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Abstract: A general model similar to R-matrix-type models for link invariants is
constructed. It contains all R-matrix invariants and is a generating function for
"universal" Vassiliev link invariants. This expression is simpler than Kontsevich's
expression for the same quantity, because it is defined combinatorially and does
not contain any integrals, except for an expression for "the universal Drinfeld's
associator."

1. Introduction

Vassiliev knot invariants were invented in attempts to construct some natural basis
for the space of all knot invariants (this space can be described as the cohomo-
logy space H° (Embeddings: Sι —• R3)). For this purpose Vassiliev used certain
stratification of the discriminant set of nonembeddings: Sι —» R3 and some finite-
dimensional approximations of the space of all knots. (We recommend the reader
[Val, Va2] and especially [BN1] for a very detailed introduction to the theory of
Vassiliev invariants).

Although the question whether Vassiliev knot invariants can distinguish any
two knots is still open, this language seems to be the most appropriate in studying
classical knot and link invariants.

All known classical knot and link invariants: Alexander polynomial, Jones poly-
nomial, Kauffman polynomial, HOMFLY polynomial and all their generalizations,
as well as the Milnor //-invariants (see [Ro, Co, Jol, Kal, Ka2, HOMFLY, Tul,
Tu2, Rel, RT, Mil, Mi2] for a precise definitions), can be incorporated into this
scheme (see [BL, Lil, Li2, BN5]).

The space of Vassiliev knot invariants of fixed degree n (divided by the space of
invariants of degree n — 1) has a purely combinatorial description. It is isomorphic
to a certain linear subspace in the space of functions on the set of "Vassiliev [«]-
diagrams" (or combinatorial types of n pairs of points of Sι). The linear relations,
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defining this subspace in the space of all functions on the set of "Vassiliev [n]-
diagrams" were first written explicitly by Birman and Lin [BL]. The fact, that the
set of relations written in [BL] is complete and there are no extra relations, was
proved by Kontsevich [Kol].

To prove the isomorphism between the space of Vassiliev knot invariants of
degree n (divided by the space of invariants of degree n — 1) and the linear space
F*, defined purely combinatorially, Kontsevich used an explicit integral presentation
of "the universal Vassiliev invariant of degree w." This "universal invariant" /„ takes
values in the linear space Fn, dual to F*.

The space Fn has another very nice description in terms of Feynman diagrams
of perturbative Chern-Simons theory [BN2]. The graded linear space F = ΘnFn

admits a Hopf algebra structure [Kol, BN3] (Kontsevich Hopf algebra). The space
of primitive elements in this Hopf algebra is generated by connected Feynman
diagrams [Pi2].

The generating function / = Σ ^ o hnln of "the universal Vassiliev invariants
of degree w" gives us "the universal Vassiliev invariant" / taking its values in
Kontsevich Hopf algebra F. Here h is a formal parameter, In(K) is a certain n-ϊo\ά
integral over the knot K (Kontsevich integral [Kol, Ar2]). At the moment nobody
is able to calculate explicitly I(K) for any non-trivial knot K.

The aim of the present paper is to give a simpler expression for this quantity,
which can be calculated explicitly to all orders in h if one can calculate "the uni-
versal Drinfeld associator" [Drl]. This expression models the state sum expression
for knot polynomials Pg,v(q±ι) (here q = eh) constructed from a simple Lie algebra
g and its irreducible representation V (see [Rel, Tul, Jo2] for an explicit form of
this state sum expression).

The connection between Pgy(q±x) and Vassiliev knot invariants was found in
the most general form by Lin [Lil]: If Pgy(h) = Y^L^Pgy^ then Pg,v,n is Vas-
siliev invariant of degree n. The explicit state sum expression for Pg,v,n £ Fn was
deduced in [Pil].

The question is, whether it is possible to forget about the Lie algebra g and the
representation V and to write the "universal" state sum expression P = X ^ o hnPn

with values in Kontsevich Hopf algebra F.
There are three ways to do this. The first way is to use perturbative Chern-

Somons theory as in [Kol, BN3] (see also [AS] and [GMM]). The second way
(Kontsevich integrals [Kol]) is to use the perturbative expansion of the monodromy
of the KZ-equation found by Kontsevich. The third way (combinatorial) is presented
here. Our approach, unlike the first two, does not use complicated integrals.

The paper is organized as follows:
In Sect. 2 the basic facts about Vassiliev link invariants are presented.
In Sect. 3 Drinfeld's construction of "the universal prounipotent" braid group

representation is presented.
In Sect. 4 the F-valued "Markov trace" in this representation is constructed and

the fact that it is a generating function for "universal Vassiliev link invariants"
is proved. A multiplicative property of this "universal invariant" with respect to
connected sums is proved. A generalization for string link invariants is also given.

