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Abstract. We consider a non-linear Stark effect as a model for localization and
symmetry breaking of a molecule in a gas. By a comparison method with respect
to the linear Stark effect, we prove the existence of level bifurcation and symmetry
breaking at a critical value of the gas pressure exponentially small for large nuclear
masses. Extending the Davies results, we confirm the predictions of Claverie-Jona
Lasinio for pyramidal molecules as the ammonia one.

0 Introduction

The empirical chemical models for molecules imply certain asymmetries and struc-
tures in apparent contradiction with quantum mechanical principles. Even the accepted
features of the water molecule [Pr] are not proved to be in agreement with straightfor-
ward application of quantum mechanics. One possible explanation of this phenomenon
lies on the existence of non-stationary states that are more stable than the stationary
ones to the environment interactions.

As a particularly interesting example of molecule with structure we have the
ammonia one NH3 (or AsH3, PH3). To be more clear, following Wightman [Wi],
it is better to consider the similar molecule NHDT (or AsHDT, PHDT) in which the
three hydrogen nuclei are distinguished by isotopes. Such molecules have a pyramidal
structure with the HDT in a triangular basis and the N in the vertex. Actually there
are two kinds of such pyramides with different chirality. Chiral molecules can be
discovered by the "optical activity": they are able to rotate the polarization plane
of light. Quantum mechanics predicts symmetrical molecules with the N nucleus
delocalized in both possible vertices. In the Born-Oppenheimer approximation the N
nucleus feels a double well potential as it is clear since 1927 [Ha]. Quantum levels
are split in two because of the two possible even/odd inversion states. States initially
localized in one well (chiral states) oscillate (beating effect) from one well to the
other. Physically we always observe stable (without oscillations) chiral molecules
in a gas at a pressure large enough (at fixed temperature). All the models used for
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explaining the phenomenon consider the electric interaction of the molecule with the
environment [Ma, An, Pf, ClJol]. In particular Claverie and Jona Lasinio [ClJol]
consider the dipole electric field of an asymmetric molecule polarizing a dielectric
medium. The reaction field stabilizes the asymmetric state of the molecule. In this
way the asymmetric state of the molecule becomes a stationary state of a non-linear
Schrδdinger equation of the Stark type, for a large enough pressure. This model was
discussed in [ClJol] with quantitative comparison with experimental data. The same
model can be applied to the electron state in i ϊ j in order to explain the instability
for large nuclear distance by localization of the electron near one nucleus [CUo2].

We consider a class of models of the kind suggested in [ClJol] {see also [Pr] for
an explicit model in the atomic case) with Hamiltonian

φ .-> Hτ(ψ) = Poψ + τ(φ, Wψ).Wφ ,

where P o is invariant under a symmetry S and has a pair of isolated eigenvalues with
symmetric/antisymmetric eigenfunctions, W = (Wι,..., Wn) is a bounded vector-
valued self-adjoint operator with SW = —WS, and r is a real parameter behaving
as the opposite of the square of the pressure. We compare the eigenvalues of Hτ

with those of the linear operator Pu = Po + v.W (y e M.n). In the case of the
pyramidal molecule, v.W is the potential of a locally uniform electric field, so that
Hτ is a non-linear Stark operator. Then we are able to prove the existence of a
spontaneous symmetry breaking (as r varies) by bifurcation of the symmetric state,
and the appearance of a degenerate ground state. We also give the critical parameters
at the bifurcation point, the latter being of the same order as the splitting and so
exponentially small for large nuclear masses. The picture is similar to the usual
Stark effect if we consider the parameter r in place of the field strength, with some
differences discussed below.

Let us notice that Wightman and Glance [WiGl, Wi] consider such models relevant
for the discussion on superselection rules and deserving complete rigorous study.
Before the Claverie-Jona Lasinio papers, Davies [Da] proposed some models of
molecular localization with further justifications, and gave some rigorous results that
we extend here. In particular Davies proved the existence of symmetry breaking for
large nuclear masses, and here we make precise the statement of [ClJol] that under
semiclassical conditions, the localization is given by a perturbation of the same order
of magnitude as the splitting.

