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Abstract. We consider the relationship between the conjectured uniqueness of the
Moonshine Module, 9^, and Monstrous Moonshine, the genus zero property of
the modular invariance group for each Monster group Thompson series. We first
discuss a family of possible Zn meromorphic orbifold constructions of 9 ^ based
on automorphisms of the Leech lattice compactified bosonic string. We reproduce
the Thompson series for all 51 non-Fricke classes of the Monster group M together
with a new relationship between the centralisers of these classes and 51 corresponding
Conway group centralisers (generalising a well-known relationship for 5 such classes).
Assuming that 9 ^ is unique, we consider meromoφhic orbifoldings of 9 ^ and show
that Monstrous Moonshine holds if and only Zr if the only meromorphic orbifoldings
of 9 ^ are 9 ^ itself or the Leech theory. This constraint on the meromoφhic
orbifoldings of 9 ^ therefore relates Monstrous Moonshine to the uniqueness of 9 ^
in a new way.

1. Introduction

The Moonshine Module, 9^, of Frenkel, Lepowsky and Meurman (FLM) [1, 2, 3]
is historically the first example of a Z2 orbifold model [4] in Conformal Field
Theory (CFT) [5, 6]. The orbifold construction is based on a reflection automorhism
of the central charge 24 bosonic string which has been compactified [7] via the
Leech lattice cf. [8]. The vertex operators (primary conformal fields) of 9 ^ form a
closed meromorphic Operator Product Algebra (OPA) [3, 9, 10] which is preserved
by the Fischer-Griess Monster group, M [11]. By construction, 9 ^ has no massless
(conformal dimension 1) operators and has modular invariant partition function J(τ),
the unique modular invariant meromoφhic function with a simple pole at r = oo and
no constant term. J(τ) is unique because the fundamental region for the full modular
group is of genus zero cf. [12]. Conway and Norton [13] conjectured that this genus
zero property extends to other modular functions called the Thompson series Tg(τ)
for each conjugacy class of g G M [14]. Such a genus zero modular function is called
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a hauptmodul and this conjecture that each Tg(τ) is a hauptmodul is referred to as
Monstrous Moonshine. Borcherds [15] has now proved the Moonshine conjectures
but the origin of the genus zero property is still unclear. One of the main purposes of
this paper is to provide a derivation of Monstrous Moonshine from a new principle
related to the FLM uniqueness conjecture for 9 ^ which states that 9 ^ is the unique
central charge 24 meromorphic CFT (up to isomorphisms) with partition function
J(j) [3] Recently, Dong and Mason [16] have provided rigorous Zp meromorphic
orbifold constructions based on prime order p automorphisms of the Leech theory
for p — 3,5,7,13 each with partition function J(τ). The p — 3 case has also been
considered by Montague [17]. The resulting CFTs have been proved to be isomorphic
to 9 ^ for p = 3 and almost certainly so for p = 5,7,13, lending weight to the FLM
uniqueness conjecture.

This work is broadly divided into two parts. In the first part (Sects. 2 and 3) we
discuss further evidence for the uniqueness of Ψ^ where a family of Zn meromorphic
orbifoldings of the Leech theory (including the 5 prime ordered ones) which possibly
reproduce 9 ^ are described [18]. We also argue that each such candidate construction
of 9 ^ can be reorbifolded to reproduce the Leech theory again. In the second part of
the paper, in Sect. 4, we discuss other meromorphic orbifoldings of 9 ^ with respect
to g e M [19]. We show that given the uniqueness of 9^, then this orbifolding of
9 ^ can give only 9 ^ or the Leech theory if and only if the corresponding Thompson
series is of genus zero. Thus, assuming the uniqueness of 'W^, Monstrous Moonshine
can be derived from the constraints on the possible meromorphic orbifoldings of 9^ .
The advantage of our approach is that a natural interpretation for a Thompson series
is given and the origin of the modular invariance group for each series is clearly
understood. Furthermore, when we show that Monstrous Moonshine is equivalent to
the above constraints on the meromorphic orbifoldings of 9 ^ (given the uniqueness
of 9^), a case by case study of the classes of M is not required.

We begin in Sect. 2 with a review of both the FLM construction of Ψ*^ [1, 2, 3]
from the point of view of CFT [5, 6, 20, 21, 22] and Monstrous Moonshine [13]. In
Sect. 3 a family of Zn meromorphic orbifoldings of the Leech theory (including the
5 prime ordered ones) based on 38 automorphisms of the Leech lattice are described
each with partition function J(τ) so that each orbifolding is a candidate construction of
9 ^ [18]. Extensive use of non-meromorphic OPAs for various twisted operator sectors
is made in both Sects. 2 and 3 since such algebras provide the most natural setting
for describing orbifold constructions [20, 21]. However, it must be stated that a fully
rigorous description of non-meromorphic OPAs has yet to be provided. We show that
for each Zn meromorphic orbifolding of the Leech theory there is a corresponding
reorbifolding with respect to a "dual automorphism" which reproduces the Leech
theory again so that the Leech theory is an orbifold partner to each such construction.
Within these constructions, we naturally reproduce T (τ) of genus zero for all of the
51 non-Fricke elements of M, i.e. Tg(r) is not invariant under the Fricke involution
T —> —l/nhr, h an integer. We also find a generalisation of an observation of
Conway and Norton [13] (for prime order p = 2, 3,5,7,13) relating the centralisers
of the non-Fricke elements in M to corresponding centralisers in the Conway group,
the automorphism group of the Leech lattice. Finally, we explicitly find for 11 of
the 38 orbifold constructions, a Z2 reorbifolding which reproduces the Leech theory
again and hence, as recently argued by Montague [23], these constructions must
be equivalent to 9^ . All of these results strongly indicate that each Z n construction
reproduces 9^ and that ^ is indeed unique and that the Leech theory is the orbifold
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partner to 9 ^ for the meromorphic orbifoldings of 9 ^ with respect to non-Fricke
elements in M. In Sect. 4 we consider meromorphic orbifoldings of 9 ^ with respect
to the remaining Fricke elements of M. We show that assuming the FLM uniqueness
conjecture for 9^, then a meromorphic orbifolding of 9 ^ with respect to an element
g G M reproduces Ύ^ (i.e. 97*11 is an orbifold partner to itself) if and only if Tg(τ)
is of genus zero and is Fricke invariant. This result relies on the analysis of [19]
where we related Monstrous Moonshine to the vacuum properties of g G M twisted
operators. A standard construction of these twisted sectors is explicitly described
for elements related to Leech lattice automorphisms but otherwise, we assume such
twisted operator sectors exist. We also assume in all cases that these operators satisfy
a closed non-meromorphic OPA. Together with the results of Sect. 3, we therefore
find that, assuming 9 ^ is unique, then 9 ^ has either only itself or the Leech theory
as a meromorphic orbifold partner if and only if Monstrous Moonshine holds for
Thompson series. In Appendix A we review the modular groups required to described
Monstrous Moonshine. In Appendix B we discuss a subgroup of the automorphism
group for the OPA of a Zn orbifolding of the Leech theory. This group is required
to express the centraliser relationship between M and the Conway group described
in Sect. 3.

2. The Moonshine Module and Monstrous Moonshine

2.1. Introduction. In this section we review the construction of the Moonshine
Module, denoted by 9^, of Frenkel, Lepowsky and Meurman (FLM) [1, 2, 3] in the
language of conformal field theory (CFT) [5, 6, 22]. We emphasize certain aspects of
this construction which we will later refer to both in considering possible alternative
constructions of 9 ^ in Sect. 3 and "reorbifoldings" of 9 ^ of Sect. 4. We also review
the main feature of this theory which is that the automoφhism group of 9 ^ is the
Monster group M, the largest sporadic finite simple group. Finally, we introduce
the Thompson series [14] for g G M which is the object of interest in the work of
Conway and Norton known as "Monstrous Moonshine" [13].

The Moonshine Module is a Z2 orbifold CFT [4] and is based on a Euclidean
closed bosonic string compactified to a 24 dimensional torus T 2 4 [7]. The torus T 2 4

chosen is that defined by quotieting R24 with the Leech lattice which we denote
throughout by A. A is the unique 24 dimensional even self-dual Euclidean lattice
without roots, i.e. (a, a) ^ 2 cf. [8,24]. The Z2 orbifolding construction is then
based on the reflection automoφhism of A.

2.2. The Leech Lattice String Construction. We begin with the usual left-moving
closed bosonic string variables Xz(z), where z = exp(2π(σ0 + iσx)) parametrises the
string world sheet with "space" coordinate 0 < σ1 < 1 and "time" coordinate σ0 [25].
On the torus T 2 4 the closed string boundary condition is X\ellTiz) = X\z) + 2πβz

for β G A. The standard mode expansion for X\z) is

X\z) = qi - ipι\n z + i V — ^ " m (2.1)
m=£θ

with commutation relations

[« P>1 = l ί " ' (2.2,
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A similar expansion holds for the right-moving part of the string Xι(z). The 1-
loop partition function corresponding to a world sheet torus z ~ e2πtz ~ e27Tirz is
parameterised by the modular parameter r with Im r > 0. Since A is even self-dual,
the partition function factorizes into Z(τ)Z(f), where Z(τ) is a modular invariant
function

Z(τ) = Tr(<ro) = _ ^ (2.3)

with q = e2πιr and where θΛ(r) = Σ Q^3 ̂  *s m e m e t a function associated with the
βeλ 1 oo .

Leech lattice A and is a modular form of weight 12 [12]. Lo — - p 2 + X] aι_rna
ι

Ύn — 1
ra=l

is the normal ordered Virasoro Hamiltonian operator and η(τ) = q1/24 Y[(l — qn) is
n

the Dedekind eta function arising from the oscillator modes. The normal ordering
constant gives the usual bosonic tachyonic vacuum energy —1 for central charge 24.

The set of primary conformal fields or vertex operators for this theory also
factorizes into meromorphic in z (anti-meromorphic in z) pieces which form a local
meromorphic (anti-meromorphic) operator product algebra (OPA). We will consider
the left-moving string which forms a meromorphic CFT [9]. The associated set of
primary conformal fields, denoted by Ψ*A, consists of normal ordered vertex operators
{φ(z)} of the form

with integer conformal dimension hψ — nx + . . . + nr + β2/2, where c(β) is the
standard "cocycle factor" necessary for a local meromorphic OPA [3, 24, 10]

φτ(z)φj(w) = φj(w)φi(z) ~ Ύ^ C?fk(z — w)hk~hi~h3φk(w) + ... . (2.5)
k

The first equality in (2.5), which is the locality condition, relies on a suitable analytic
continuation from | 2 : | > | w | t o | z | < | u > | . The cocycle factors in (2.4) are elements of
a section of a central extension A of A by ± 1 and obey

c{a)c(β)c-\a)c-\β) = (-1)^) , (2.6a)

c(a)c(β) = ε(α, β)c(a + β), (2.6b)

e(α, β)ε(a + /?, 7) = ε(α, /? + 7)ε(/3,7) (2.6c)

The commutator (2.6a) defines the central extension whereas ε(a,β) e {±1} of
(2.6b) is a two-cocycle which depends on the section of A chosen and must obey
the cocycle condition (2.6c). Let us denote the Hubert space of states associated with
Ψ*A, f\φ) = lim φ(z) |0)\, by 3%A. These states can equivalently be constructed as

a Fock space by the action of creation operators {aι_n}, n > 0, on the highest weight
states given by {\β)}9 where pι\β) = βι\β). The trace in (2.3) is then performed
over MA. Z{τ) is a meromorphic and modular invariant function of r with a unique
simple pole at q = 0 due to the tachyonic vacuum energy. Z(τ) is therefore given by
the unique (up to an additive constant) modular invariant function J(τ) as follows:

Z(τ) = J(τ) + 2 4 , (2.7a)

J{τ) = ^ ^ - 744 = - + 0 + 196884^ + . . . , (2.7b)
T4(r) q
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where E2(τ) is the Eisenstein modular form of weight 4 [12]. Since A contains no
roots, there are only 24 massless (conformal dimension 1) operators dzX

ι(z).
The FLM Moonshine Module [1, 2, 3] is an orbifold CFT [4, 20] based on the Z2

lattice reflection automorphism f:β —» —β for β e A. The elements of '^Λ form a
projective representation of the automorphism group of Λ, the Conway group Co0,
due to the cocycle factors of (2.6) [1,3]. Thus the automorphism group of WA which
preserves the OPA (2.5) is a central extension 224.Co0 of Co0 by Z\A (where 22 4

denotes Zψ and where A.B denotes a group with normal subgroup A and quotient
group B = A.B/B). In particular, the lattice automorphism f lifts to a set of 22 4

automorphisms of 9 ^ . With the cocycle factors chosen so that ε(α, /?) = ε(—α, —/?)
we can define a distinguished lifting of f to r by

rc(β)r-ι=c(-β), (2.8a)

rdzX\z)r~l = -dzX\z), (2.8b)

which respects (2.5) and (2.6). Defining the projection operator 3?r = (1 + r)/2, we
let φ{+\z) = ̂ rφ(z) and </>(-} = (1 - 0>r)φ(z) be ±1 eigenvectors of r. The set of
operators {φ^} = ̂ >

r9
rA then also form a meromorphic OPA. However, the corre-

sponding partition function Ύr^j^ (qL°) = ^ f l Π + ^ E Z h *s n o t modular invariant,

employing the standard notation for the world-sheet torus boundary conditions e.g.
[6, 21]. Thus, under a modular transformation S:τ —» — 1/τ,

η(r/2)\ '

where ηf(r) = [η(2τ) / η(τ)]24. Therefore a "twisted" sector 3@r is introduced to form
a modular invariant theory [1, 4, 20].