In Sect. 5 some examples of calculations with out formula are given.
In Sect. 6 some open problems are discussed.
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2. Preliminaries

Definition. We shall call a trivalent graph consisting of several oriented circles
{called Wilson lines) and several dashed lines {called propagators) a CS-diagram.

The propagators and Wilson loops are allowed to meet in two types of vertices:
one type (called i?2#-vertices) in which a propagator ends on one of the Wilson
lines; and another type (called g3-vertices) connecting three propagators.

We assume, that our graph has no connected components which contain only
dashed lines.

We also assume, that one of two possible cyclic orders of propagators meeting
in any vertex is specified.

Each CS-diagram can be presented by its plane projection (see Fig. 1 as an
example).

We assume, that the counterclockwise cyclic degree in each vertex is fixed. For
instance, the cyclic orders of propagators on graphs in Fig. 2a and Fig. 2b are
different.

To avoid confusion with the cyclic order in R2 ̂ -vertices, let us make the fol-
lowing convention: We assume that besides the cyclic order in any i?2#-vertex the
actual order of the three lines incident to this vertex is fixed. The first line in this
order is the dashed line, the second line is "the ingoing" solid line and the third
one is "the outgoing" solid line (see Fig. 2c as an example).

So, we have two different cyclic orders in any 7?2#-vertex one which came from
the plane projection of the diagram and another which came from the actual order
of the lines described above.

If these two cyclic orders agree then we will say that the given R2 ̂ -vertex has a
positive orientation. If they do not agree then we will say that the given R2g-vertex
has a negative orientation.

Note that the positive-oriented R2g-vertex becomes negative-oriented if we will
change orientation of the Wilson line on which this i?2g-vertex lies.

Let K be some ring Z C K C C.

Fig.l.

Fig.2a-2b.
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Fig.2c-2d.
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Definition. A function C : (CS-diagrams) —> K is called a weight system //

C(S) = C(T) - C(U), (2.1)

where S, Γ, U are CS-diagrams, identical everywhere except in some small ball,
where they look as in Fig. 3.

Definition. Following Vassiliev [Val, Val] and Birman-Lin [BL] we shall call a
CS'diagram with 2n R2g-vertices and without g3-vertices a Vassiliev [/t]-diagram,
and a CS-diagram with 2n2R2g-vertices and with one g3-vertex a Vassiliev («}-
diagram-(«) -solid.

Let D be Vassiliev (w)-diagram. Let z\,z2 and z3 be three i?2#-vertices connected
by propagators to (the unique) g3-vertex in D. Let us define Vassiliev [«]-diagrams
A + , A _ as Vassiliev [^-diagrams, obtained from D by the local procedure shown
in Fig. 4.

(The Vassiliev [«]-diagrams D2+ ,D2-,Di+,Di- can be defined in the same way
by changing z\ to z2 and to z3 respectively.)

Fig. 4.
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Definition. [Bl,Val,Va2,Kol].

Let Wfa £ N) be a free K-module, generated by the set of s-Wilson-loop Vas-
siliev [ft]-diagrams. (We assume that if two Vassiliev diagrams differ from each
other by the cyclic order in one of their vertices, then the corresponding elements
of the module Ws

n will differ by a minus sign. The same convention will be for
more general CS-diagrams.) Let Fs

n be the quotient of W% by the ideal, generated
by the relations

Dι+- Dx = D2+- D2- (2.2)

(D runs over Vassiliev (n)-diagrams).

Let us denote Fs

0 =K;FS = ®nF
s

n, and let us identify I e K = Fs

0 with (the
unique) s-Wilson-loop Vassiliev [0]-diagram.

Theorem 2.1. [Arl,BNl9Ko2].

AΓ-module Fs

n is isomorphic to the quotient of the free module Ds

n, generated by
s-Wilsons-loop CS-diagrams with 2n vertices by the ideal, generated by relations
(2.3)-(2.5):

S = T-U, (2.3)

where S, T and U are CS-diagrams, identical everywhere except inside some small
ball, where they look as in Fig. 3.

I = H-X, (2.4)

where /, H and X are CS-diagrams, identical everywhere except inside some small
ball, where they look as in Fig. 5

Y + Z = 0 , (2.5A)

where Y and Z are GS-diagrams, identical everywhere except some small ball,
where they look as in Figs. 2a and 2b respectively.

Y + Z = 0 , (2.5B)

where Y and Z are CS-diagrams, identical everywhere except some small ball,
where they look as in Figs. 2c and 2d respectively.

In fact Fx can be equipped with a structure of a graded Hopf algebra [Kol] and
we shall call it the Kontsevich Hopf algebra. When it will not lead to confusion,
we will omit the superscript 1 and write F — Fx.