The paper is organised in the following way: In the next section we state the main
result, in Sect. 2 we consider the linear Stark problem, and in Sect. 3 we give the
behavior of the eigenvalues and eigenvectors in the linear case. In Sect. 4 we prove
the main result on symmetry breaking.

1. Notations and Main Result

Let Po be a self-adjoint operator on a Hubert space 3@, with domain ^ 0 , and let S
be a (unitary) symmetry on 3@ satisfying:

0 c i % and P0S = SP0 on ^ 0 . (1.1)

We assume that Po admits two isolated, successive, simple eigenvalues E^ = Eoψ μ
(with μ > 0), associated to normalized eigenvectors φ^ and φ$ which satisfy the
following parity conditions:

Sφ% = ±φt (1.2)
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Denote
λ = \άist({E+;E-};σ(P0)\{E+,E-}) G M* . (1.3)

For some fixed n e N* let also Wλ,..., Wn be n bounded self-adjoint operators on
. ^ , which anticommute with S:

WJS = -SWJ (j = l , . . . , n ) (1.4)

and set W = (Wι,..., Wn). For r G I , we consider the following family of non-
linear Schrodinger operators acting on J&0:

Hτ(ψ) = Poψ + τ(Wψ,ψ).Wψ , (1.5)

and we investigate the solutions (E, φ) G (E+ - λ, E~ + λ) x J^ o of the spectral
problem:

{ Wh. = i ( L 6 )

Denoting

we assume that ρ0 φ 0 and that the choice of ψ^ can be made in such a way that

(1.7)

Notice that when 3$ is a L2-space and Po commutes with conjugation, φ^ can always
be taken real. In this case, W locally represents the position operator. Also, ρ0 can be
seen as a mean value of W, since we have ρ0 = (Wψ0, ψ0) where ψ0 = ((£(j~+(/?0~)/v/2
is in some sense a one-well localized state.

We also denote
λ^μ + λ, (1.8)

and for T O G R * , we define:

Notice that η is dimensionless when τo\\W\\2 has the dimension of an energy. Then
our result is:

Theorem 1.1. Under assumptions (1.1)—(1.4) and (1.7), there exist universal constants

Co and η0 such that if j+η(λ, μ, £>0, ||W\\, r 0) < % then there exist τ± G] — r0, τo[

satisfying:

and such that:
(i) If r G [τ_,τ+], the only solutions of (1.6) are the symmetrical ones: ψ — φ^,

E = E±.
(ii) If T G [—τo,τ_[, ί/ẑ n (1.6) admits exactly 4 solutions. Two of them are the

symmetrical ones as in (i), and the two other ones φ~ and Sφ~ are both associated
to the same energy E~ which satisfies:
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(iii) If T £]τ + , τ0], the result is analogous to (ii), with states φ+ and Sφ^ associated
to E+ satisfying:

\E+ - (Eo + τρl)\ < C0η\τ\ρ2

0 .

Moreover, the states φ^ appearing in (ii) and (iii) satisfy:

<

Remark 1.2. In other words, our result says that only for £>o|τ| > £olr±l ~ A* (i e f° r

the modulus of the mean value of the perturbing potential greater than one half of the
splitting, a condition essentially in agreement with experimental data: see [ClJol]),
there exist localized states associated to non-linear eigenvalues E^ « Eo + TQQ.
Such eigenvalues should be compared to those of the usual Stark effect operator:
_P0 + τρo.W. On the other side, in the region \r\ < \r±\ we find constant eigenvalues
E±. In some sense, the well known behaviour of the Stark effect eigenvalues (i.e. lin-
ear for large r and quadratic for small r) is replaced here by a "close" polygonal line.

The last statement of the theorem means in particular that the dipole moment of
the localized states has a square root behaviour near the critical point.

Remark 1.3. Actually, for the specific physical problem we are discussing here, only
non-positive r is of interest. So that the perturbation is negative and makes the lower
eigenvalue bifurcate, yielding a new degenerate τ-depending lower eigenvalue. We
also consider positive values of r for a better understanding of the model. In this latter
case the upper eigenvalue bifurcates, yielding a new τ-depending upper eigenvalue.
Both the τ-dependent localized states are on the same line, having the slope ρ^ and
reaching Eo (the one well eigenvalue) when continued up to r = 0.