2.3. The Twisted String Construction. Consider a closed string field X%{z) obeying
the f twisted boundary condition (monodromy condition) X(e2πιz) — —X(z) + 2ττ/?,
β e A with mode expansion

Til -, — 771 /O 1 Π\

2; , (ZΛΌ)
m

where the oscillator modes obey the same commutator relations as given in (2.1) and
qι G Lf = Λ/2Λ, the f fixed point space of the torus. Then Lf = Zψ which we
denote by 22 4. The states {|^)} of the twisted sector 3%r can again be constructed from
a set of vertex operators ^ A acting, in this case, on a degenerate twisted vacuum. $%r

can be also constructed as a Fock space from the action of creation operators {ά^_m},
m > 0, on this degenerate vacuum. These states are graded by the twisted Virasoro

0 0 l

Hamiltonian Lo = ^ ά ! _ m o ^ + - with half integer energies where the normal
meZ+l/2

ordering constant is now | . The resulting partition function is then ΊrMr(qL°) = 1 Q
of (2.9).

For each φ(z) e (VA there is a corresponding operator φ(z) e 9rA, with the
same conformal dimension, which is physically interpreted as the emission of an
untwisted state from the twisted vacuum. 9^A then provides a representation of the
OPA for 9rA which is non-meromorphic because of half integer grading [3, 20, 10].
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The construction of φ(z) is similar to (2.4), where the cocycle factors are replaced by
a finite set of matrices, {cτ(/?)}, acting on the degenerate twisted vacuum with β a
representative element of Lf, where β ^ a ^> β — a ^ 2Λ. These cocycle matrices are
defined as follows. The commutator map (2.6a) also defines a central extension Lf of
Lf by ± 1 . Then Lf = 2^+24, which denotes an extra-special group of the given order
(with the defining property that the centre {±1} and commutator subgroup coincide).
There exists a unique faithful irreducible 21 2 dimensional representation π of Lf in
which the centre of Lf is represented by ±1 [3, 26]. The elements of τr(L-) are the
twisted cocycle matrices {cτ(β)} and the vacuum states, {|<τ£)}, I = 1,.. ., 21 2, form
a basis for the vector space on which π(Lf) acts. These cocycle factors are again
necessary for the twisted vertex operator modes to possess well-defined commutation
relations [3, 27, 28, 10]. π(Lf) can be constructed from appropriate Dirac matrices
since the elements of Lf form a Clifford algebra [24, 10].

The defining characteristic of the operators {φ(z)} which act on the degenerate
vacuum states {|σ£)} is the monodromy condition associated with r

φ(±\e2πιz) = r-γφ{±\z)r , (2.11)

where rφ{±\z)r~x — ±φ{±\z) as defined above on the corresponding untwisted
operator φ(±)(z), e.g. dzX

ι(e2πιz) = -dzX\z). Using the principles of CFT [5],
each vacuum state \σ\) is created from the untwisted vacuum by a primary "twist"

conformal field (intertwining operator) σι

r(z) with conformal dimension -, where

\σι) = lim σι(z) |0) [3, 28, 10]. From (2.11), these operators form a non-meromorphic

OPA with the vertex operators of 'VA and # Λ [20, 28, 10] as follows:

φ(±\z)σι

r(w) = σι

r(w)φ(±\z) ~ (z - w)h^~hφ-3/2ψiτ\w) + . . . (2.12)

with a suitable analytic continuation assumed in the first equality, ψ^ is a primary

conformal operator which creates a higher conformal dimension hψ twisted state

from the untwisted vacuum, where (2.11) implies that hψ(+) G Z, hψ(-) G Z + 1/2,

e.g. the first excited twisted states \ψff) = <^!_i/2lσr) with hψ — 2 are given by

lim zχl2d Xι(z) \σι), the action of the first excited operators of 9?%Λ. We denote the

set of operators {ψ(z)}9 which includes {σι

r(z)}9 by ̂ Γ.
The lattice automorphism f also lifts to a set of automorphisms of ^Γ. Since Lf is

invariant under f, f is lifted to ±1 in its action on the degenerate vacuum. We choose
the lifting, which we also denote by r, to be

rσι

r(z)r-1 =-σι

r(z), (2.13a)

rφ(±\z)r-] = ±<φ(±\z) = e-2πιhΨψ{±\z), (2.13b)

which preserves the OPA (2.12) so that the operators with integer valued conformal
weights are invariant under r. Then (2.11) and (2.12) imply that the twisted operators
βζ.' when acting on the vacuum |0) obey the monodromy condition

ψ(e2πιz) = e-27rthΨψ(z) = rφ(z)r~ι . (2.14)

Equation (2.14) implies that under the modular transformation T:τ —* r + 1,
1 Π —> r~λ Q . Thus the lifting of f chosen in (2.13) is compatible with the twisted

r r

vacuum energy of 1/2 and ensures that no extra phase occurs in this transformation.
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The OPA (2.12) can be generalised by replacing σι

r{w) by any twisted state
ψ{w) G 9ζ.. Likewise, we may define for each ψ(z) G ̂ Γ a vertex operator ψ(z) G Ψr'
which acts on the twisted vacuum to give an untwisted state. The set of such operators
forms a closed non-meromorphic OPA [3, 20, 28, 10]

- w)h*-h*-h"ψk{w) + . . . , (2.15a)

iz - w)h*-h*-hiφk{w) + . . . . (2.15b)

7^A is thus enlarged by the inclusion of the twist fields {σι

r(z)} to 'V — Ψ'A 0 9£*
which forms a closed non-meromorphic OPA. Furthermore, the r invariant set 5^^/>/

forms a closed meromorphic OPA and defines a modular invariant meromorphic CFT.
This is the FLM Moonshine Module Ψ^ [1, 2, 3]. As far as we are aware, a completely
rigorous construction of (2.15) does not yet exist except for this ζPr projection which
forms a meromorphic OPA. This projection ensures the absence of the 24 massless
(conformal dimension 1) operators dyX

ι(z) whereas the twisted sector operators are
all massive since the twisted vacuum energy is 1/2. Therefore, the modular invariant
partition function for the associated Hubert space of states J^ is

Tr^(g L ° ) = ^ r Π + ^ r G = J(τ), (2.16)
1 r

where J{τ) is the unique modular invariant of (2.7b) without a constant term.
The absence of any massless operators in '^ is the crucial feature that sets the

Moonshine Module apart from any other string theory. Normally such operators
are present and form a Kac-Moody algebra. However, in the present case, the
196884 conformal dimension 2 operators, including the energy-momentum tensor
T(z) = -^:dzX

ι(z)ΘzX
ι(z):, can be used to define a closed non-associatve

commutative algebra. FLM [1, 2, 3] showed that this algebra is an affine version
of the 196883 dimensional Griess algebra [11] together with the energy-momentum
tensor. The automorphism group of the Griess algebra is the Monster finite simple
group M of order 246.320.59.76.II2.133.17.19.23.29.31.41.47.59.71 - 8x 1053. FLM
further showed that M is the automorphism group for the full OPA of S^, where
T(z) is a singlet. Thus the operators of 5 ^ of a given conformal weight form
(reducible) representations of M. This explains an earlier observation of McKay
and Thompson [14] that the coefficients of the modular function J(τ) are positive
sums of dimensions of the irreducible representations of M, e.g. the coefficient of q
is 196884 = 1 + 196883, the sum of the trivial and adjoint representation formed by
the Griess algebra.

2.4. A Monster Group Centraliser and Z2 Reorbifolding 5 ^ . We may identify an
involution (order two) automorphism i G M, defined like a "fermion number,"
under which all untwisted (twisted) operators have eigenvalue +1(—1). i clearly also
respects the larger non-local OPA of (2.5) and (2.15). The centraliser C(i \ M) = {g G
M\ig = gi} may also be determined since this is given by all OPA automorphisms
which map ^>

rJ
rA and . ^ ^ * into themselves. As stated earlier, the automorphism

group of 7SA consists of all liftings of the Conway group Co0 to automorphisms of
the OPA (2.5) and contains LfCo0, where Lf = 22 4. The fixed point space Lf is
invariant under f and the automorphism group of the twisted sector 9JΓ is Lf.Coι,
an extension of the Conway simple group Cox — Co 0/{l,f} by Lf — 2ι_+24.
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The extension is determined by the automorphism group of the twisted cocycle
matrices cτ(a) e τr(Lf). In particular, the inner automorphisms of π(Lf) defined
by cτ(a):cτ(β) —> cτ(a)cτ(β)cτ(a)~ι = (-l)a^cτ(β) describe the liftings of the
identity element of Co{ and the given extension. The automorphism group for $ζ
then follows from (2.12). Putting these automorphism groups together, one can show
that the corresponding automorhism group for the projected set of operators ^ 9 ^ ' is
C(i I M) = 21

t

+ 2 4.Co1 (see Appendix B). This result is an essential part of the FLM
construction since Griess showed that M is generated by 2^ f 2 4.Co 1 and a second
involution σ. FLM constructed σ, which mixes the untwisted and twisted sectors,
from a hidden triality OPA symmetry in the theory [1, 2, 3, 29] and so demonstrated
that the automorphism group of 9 ^ is M.

The automorphisms i and r can be said to be "dual" to each other in the sense
that both are automorphisms of the non-meromorphic OPA for Ψ*1 — 9 / v l Θ ^Γ and
that the subsets invariant under i and r, Ψ^A and 9 ^ respectively, form meromorphic
OPAs. Then we may "reorbifold" 9 ^ with respect to i by employing the 24 massless
operators {dzX

ι(z)} to re-introduce the r = - 1 eigenvalue operators {φ^yθiψ^},
where (schematically) φ(+)dzX ~ φ{~\ ψ{+)dzX ~ ψ^ from (2.5) and (2.15),
i.e. the operators {dzX

ι(z)} create the states of the i twisted vacuum. Similarly,
monodromy conditions analogous to (2.11) and (2.14) also hold with r replaced with
i9

 (VA replaced by 9 ^ in (2.11) and ^replaced by {φ(~}\ θ {ψ(~}} in (2.12). From
this point of view the two meromorphic constructions WA and 9 ^ are placed on an
equal footing with each contained in the enlarged set 9^' and each related to the other
by an appropriate Z 2 orbifolding procedure. Equivalently, we can define Ψ*' to be the
set of all operators which form a meromorphic OPA with &r%

rA —SP^^, i.e. W is
"dual" to ζ^r9yA = @>%φ-\ in the sense suggested by Goddard [9]. The orbifolding of
9 ^ with respect to r is then 9 ^ —^9^' and the orbifolding of 9 ^ with respect to
i is 9^A = 3?^', where WA and 9 ^ are self-dual, i.e.

(2.17)

where the horizontal (diagonal) arrows denote an orbifolding (projection).

2.5. Thompson Series, Hauptmoduls and Monstrous Moonshine. The states of 3%^ of
a given conformal weight form reducible representations of the Monster group M.
The Thompson series Tg(τ) forgeM is then defined by

(2.18)

which depends only on the conjugacy class of g, where χA is the character of the
196883 adjoint representation and where the other coefficients are similarly positive
sums of irreducible characters e.g. for the involution i, TAT) = l/ηf(τ)+24. Likewise,
an explicit formula may be found for g e C(i | M) = 2*+24.Coι [2, 3] (see Sect. 4.4).
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The Thompson series for the identity element is the partition function J(τ). The
compactification Ĵ ~ of the fundamental region & — H/Γ (where Γ is the full
modular group and H is the upper half plane) is isomorphic to the Riemann sphere
of genus zero. The function J(τ) explicitly realises this isomorphism by providing
a one to one map between & and the Riemann sphere. Such a function is called a
hauptmodul for the genus zero modular group Γ. A modular invariant meromorphic
function is a hauptmodul if and only if it possesses a unique simple pole on &. Once
the location of this pole is specified, this function is itself unique up to constant. Thus
J(τ) is the unique (up to a constant) modular invariant meromorphic function with a
simple pole at q — 0 e.g. [12,19].

Based on "experimental" evidence, Conway and Norton suggested in their famous
paper "Monstrous Moonshine," that the Thompson series for each g G M is a
hauptmodul (with a simple pole at q = 0) for some genus zero modular group Γg

under which Tg(τ) is invariant. Γg was explicitly found by Conway and Norton as
follows [13].

Monstrous Moonshine. Let g G M, g of order n.

(a) The Thompson series Tg(τ) is invariant up to h roots of unity under a subgroup

of./VXΓ^N)) of the form Γ0(n \ h) + e l 5 e 2,. . ., where h\24, h\n and N = nh.
(b) The subgroup Γg of these transformations which fixes Tg(r) (and contains Γ0(N))
is of genus zero where Tg(τ) is the corresponding hauptmodul.

The modular groups Γ0(n\h) + e l 5 e 2 , . . . and ^(Γ^N)), the normalizer of

a bN

Γ0(N) = det = 1 > in SX(2, R) are described in Appendix A. This

result has been rigorously demonstrated by Borcherds [15] by identifying each
Thompson series with a Weyl-Kac determinant for an associated generalised Kac-
Moody algebra. The proof of Monstrous Moonshine then ultimately relies on a case
by case study of these formulae so that the origin of the genus zero property remains
obscure. Apart from two classes of order 27, the Thompson series and corresponding
genus zero modular group is unique to each class of M. Following Conway and
Norton, we will abbreviate the notation denoting the modular groups above and the
corresponding Monster group class in the following way: Γ0(n | h) + e1 ? e 2 , . . . is
abbreviated to n \ h + eγ, e 2 , . . . and to n + e{, e 2 , . . . when h = 1. If all AL possible
involutions are adjointed, these groups are denoted by n \ h-\- and n + , respectively,
whereas if no AL involutions are adjoined, then they are denoted by n\h— and
n—, respectively. Thus each class of M will be denoted by g — n | h + e l 5 e 2,. .
corresponding to the modular group for Tg(τ) in this notation. As an example, for the
involution i, Tt(r) is a hauptmodul for the genus zero modular group Γ0(2) and i is
a member of the class 2- .