The Kontsevich Hopf algebra F acts on Fs (taking the connected sum along
the Wilson loop) in s different mutually commuting ways [BN5], thus we have a
graded action of F®s on Fs'.

i i i

\ /
\ /

H

Fig. 5.
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Let A = φ w An be the quotient of the Kontsevich algebra F = 0 W F\ by the
ideal generated by F\. (The ^-module Fi has rank one and is generated by a single
Vassiliev [l]-diagram. Let us denote this diagram by t G F\.) Since the element t
is primitive, A is also a Hopf algebra.

It is well-known [Kol] that the space A* dual to An is canonically isomorphic
to the space Vn of Vassiliev knot invariants of degree n factored by the space
Vn-\. The map VnjVn-\ —> A* is the evaluation of a knot invariant on singular
embeddings with n double points [Val, Va2, BL] which gives a linear function

The inverse map /„ : A* —> Vn —> VnjVn-\ was first constructed in [Kol] and is
called "Kontsevich integral." The aim of this paper is to construct (formally another)
inverse map Pn : A* —> Vn which has a simple combinatorial description.

Definition. Let Xm(m e N) be the graded completion of Lie algebra @nX™ (here
the subscript n stands for the grading), wiith homogenous generators tij'
(1 ^ / < j ^ m) of degree 1 and with relations

[tiJ;tkl]=O

[tίJ;tik
= 0 .

(2.6A)

(2.6B)

The universal enveloping algebra UXm of this Lie algebra is the prounipotent
completion of the group algebra of the pure braid group (see [K2] and references
therein). Kohno [Kl] used this algebra in order to write the most general form of
the Knizhnik-Zamolodchikov equation [KZ],

ψ (2.7)

where φ is a UXm-valued meromorphic function on (Cm diagonals), h = £-..
Relations (2.6) are imposed in degree to preserve the zero-curvature condition

Λl

z, - Zj' dzk

(2.8)

which allows us to construct monodromy representation of pure braid group in the
group exp(Xm) C UXm. This representation is nonlocal and its matrix elements are
certain hypergeometric-type integrals (see [Ao] and [K2] for more detailed exposi-
tion). In our approach we don't use this complicated technique.

Algebra UXm can be embedded in the algebra A™z of Feynman diagrams (see
[BN1, BN5]) of the form depicted in Fig. 6.

Fig. 6.
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1 i j m

Fig. 7.

These diagrams are defined in the same way as usual for GS-diagrams, but they
have m upward pointed Wilson lines instead of several Wilson loops. Here the
generator tιj is presented by the diagram on Fig. 7.

A diagram with 2n vertices is siad to be of degree n. The multiplication of
two diagrams in the algebra A™z is just putting the second diagram over the first
one. It is easy to see that the grading and multiplication in Afz defined above are
compatible with those in UXm.

3. Explanations of DrinfelcΓs Construction

Let K be come filed. Let φ(A,B) be some formal power series in two non-
commuting variables A and B with coefficients in K and let

Φ = φ(htu,ht23) eUX3 . (3.1)

Definition. A formal noncommutatiυe power series φ(A,B) will be called an
associator if log(φ(A,B)) belongs to the graded completion of the free Lie al-
gebra with two generators A and B and if Eqs. (3.2)-(3.5) hold:

φ{htn,h{P + t24))φ(h(t12 + tu)M34)

= φ(ht2\hti4)φ(h{tλ2 + tu),h(t24 + t34))φ{htu,ht23) € exp (X4), (3.2)

= Φ 3 1 2 ^ ( Φ 1 3 V ^ Φ e exp (X3),

e exp(X3),

φ321 =

(3.3)

(3.4)

(3.5)

UX3 ,

Here Φijk (ijk is a permutation of 123) is the image of Φ G UX3 under auto-
morphism

sιjk : UX

which maps t n to tiJ; t u to ^ and t23 to /Λ

Theorem 3.1 (Drinfeld). Such an "associator" exists for any field K such that
QCKCC.

We will give here an explicit construction of associator for K = C due to Drin-
feld. This construction will not be used later. We'll need for our purposes only
formal properties (3.2)-(3.5) of "associator" φ(A,B) but not an explicit form of
this "associator."



S. Piunikhin

Following Drinfeld [Dl], let us write a differential equation

dx \x x — 1

Let G\ and G2 be solutions of (3.6) defined when 0 < x < 1 with the asymp-
totic behavior

and

Then

G\ = G2φkz (3.7)

for some formal noncommutative power series φkx.

Theorem 3.2 (Drinfeld). φk is an "associator."

Everywhere below we will fix some choice of "associatof φ once and for all
(for instance, let us put φ — φkz). All our constructions will work for any choice
of φ.