Application to the Semiclassical Case. Assume

Po = -h2Δ + V(x),

where h2 = 1/2M (M representing the mass of the nuclei), and V is symmetric
with respect to the hyperplane {xn = 0} of W1 and admits two non-degenerate
point-wells at energy 0 = MinF. Consider Po as acting on L2(Ω) with Dirichlet
boundary condition, where Ω is a connected open set containing the wells, and take
W(x) = xn. Then the first eigenvalues of Po are equivalent to some e3h (j = 1,2,...)
as h tends to 0 (see e.g. [Si, HeSj]). Considering only the first two eigenvalues of Po

(which are both asymptotically equivalent to λj(/i) = exh + O(h?h)), the conditions
of Theorem 1.1 are satisfied in that case for h small enough if we take:

with some constant C > 0 sufficiently large (but independently of h). We also see that
the critical parameters \τ± \ are of the same order of magnitude as the splitting between
the first two eigenvalues of P o, i.e. of order e~s°/h for some constant SO > 0. In
particular, taking r = τ(h) < 0 with es°/h\τ(h)\ -* +oo and τ(h)/h —> 0 as h —> 0,
we find that the (degenerate) ground state (E^ψ^) of the non-linear system (1.6)
satisfies in this case:

as h tends to 0.
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Similarly, our result can also be applied to the molecular Schrodinger operator
in the Born-Oppenheimer approximation (see [KMSW]). In this case, the well is
invariant under the action of O(3), and one can take W = x were x denotes the
coordinates of the nuclei.

2. Linear Preliminaries

By adding a constant to P o, we assume from now on that Eo — 0.
In this section, we investigate the spectral properties of the families of operators:

when v = ( ι/ 1 } . . . , un) G W1 is small, and near the energies E±. With λ defined as
in (1.3), let 7 be a complex simple loop encircling E+ and E~ with the rest of σ(PQ)
in its exterior, and with:

dist(7;σ(P0)) = λ. (2.2)

Then, the operator:

^J-Por
ιdz (2.3)

7

is the spectral projector of Po associated to E~ and E+. For v satisfying

we can also set:

x λΣkJz-por
ιw]k(z-por

ιdz (2.5)πu J
7 k-° 7

which is a spectral projector of Py, its range being generated by

φ t = Π M (2.6)

Our aim is to compute rather precisely the eigenvectors and eigenvalues of PUΠU for
v small enough. We first consider the matrix:

\ Z ) ))

where (.,.) stands for the ^-bracket.
Introducing the parameters:

1

J= (2.8)
πλ + 2μ ε1

z πλ

we then have:
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Lemma 2.1. For Max{ε1,ε2} < 1, Av is invertible and we can write:

Λ-X/2 =

a2 1 + c

where the α^ 's are analytic functions of v satisfying:

"α i(0) = 0 0 = 1,2,3);

a{ and α 3 are even

a2 is odd.

Moreover, for any 6 > 0 there exists Cδ depending only on 6 such that:

\(*i\ + \<*3\<Cδεl,

\*2\<Cδε2,

for all ε2 G [0,1 - δ].

Proof In view of (2.5) and the fact that we can take length (7) = 2πλ + 4μ in (2.5),
we see that if ε1 < 1,

\\Av-\\\<ε2 (2.9)

and therefore Av is invertible for ε2 < 1, and its inverse depends holomorphically on
v. Moreover, since

P_V = SPVS, (2.10)

we get by (1.2):

' = ί ω - (2.11)
-u = ~SΨv '

Using the fact that S is unitary, we deduce from (2.11) that Av has the form:

A =

where fλ and f3 are even, and f2 is odd. Then it is easy to verify that such a form
is invariant under the inversion and the square root of 2 x 2 matrices. Finally, the
estimates on the coefficients α^ 's follow from (2.9). D

Now, define:

(ut,u-) = (φt,φ-)A;1/2 (2.12)
which forms an orthonormal basis of Ran Πu.