3. Other Constructions of the Moonshine Module

3.1 The FLM Uniqueness Conjecture. In the last section we reviewed the FLM
construction of the Moonshine Module 9 ^ . There we saw that 9 ^ is a modular
invariant meromorphic CFT without any massless states with partition function J(r).
FLM have conjectured that 9 ^ is characterised (up to isomorphism) as follows [3]:
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FLM Uniqueness Conjecture. Ψ'^ is the unique meromorphic conformal field thory
with modular invariant partition function J(r) and central charge 24.

This uniqueness conjecture is analogous to the uniqueness property of the Leech
lattice as being the only even self-dual lattice in 24 dimensions without roots. In this
section we will discuss some evidence to support this conjecture by considering alter-
native orbifold constructions which are modular invariant meromorphic CFTs without
massless operators and with partition function J(r). Within these constructions, we
will recognise known properties of the Monster group and will also find a new rela-
tionship between 51 centralisers of the Conway and Monster groups generalising an
observation made by Conway and Norton [13]. In the next section we will also link
this uniqueness conjecture to the Monstrous Moonshine properties of Conway and
Norton [13].

3.2. Zn Orbifoldings of 9^ with Partition Function J(τ). Let us now consider orbifold
models based on other order n automorphisms {a} of the untwisted Leech lattice
theory 9/%A [3, 18, 16]. a will be chosen so that each model contains no massless
operators, has a meromorphic OPA and is modular invariant with partition function
J(r) as in (2.16) and hence, according to the uniqueness conjecture, reproduces 9r^.
In each construction, we will also be able to identify an automorphism gn, where gn

(or a power of gn) is "dual" to a. We will find a total of 51 such automorphisms
which we will argue are representatives of the complete list of 51 Monster group
classes n | h + e1 ? e 2 , . . . with e% ^ n/h, i.e. elements whose Thompson series are
not invariant under the Fricke involution wn :τ —» —1/nhτ. Such elements of M are
called non-Fricke. Each stage of the original construction reviewed in Sect. 2 will be
appropriately generalised but a rigorous treatment along the lines of FLM is not yet
available in general with the exception of the prime ordered cases recently described
by Dong and Mason [16].

Let us consider an OPA automorphism a of 9rA lifted from an automorphism
α G Co0 of A given by

ac(β)a~ι = e2πιfa{β)c(άβ), (3.1a)

adzX\z)a~λ = ωs*dzX\z), (3.1b)

where we choose a diagonal basis for a = diag(α;S l,... ,ωS2A) with ω = e 2 π ϊ / / n .
fa(β) G Z/2 describes the lifting of α to an automorphism a which preserves
(2.6). We only consider lattice automorhisms α without fixed points in order to
ensure that no untwisted massless states dzX

ι{z) survive projection under ^a =
(1 + α + . . . + an~x)/n. This condition also guarantees that a and a are of the
same order n throughout [30]. Each conjugacy class of CoQ is parameterised by the
characteristic equation for a representative element a as follows:

det(x - α) = Y[(xk - l)αfc . (3.2)
k\n

k I n denotes that k divides n, the order of a and each ak is a not necessarily positive
integer where

]Γfcαfc =24, 5 > f c = 0 . (3 3)
k\n k\n
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The absence of fixed points for a implies the second condition and also that ax < 0,
e.g. f is parameterised by r2 = —r{ = 24 with det(x - f) = (x + I) 2 4 . For n = p
prime, the parameters are given by ap = — aλ = 2d, where (p — l)2d — 24 with
d = 12,6,3,2,1 for p = 2, 3,5,7,13.

Since α is an OPA automorphism for '^rA,^y

aW
A also forms a meromorphic OPA

which closes. The associated partition function Tr^α i^ i(gL°) is not modular invariant,
as before, necessitating the introduction of b = ar twisted sectors where b is lifted
from b = άr of order m = n/(n,r) with characteristic equation parameters {bk}.
Thus we find that under the modular transformation S:τ —•> — 1/τ [7,19]

where

θ V r ) = Σ ^ 2 / 2 ' ^δ(τ) = Π ^kτ)bk ' ^*(τ) = Π V(τ/Φ , (3.5a)
k\m k\m

D-b=l[kb*=detτ(l-b), Eb

0 = - i
k\m k\m

Here we have chosen the lifting b of b to an automorphism of Λ, where bc(β)b~ι =
c(β) for /3 G yls, the sublattice of A fixed by b. Λh has dual lattice Λ? = yly = 3?hΛh

and is of volume V5 = |τl||/yl5|1//2. The determinant of (3.5b) denotes the exclusion

of all unit eigenvalues of b. These expressions simplify for b — a lifted from a in

which case θΛ_(r) = 1 and Vά = 1.

3.5. 57 Automorphisms of the Leech Lattice. We may anticipate some features of a
b twisted sector ~% with the partition function 1 Q We expect J%b to have vacuum

degeneracy Dl^2/Vb and vacuum energy EQ. From (3.4), 1 Q is invariant up to a

phase exp(2τrimi?o) under T m : τ ^ τ + m, i.e. the action of 6 on the twisted sector
is of order m up to this phase. However, to construct a meromorphic orbifold CFT
with a modular invariant partition function we must have TΠEQ = 0 mod 1, i.e. there
is no global phase anomaly [31,32]. Equivalently, there is no such anomaly provided
6 Q is invariant under the modular group Γ0(m) [31,19]. Lastly, if EQ < 0 then the b

1

twisted sector may reintroduce massless states. Let us initially consider the a twisted
sector here and study those automorphisms with ΠEQ = Omodl and Eft > 0 [18].
As we will see below, these conditions are sufficient to ensure the absence of a global
phase anomaly and massless states in any of the b — ar twisted sectors in the full
orbifold construction. We therefore restrict ourselves to the study of automorphisms
a obeying [18]

] Γ α / c = 0 , #o>O, (3.6a)
k I n

nHa = Π mrwH 1 C\ £\<\
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Table 1. The 38 conjugacy classes of Co0 obeying (3.6). The first column gives g in Frame
shape notation. The corresponding modular group Γa appears in column 2. The group appearing
in columns 3, 4 and 5 are expressed in terms of standard Atlas groups [42], where nk denotes the
direct product of k cyclic groups of order n and \p".p\ ...] denotes an unknown group of the given
order. A x B denotes a direct product group and A.B denotes a group with normal subgroup A,
where B = A.B IA

a e COQ

224/l24

3 1 2 /1 1 2

4 8 /l 8

5 6/l 6

2 6 6 6 /l 6 3 6

3 46 4/l 42 4

2.65/l53

7 4 /l 4

2 28 4/l 44 2

9 3 /l 3

2 410 4/l 45 4

52102/l222

2.103/l35

2434124/144464

42122/1232

223.123/134.62

132/12

23143/1373

32152/1252

2.162/128

9.18/1.2

2332183/136293

2.3.182/126.9

2252202/l242l02

7.21/1.3

2 2 22 2 / l 2 l l 2

2.324.242/l26.8212

4.28/1.7

233353303/l363103153

2.6.10.30/1.3.5.15

223.5.302/l26.10.152

3.33/1.11

2.9.36/1.4.18

223272422 //12621422 12

2.46/1.23

3.4.5.60/1.12.15.20

2.5.7.70/1.10.14.35

2.3.13.78/1.6.26.39

ra

2-

3 -

4 -

5 -

6 + 3

6 + 2

6 -

7 -

8 -

9 -

10 + 5

10 + 2

1 0 -

12 + 4

12 + 3

1 2 -

1 3 -

14 + 7

15 + 5

1 6 -

18 + 2

18 + 9

1 8 -

20 + 4

21+3

22+11

24 + 8

28 + 7

30 + 6,10,15

30 + 3,5,15

30+15

33 + 11

36 + 4

42 + 6,14,21

46 + 23

60+ 12,15,20

70+ 10,14,35

78 + 6,26,39

La

21+24

3I + I2

4.48

51+6

2 1 + 1 2 x 3

2 x 3 1 + 8

2i+6 χ 31+4

71+4

8.(82 x 42)

9.(92 χ 32j

5 x 2 1 + 8

2 x 5 1 + 4

2i+4 x 51+2

4 x 3 1 + 4

4.44 x 3

4.42 x 3 1 + 2

13 1 + 2

7 x 2ι+6

5 x 3 1 + 4

16.82

2 x 9.92

2 1 + 4 x 9

2 1 + 2 x 9.32

4 x 5 1 + 2

3 x 7 J + 2

2 1 + 4 x 11

8 x 3 1 + 2

4.42 x 7

2 x 3 x 5

2 1 + 4 x 3 x 5

2 1 + 2 x 3 x 5

3 1 + 2 x 11

4 x 9.32

2 x 3 x 7

2 1 + 2 x 23

4 x 3 x 5

2 x 5 x 7

2 x 3 x 13

Gn

Coι

2.Sz

2.26.56(2)

2.HJ

3.C/4(3).2

2 1 + 6.ί/ 4(2)

2.UΛ(2)

l.AΊ

[2^.3]

[24.33]

(Λ5 x Λ5).2

2ι+4.A5

2.A5

2.2\S6

[2^.32]

[24.3]

2Λ4

L2(7)

2.A5

[23]

[23.3]

[2.33]

2.3

2.5 4

2.3

S3

[24]

2

Λ6

S3

2

2

2

1

2

1

1

C(gn 1 M)

2 1 + 2 4 .Co 1

3ι+12.2.Sz

4.2 1 5.2 8.5 6(2)

5ι+6.2.HJ

2 1 + 1 2.3 2.t/ 4(3).2

2.31 + 8.21 + 6.f/4(2)

2.3 1 + 4 .2 1 + 6 .t/ 4(2)

7 1 + 4.2.A 7

[222.3]

[2 4 .3 Π ]

5 x 2 1 + 8 . ( A 5 x A5).2

2.5ι+4.2ι+4.A5

2.5 1 + 2 .2 1 + 4 .A 5

[2 n .3 7 .5]

[21 5.33]

[21 0.34]

131 + 2.2.A4

[21 0.3.72]

[23.36.52]

[21 3]

[213 7]

[26.35]

[24.35]

[26.3.53]

[2.32.73]

[26.3.11]

[27.33]

[27.7]

[24.33.52]

[26.32.5]

[24.3.5]

[2.33.11]

[23.34]

[23.327]

[23.23]

[23.3.5]

[2.5.7]

[2.3.13]

t
*
ί
*
t
*

*
ί
*
t
*
ί
ί
t
t
*
t
*
ί
*
t
t
t
*
t
t
ί
t
t
t
*
ί
t
t
t
t
t
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In column 1 of Table 1 we give a complete list of the 38 classes of Co0 [33] that obey
the constraints (3.6). a with parameters ak,..., ah — α m , . . . , —an > 0 is denoted by
kak ... laι/marn ... nan, called the Frame shape notation. In each case ak obeys the
symmetry relation ak = ~an,k and therefore, from (3.3) and (3.5b), Eβ — l/n. One

may also check that b — ar of order m obeys TΠEQ = 0 mod 1 and hence no global
phase anomaly occurs in the b twisted sector. Under a general modular transformation
T —> (aτ-hb)/(cτ + d) we also find that α Q —• ad \^\ in the usual way. Therefore for

7 G Γ0(n), where η\τ —> (aτ + b)/(cnr + d), α [ ] —> α ^ Q = α [ ] since (d,n) = 1,
1 1 1

i.e. n and d are relatively prime and hence ηάd = r]ά. In column 2 we give the full
modular invariance group Γa of α [ ] in the notation described in Sect. 2.4. In general,

1

Γa does not uniquely specify a class of Co 0 but does do so for classes obeying (3.6a).
In Table 2 we give a complete list of the remaining 13 classes of Co0 that obey the
constraints (3.6a) only. Each of these classes is characterised by the existence of an
integer h ^ 1 with h\k for all ak ψ- 0 where, from (3.3), h | 24. In each case the
parameters {ak} obey the symmetry relation ak = —a

nh/k a n d therefore Eβ = 1/nΛ
violating (3.6b) for Λ, ̂  1. Column 2 shows the modular group Γa under which α| |

1

is invariant up to phases of order h (and hence forms a projective representation of
Γa). This set of classes cannot be employed to construct a meromorphic orbifold CFT
but is of interest since for each a in Table 2, άh appears in Table 1. In general, Table 2
contains all the remaining classes of Co0 with some power in Table 1.

Table 2. The 13 conjugacy classes of Co0 obeying (3.6a) only. For such each a there is an integer
h\n, h I 24, where άh appears in Table 1

a e Co0

4i2 / 2i2

68/38

84/24

86/46

62122/2242

124/64

152/32

42202/22102

8.24/2.6

12.24/4.8

242/122

6.42/3.21

4.6.14.84/2.12.28.42

4 | 2 -

6 |3-

8|2-

8|4-

12|2 + 2
12 1 6 -

15|3-
20 1 2 + 5

24 1 2 + 3

24 1 4 + 2

24 1 12-

42 1 3 + 7

84 | 2 + 6,14,21

4.2 1 2

3 x 2 1 + 8

8.44

8.26

4 x 3 1 + 4

3 x 4.24

3 x 5 1 + 2

4.24 x 5

3 x 8.42

8 x 3 1 + 2

3 x 8.22

2 1 + 2 x 3 x 7

4 x 3 x 7

Gn

G2(4).2

Λ9

2.24.A6

U3(?)

