ( * - /O = -n ff(w)e-l»-<χ-W2dΌ(w), x, ξe Rn ,

is defined to be the solution of the heat equation at time t = 1/4 with initial-value
/ , and Wβ is the Weyl operator on L2(Rn,dυ) given by

(Wβg)(x) = (2πyn

[F, p. 141; BC3],
The definition of the Weyl operator Wβ with the symbol function β is slightly

different from the definition of Ψβ. However the two sets of pseudo-differential op-
erators {Ψrf ' f ^ ^°°} a n d \Wτf : / ^ ^°°} a r ^ identical and, therefore, generate
the same C*-algebra. This fact can be seen from a transformation on A. For any λ >
0, define the linear operator Sχ on R2n by the formula Sχ(x\9...,xn,xn+\,...,X2n) —
(*„+!,... ,X2/7, λx\,...9 λxn). Also define (5;,*/)(x) = f(Sχx) for / £ A. If we denote
(«z(/))(^) = / ( * + ZX t h e n w e h a v e Uz(Sx*f) = Sλ*otsλZ(f). Hence if z ^ α z (/)
is an ̂ 4-valued C°°-function, then so are z H-» α ^ z ( / ) and z H-> Sχ*ocsλz(f) In other
words, the operator SΆ* maps 4̂°° to itself. For any / £ ̂ 4°°, we have

and Wjs^f = Ψτf (7)
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Let / denote the ideal Co(R2n) in A. We have an exact sequence

0->I ->A-*C(S2n~l)->0 .

It is clear that / is invariant under the action of R2" and that the induced action of
R2" on the quotient algebra C(S2n~ι) is trivial. Hence by Theorem 7.7 of [R], we
have an induced exact sequence

0 -> Ij -> Aj -> C(S2n~ι)-+ 0 .

If π denotes the quotient map from Aj onto C(S2n~ι), then, by RieffeΓs construction,

— /radial

for every f E A°°. We have shown that πj is an isomorphism from Aj onto the C*-
algebra generated by {ΨV/ : f eA°°}. Because πj(Lf+Ij) = 5FV/ + π/(//), we
see that the image of Ψjf under the quotient map πj(Aj) —> πj(Aj)/πj(Ij) is also
/radial for every f eA°°.

The ideal πj(Ij), which is generated by {̂ V/ : f Gl°°}, is the collection of
compact operators on L2(Rn). In fact, if α € ^(Rn x R"), then obviously Ψa is a
compact operator. From this it is easy to see that πj(Ij) at least contains all the
compact operators on Z2(R"). Now, because Ij is the completion of/00 with respect
to the J-norm, to establish that every operator in nj(Ij) is compact, it suffices to
verify that {Lf.fe ^ ( R 2 " ) } is dense in {Lf : / e I00}. For this purpose, we fix
a C°°-function 0 ^ η <; 1 on [0,oo) such that η - 1 on [0,1] and such that η = 0
on [2,oo). For each k G Z+, define ηk(t) = 1 if \t\ ^ * and ̂ ( 0 = ιy(|ί| - it) if
\t\ > k. Let

Then straightforward differentiation shows that for any / G I°°, any mixed partial
derivative of (1 — ξk)f of arbitrary order tends to zero uniformly on R2" as k —> oo.
By Proposition 4.10 of [R], this means

lim

Hence {L/ : / G ̂ ( R 2 n ) } is dense in {Lf : / G 7°°} and πj(Ij) consists of the
compact operators on L2(Rn).

4. Main Result

We have, for Rieffel's algebra Aj(R2n) discussed in Sect. 3,

Theorem 2. The C*-algebras Aj(R2n) and τ(B2w) are *-ίsomorphίc via ad F

] oad# o
usual, adf/ denotes the conjugation by U.

Proof. Recall that every element in τ(B2w) is the sum of a Toeplitz operator whose
symbol is continuous on B2n and a compact operator. We also recall that for / in
C(S2n-1),

β-ιT/B=WOίf ,
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where Wβ was defined earlier as was the Bargmann isometry B and

xf(ξ9x) = ft* ~ iξ)

We consider the C*-algebra WeylOS2""1) generated by the full algebra X of com-
pact operators on L2(Rn) and the operators

Using Theorem 1, it is not hard to check directly that conjugation by the unitary
operator

ι 2 2

implements an isomorphism from Wey^iS2""1) on L2(R") onto τ(B2n) on
H2(B2n).

In Sect. 3, we checked that RieffeΓs algebra Aj(R2n) is *-isomorphic via πj to
the C*-algebra πj(Aj(R2n)) on L2(Rn) generated by the operators

(ΨTyg)(x) = (2π)-"ff(Tγ)(x + y, ξ)e*χ-* ' ξg(y)dydζ ,
RnRn

where γ is in A°° with (uniform) radial limit function yradiai in C(S2n~ι). Moreover,
comparing [R] and Sect. 3, π(ΨTy) = y radial

Because α/ is convolution of/ with a Gaussian, it is easy to check that T~ιoc/
is in A°° of [R] for arbitrary / in C(S2n~ι). This fact was already observed for
n = 1 in [R]. Using Eq. (7) of Sect. 3 and the fact that

it is easy to check that Weyl^ 2 "" 1 ) = πj(Aj(R2n)). Hence, Aj{R2n) and τ(B2 n) are
*-isomorphic.

5. Problems and Remarks

It would be of some interest to know if other standard Toeplitz algebras arise as
strict deformation quantizations of commutative algebras. In this connection, we
should mention [BLU] where an "intrinsic" Toeplitz quantization on bounded sym-
metric domains is described following earlier work of [KL] and [C2]. The Toeplitz
quantization of [KL, C2], [BLU] satisfies a weaker version of the strict deformation
conditions required by [R].

Problem 1. Can the Toeplitz algebra on the poly disc, τ(D x D), be realized as a
strict deformation quantization of C(D x D),

While we have exhibited a *-isomorphism

μ : Aj(R2n) -> τ(B2 n) ,

it is not obvious precisely what elements of τ(B2n) are in μ{Aj°(R2n)}.

Problem 2. Can μ{Af(R2n)} be precisely identified?
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