Then, the main result of this section is:

Proposition 2.2. Under assumptions (1.1)—(1.4), and as long as Max{ε2, ε2} < 1, the
matrix of PvTlv in the basis (u*,u~) can be written:

E++βλ{u) ρ0M + β2(

where the β3 's are analytic functions of v, βι and /?3 are even, β2 is odd, and for any
δ > 0 there exists Cδ > 0 depending only on 8 such that:

forO<ε2<l-δ.
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Proof By (1.9), we have:

with:
qk(-v) = (-l)kqkM,

Then, decomposing φf according to (2.13), and noticing that (P^φ^.φf) is even by
(2.10)-(2.11), we get:

+00

= E± + ΣdPoψt^kMΨo) + <i>.W¥>±,</2fe_1(ι/)¥>±» .(2.15)
fc=l

Similarly, and also making an easy residue-calculation, we find:

». (2.16)
+00

Σ
k=l

Now, the result follows from (2.12), Lemma 2.1, and the fact that the coefficients of
<Jύv are given by the scalar products (P^u^u^) and (Puu^,u^), in which (2.15)—
(2.16) has to be inserted. D

3. Spectral Quantities of the Linear Problem

Using Proposition 2.2, one can compute the two eigenvalues λ^ of PVΠV. We find:

\u Eo + σ ± Λ/Î O ^ + βi\ + (β + δ) i (3-1)

where

σ ~ ] l + 3 ' (3.2)
δ=\(βx-β,).

Denoting ψ^- two associated eigenvectors normalized in 3@, we have:

Proposition 3.1. In the situation of Proposition 2.2, and for v satisfying \ρ0M-\-β2\
2jr

(μ + S)2 φ 0, one has:

1 I

= F(y)

where F and G^ are odd analytic functions of v. Moreover, if ε2 < 1/2, there exists
a universal constant Co such that:
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Φt = a>t
Proof Denote

and

Then α± and 6± satisfy | α ± | 2 + |6±| 2 = 1 and:

(θ ± (μ •

Moreover

(3.3)

(3.4)

(3.5)

O (3-6)
Denoting ρ0 = (ρ0 , , . . . , ρ0 n ) , we first prove:

Lemma 3.2. T/jere ex/i/ί α universal positive constant C'ϋ such that ifε2 < 1/2

πλ + 2

πλ

for all j = 1,.. ., n. Moreover, (W-u^.u^) are odd functions ofv, while (WjU^u^ ]
is even.

Proof By (2.12) (and since the transposed of Av is Au), one has:

(WjU-,ut

^:'^_ (4rI/2 (3.7)

Moreover, using (1.4) and (2.11) we see that (W3φf,φf) are odd functions of z/,

while {W3φΊ,φ~) is even. As a consequence, according to (2.13)-(2.14), we get:

°t)
k+l odd

<\\wλ
πλ + 2μ

πλ Σ
k+l odd

(3.8)

and

Σ<
ΐ+l even

0 )

πλ
(3.9)

where C is some universal constant.
Then, the result follows from Lemma 2.1 by inserting (3.8)-(3.9) into (3.7). D
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G o i n g b a c k to (3.5), w e see that w h e n Θ φ 0 o n e c a n take o n e of the fol lowing
t w o choices :

V2θ(θ ψ (μ

or
, (θ±(μ + δ)γ\ . ± ( g ^ + /32) ^

α,, = = = , ΰΊ, = —== (3.1U )

V2Θ v V2Θ(Θ ± (μ + δ))1/2

depending on the sign of μ + δ and the possible vanishing of ρQ.ι/ + β2.
Inserting e.g. (3.10) into (3.6), we get:

ZC7

Then, noticing that

(3.11)

w e obta in the a n n o u n c e d form for ( / , V ^ )

+ (Wu;,u~)),
(3-12)

and actually, one can verify directly that the same formulas hold if we take the other
choice (3.100- Making use of Lemma 3.2 and the estimates in Proposition 2.2, the
result follows. D

4. Symmetry Breaking - End of the Proof of Theorem 1.1

Now, we turn back to the non-linear system (1.6), and we prove Theorem 1.1.
Obviously, (1.6) is equivalent to:

Puφ = Eφ

{Wψ,ψ) (4.1)

U = 1

In particular, ψ has to be an eigenvector of Pv for some convenient value of v. When
η defined in (1.9) is sufficiently small (with a bound which is in principle explicit),
it is clear that for \τ\ < τ 0 the possible values of v satisfying (4.1) verify all the
conditions of Proposition 2.2.