[27.3]

A5 x 2

2Λ4

A5

[2.3]

[22]

3

1

1

C(gn M)

4.21 2.C2(4).2

3 x 2 1 + 8 .Λ 9

8.29.24.Λ6

8.26.C/3(3)

[29.36]

[29.325]

[23.32.53]

[28.3.52]

[28.32]

[25.33]

[25.32]

[23.3.7]

[22.3.7]

The modular groups Γa appearing in Tables 1 and 2 are amongst the list of genus
zero groups considered by Conway and Norton [13], i.e. for each Γa there is a
corresponding gn e M with a Thompson series Tgn(r) of (2.18) invariant under
Γa (up to phases of order h). Furthermore, α [ ] — l/ηά(τ) is the hauptmodul
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for Γa for, for h φ 1, the subgroup of Γa that leaves α [ ] invariant^ and hence
V l )

Tgn(τ) = l/ηά(τ) — α1? where the constant is fixed by the absence of massless states
in 9^ . We will identify such an element gn explicitly below. Also note that none of
these modular groups includes the Fricke involution wn:τ —• —\/nhτ since ηά(τ) is

inverted under wn with ηa(r) —> D^1 /ηά(r) and hence 1 Q = Dl^2ηά(τ/nh). In

fact, column 2 of Tables 1 and 2 gives an exhaustive list of all the modular groups
for Thompson series which are not invariant under the Fricke involution, i.e. the
corresponding elements gn G M are the non-Fricke elements.

3.4. The a Twisted String Construction. Let us now consider the construction of
the a twisted sector, which is similar to that of Sect. 2, for the automorphisms of
both Table 1 and 2. We will briefly discuss the construction of the general b = ar

twisted sector later on and in Appendix B. We introduce Xι(z) obeying the twisted
monodromy condition Xι(e2πτz) = ω~SτXι(z) + 2πβτ (with a in the diagonal basis)
with mode expansion [30, 26, 4, 34]

^—^ m
m£Z+st/n

where άι

m obey the commutation relations (2.2). <f G Lά = Λ/(l — ά)Λ is the a fixed
point space of the torus and is a finite abelian group of order Dά = det(l — a).

The twisted states 3fia with Virasoro Hamiltonian Lo = ]Γ) aL

rna
ι_m + Eft and

m

partition function 1 Q of (3.4) can be again constructed from a set of vertex operators
a

7/Q

A which form a representation of the untwisted set Ψ'A. These act on a degenerate

vacuum of dimension Dι

a'
2 and their OPA forms a representation of the OPA

(2.5) which is a non-meromorphic OPA due to Z/n grading. The construction of

φ{z) G %A is similar to (2.4) where now the cocycle factors are replaced by {cT(a)}

defined as follows [30,26]. Consider a central extension Lά of Lά by (ω), the cyclic

group generated by ω = e 2 π ϊ / n , given by

c(a)c(β)c(a)~ι c(β)~ι = exp(2πz^α(α, β)), (3.8a)

Sa(a, β) = -Sa(β, a) = (a, (1 - α)" 1 β) mod 1, (3.8b)

where α, β are representative elements of L- and 5α(α, β) G Z/n. Associated with

each section {c(α)} is a 2-cocycle ε(α, β) G (ω) as in (2.6b) obeying the cocycle

condition (2.6c). In general, the commutator subgroup of Lά is a subgroup of the

center (ω) and for n = p, prime, is equivalent to (ω) in which case Lά = p^_+2d, an

extra-special p group cf. [3]. For the full set of automorphisms obeying (3.6a), Lά is

given in column 3 of Tables 1 and 2. The group Lά has a unique irreducible faithful

representation π of dimension Dά in which the center is represented by the roots of

unity (ω) [30, 3, 26]. The elements of ττ(Lά) are then the cocycle matrices {cτ(a)}

which act on a vector space with basis formed by the a twisted vacuum states {|σ^)},

For each operator φ(z) G 7rA there is a corresponding operator φ(z) G Ψa

A which
acts on the a twisted vacuum states {|cr^)} and obeys the monodromy condition
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associated with the automorphism a as follows.

φ{k\e2πιz) = a-ιφik\z)a = ω~kφ{k\z), (3.9)

where φ(k\z) e ^ ' A is an ωk eigenstate of a. The twisted vacuum states are in
turn generated by twist operators {σι

a(z)} which act on the untwisted vacuum. For
the automorhisms of Table 1 which lead to a modular consistent theory, these twist
operators are of conformal dimension hσ — 1 + Eβ — 1 -j- 1/n. The remaining
constructions based on the automorphisms of Table 2 are discussed below. The
construction of {σι

a(z)} can be explicitly performed [34] where these operators form
a non-meromorphic OPA with the vertex operators of Ψ'A and '^ζΛ,

φ{k\z)σι

a{w) = σι

a(w)φ{k\z) ~ (z - w)h^hφ-hσψ{k~x\w) + . . . , (3.10)

with a suitable analytic continuation assumed in the first equality [34]. ψ^iz) denotes
a conformal field that creates a twisted state from the untwisted vacuum where (3.9)
implies that the conformal dimension hψ e Z - k/n. Thus the first excited twisted

states \ψύ) = a ! _ w j O with energy 2/π are given by lim z^^ In dZX
{ (z) \σι

a)

for i = 1,. . . ,αj, i.e. they are created by the lowest conformal dimension operators

dzX
ι(z) of ^ A which are ωn~ι eigenvectors under ά. We denote the set of operators

{φ™(z)}, including {σι

a{z)}, by %.
The lattice automorphism a acts as the identity on the fixed point space Lά. This

allows us to choose a lifting of a as an automorphisms of τr(Lά), which we also
denote by α, given by acτ(a)a~ι = ω~ιcτ(a) which is the appropriate choice for
Eβ = 1/n. We may then define the following automorphism of the OPA (3.10)

aσι

a(z)a~ι =u'lal

a(z), (3.11a)
{ k \ 1 = ωkψ(k\z) = e-

2*th*il>£\z). (3.11b)

From (3.10), the twisted operators of ^a therefore obey the twisted monodromy
condition when acting on the vacuum |0)

ψa(e2™z) = e-2π%h*ξa(z) = aψa(z)a-1 . (3.12)

Thus e27TlL°\φa) = a~ι\ψa) which implies that under T:τ -> r + 1,
a a

in the expected way e.g. [6]. The lifting of a chosen therefore ensures that no extra
phase occurs in this transformation and that there is no global phase anomaly [31,32].

For the automorphisms of Table 2, the twist operators have conformal dimension
hσ = 1 + l/nh and ψ(k\z) has conformal dimension h^k) e Z -(k+ \)/n + l/nh.
Equation (3.11) must therefore be modified where now σι

a(z) and φ^k\z), are,
respectively, unit and ωk+ι — ω

ι/h

e~'27r'ίh'Φ eigenstates under α. Likewise, an extra
phase of ω~χlh appears on the RHS of (3.12). Hence 1 Q is invariant under Tn only

up to an overall global phase of ^%lh giving the global phase anomaly anticipated
earlier.

Examining the twisted partition function for these cases, we also notice that it

is related to that for ah with l Q ( r ) = Γl • (Λτ)lΛ, where D-ah = Ό\ and

ah [ a J
ηάh(r) — ίηά(r/h)]h in (3.4). This observation leads us to an isomorphism between
the corresponding twisted Hubert spaces with

(3.13)
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where the RHS denotes a tensor product over h copies of 3@a. The explicit form
of this isomorphism is found by first noting that Lάh = Lά x . . . x L- for each
automorphism a of Table 2. Since άh has no fixed points we have (1 — ά)~ι =
(1 — άh)~ι(l + α + . . . + ah~x) so that the commutator subgroup of Lά obeys
[Lά,Lά] C (α;*1) from (3.8b). The representation τr(L-) acts on a vector space T α

of dimension Da , where the centre is represented by the cyclic group of phases
(ω). Thus Ta defines the vector space for a protective representation for Lά with
phases in (ωh). Taking the tensor product of h copies of Ta we obtain the vector

space Tά 0 . . . 0 Tά for the representation π(Ldh) of dimension D1'^ = D^2 which

forms a projective representation for Lάh = Lά x . . . x Lά with phases in (ωh).
Thus the vacuum states of the twisted Hubert spaces of (3.13) are isomorphic. Now
define Φi (z) = φi (zh)®.. .®φih(zh) which acts on these twisted vacuum states.

Then Φ i (z) obeys the monodromy condition (3.9) for ah. The operators {Φ(z)}

obey a non-meromorphic OPA due to hZ/n grading and create Virasoro eigenstates

in y$ah (but are not primary conformal fields in 9ζh). The vacuum states of β$ah,

which are created by the twist operators Σl^h"
lh(z) = σιj(zh) 0 . . . 0 σl

a

h(zh) have

energy hΣ = h/n and hence the global phase anomaly disappears by taking this

tensor product. Thus the isomorphism between Hubert spaces in (3.13) follows.
We may repeat the 9̂ * construction above for the remaining sectors ^ with Xι(z)

twisted by b_ = άr in (3.7b). This is briefly reviewed in Appendix B. For r relatively
prime to n, b is of order n also and 9̂ * is isomorphic to 9̂ *. Otherwise, b may have unit
eigenvalues and (3.7b) must be modified to include a momentum component belonging
to Λn and where now qι lies in the b fixed point space of the torus L^ — Λj/(I — b)Λτ

with Aξ = {β e Λ\^hβ = 0}, Λτ = (1 - &$Λ. Lh is a finite abelian group of

order D^/V^. The construction of the D^ /V5 twisted vacuum states {|σ^)} can

be similarly defined [30,34] together with vertex operators {$ζA which create 3$h

with partition function l Q of (3.4). Likewise, the non-meromorphic OPA of (3.10)
b

and monodromy conditions of (3.9) and (3.12) are generalised with a replaced by
b throughout and 9£ replaced by 9ζ. These other twisted sectors are required for
modular invariance and for the expected closure of the corresponding meromorphic
OPA. In particular, we expect the original a twisted operators {σι

a(z)} to form an
intertwining non-local OPA with the operators of each sector where

φ(

b

k\z)σa(w) ~(z- w)h*-h+-hσχ^ι\w) + . . . , (3.14)

where ψ^ e 9ζ, χ(

α^ € ^b are ωk eigenstates of a and where for each ψb(z) G 9ζ,

there is an operator ψ(z) which acts on the a twisted vacuum creating a state in the

ab twisted sector. The b = ar monodromy condition (generalised from (3.12)) implies

that ψ^ ̂  has conformal dimension hψ G Z — kr/n.

We therefore enlarge the meromorphic set of operators 9/>Λ by the introduction of
the twisted operators {σ^} to the set of operators Ψ"1 — 'Ψ*A Θ 2ζθ... Θ ̂ "n-i which
forms a closed but non-meromorphic OPA. Ψ'1 consists of all operators which form a
meromorphic OPA with 5 ^ Λ , i.e. ^ and ίPa<VA are dual [9]. Then 9ζ£ = &aΦ'
forms a closed meromorphic OPA which is self-dual. Note that only this meromorphic
&a projection of the intertwining OPA (3.14) has been rigorously constructed and then
only in the prime ordered cases p = 2 in [1, 28, 10] and for p = 3,5,7,13 in [16]. We
will assume that (3.14) is true in general. The partition function for the corresponding



Uniqueness of the Moonshine Module 511

space of states M^ is modular invariant with a unique simple pole at q = 0 as
before and is therefore given by Zorb(τ) — J(τ) + 7V0, where No is the number of
massless operators. The condition Eg > 0 ensures that no massless operators occur
in the a twisted sector, i.e. there is no a invariant operator ψ®\z) with hψ = 1 which
satisfies a meromorphic monodromy condition ψi0\e2πιz) = ψ(0)(z) from (3.12).
Nevertheless, there may be a massless operator ψ(°\z) present in one of the other
b = ar twisted sectors, where ψ®\z) is b invariant from the b monodromy condition
(e.g. for a = 4 8 /l 8 , the twisted sector corresponding to b = a2 = 2 1 6 /1 8 has a
massless vacuum from (3.5b)). Taking the a invariant projection we find &aψ

(0) = 0
unless ψ(°\z) is also a invariant and therefore contradicts our assumption. Thus no
massless operators that may occur in the other twisted sectors can survive the 5^a

projection and hence the condition Eg > 0 is sufficient to ensure the absence of
massless operators in 9ζ£ and the partition function is Zorh(τ) = J{τ) once again.
Therefore, according to the FLM uniqueness conjecture, we expect 9ζ£ = S^ for
each of the 38 automorphisms of Table 1. Let us now consider some evidence to
support this.