We will need for our purposes to define a semi-direct product Ym of the group
algebra KSm of the symmetric group Sm, and A™z as follows: Ym is generated as a
linear space by pairs (x,s), where x is a diagram from A^; s £ Sm. Multiplication
on Ym is defined as follows:

Here we suppose that the symmetric group acts on A™z by permutations of
strings. The algebra Ym has an important subgroup

Let σz(l ^ 1 ^ m — 1) be the standard generators of the braid group Bm satis-
fying relations

σiGj = OjOi if(i-j) > 1 , (3.8)

and
GiGi+\Gi = Oi+\OiOi+i (3.9)

(if it will not lead to confusion, we'll denote the elementary transpositions Sj G Sm

by the same symbols as the braid group generators).
Let us define a map p : Bm —> Gm C Ym (which we will later prove to be a

group homomorphism) as follows:

p ( σ i ) = ( έ τ £ ; * i ) , (3.10)

A ^ (3.Π)

if 1 < /.

This construction of the map p (which is actually a representation of the braid
group Bm into the algebra Ym) is due to Drinfeld (the second formula in the proof of
Proposition 5.1. of [Dr2]). It may be called "the universal prounipotent" braid group
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representation since the group Gm can be interpreted as a prounipotent completion
oϊBm.

We will prove in this section why p really gives us a braid group representation
since it was not explained in [Dr2] or anywhere else. Representation p constructed
above is a generalization of the braid group action on quasitensor category [Rel].

For the convenience of the reader let me give some conceptual explanation of
the origin of the Drinfeld's formulas (3.10) and (3.11). I will explain how one can
think about these formulas in such a way that it should be clear that they really
give us some braid group representation.

To construct representation of the braid group Bm using the machinery of the
quasitensor categories one has to choose some configuration of parentheses in the
(nonassociative) product of m symbols x\,...,xm. Each transition from one config-
uration of parentheses to another configuration of parentheses can be decomposed
(in a non-unique way) in the product of "the elementary transitions" of the form
(3.12) where only one pair of parentheses changes:

7 . x / _ 1 ) ) . . . . (3.12)

Let us associate to "the elementary transition" (3.12) "the elementary transition
operator" Φψi

k-\ /-I

s=ι p=j p=j r=k

Then, to any transition from one configuration of parentheses to another config-
uration of parentheses we can associate "transition operator" Φtrans by functoriality.
The "pentagon identity" (3.2) insures that Φ t r a n s is independent of the choice of
decomposition in the product of the elementary transitions.

Then, in degree to define the action of the braid group generator sl9 we should:

a) change the configuration of parentheses in degree to have ... (x/xz+i)... inside
one pair of parentheses (this gives us some "transition operator" Φtrans )>

b) apply the Drinfeld's R-matrix ( e ^ ~ ; s z ) , and
c) return back to our initial configuration of parentheses (this gives us an inverse

operator to the operator Φtrans)
Formulas (3.10) and (3.11) correspond to one particular choice of configuration

of parentheses, namely, (... ((X1X2).. .)xm_i )xm) but any other choice is possible as
well and gives us an equivalent representation with the transition operator between
these two configurations of parentheses as an intertwiner. (If it will not lead to con-
fusion, we'll denote all "transition operators" corresponding to transitions between
different configurations of parentheses, by the same gymbol Φtrans )

Lemma 3.3. If (ί - j) > 1 then Eqs. (3.14)-(3.17) hold:

(3.14)

(3.15)

(3.16)

[<

φ(

Φ

M+l.fΛ/ +Π

'h%r
\ 5=1

ht

= 0

/ ,/+l

>

) .

)]

= 0,

= 0,
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^ = 0 . (3.17)

Proof Relations (3.14) and (3.15) follow directly from (2.6).

Relation (3.16) follows from the fact that [tJJ+ι;hΣ!sl\tsJ] = 0, from (3.14)
and from the Leibnitz rule.

Relation (3.17) follows from (3.14), (3.15), (3.16), from the fact that

ΣH = 0 (3.18)
P=I J

and from the Leibnitz rule.
To prove (3.18) it is sufficient to notice that [Σι

sZ\ tsj;tpj] = 0 for any p and
then take the sum over the index p. The lemma is proved.

Lemma 3.4. If (i — j) > 1 then:

(3.19)

Proof. It follows immediately from the definition of p given by (3.10) and (3.11),
and from Lemma 3.3.