We also have [with θ(y) defined in (3.4)]:

Lemma 4.1. Under assumptions (1.1)-(1.4) and (1.7), there exists a universal con-
stant η0 > 0 such that, ίfη(\,μ, ρ0, | |W||,τ 0) < η0, then any solution v 6>/(4.1) with
\τ\ < τ 0 satisfies:

0(1/) ^ 0 .
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Proof. Assume θ{v) = 0 and v is a solution of (4.1). By the discussion of Sects. 2
and 3 (and in particular the fact that λ+ = λ~ in that case), we see that (4.1) is
equivalent to the existence of a,β £ C satisfying \a\2 + \β\2 = 1 and:

(4.2)

(4.3)

(4.4)

v = τ\a\2(Wut,uϊ) + τ\β\2{Wu~ ,u~)

Using Lemma 3.2, (4.2) implies (with some other universal constant Cx):

and therefore, by (2.8):

\ρ0M-2τρ2Reaβ\ < Cλ\ρ0 \r\.\u\.

Also, θ(ιs) = 0 implies ρo.v + β2(v) = 0 and thus, by Proposition 2.2:

\QoM < Ciλ^l (4.5)

where, here and from now on, all the C -̂'s denote universal positive constants.

Since ελ < \\W\\.\i/\/\9 and by (4.1) \u\ < | |W||. |τ |, we get from (4.5):

< 4 . 6 )

and thus, inserting (4.6) into (4.4) and using the fact that |ρ o | < ||W||:

We deduce from (4.3) and (4.7) that v must satisfy:

x ^B- τ0 + 2C3(η + η2)) |i/| < C4(η + η2) \ (4.8)

Therefore, v has to be zero if we take η + η2 < 1/C4. But #(0) = μ > 0 and this is
in contradiction with the assumption that θ(u) = 0. D

Now, from Lemma 4.1 and Proposition 3.1, we see that the solutions v of (4.1)
must satisfy one of the two following equations:

Q(y)v = τθ{v)F(v) (4.9)

Conversely, any solution v of (4.9)± gives rise to the solutions φ = ψ^ and ψ — Sφ^

of (4.1) associated to the same energy E = λf.

Since F and G± are odd, v — 0 is always a solution of (4.9)±, and it corresponds

precisely to the symmetrical solutions φ^ of (1.6).
From now on, we assume v Φ 0. First looking at θ as an extra-parameter, we

consider the equation:
= τθF(y) + τG±{v) (4.10).
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and we solve it by the use of polar coordinates:

v = tω\ t>0; ωeSn~ι. (4.11)

From Proposition 3.1 and its proof, we see that F and G± can be written:

Fly) = Σ /α"α.
| α | odd

\a\ odd

with, for all a e N, lα odd:

α| + l

and

We denote F0.v :=

| = l

=F

/Q and
| = l

Substituting (4.11) into (4.10)± and dividing by rt, we get:

ΘF0 - ^ ) . a = 0 .
| |
| α | odd

For ί = 0, (4.15)± becomes

(4.12)

(4.13)

(4.14)

(4.15),

(4.16),,

Since the eigenvalues of the linear map v ι—> (βo 1 7 ) ^ a r e ί*o (multiplicity 1)
and 0 (multiplicity n — 1), we deduce from (4.13)-(4.14) that the eigenvalues
λf(θ),..., λ±(0) of G± + ΘF0 satisfy:

\\wf
λ

for

for 1 < j < n.

(4.17)

IIWΊI2 1
Therefore, we see by the implicit function theorem that if r 0 < — , then for
any j , the equation: 5
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admits a unique solution θ^~

consequence of (4.17), these

— θj(τ) for any r satisfying 0 < \τ\ < τ 0. As a

's satisfy:

\θ±Tτρ2\<C5\τ
(4.18)

Moreover, the eigenvector ω^ eSn ι associated to θf verifies by the same procedure
(and up to a factor ±1):

<C5\θf \\w\\2

(4.19)

Now for ί ^ 0, we see that any solution (ω,θ) of (4.15)± must satisfy for some

and therefore, by (4.17):

Assuming e.g. C5?7O < 1/2, this gives for \t\ < \r\.