3.5. Centralisers, Thompson Series and Zn Reorbifolding 9 r̂g. Let Mo

α

rb be the
automorphism group of the OPA for 9ζ£ which, from the FLM uniqueness conjecture,
we expect to be M, the Monster group. For the prime ordered cases p = 3,5,7 and 13,
Dong and Mason have recently demonstrated that M£rb = M for p = 3 and very nearly
so for p = 5,7,13 [16]. We may identify an automoφhism α* G M^rb of order n
(which generalises the fermion number involution i in the original FLM construction)
under which the operators of 9ζk are eigenvectors with eigenvalue ωk. From (3.14),
α* is also an automoφhism of the non-meromoφhic OPA for the enlarged set of
operators !V = WA θ 9̂ * θ . . . θ %n-\ and α* is "dual" to the automoφhism
α, i.e. the a invariant subset of Ψ*' is 9ζ£ whereas the α* invariant subset is 9rA.
Furthermore, Ψ*1 is the set of all operators which form a meromorphic OPA with
cpjrA = ^a*%l (ΨΊ is dual to ^ S ^ 1 ) and hence we may reorbifold 9ζ& with
respect to α* to reproduce (VA. We can see this explicitly as follows. Consider the
massless states {aι_γ |0)}, i = 1,... — α1 ? which are ω eigenstates of a. The operators
of 9ζrl obey the α* twisted monodromy condition when acting on these states:

Vf ( Λ ) = ω~rφf\z) = a*-ιψ?\z)a* (3.15)

which is analogous to (3.9), i.e. the —aλ massless operators {dzX
i(z)}, i = 1,... -aι

implement the α* monodromy condition for 9ζ£ and create the α* twisted vacuum
states. The resulting non-meromoφhic OPA closes once again in the enlarged set Ψ'1

of which the α* invariant subset is 9rA. Thus

(3.16)

where the horizontal (diagonal) arrows represent orbifolding (projecting) with respect
to the denoted automoφhism.
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We may also compute the Thompson series T°£(τ) for α* G M^rb by taking the
trace over J$?orb, the Hubert space of states created by 5ζj.b, as follows:

+ + ^ n ~ 1 ^ α D (3.17)

For n = p9 prime, α* is of prime order and hence Σ T°ίb

fc(τ) = J(τ) + ( p - l)T°?(τ).
fc=l

This is also equal to 1 Q -f(p — l)α[[] from (3.17), where Σka*^ vanishes on each
1 1

twisted sector. Therefore we find that T°?( r) = α Q +24/(p - 1) = l/^(r) + Id.
1

Thus α* G M^rb has the same Thompson series as p— G M with genus zero modular
group Γ0(p). We can show that this generalizes to all orbifoldings generated by the
elements of Table 1, where

T^(r)=^-)-aι (3.18)

which is the hauptmodul for the genus zero modular group n + eλ, e 2 , . . . . This result
follows from a consideration of the singularities of T°rJ°(τ) and showing that they agree
with those of l/ηά(τ) [18]. Thus each α* G Mo

α

rb, the automorphism of ί r̂b dual to
α, has the same Thompson series as the non-Fricke elements n + e 1 ? e 2 , . . . G M,
e φn.

Equation (3.18) may be generalized to include the other automoφhisms {a} of
Table 2. As already described, such automoφhisms cannot be used to construct a
meromoφhic orbifold CFT. However, a! = άh, of order m = n/h, can be employed
to construct an orbifold with partition function J(r). Let gn denote the lifting of α,
where g^ = αr* is dual to α' = o^, a lifting of a!. gn then acts on each twisted

space and is in the centraliser of α'* in M£Tb (see below). We may compute the

Thompson series for gn as a trace over M^h by a similar trick to the prime ordered

cases above. gl^hk = gna'*k is of order n for each k = 1,2,. . . m and has the

same Thompson series as gn. Likewise, for each k, gn\^\ = gl^hk\Z\ a n d therefore
1 1

Tgn(r) = - Σ Γ ι+hk(τ) = gnU = 1/^M' where Σ o,'*k vanishes on each
m k y n l k

twisted sector. Thus (3.18) also holds for the automoφhism gn (since aλ = 0 for
h φ 1) and gn has the same Thompson series as n \ h + e1 ? e 2 , . . . , with e2 7̂  n/h
and hφ 1, a. non-Fricke element.

We may next compute the centraliser C(gn \ Mo«b) = {g G M ^ l ^ 1 ^ , , = ^}.
For the 38 automorphisms with h = 1 this consists of all OPA automoφhisms
that do not mix the various projected sectors ^a9ζk of 9^rb. For the remaining

13 automorphisms gn with h φ 1, C(gn \ Mo

α

rb) c C(α r* | Mo

α

rb). Every element
p G C(α* I M£rb) must commute with a in order to preserve the £Pa projection. Thus
C(a* I M^rb) is some extension of Gn = C(α| Co0)/(α), the non-trivial part of the
Conway group centraliser, which is reproduced from [35] in column 4 of Tables 1
and 2. The nature of this extension can be seen by considering the automoφhism
group preserving the twisted sector &°a% [18]. Let g and g' be two inequivalent
liftings of g to automoφhisms of τr(L-), the faithful representation of Lά whose
elements are the a twisted cocycle matrices {cτ(a)}. Thus g'g~ι is a lifting of
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the identity lattice automorphism. However, the inner automorphisms of τr(L-)
given by cτ(a):cτ(β) —+ cτ(a)cτ(β)cτ(a)~ι = exp(2πiSά(a,β))cτ(β) describe
the inequivalent liftings of the identity and hence the inequivalent liftings g of
g. As discussed above in (3.11), the lifting a of a to an automorphism of π(Lά)
is acτ(a)a~ι = cu~ιcτ(a). Hence g commutes with a and in turn, defines an
automorphism for ̂ a9ζ through (3.10). Thus we find that the group of inequivalent
OPA automorphisms preserving ^^ζ is Lά.Gn, an extension of Gn. The same result
also holds for the isomorphic twisted sectors S^βζk, where ak is of order n, i.e. k
is relatively prime to n. In Appendix B we discuss the contribution of the remaining
sectors to C(a* | M^rb). There we also consider the other 13 automorphisms with
h φ 1 and demonstrate that for all 51 atuomorphisms gn,

C(gn\M^) = La.Gn. (3.19)

In column 5 of Tables 1 and 2 we have reproduced C(gn | M) from [13] which may

be compared with Lά and Gn in columns 3 and 4 to verify (3.19) assuming that

M^rb = M and gn = n \ h + ex, e2, . , a non-Fricke element of M. Equation (3.19)
is a new generalisation of the original observation of Conway and Norton concerning
the five n — p, prime, cases where C(p — \ M) = pι_^2d.Gp with α* = p— [13]. For
the other 46 automorphisms of Tables 1 and 2, there are only 11 cases for which (3.19)
can be explicitly checked using the available information about these centralisers in
[13, 35]. However, the order of these groups agrees with (3.19) in each case supporting
the very likely validity of the result in general.

From (3.10) we may observe that Lά.Gn must be an extension of Gn =
C(a I 22 4.Co0)/(α), the subgroup of automorphisms of WA which preserve 9D

a9
rA,

where the extension contains the central cyclic group generated by gn. This extension

is due to the presence of the D^ twist operators {σι

a} which form a representation of

Gn. Thus for the prime ordered cases G2 — 224.Coι and Gp — Gp for p = 3,5,7,13.

In particular, we also note that if the a twisted vacuum is unique, then Ld.Gn is

isomorphic to n.Gn. A similar observation will be useful in Sect. 4 when we consider

other possible orbifoldings of 9 ^ .

3.6. A Z 2 Reorbifolding of9ζ£. Recently, Montague made the interesting suggestion
[23] that a CFT, such as £^ξ, with partition function J(r) can be shown to be
isomorphic to 9 ^ by the existence of an involution i of 9^rb and a set of twisted
operators 9f with non-negative vacuum energy (see Sect. 4). Then the Thompson series
T°rb(τ) is ΓQ(2) invariant with a unique simple pole at q = 0 and must be hauptmodul
l/η-(τ) + 24. Therefore, assuming that we can reorbifold 9ζ^ with respect to i, we
obtain a CFT with partition function J(τ) + 24. But lJrA is now known to be the
unique CFT with this partition function [23] and hence this reorbifolding reproduces
'WA. If we consider the involution i* dual to i which acts on ^ y l , then the 24 massless
operators of fyrA are —1 eigenvectors under z* and hence i* can be identified with the
involution r introduced in the original FLM construction. Thus 9ζ£ can be obtained
from Ψ*A by orbifolding with respect to i* = r and must be isomorphic to 9^.

We will now consider the constructions of 9£ξ given above and find an involution
% with the correct Thompson series in 11 cases in addition to the standard FLM
construction. We will only consider here an involution in the centraliser C(a* | M^b) =
Lά.Gn which is lifted from the reflection atuomorphism f of Λ. This restriction
excludes 13 automorphisms of even order n (including the original automorphism f
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adopted by FLM!) denoted by f in the last column of Table 1 for which a71!1 — f = — 1
so that r £ Gn. For the remaining automorphisms we can compute T°rh(τ) similarly
to (3.17). Under S:τ —• — 1/r we obtain given the usual modular transformation
properties

() D . (3-20)
n-1

which is T2 invariant and hence T°τb(τ) is ΓQ(2) invariant. We can determine whether
T°τh(τ) is a hauptmodul for JΓ0(2) by considering the behaviour at τ = 0 via
(3.20). The sector twisted by i has vacuum energy +1/2 because i is lifted from
f and therefore contributes no singularity. Each sector twisted by iak, of order m,
has vacuum energy which always obeys Eo > — 1/m (see Sect. 4.4) and therefore
contributes no singularity unless m = 2 with Eo = —1/2 since (3.20) is T2 invariant.
This occurs when iak is lifted from — άk with Frame shape 18.28, i.e. a is of even order
n = 2k and άk has Frame shape 2 1 6 /1 8 which is the case for the 14 automorphisms
denoted by J in Table 1. Otherwise, for the 11 remaining automorphisms, denoted by
* in Table 1, T°rb(τ) has a unique simple pole at q = 0 and is therefore a hauptmodul
for Γ0(2). These consist of 3 even ordered automorphisms and all the odd ordered
automorphisms including the odd prime ones considered by Dong and Mason [16].
Thus, in these 11 cases, one can construct the required involution. In the remaining
cases, a more technical construction is required and is currently under investigation.

To summarise this section, we have described 38 meromorphic orbifold construc-
tions ^ (including the original one of FLM and the prime ordered constructions of
Dong and Mason) with partition function J(r). Amongst these constructions, we have
found 51 automorphisms {gn} that can be identified with the 51 non-Fricke Monster
group classes, where gn satisfies g% = α'*, the automorphism dual to a' = ah. For
each gn, the Thompson series agrees with the corresponding Monster group Thomp-
son series and the centraliser in (3.19) also agrees explicitly in many cases (and very
probably in all cases). For 11 of these new constructions, an involution can also be
found which is dual to the involution r of ^'Λ used in the FLM construction of 9 ^
and so 9ζ£ = 9 ^ for these cases (assuming that the various twisted sectors obey the
OPAs (3.10) and (3.14)). We also note that we may in general compute the Thompson
series within 9ζ£ for each element of C(gn | M^rb) as a sum of traces over each sector

(in [18] we give an explicit formula for the prime ordered constructions). In
particular, it is straightforward to show that Tpfc(r) agrees with the expected result

in each case. All of these results support the conjecture that 9^rb = 9 ^ as expected
from the FLM uniqueness conjecture. Finally, we expect a generalised version of the
hidden triality symmetry in the FLM construction which mixes the untwisted and
twisted sectors to exist [1,3, 29]. Thus there should exist some symmetry group Σn

which mixes the various sectors of 9 r̂£, where C(gn | M) and Σn generate M. In the
prime cases p = 3,5,7,13, Σp has been constructed by Dong and Mason [16].

4. Orbifolding the Moonshine Module and Monstrous Moonshine

4.1. Monstrous Moonshine and Orbifolding 9 ^ . Let us now consider one of the main
objectives of this paper which is to discuss the relationship of the FLM uniqueness
conjecture to Monstrous Moonshine, the genus zero property for Thompson series
[13]. Our main result is as follows: Assuming the FLM uniqueness conjecture holds,
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then the Thompson series for g G M is a hauptmodul if and only if the only
meromorphic orbifoldings of 9 ^ with respect to g are Ψ*A or 9 ^ .

We will assume throughout this section that the FLM uniqueness conjecture is
correct. Therefore 9ζ£ = Ψ^ for each of the orbifoldings described in Sect. 3 and
'WA can be reconstructed by reorbifolding 9 ^ with respect to the non-Fricke dual
automorphisms α* = n-\-eι, e2, .. with ei Φ n. The Thompson series for α* of (3.15)
is then recognised as a contribution to the partition function for this reorbifolding.
It is natural to interpret all the Thompson series Tg(τ) in this way and to construct
an orbifolding of 9 ^ with respect to each g G M [19]. In particular, we expect that
under S:τ -» — 1/τ, Tg(τ) = Ύr ̂ (gqL°) transforms to the partition function for a g
twisted sector as follows:

where the superscript t] denotes a trace contribution to the orbifolding of 9 ^ (in

distinction to orbifoldings of 9^A) and where the g twisted sector 9 ^ has vacuum

energy E% and degeneracy Ng. For the 38 automorphisms α* dual to a we find from

(3.16) that 1Q]^ = —ax-\-D^ ηά(r/n) with vacuum energy EQ = 0 and degeneracy

7Vα* = - α j . In these cases, 9$ = {φ{l)} Θ {^υ} Θ . . . Θ {V^n-i}» m e subspace
of ιVA 0 ^ ' 0 . . . 0 ^"n-i with eigenvalue α; under α where, as noted in Sect. 3,
the α* twisted vacuum is created by the massless operators dzX

ι(z), i = 1,... - aλ.
Likewise, the other 13 non-Fricke automorphisms gn with g% = 6* (where 6* is dual

to ah and h ^ \) have vacuum energy £ $ n = 1/n/ι and degeneracy Ngn = DlJ2

and therefore possesses a global phase anomaly leading to an orbifold construction
which is not meromorphic and not consistent with modular symmetry [31,32]. The
twisted space of operators 9^j| will be discussed in Sects. 4.3 and 4.4 below. For the

remaining Fricke classes of M, g = n\n-\—,e2,... (i.e. ex = — ), we will assume
n \ J

that the twisted operator sector 9^, with a corresponding Hubert space of states ^
can always be constructed. There are a total of 120 of these classes (including two
classes 27A, 27B which have the same Thompson series) of which 82 classes have
h — 1 [13]. For many of these classes, the method of construction of these sectors is
not known since the origin of the automorphism is not geometrical as was the case for
the lattice automorphisms of Sect. 3. However, for automorphisms in the centraliser
C(i I M) = 2 1 + 2 4 .Co 1 which are associated with Leech lattice automorphisms, a
method of construction is given later on Sect. 4.4.