Lemma 3.5.
p(σλ)p(σ2)ρ(σx) = p(σ2)p(σλ)p(σ2). (3.20)

Proof If we use the definition of p given by (3.10) and (3.11), then (3.20) can be
rewritten in the following form:

φl23^-l^-^-φl23^^-^φ312^-l^^-φ321 (3.20A)

Using (3.5) several times and multiplying both the l.h.s and the r.h.s of (3.20A)
by Φ on the right, we obtain another equivalent form of (3.20):

V . (3.20B)

htn htn+hti3

Using (3.3) we see that the l.h.s of (3.20B) is equal to {eT\s\)(e 2 l)

and the r.h.s of (3.20B) is equal to {/* 2ht l) {<rr\s\).
The equality of these two expressions follows from (2.6B) which proves the

lemma.
Let Φf = φ{h Yΐplx tp4 + tP^λ htUi+1 + hti+u+2)φ(h Σΐll t**\htυ+ι).

Lemma 3.6. Equations (3.21) and (3.22) hold:

' I * * ) , (3.21)

ΦiP(σi+ι)Φ~ι = φ~x (htui+λ;htι+ι'ι+2) (e~^ ;si+\)φ(hthl+ι;htι+u+2) . (3.22)
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Proof. Since

i-l \ "I

Σtp4 + tpJ+ι ht^2 + htι+x^2) = 0 ,

then Φ~ι(e~~ϊ~;Si)Φi is equal to the r.h.s of (3.11). Thus,

which is equivalent to (3.21)
To prove (3.22) let us use "the pentagon identity" (3.2) in the form

htι+u+2)φ(

f ) , (3.23)

or, equivalently

, (3.23A)

Equation (3.23A) implies that

Φ~ιφ~ι (A^"+1 Aί i + 1^+ 2) ( e ^ ^ si+ι)φ(htι>i+ι; hti+ι>i+2)Φz

= Φ~ι

5=1 / \ r=l

— ;si+ι)φ(h±f^^
\ r=\

-1 Λ
(3.24)

\ 5=1 /

Since
Γ LA+U+2 ί i . . . . . . Λ l

then the r.h.s of (3.24) can be rewritten in the form

^ + 1 1 2 ) (3-24A)

But the expression (3.24A) is equal to p(σi+\) which implies

ΦΓιφ-ι(hti' +i;hti+i'i+2)(el^Ψ1;si+ι)φ{ht^;hti+x'ί+2)Φi = p(σi+ι). (3.25)

But (3.25) is equivalent to (3.22). The lemma is proved.
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Lemma 3.7.

p(σ, )p(σ, +i)p(σι) = p(σ; + i )p(σ/)p(σ m ) . (3.26)

Proof. Equations (3.21) and (3.22) reduce the statement of the lemma to the case
i — 1. But this case was already proved in Lemma 3.5. The lemma is proved.

4. Taking the Trace

It is well-known (see, for instance, [Bi]) that any oriented ^-component link L
can be presented as a closed braid. Two braids b\ G Bm\ and b2 6 Bm2 give under
closure the same link iff they can be obtained from each other by a finite sequence
of Markov moves of two types:

b2b, £Bm (4.1)

and

beBmπ bσ±ι e Bm+ι . (4.2)

Thus, any function / : UmBm —• USF
S gives rise to some link invariant iff / takes

equal values on braids equivalent with respect to (4.1) and (4.2).
Any framed link also can be presented as a closed braid. The analogues of

Markov moves for braids which give under closure the same framed link (with
blackboard framing [Tu, Pi3, Pi4]) can also be described explicitly (see [Re2]). Here
we give sufficient conditions (4.1 A) and (4.2A) for a function / : UmBm —» USF

S

to descend to some framed link invariant:

ι) (bι;b2eBm), (

and

f(bs±ι)=q±ι*f(b) beBm. (4.2A)

Here * is the action of F on Fs (on the sth component), q — e~i G F, t is the
standard generator in F\ (see Fig. 8).

Let us fix a configuration of parentheses in the (nonassociative) product of 2m
symbols x\,...,xm,ym,...,y\ as follows:

((χι((χ2(. ((χm-ι(χmym))ym-ι)...))y2))yι) (4.3)

Fig. 8.
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Let us define, using this configuration of parentheses, formulas (3.10)—(3.13)
and remarks following them, a representation β : bm —> G2m as the restriction to
Bm C B2m of the representation

Φtran P Φ t r 52/w

where Φtrans is the transition operator between "the standard" configuration of paren-
theses on the set of In elements and the configuration (4.3).

Now let us suppose that the first m Wilson lines in any "diagram" (x,s) G Y2m

are oriented "up" and the second m Wilson lines are oriented "down." Then for any
m G N let us consider a map τ : Y2m —> U™=ιF

s of graded linear spaces, defined as
follows:

For any diagram (x,s) G Y2m we have Am free ends on it. Let us mark each of
these free ends with a natural number from 1 to m as it is shown on Fig. 9a.