\\\W\\2

X2

and thus, by (4.18):

η2\θ\), (4.20)

if J = l

\Θ\ < μ X2 tι\ if j

(4.21)

Now, we have the following improvement of Lemma 4.1:

Lemma 4.2. Ifη0 is taken sufficiently small, and ry(λ, μ, £>0, || VF||, r 0) < η0, then any
solution v 6>/(4.1) with \τ\ < τ 0 satisfies:

θ(u)

Proof. We adopt the same strategy as for Lemma 4.1, except that now (α, β) is forced
to be (α^,6^) since we already know that θ(u) -φ 0. But this changes nothing in
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(4.3)-(4.4) and, assuming θ(v) < 2C 8τ 0

modified into:

^ I Π 2 1 (4.6) must be

\ρo.v\ < C2

ι

As for (4.8) this gives for η < 1:

\\W\\2/ , \A\W\\2

8T° λ |ρ o | λ2

and thus, if 2(C4 + C8)ϊy0 < 1/2:

But then, using (3.2), (2.8) and Proposition 2.2:

i.e.

As a consequence

Since also

0(i/) <

3
μ<G9ημ.

θ(y) > μ

ίμ + — < 2C8τKl +

the contradiction is immediate for η small enough. D

As a consequence of Lemma 4.2 and (4.21), we see that we only have to investigate
the possible solutions of (4.15)± which satisfy (4.20) with j — 1.

Denoting A±(t,ω,θ) the left-hand side of (4.15)±, and computing its tangential

gradient dωA± with respect to ω on Sn~ι, we find, using (4.20)J=1:

Λ±

(4.22)

Denoting (ωf)-1 the subspace of Rn orthogonal to ωf, we also see by using (4.17):

o +Θ1FQ
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and therefore, by (4.18):

0f
T

(4.23)

Possibly by taking η0 smaller, we deduce from (4.22)-(4.23) that dωA±(t,ω,θ) has

rank n - 1 for \t\ < | |WΊ|.|τ| and θ satisfying (4.20)J=1. Since also dQA± does not

vanish there (and is actually close to —ω/τ), we conclude that for all \t\ < \\W\\.\r\9

(4.15)± admits a unique solution (ωf(f), θ^(t)) verifying (4.20)J = 1. Moreover, ώf(t)

and θf(t) depend analytically on t2 and satisfy:

(4.24)
k>\

k>\

with
2k

χik

\\w\\lk

χik

(4.25)

τ\.

Now, to obtain solutions for (4.9) (and then finish the proof of Theorem 1.1), it
remains to solve the two following equations where t is the unknown (and θ = θ(u)
is again the function defined in (3.4)):

which are equivalent to:

'\ρo.tωt(t) + β2(tώ±(t))\2

θf(t) > 0.

-(μ + δ(tώf(t)))2 = θ±(t)2

(4.26),

(4 27) ±

In view of (4.18) and (4.24), it is easily seen that only at most one of the two systems
(4.27)± can admit a solution, depending on the sign of r. Assume for instance r < 0
(which actually corresponds to the physical case), then only #f (t) is non-negative for
t small enough, and the first equation of (4.27)_ can be re-written:

J,2k

k>l

(4.28)

with some coefficients ck satisfying estimates analogous to (4.25). Using also (4.19),
we see that

2 Σ 2k 2 l - Cl3η) . (4.29)

This proves that (4.28) admit a solution if and only if θλ > μ, and by (4.18) this is
equivalent to:
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where τ_ < 0 satisfies:

(4.30)

An analogous result can be obtained in the same way for r > 0, and this proves
part (i) of Theorem 1.1, as well as the existence of the φ^9s in parts (ii) and (iii).
Their corresponding energies are given by:

where v± = t±ώf(t±), t± being the non-negative solution of (4.27)± when
± τ > ±τ±. By the estimates (4.29) and (4.18)-(4.19), we get:

(4.31)

where the &(η) is uniform with respect to all the parameters as long as η < η0.
Therefore

(4.32)

which, once inserted into (3.1), gives:

=E0±

i.e. (using (4.30) and the analogous estimate for τ + ) :

(4.33)

It remains to compute (Wφf,φf) = {Wψ^ , ψ^±). Using Proposition 3.1 and (4.32)

we find:

This finishes the proof of Theorem 1.1. D
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