The qn coefficients of the trace on the RHS of (4.1) must all be non-negative since
this is the partition function Tr ^(qL°) for the Hubert space 3^ associated with 9^ .

'fίg y y

(In fact, from the point of view of the representation theory of Virasoro algebras,
Ύΐ 7±(qL°) is the characteristic function and is arguably a more natural object to

JKg

study than the original Thompson series). For the Fricke classes T (r) = 1| \^(nhτ)
9

whereas for the non-Fricke classes Tgn(r) = l/ηά(τ) — aλ = —a{ + DXJ2/(ax +

. Therefore the qn coefficients of Tg(r) must be non-negative for the
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Fricke classes and of mixed sign for the non-Fricke classes. These properties are
indeed observed for all Thompson series.

For orbifold constructions leading to a theory with modular consistency, the
vacuum energy E% must also satisfy ΠEQ = 0 mod 1 and 1 [ ^ is Tn invariant.

9

Assuming the usual orbifold trace modular transformation properties, for all 7 G
Γ0(n), where η:τ —• (ar + b)/(cnr + d) we find Tg(τ) -^ gd\Z\^ — ^ ( r ) s m c e

(d, n) = 1, i.e. n and d are relatively prime so that g and gd are in the same conjugacy
class and hence have the same Thompson series. Thus, in the absence of a global
phase anomaly, T (r) is Γ0(n) invariant and hence h = 1. Let us consider, for the
present, only Thompson series with this property.

In general, we assume that there exists a set of operators {σι

g(z)}, I = 1,.. ., Ng

of conformal dimension hσ = 1+j/n which create the vacuum operators of 9 ^ . We
also assume that for each operator ψ(z) G 9^, there is an operator ψ(z), which acts
on this twisted vacuum and creates a state in 3$^. If ψ(k\z) G 9 ^ is an ωk eigenstate

of g, then we assume that when acting on the vacuum states {|σ^)}, φ^k\z) satisfies
the following monodromy condition:

φ(k\e27τiz) = ω~kψ{k\z) = g-ιψik\z)g . (4.2)

Similarly to (3.9) and (3.10), (4.2) follows from a non-meromorphic OPA which the
twisted operators {σι

g{z)} satisfy with 9/>tl, where

ψ{k\z)σι

g(w) = σι

g(w)φ{k\z) ~ (z - w)h^-h^~hσχg

k-J\w)... , (4.3)

where the operators {σι

g(z)} are ω~3 eigenvectors of g and χg

k\z) G 9 ^ has

conformal dimension hχ G Z - k/n and is an ωk eigenvector of g. Then each

χg(z) G 9 ^ obeys the usual monodromy condition

χg(e2πιz) - gχg(z)g-{ = e-2*th*χg(z) (4.4)

when acting on the untwisted vacuum |0) so that T l Q ^ ^ 9~{\Z\^ a s expected,
9 9

without any global phase anomaly. Likewise, the twisted sectors {9^} are assumed

to exist with vacuum energy E^ and degeneracy Ngk, where together Ψ*1 =

9 ^ 0 9^ θ . . . θ ^\-\ forms a closed non-meromorphic OPA. Taking the projection

we define 9ζ£ = ΰ?^', the CFT constructed from 7Λ by orbifolding with respect

to g. The operators of 9ζ^ form a meromorphic OPA and the partition function is

again Zorh(τ) = J(τ) + 7V0, where No is the number of massless operators. For each

of the 38 non-Fricke automoφhisms α* dual to a, this construction gives us 9rA

with NQ = 24. Assuming that Thompson series are hauptmoduls, we will show below

that No = 0 for the remaining 82 global phase anomaly free Fricke classes (which

we denote by / = n + n, e 2,. . .) so that Wjh = 9 ^ again i.e. every meromoφhic

orbifolding of 9 ^ with respect to g G M either produces "WA or reproduces 9 ^

again. Conversely, we will show in Sect. 4.2 that given this result then T (r) must be

a hauptmodul for some genus zero modular group.
We begin by describing how T (r) can be a hauptmodul in terms of the vacuum

properties of ψ\ for a meromoφhic orbifolding of 9 ^ with respect to g. We
9
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assume that under a general modular transformation η(τ) = (aτ + b)/(cr + d),
Tg(Ί(τ)) = g~d\Z\^- Thus any possible singular behaviour of Tg(τ) at a cusp point

gc

a/c = lim η{τ) is governed by the vacuum energy and degeneracy of the gc twisted
T—>-oo

sector. In [19] we showed that for g = n + ev e 2 , . . . G M, T (r) = # Π ^ is a
1

hauptmodul for the modular group Γg = Γ0(ri) + e t, e 2,. if and only if the vacuum

energies and degeneracies of the twisted sectors Ψ'\ obey the following properties.g n

Vacuum Properties

(I) The vacuum energy EQ for Ψ'\ is non-negative unless gk is of order e G

{eι, e2,...} in which case EQ = — 1/e (^\ is tachyonic) and the vacuum degeneracy

Ngk = 1.

(II) (Atkίn-Lehner Closure) If both sectors 9r\ and ^k2

 a r e tachyonic (with vacuum

energies — l/e 1 ?— l/e2) then the sector ψ\ is also tachyonic (with vacuum energy

- l / e 3 ) where gk3 is of order e3 — e 1e 2/(e 1,e 2) 2 .

Condition (I) is required to ensure that Tg{τ) has the correct residue and pole strength
at any singular cusps whereas condition (II) ensures that the composition of two
Atkin-Lehner involution invariances of Tg(τ) is another Atkin-Lehner invariance as
in (A.4).

The Vacuum Properties are easily understood for g of prime order p as follows.
As described above, Tg(τ) is always Γ0(p) invariant. The fundamental region for this
group, J ζ = H/Γ0(p), has two cusp points at r = oo (q = 0), where Tg(τ) has
a simple pole and r = 0, at which Tg(τ) may have a second pole determined by
the sign of the vacuum energy Eβ and residue given by N from (4.1). Thus EQ is
non-negative if and only if Tg(r) has a unique simple pole at q = 0, i.e. Tg(τ) is
a hauptmodul for ΓQ(p) and g = p—. For g = p+ where Tg(τ) is invariant under
the Fricke involution Wp:r —• —l/pr, then ^ Q ^ r ) = lQ]^(pτ) and we have

1 9

Ng = 1 and EQ = —l/p, as given in the Vacuum Properties. Conversely, if TV = 1,
EQ = -l/p then f(r) = Tg(τ) - Tg(Wp(τ)) is Γ0(p) invariant without any poles.
Therefore /(r) is holomorphic on the compactification of ,ίζ (a compact Riemann
surface) which is impossible unless / is constant. But f(Wp(τ)) = —/(r) implies
/ = 0. Therefore, Tg(τ) is Γ"0(p)+ invariant and has a unique simple pole at q = 0 on
H/Γ0(p)+ and thus ΓJ)(p)+ is a genus zero modular group with hauptmodul T (r).
A similar argument to this applies in the more general situation where g is not of
prime order and Tg(r) can be invariant under other Atkin-Lehner involutions [19].
In addition, the Vacuum Properties imply that Thompson series obey the power-map
formula which relates Γg to Γ k. This is an empirical observation in [13] not derivable
from the genus zero property [19].

For the 82 Fricke classes / = n + n, e 2 , . . . , 1 Q V ) = f\Z\\τ/n) =
/ i

q~ι/n+0+O(qι/n). Thus, despite the fact that E$ = -1/rc, V^ contains no massless

operators because the first excited states of 3%^ with energy \/n are created by the
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action of conformal weight 2 operators of 9 ^ on the / twisted vacuum. We may then
repeat the argument of Sect. 3 to conclude that no massless operator ψ®\z) present
in any other twisted sector Ψ% can be invariant under the ̂  projection (otherwise

ψ(°\e2πιz) = fψ^°\z)f~ι = ψ®\z) obeys the defining monodromy condition for a
massless operator twisted by / which is impossible). Hence, for these Fricke classes,
9 ^ contains no massless operators so that Zorb(r) = J(τ) again. Therefore, given the
uniqueness of 9^, we find that 9 r̂£ = 9^ . We have therefore shown that orbifolding
9 ^ with respect to the 38 non-Fricke classes {α*} gives 9rA whereas orbifolding
9 ^ with respect to the 82 Fricke classes {/} reproduces 2 ^ , assuming that 9 ^ is
unique and the Vacuum Properties hold (i.e. the Thompson series are hautpmoduls).
Thus we have

a

9rA^gήJ^gή^ (4.5)

where each arrow represents an orbifolding with respect to the denoted automorphism.
We will refer to (4.5) as the Unique Orbifold Partner Property for 9^ .

4.2 Monstrous Moonshine from the Unique Orbifold Partner Property. We will now
argue that the converse to the statement above is also true, i.e. assuming that 9 ^
is unique and (4.5) holds for all meromorphic orbifoldings of 9 ^ with respect to
g £ M, then the Vacuum Properties hold and hence each Thompson series T (r) is a
hauptmodul for a genus zero modular group.

We begin with an orbifolding of 9 ^ with respect to an automorphism, which we
denote by α*, which produces the Leech theory 9rA. α* is dual to an automorphism
a of 9 ^ which must belong to one of the 38 classes described in Sect. 3. However,
assuming the uniqueness of 9^, then there must be exactly 38 different corresponding
classes of automorphisms {α*} of 9 ^ with Thompson series Tα*(τ) = l/ηά(r) — ax.
The associated twisted sector 9^* therefore has vacuum energy Eft — 0 (and

degeneracy 7Vα* = —a{) in agreement with the Vacuum Properties concerning 9^!.
Furthermore, Tα* (r) is known to be a hauptmodul for the genus zero modular group
Γ1

0(n)+e1, e 2 , . . . , ei Φ n and hence α* is a non-Fricke element of type n-\-eι, e 2 , . . . .
Thus the remaining Vacuum Properties concerning 9 ^ must also hold for these
elements. We will briefly consider further reasons for this result later on in the light
of our discussion of the Fricke elements.

Let us now consider the remaining allowed orbifoldings of Ψ*^ with respect to
automorphisms, which we denote by {/}, which are assumed to reproduce 9^ . Each
orbifolding is necessarily free of global phase anomalies and hence, as described
above, Tf(τ) is Γ0(n) invariant where / is of order n. We will show that the Vacuum
Properties hold for these automorphisms and that Tj(τ) is a hauptmodul which is
Fricke invariant.

9ζ£ = Ψ*^ implies the absence of massless operators in 9 ^ . Therefore the

twisted vacuum energy obeys either E§ > 0 or EQ = — 1/n (so that 9^ is
tachyonic). The first case is the only possibility in a regular lattice orbifolding as
in Sect. 3. EQ = —\/n is also possible for an orbifolding of 9 ^ because the lowest
excited energy operators {ψ2(z)} of 9 ^ are of conformal dimension 2. Based on our
experience with lattice orbifoldings, we expect the first excited states of Mf to be
created by the action of some of these operators on the twisted vacuum as in (4.3).
These excited states can then have minimum energy l/n so that the absence of any
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massless operators in 9^ is directly due to a similar absence in Ψ^, On the other hand,

any other negative value of EQ would result in massless operators in 9^. We will

directly observe this situation below in Sect. 4.4 when we consider automorphisms

based on lattice automorphisms for which 9j can be explicitly constructed. Thus,

we have determined that for any / e M either EQ > 0 or E$ = -l/n (9^ is

tachyonic) whereas for α* e M, Eg — 0. (Later on we will eliminate the possibility

of El > 0 by studying the singularities and modular properties of Tf(τ).) As described

before, the behaviour of TJτ) at a cusp point a/c is determined by f~d\Z\^ (where

ad — be — 1) with singular behaviour when EQ < 0, where fc is of order n'.
rC , rC

Therefore 9^ = 9r* with EQ — — l / n and the residue of this pole is NjC, the

vacuum degeneracy of the twisted sector 9£ c . We will next show that Nfc = 1.

As was the case for the lattice orbifold constructions of Sects. 2 and 3, we may
identify an automorphism /*, which is dual to the automorphism /, where the
operators of ψ\ are eigenvectors with eigenvalue ωk for ω — e 2 π ϊ / / n . /* is then an

automorphism of the OPA for 9ζτ^, where 9ζτζ = 'W^ by assumption, i.e. f*eM and

9ζί = 9 ^ . We can then calculate the Thompson series Tf*(τ) = T r ^ / (/*<?L°) =
n

J2 (jok9^r\^\\ which is Γ0(n) invariant using the usual modular transformation
k=\ fk

properties of these traces. Furthermore, we can show that Tf*(τ) = Tj(τ) by
n n

considering the sum of Thompson series Σ ^1f*/c(r) — Σ ^-r^f (/*fc^L°) Since
/c—1 / c = ; l orb

only the untwisted sectors contribute we find

]Γ drTrr (r) = Σ drTfr (r), (4.6)
r \ n r \ n

where dr is the number of integers k G {1, . . . , n} with (fc, ή) = r so that Tjr(τ) —
Tfk{τ) and likewise for /*. For n = p, prime, we have dλ = p — 1, dp = 1 and (4.6)
implies that Tj*(τ) = T^{τ). For n not prime we may identify the singularities of
Tf{τ) and Tj*(τ) as follows. Consider the modular function φ(r) = dx{Tf* — Tf).
As described above, the behaviour of φ(τ) at r = 0 can only be singular if either

Ef = -l/n or E$ = -l/n or both where φ(-l/r) = Aq~^n + 0 + ... for
A = Nf* or A ĵ or Nf* -Nf respectively. But from (4.6), φ(τ) = Σ dr(Tfr -Tf*r)

r>\

has singular behaviour at r = 0 determined by φ(—l/τ) = Bq~rln + . . . which is

inconsistent unless E1^ = EQ = —l/n and TVy* = N^ for all tachyonic sectors.
Therefore φ(τ) is ΓJ)(n) invariant without singularities and defines a holomorphic
function on the compactification of H/Γ0(n) (a compact Riemann surface). This is
impossible unless φ(τ) is a constant which must be zero since Thompson series contain
no constant term. Therefore Tp{τ) — Tj{τ) and so / and / * can be identified as
members of the same conjugacy class of M (apart from the classes 21 A, 21B where
possibly / and /* are in different classes).