Then let us connect by (directed) line each pair of free ends on the top of the
diagram with the same markings, and let us do the same on the bottom of the
diagram (see Fig. 9b as an example. In this example m — 3)

The result of this procedure will be, by definition, τ(x,5 ).
If it will not lead to confusion, we will not distinguish braids in Bm and their

images in Y2m.
Let b\ G Bmχ b2 G Bmi be two braids, let b2 give a knot under closure, and let

(b\ * b2) G i?m i + W 2_i be the braid, obtained from b\ and b2 by the procedure shown
on Fig. 10.

s(l) s(2) s(m) m 2 1

1 2 rh m

Fig. 9a.

—

\ \ \

Fig. 9b.
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1 ml ml+Wl

Fig. 10.

J — E

Fig. 11.

Fig. 12.

Theorem 4.1. The following ίdentίtίy holds:

τ(bx *b2) = τ(62)*τ(Z>i)

where * is the action of F on Fs {on the sth component ).

(4.4)

Proof Geometrically obvious from (4.3), Fig. 9b and Fig. 10.

Let q = e T and let μ e F be the image of associator Φ £ exp (X3) C UX3

under "the closure map" shown on Fig. 11.

Remark. If Φ = Φkz, the μ is equal to the value of the generating function of
Kontsevich integrals on the Morse knot shown on Fig. 12.

Lemma 4.2. The identity (4.5) shown on Fig. 13 holds:

Proof. It follows from (3.3) that the l.h.s of (4.5) is equal to the expression shown
on Fig. 14

But due to our sign convention (change of the cyclic order in any vertex implies
the change of sign) the following formula (4.6) holds

The formula (4.6) implies that the expression on Fig. 14 is equal to identity
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\

\

(4.5)

Fig. 13.

n
Fig. 14.

(4.6)

Fig. 15.

Lemma 4.3. Let s\ be the standard generator of B2. Then τ(sfι) = q±ιμ,

We give here a pictorial proof (see Fig. 16):
The first identity in Fig. 16 follows from Lemma 4.2.
Let P :Bm^ USF

S be equal to (μ)ι~mτ : Bm -> USF
S.

Lemma 4.4. The map P is a "Markov trace", i.e., it satisfies (4.1 A) and (4.2A).

Property (4.1 A) is geometrically obvious. Property (4.2A) follows from Theorem
4.1 and from Lemma 4.3.

Let P above be defined framed link invariant. Let us consider its perturbative
expansion : P = ΣZohnpn

Lemma 4.5. Pn is Fs

n-valued Vassiliev framed link invariant of degree n.

Proof. Let b G Bm be a braid and let p(b) = ΣZoχn(b)hn C Y2m.

Then xn(b) C Y2m has degree n in Y2m (since this fact is true for the generators
σι G Bm we can deduce it, for any b G Bm). Thus, for any framed oriented link
LPn(L) also has degree n, which implies that Pn(L) G Fs

n c Fs.

Let L be a singular embedding of (Sι)s into R3 with ( « + 1) double crossing
points. Then L can be presented as a closure of a "generalized braid" [Pil, Ba]
(braid where in some places the generators σz are changed to the generators aτ with
double crossing on i place. The generators at are depicted on Fig. 17).
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= exp(4f)

Fig. 16.

The representation p : Bm —> Ym can be extended to these "generalized braids"
by the formula

{aι) = p{θi)- p{σi
.-!> (4.8)

(and the representation β : Bm —> Y2m can also be extended to "the generalized
braids" by the same formula).

The formulas (4.8), (3.10) and (3.11) imply that

htn

and

P( ' . ) =

ρ(a{)= ( 2 sinh

2 sinh

2 9K (4.9)

(4.10)

if 1 < i.
Thus we have shown that p(αz) are divisible by h in Y2m ® C[h]. This fact

implies, that β(b) is divisible by hn+ι for any "generalized braid" b G Bm with
{n -h 1) double crossing points.

Thus P ( I ) is divisible by hn+ι. This means that Pn(L) = 0 for any singular
embedding X with (« + 1) double crossing points, or, equivalently, that Pn is a
Vassiliev invariant of degree n. The result of the lemma follows.

Let V% be the space of Vassiliev invariants of framed ^-component links of order
n. Then there is a natural map /„ : V* —> Vs

njV
s

n_x -> (F%)*, defined as follows: Let
v be some Vassiliev invariant of degree n and let D be Vassiliev [n]-diagram. Then

(Pn(v);D) = (v;L(D)), (4.11)

where L(D) is some singular embedding (Sι)s —> R3 with n double crossing
points for which the underlying configuration of n points on (Sι)s is given by the
diagram D.

Theorem 4.6. The map (Pn;...) : (Fs

n)* —> Vs

n is left inverse to fn, and differs
from its right inverse on some Vassiliev invariant of degree n—\.
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Proof It is sufficient to prove that for any singular embedding L from (Sι )s to R3

with precisely n double points the following equation (4.12) holds:

Pn(L)=D(L)9 (4.12)

Here D(L) is a CS-diagram with n propagators which join those points on (S 1) 5,
which are identified under L.

At this point it is time to mention that we need to specify cyclic orders in all
Rsg-vertices of the diagram D(L). Different cyclic orderings of vertices will lead to
the (possible) change of the overall sign before the diagram D(L).

The correct choice will be to take the s disjoint circles on the plane, to join n
pairs of vertices according to combinatorics of the singular embedding L and then
to take the overall minus sign before the diagram.

One can check that the above prescription can be deduced from the closed braid
presentation of the link diagram.

Our sign conventions (corresponding to positive or negative cyclic order in R2g-
vertices is different from the sign conventions used by Kontsevich [Kol].

Kontsevich used embedding of the knot in 3-space, decomposition of the 3-space
in the product of a complex plane C and a real line R and used sign convention
in i?20-vertices according to the sign of the scalar product of the tangent vector to
the knot and (the positive unit) tangent vector to the real line R.

By closer examination of both sign conventions, one can observe that they are
in fact equivalent.

Let us present L as a closure of some "generalized braid" b e Bm. Then β(b) is
product of some terms of the form

( e * ^ ; * , ) , (4.13)

Φtfan ' (4-14)

and
htUi+λ

(4.15)

There are precisely n terms of forms of the form (4.15).
Let us observe that the following statements hold:
A) the terms (4.13) and (4.14) have the form

1+hX (4.16)

for some X e Y2m\
B) μ±ι also has the form (4.16) for some X £ F; and
C) the terms (4.15) have the form

htUi+x +h2X (4.17)

for some X e Y2m.
From these facts we can deduce that the expression for the coefficient in hn in

perturbative expansion of β(b) consists of the single term. This term is the product
of n terms of the form (4.15). This fact implies that Pn(L) = D(L), as desired. The
theorem is proved.

Kontsevich Hopf algebra F has a (graded) quotient A = F/F\F. then A* is
canonically identified with the space of Vassiliev unframed knot invariants of degree
n factored by the space of invariants of degree n — 1. In the basis of Vassiliev
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[n]-diagrams in Fn the projector Pr : Fn —> An can be described explicitly [Pi2],

Pr(D) = J2(-t)nJ2Di , (4.18)
k=0 I

where t is the generator of F\\ the second sum in (4.18) is taken over all [&]-
subdiagrams D of D. The quantity Pr(P) = Y^QhnPr(Pn) which is the map:
Knots —> F is the generating function for "universal" (order «)-Vassiliev knot invari-
ants and has the same formal properties as the generating function / = ] Γ ^ 0 hnln

of Kontsevich integrals [Kol].

Theorem 4.7. Let K\ and K2 be two oriented framed knots; K\ * K2 be their
connected sum. Then P(KY *K2) = P(K{)P(K2).

Proof. It follows immediately from Theorem 3.1 and the definition of P.

5. Examples and Applications

To illustrate how this algorithm works we will calculate the second Vassiliev in-
variant V2 for torus knots of type (2,2w + 1 ) . We will do this in two different ways:
in the classical way and in the way using the above-developed machinery.

Let us first recall that the space of Vassiliev knot invariants of order two which
vanish on the trivial knot is one-dimensional. The generator of this vector space
can be chosen as (the unique) Vassiliev knot invariant V2 of order two which
vanishes on the trivial knot and which takes value one on the trefoil knot [Val].
This invariant takes value one on any singular knot with two double transversal
crossings and with underlying Vassiliev [2]-diagram as shown on Fig. 18a. Let us
denote this Vassiliev [2]-diagram D".

The other (trivial) Vassiliev [2]-diagram is shown on Fig. 18b. Let us denote
this Vassiliev [2]-diagram D^.

The knot invariant V2 is equal to the classical Robertello knot invariant. Its
value on the given knot K is equal to the value of the second coefficient of the
Taylor expansion of the normalized Alexander polynomial of this knot [Ro].

Let T(p,q) be torus knot of type (p,q). The normalized Alexander polynomial
/ M —pq \ / i —i \

of this knot is well-known and is equal to - — - — ' ^ q—^-^-.
(t-2-t-)(t2-t-)

For the case of knot Γ(2, In + 1) the normalized Alexander polynomial is equal
/ 2/1+1 — In— 1 N

to -̂  j — — i — - . For the case of trefoil knot Γ(2, ±3), this number is equal to
(Γ2+t-)

one as expected.
The second derivative of this Laurent polynomial at t — 1 is equal to n(n + 1).

Thus, the value of the Robertello invariant on the knot T(2, In + 1) is equal to
n{n+\)

2 '

Now we are going to recover this classical formula using the machinery devel-
oped in the main body of our paper.