We next examine the centraliser C(/* | M) by a similar analysis to that of Sect. 3

and Appendix B. Define Aut(5^ 9$) to be the automorphism group of the OPA for 9ζτζ
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which maps ^ } 9 ^ into itself. Then n. A u t ( ^ 9 ^ ) C C(/* | M), where the extension

is the central cyclic group generated by /*. From (4.3), the vacuum operators {σ'j(z)}

of 9p must form a Nj dimensional representation for C(f \ M)/(f) which defines

some extension Lσ so that Aut(5^9^) = Lσ(C(f | M)/(/)). Therefore we find that

n.Lσ.(C(f\M)/(f}) C C ( / * | M ) . However, this is impossible since / * and / are

in the same conjugacy class of M unless Lσ = 1 so that the twisted vacuum of 9γ

is unique where N^ = 1. (For the two classes 27A, 27'B, the centralisers are of the

same order so that again Lσ = 1).

We have shown that for any / G M, where 9^£ = 9^, 9^ has vacuum energy

EQ > 0 or EQ = — 1/n with degeneracy TVj = 1. We will now eliminate the

f fk

possibility of EQ > 0. If EQ > 0 for all k ^ n, then Tf(τ) has a unique simple

pole at q = 0 and is therefore a hauptmodul for Γ0(n). This is only possible for

2 < n < 10, n = 12,13,16,18 with hauptmodul Tf(r) = l / ^ ( τ ) - ^ for the

corresponding automoφhism α G Co 0 in Table 1 with modular group ΓQ(n) = n—.

Then under S:τ —> - 1 / r we get ^ = 0 with TVy = —ax Φ 0 in contradiction so

that EQ = — \/n in these cases which includes all the prime ones. For the remaining

non-prime cases with some EJ

0 < 0, we consider the composition of two orbifoldings

of Ψ'^ which will allow us to determine the location and strength of any singularities

of Tf(r).

Choose / e M of non-prime order n (where either E^ > 0 or EQ = — 1/n)

such that for any /, e M of order nι < n, where 9ζ^ = ^ then EQ1 — -l/nλ.

This choice includes the automorphism / of least order with EQ > 0 which we will

show cannot exist. With this choice of /, if 9^, = 9 ^ for fr of order e = n/r,

Ψp. must be tachyonic with EQ — — 1/e. (We may assume that r | n since ^ ΐ and

9^, are isomorphic for (n, r) = (n, rx) in general). We will show that Ψpe must also

be tachyonic with EQ = -1/r, where (e, r) = 1, i.e. e || n. This corresponds to the

singularities given in (I) of the Vacuum Properties and will also lead to the closure

property in (II) once we have shown that EQ = —l/n. In constructing 9ζτζ = 9 ^ we

employ twisted operators which are also involved in constructing 9ζrζ = 9^ . The

contribution to 9ζτζ from these operators is

h i r

J J fr e~ r or / '

where / ; is an automoφhism of 9 ^ of order r defined by the automoφhism / acting

on 9 r̂{ (since fr acts as unity on 9 r̂£ ). But ^ - / ^ is the untwisted contribution to

the orbifolding of 9ζτζ with respect to f. Furthermore, the orbifolding of 9 ^ with

respect to / is a composition of the orbifolding of 9 ^ with respect to fr and the

orbifolding of 9ζ£ = 9̂ *̂  with respect to / ' as follows

V (4.8)
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where the arrows represent an orbifolding with respect to the denoted automorphism.

Thus 9 ^ = 9 ^ and therefore 9γ is also tachyonic with EQ = —1/r by our choice

of / since / ' is of order r < n. We can check for the consistency of this composition

of orbifoldings by considering the Thompson series Tjf (r) for / ' as a trace over 9ζ£ .

Under S:r —> — 1/τ this becomes

which must have leading behaviour q~γlr + . . . from (4.1). Therefore, at least one of

the twisted sectors contributing to the RHS of (4.9) must be tachyonic with vacuum

energy —1/r and fι+rk of order r < n. Thus r(l + rk) = nl for some I so that

el — rk = 1 which implies that (e,r) = 1. Therefore, e\\n (and r\\n) and 9jί

is tachyonic with vacuum energy - 1 / r (as is the isomorphic twisted sector ?/}cl

since (/,r) = 1). Thus orbifolding 9 ^ with respect to fe also reproduces 9^ . To
f r h

summarise, for / of order n as chosen, if 9 ^ = 9 ^ (so that 9jr is tachyonic), where
fr is of order e = n/r then e\\n and 9̂ 1] must also be tachyonic with 9^£ = 9^ .

This translates into information about the singularity structure of Tf(τ) [19]. If
we choose the representative form for the Atkin-Lehner (AL) involution We =

e b \
, , for e / n, as in Appendix A. Then TΛWΛr)) = f~~ e d Πw) =

n de) J fr

q~{ + 0 + O(q) when 9ζτζ = ^ . Note that the constant term is zero since 9jΐ
contains no massless operators. We define τ e = We(oo) — 1/r which we call an AL
cusp. On the fundamental region .9^ = H/Γ0(n), the singularity at τ e is then a simple
pole since We is an automorphism of .9^. In addition, T^(r) also has a simple pole

at the AL cusp τ r = 1/e = Wr(oo) since 9̂ j.{ = 9/ t ?. Thus T^{τ) has simple poles

with residue 1 at r = oc (g = 0) and possibly at r = 0 (if EQ = —l/n) and at the
AL cusps τ e and r r .

We next show that Tj(τ) must always be singular at r = 0 with E^ = - l / n .

Suppose that EQ > 0, then under the Fricke involution Wn:τ —* — 1/nτ, τ e and τ r

are interchanged. Then φ{τ) = Tj(r) — ̂ ( ^ ^ ( T ) ) is a /^(n) invariant meromorphic
function on &n with two simple poles at r = oo (q = 0) and r = 0. </>(r) also has
zeros at τ e and r r since φ(We(r)) — q~x — q~ι + 0 + O(g), where it is essential that
the AL poles have the same strength and residue and that 9̂ !? and Ψμ contain no
massless operators. Likewise, φ(τ) has zeros at any other such pairs of singular AL
cusps. But φ(r) is odd under Wn and therefore also has a zero at the Wn fixed point
i/y/ΰ. Thus φ has two simple poles and at least three zeros on the compactification
of .^n which is a compact Riemann surface. But every meromorphic function on a
compact Riemann surface has an equal number of zeros as poles. Therefore, there is
a contradiction and hence EQ — ~\jn.

We have now derived condition (I) of the Vacuum Properties for /. In addition,
a restricted version of the AL closure condition (II) has also been demonstrated.
Namely, if 9^ and 7μ are tachyonic (where fr is of order e || n), then so is Ίμ
where fc is of order r = ne/e 2. We can use this to generate the general AL closure
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property as follows. Suppose that Ψp and 9 ^ are both tachyonic with f{ — fTι and

Λ = Γ1 with r i Φ n / r 2 ' where f% is of order ei where e{\\ n. (We can take rt | n,

as before, since 9^ΐ and W\, are isomorphic for (n, r) = (n, r')). Then the sectors

twisted by fe% of order r̂  are also tachyonic. By interchanging ei with ri if necessary
we can assume that (e l 5 e2) = 1. This is easily shown by observing that the order n of
every element of M has at most 3 distinct prime divisors (n<2.3.5.7 = 210). Then
e3 || n for e3 = e ^ and r 3 = r 1 r 2 / ( r 1 , r 2 ) 2 = w/e3 with r{ = r 3 e 2 and r 2 = r ^ .
Consider # = / Γ 3 of order e3. Then geχ = / Γ 2 and g&2 = / r i are of order e2 and e1 ?

respectively, so that the corresponding twisted sectors are tachyonic. Therefore, by
taking the composition of orbifoldings with respect to ge\ as in (4.8), we find that
9 ^ is also tachyonic with g = / Γ 3 of order e3 = exe2. As before, the sector twisted
by / e 3 of order r 3 = rιr2/(rx,r2)

2 must also then be tachyonic. Thus the general AL
closure condition (II) is derived.

We have now demonstrated that the genus zero property for Thompson series can
be derived from (4.5) assuming that 9 ^ is unique and so we have:

Monstrous Moonshine is Equivalent to the Unique Orbifold Partner Property. Assume
that the FLM uniqueness conjecture holds. Then T (r) for g £ M is a hauptmodul
for a genus zero modular group Γ0(n) + e{, e 2 , . . . if and only if the only meromorphic
orbifoldings of 9 ^ with respect to g are 9^Λ and 9^ .

We note that we may also understand the Vacuum Properties already found for the
non-Fricke elements α* dual to a in a similar fashion to this derivation for the Fricke
elements. Suppose that / = α* r of order e = n/r is Fricke so that 9ζrζ = 9 ^ . We
can then deduce that e\\n and that α* e is non-Fricke as follows. The orbifolding
of 9 ^ with respect to α* (which gives WA) is the composition of the orbifolding
of 9 ^ with respect to / and the orbifolding of ^ b = 9 ^ with respect to 6* of
order r, where 6* is the action of α* on ψj^ . Thus 6* is dual to b, one of the
38 automorphisms of (VA discussed in Sect. 3. It is straightforward to then see that
b — ae (lifted from αe) has the correct action on 9ζrζ to be dual to 6*. If we examine
the 38 automorphisms listed in Table 1, we find that άe is contained in Table 1 if
and only if e || n and ηά(τ) is invariant under the AL involution We (but is inverted
by Wr). In fact, in each such case this follows from the symmetry properties of the
characteristic equation parameters, where ak — —dnik — aekr/ke

 = ~arke/kr (with
ke = (/c, e) and kr — (/c, r)) so that b — άe has parameters bk = —br/k. Similarly, the
closure condition (II) follows directly from these parameter relationships.

4.3 Moonshine for n | / i + e 1,e 2,...,/z φ 1. Let us now consider the Thompson
series for the classes of M which cannot be employed to construct a meromorphic
modular invariant orbifold due to a global phase anomaly. These classes consist of
the 13 non-Fricke classes of Sect. 3 and 38 Fricke classes. The twisted sector 9 ^
for the non-Fricke classes and some of the Fricke classes can be constructed since
they belong to the centraliser C(i | M) = 2 1 + 2 4 .Co 1 as described below in Sect. 4.4.
We find that £Q = l/nh for the non-Fricke classes and £Q = -l/nh for the Fricke
classes where h \ n. We will assume that this latter property is also correct for the
remaining Fricke classes. The integer hφ\ parameterises the global phase anomaly
present in these cases where Tn: 1 • * -> e

±2πι/hl •&. In Sect. 3 we considered the
9 9

13 Leech lattice automorphisms with a global phase anomaly, where we found an
isomorphism between 3Sa 0 . . . 0 Ma and 3%ah in (3.13). A similar isomorphism is
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also expected here between the twisted Hubert spaces 3$^ and 3Φh as follows [19].

Let ψτ(z) create a twisted state in 3$^ by acting on the twisted vacuum states {|σ^)}.

Then ψH_ih(z) = ψiχ(zh)®.. .®ψlh(zh) which acts on \Σl^"lh) = |σ£)® ®\σgh)

obeys the monodromy condition (4.2) for gh of order n/h. Φ(z) creates a state in 38^ h

but is not a primary conformal field. For the non-Fricke classes the states \Σgκ) are of

energy h/n whereas for the Fricke classes, \Σgκ) is unique and is of energy —h/n and

reproduces the vacuum of .%fth. Thus as before, the global phase anomaly disappears

by taking such a tensor product. Thus an identification can be made between the

non-massless states of 38 \ and 3$), 0 . . . 0 3$)i. For the non-Fricke classes, 38\

always contains N H > 0 massless states whereas the energies of all the states of

38^ (g) . . . 0 38^ are positive. On the other hand, for the Fricke classes 38 h contains

no massless states but 38)ί 0 . . . 0 ^ 5 contains hNλ massless states where N] is the
9 9 L x

number of operators of 3^ with first excited energy level —1/nh + 1/n. Therefore
the partition functions are expected to be related as follows:

τ) + C, (4.10)

where C = —Ngκ for the non-Fricke classes and C = hNx for the Fricke classes.
In terms of the Thompson series this is the harmonic formula of Conway and Norton
[13]

[Tg(τ/h)]h = Tgh(τ) + C. (4.11)

This relationship implies that Tg{τ) is Γ0(n \ h) + e l 5 e 2 , . . . invariant up to h roots of

unity. We also know that l [ ] ^ ( τ ) is Tnh invariant from which we may show that
9

Tg(τ) is Γ0(N) invariant with N = nh. Thus Γ0(n \ h) must be in the normaliser of

Γ0(N) and hence h \ 24 from Appendix A. The invariance group Γ for T (r) of index

h in Γ0(n \ h) + e l 5 e 2 , . . . can then be shown to be of genus zero with hauptmodul
fn\

T (T) because the invariance group Γo I — I + e p e 2 , . . . of Tgh(τ) is of genus zero
[19]. ^