To calculate explicitly for any given knot all its Vassiliev invariants up to
order n orders using our method we should know an explicit expression for some
"associator" φ(hA,hB) (a formal power series satisfying (3.2) - (3.5)) up to order
n in h.
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Fig. 18a.

Fig. 18b.

Thus, to calculate the second order Vassiliev invariant we should know an ex-
plicit expression for "associator" φ(hΛ,hB) up to order two in h. This expression
is known [Drl, Dr2, BN6]. The formula for the associator is:

φ{hA,hB) = 1 + h 2 ( A B

4

B A ) + O(h4), (5.1 A)

φ~\hA,hB) = 1 -

Let us take our torus knot T(2,2n -f 1) as a closure of 2-briad b2n+\ with 2n + 1
over-crossings.

By our prescription from Sect. 4 we have

P(T(2,2n + 1)) = (τ(b2n+i))μ-1 . (5.2)

Then we should expand the r.h.s. of (5.1) in the formal power series in h and
take the coefficient in h2. This coefficient (let us call it P2(T(2,2n + 1))) will be
an element of 2-dimensional vector space F\ generated by Vassiliev [2]-diagrams
Dn

2 a n d D'2.

Since we are computing the Vassiliev invariant of unframed knots, the diagram
D2 is equal to zero and what we need to compute is the coefficient in D2 in the
expansion of P2(T(2,2n + 1)) in the basis {D^ D^} of the vector space F\. We
should prove that this coefficient is equal to n(jι

2

ι\

To do this it is sufficient to calculate τ(&2/i+i) and μ~ι up to order two in the
h expansion.

Let us cut the plane projection of T(2,2n + 1) (presented as a closed 2-braid)
by four horizontal lines into five "elementary" pieces (see Fig. 19).

Only three of these pieces "in the middle" will give a non-trivial contribution
to τ(Z?2n+i) The coefficient in h2 in τ(&2«+i) is equal to the sum of three terms
corresponding to these three pieces on Fig. 19.

1) Contribution from the associator at the bottom is equal to — ^D2 + ^D2

(we derived this expression from (5.1 A)).

2) Contribution from the exponent is equal to γ(^γ^) D2.
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Fig. 19.

3) Contribution from the (associator)~ι at the top is equal to —§4^2
(we derived this expression from (5.IB)).

Thus, we see that

τ(^2«+i) = 1 + h2\ — ID2 + — Z)2 •

But (5.IB) implies that

(5.3A)

(5.3B)

Combining (5.2) and (5.3) together we see that P2(T(2,2n+ 1)) is equal to

^ (plus the term corresponding to Dl

n which should be dropped) which
matches with the classical formula.

6. Discussions

At the moment, there are three different expressions for the universal Vassiliev
knot invariant, (the quantity, which satisfies conditions of theorems 4.3 and 4.6).
The first one is constructed from perturbative expansion of the monodromy of the
KZ-equation (Kontsevich integrals [Kol]), the second one is constructed from per-
turbative Chern-Simons theory [Kol, BN3] (see also [AS] and [GMM]). The third
construction is presented here (and also independently in [Car]).

The "universal Vassiliev invariant" in the form presented here can be evaluated
purely combinatorially for any particular link L, if we know an explicit expres-
sion for the "Drinfeld's associator" φkz as a formal noncommutative power series
in ht12 and ht23. An "iterated integral" expression for the "associator" was pro-
posed in [BN6], which proves immediately the equivalence of our approach with
Kontsevich's one (see also [LM] for some related results).

The analogous problem for "Kontsevich integrals" is much more complicated
and involves calculations with hypergeometric type integrals [TK, Ao] and with
multiple zeta-functions [Ko5]. In our approach only 2n such integrals (for each
n G N) should be calculated. The calculations in perturbative Chern-Simons theory
are even more complicated.

The above defined construction τ of the universal Vassiliev invariant of a link
which can be presented as a closure of braid has a straightforward generalization
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to an arbitrary link diagram, and even to a string link diagram [BN5]. Roughly

speaking, τ is a decomposition of the generating function of Kontsevich integrals

(before inserting the correction factor μι~m) in the product of "the elementary"

factors corresponding to the decomposition of the link diagram into "the elementary"

pieces.

Drinfeld's construction of the representation p : Bm —> Gm depends on the choice

of "associator" φ. We can construct explicitly only one such "associator" (namely,

φkz) but we would like construct explicitly "the universal g-valued Vassiliev in-

variant."

There are two possibilities how one could do this. The first one is to try to

calculate explictly Q-valued "associator" (which nobody knows how to do). The

second possibility is to prove that all these formally different "universal Vassiliev

invariants" (with different φ) are equal. We conjecture that it is so.
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