4.4. Twisted Operators for c G C(i | M). We will now discuss the construction of
the twisted sector 9ζ^ for c G C(i \ M), where c is lifted from a Leech lattice
automorphism c G Co0 and is therefore geometrical in origin. Because c does
not interchange the sectors £PrΨ*A and ,^^Γ in the original FLM construction, the
Thompson series for c can be explicitly computed [1,2,3] to be

T r ( C r ) J k « _ T r ( C τ )

where ΘΛ±_ is the theta function for the sublattice Λ±δ of A invariant under ±c and

η±δ is the eta function as in (3.5a). The lifting of c to an automorphism c of "VA

is chosen so that cc(β)c~ι = c(β) for all ^ G Λδ (see (3.1a)) and similarly for re

lifted from — c (where r and c commute). cτ is the action of the lifting of c on the
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vacuum of 9 '̂. Given the usual modular transformation properties for the traces of

(4.12), Tc(τ) is automatically Γ0(m) invariant (up to possible phases) where m is the

order of ±c in Cov We also find that under S:τ —>• — 1/r,

2 θΛ.(τ) Tr(c r)

2\ V-c η*(τ)

η*ε(r) ^ ' J

where θ ^ * (r), η±δ(τ) and D ± δ are defined as (3.5) and V±δ is the volume of A±δ.

d± = Σ c ί determines the number of unit eigenvalues of ±c with characteristic

equation parameters {c^} as in (3.2). From (4.1), we may therefore define the twisted
sector for each such c £ C(i | M) to be

^ = ^ ' θ ^ ' c , (4.14)

where ί?JΓ and ̂ *c are the twisted sectors constructed in the standard way from the
A compactified string as described in Sect. 3.4 and Appendix B [30, 26, 4, 34],
where X(e2πιz) = ±(c)-ιX(e2ntz) + 2πβ. Then χc e 'Vc and χrc G ̂ ' c obey the
monodromy conditions χc(e2πτz) = cχc(z)c~ι and χrc(e27Tlz) = rcχrc(z) (rc)~ι as in
(3.12). For ψr e ψζ we expect the (schematic) OPAs φrχc ~ χrc and ψrχrc ~ χc to
hold together with the usual OPAs of (2.5), (2.15) and (3.14). Since r and c commute,
r preserves these OPAs and hence the projection with respect to S^r can be taken.
Then for ψ e Ψ^ = 3^r{TA Θ 9ζ), the monodromy conditions and OPA (4.2) and
(4.3) follow where {σc} denotes the vacuum operators for .^(S^'Θ ?£,). Thus 9^
given in (4.14) satisfies the defining relations for the c twisted sector.

We may check for the other properties satisfied by ^ (particularly when c is
a Fricke element of M) which lead to Thompson series which are hauptmoduls as
described in Sects. 4.2 and 4.3. In [36] a survey is presented of the modular functions
c Q = θΛ_/ηδ — q~~ι + c{ -f- . . . for all c G Co0. It is shown that θΛ_/ηδ is a

hauptmodul for a genus zero fixing group n\ h + e1 ? e2 . . . for all but 15 classes of
Co0 (thereby falsefying a conjecture of Conway and Norton [13]). We will return
to these anomalous classes below. For the remaining classes, we may describe some
general properties of the vacuum of :2ζ, similar to the vacuum properties of 9 ^ above.
Thus θΛ_/ηδ is Fricke invariant under r —> —\/nhτ if and only if the vacuum energy

of Jζobeys EQ = —l/nh and the vacuum degeneracy 7VC = Dδ jVδ — 1. (We will
call the corresponding class of Co0 a Fricke class). Otherwise, Eξ > 0 and the vacuum
may be degenerate. Likewise, the other vacuum properties of Sect. 4.1 must hold.

For all the Fricke classes, the characteristic equation parameters ck are observed to
obey the symmetry condition ck = cnhjk, where h \ k for all ck φ 0 [36]. Therefore

Dδ = {nh)d, η*(τ) = ηδ(r/nh) and hence Eξ = -l/nh. Similarly, from (4.13) we

find that since Nc = 1, Vδ = (nhfl2 and θΛ*(τ) = θA_(τ/nh\ where β2 e 2hZ,
β2 > 4 for β e Λδ C A. Thus for h = 1, /?*2 > A/n whereas for h φ 1, /3*2 > 2/n

for all β* e id*. Furthermore we can observe from [37] that τlδ = \fnhAδ* in

many such cases (e.g. for c = l 48 4/2 24 2 of order n = 8, Aδ = Λ/2^ 4 and
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Λ* = D* jy/ϊ = D4/2, after a τr/4 rotation). This non-trivial property for A- is
very likely to be true for all such Fricke automoφhisms of the Conway group.

From (4.13), the uniqueness of the c twisted vacuum \σc) for the Fricke classes
implies that Tr(cτ) = εr2

d^2, where r\σc) = εr\σc) with εr — ± 1 . For ft = 1,
when Eβ = — l/n, the first excited (massless) states of this sector are given by
\ψl) = &ι_ι/n\σc) = \\mzι~ι/ndzX

ι(z)\σc) for i = l , . . . , c n , where dzX\z) is

an ω~ι eigenvector of c which implies r\ψτ

c) = —εr\ψτ

c). Since /3*2 > 4/n, no
massless states are associated with the dual lattice Λ*. Hence, for any Fricke class
c G Co0 with ft = 1, we have either 0>r[J = q~xln + 0 + O(q[/n) for εr = 1 or

• ^ D = c i + <9(<71/n) for εr = - 1 . For the Fricke classes with ft / 1, the first
c

excited states of 'ίζ with energy — l/nft+ l/n are given by |-0*) above together with
states 1/3*) created by e i < / 3 '* ( 0 ) > for β* 2 = 2/n. Thus for ft = 1, #>r9£contains either
a unique vacuum with energy Eξ = — l/n but no massless operators (εr = 1) or else
has a massless vacuum (εr = —1). Similarly, for ft ^ 1, .^.9£" contains either a unique
vacuum with £^ = — 1/nft with first excited operators of energy — l/nh + l/n or
else has a vacuum of energy —l/nh + l/n.

We may use these observations to describe the corresponding properties of 9 ^
defined in (4.14). Consider c any Fricke element of Co0 of order n with ft = 1. If n
is odd then —c is of order 2n and ^ ' c has vacuum energy EQC = I/In > 0. If n is
even then — c is of order n or n/2 and we can observe from [36] that EQC > 0 in
all cases. For — c of order n with EQC = 0, one can check from (4.13) and [36] that
r I σrc) = — εr \ σ r c ), with εr as above, so that &r%.'c contains no massless operators
for εr = 1. If — c is of order n/2 then c n/ 2 = f and r = cnj/2 so that εr — — 1
from (4.13) (by considering invariance under τ ^ τ + n/2). Thus, for any Fricke
element c G Co0 with ft = 1, ψΛ contains either a unique vacuum of energy - l / n
and no massless operators so that c G M is Fricke or 9 ^ contains a massless vacuum
and c G M is non-Fricke. One can similarly show for a Fricke class c G Co0 with
ft 7̂  1 that ? ^ either contains a unique vacuum with energy — 1 /nft and first excited
operators with energy —l/nh + l/n (c is Fricke in M) or else has a vacuum of
energy —l/nh + l/n (c is non-Fricke in M). Likewise, if c and — c are both non-
Fricke then c is non-Fricke in M and 9 ^ has the required properties. Thus 9ζ^ defined
in (4.14) possesses all the properties for a Monster group twisted sector as described
in Sects. 4.2 and 4.3.

Let us now discuss the 15 anomalous automoφhisms {c} mentioned earlier for
which c Q = OΛ_/ηδ is not a hauptmodul but is fixed by a genus zero modular

group [36]. These classes fall into 5 families of the form {cuc2,c3} with each ci

of the same order n = 6,10,12,18 or 30. For each such c, part (I) of the vacuum
properties Sect. 4.1 is satisfied but the Atkin-Lehner closure condition (II) fails and so
Θδ/ηδ is not a hauptmodul. For example, for n = 6, {cuc2,c3} have Frame shapes
{l42.65/34, 25346/l4, l53.64/24} (where cx = - c 2 ) . Then θ-Cχ/η-C{ has simple poles
with residue 1 at the cusps r = oo, 0 and the AL cusp r 2 = 1/3 but not at the
AL cusp r3 = 1/2. Likewise, for c2 and c3, the poles occur at {oo, 1/2,1/3} and
{oo,0,1/2}. The other anomalous families have very similar properties [36]. Despite
this behaviour, one can repeat the analysis above to show that 9 ^ of (4.14) possesses
all the required properties given in Sect. 4.2.
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We will end this section with some remarks concerning the reorbifolding of
Ψ'^ with respect to Fricke elements of M. For a Fricke element c G C(i | M)
of order m with 9ζ^ as in (4.14), then given (4.5), we find 9^ — 9ζ£ =

^ ( ^ Θ ^ Θ .. Θ ί^l_i) is just a Z 2 x Z m orbifolding of ^ with respect to
the abelian group generated by r and c. We can similarly expect that the observations
of this subsection can be generalised to the other assumed constructions of Ψ^ given
in Sect. 3 based on the 38 automorphisms a of Table 1. Thus for c G C(a* | M), we
can define 9ζ^ = ^a^Θ . θ.9^2£*αn-i, where α and c commute, which satisfies
the monodromy conditions and OPA of (4.2) and (4.3). Then reorbifolding 9£ξ w u " n

respect to an element of C(a* | M) is equivalent to a Zn x Z m orbifolding of ^"^
with respect to the abelian group generated by a and c. Thus, assuming (4.5) so that
%xh = ^ f° r a Fricke element c G C(α* | M), we can, in principle, provide a large
family of Zn x Z m orbifold constructions of 9 ^ from

5. Concluding Remarks

We conclude with a number of observations concerning various open questions and
some generalisations of the constructions considered above. We begin with a few
remarks about Norton's Generalised Moonshine [38] which concerns Moonshine for
modular functions associated with centraliser groups of elements in the Monster. In
[22] it was suggested that these correspond to orbifold traces of the form gx Q ^ for
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gx G C(g2 I M). Given the usual modular transformation properties for such traces,
then the structure of the vacuum of the Monster twisted sectors 9 ^ described here
should be sufficient to show that each such trace is a hauptmodul. A general discussion
of this will appear elsewhere [39] but we make three brief observations here. Firstly,
for g2 a non-Fricke element, the vacuum of 5 ^ is degenerate in most cases so
that each gx is actually an element of an extension of C(g2 \ M) in these cases, as
observed by Norton [40]. For the remaining non-Fricke and all the Fricke classes, no
such extension of the centraliser is required. Secondly, gx Q ^ can be easily shown to
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be a hauptmodul for gx and g2 of relatively prime order nx and n 2 with associated
modular groups nx + e1 ? e 2 , . . . and n2 + e[, e 2 , . . . , i.e. hx = h2 = 1, where the
corresponding twisted sectors are global phase anomaly free. Since ( n l 3 n 2 ) = 1 we
have nxb-\-n2a = 1 for some α, b. Define g = gxg2 of order n = nxn2 so that gx = gni

and g2 — gn{. Then under a modular transformation with respect to 7 = I
we find v ι

Tg(τ) = g\Z\* -* 9ni D * =5 f iD l l (5 !)
1 # n l 92

T h e r e f o r e ^ J Π ^ i s a h a u p t m o d u l f o r Γ = n + e l 5 e 2 , . . . , w h e r e e l 5 e ί , e 2 , e 2 G
92

{ex,e2,...} and if ei = nx and ê  = n2 for some i,j then n G {e1 ?e2,...}
also, i.e. g is Fricke if both gx and g2 are Fricke. This property is observed for
all the appropriate modular functions associated with the centralisers of the limited
number of elements of M discussed in [41]. Our last observation concerns Moonshine
for C(g2 I M), where Tg (r) has modular invariance group n2 \ h + e1 ? e 2 , . . . with
h φ 1. From Sect. 4.3 we expect that the following harmonic formula should hold
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for each gλ:

\gιΠ\hτ)]h = 9ι[j\τ) + C , (5.2)
I 92 1 gh

where C is a constant. For the case g2 = 3| 3, this formula can be verified [41].
The use of non-meromorphic OPAs has been central in our discussion. Such

algebras were employed both in defining the properties of twisted operators and in
considering reorbifoldings. From this point of view, the two meromorphic CFTs which
are orbifold partners are embedded in a larger set of operators Ψ'1 obeying a non-
meromorphic OPA. However, a rigorous construction of such a non-meromorphic
OPA has yet to be given even in the simplest Z2 case. Another interesting question is
to ask what form does the automorphism group for 9^' take? This has not even been
determined in the original FLM Z2 construction with OPAs (2.5) and (2.15). We know
that in this case this group contains the original reflection involution r together with
the dual involution i and other extensions of elements of the Conway group Co0.
Furthermore, the triality symmetry [3,29] interchanging the untwisted and twisted
sectors may also still hold. Given this, then we can speculate that the automorphism
group for Ψ'1 may be the "Bimonster" or wreath square of the Monster [42]. Similarly,
for the other orbifold constructions, the automorphism group for ψ'1 may provide other
enlargements of the Monster which would be of obvious interest. Finally, apart from
these more general considerations, the Monster Fricke element twisted sectors not
related to Leech lattice automorphisms have also yet to be constructed explicitly.

Appendix A. Modular Groups in Monstrous Moonshine

In this appendix we describe the modular groups relevant to the Moonshine properties
of Thompson series described by Conway and Norton [13].

Γ0(TV): The group of matrices contained in the full modular group of the form

where α, b,c,d e Z.

The normaliser Λ\Γ0(N)) = {ρ G PSL(2,R)\ ρΓ0(N)ρ~ι = Γ0(TV)}, is also
required to describe Monstrous Moonshine. Let h be an integer where h2 \ TV (h2

divides TV) and let TV = nft. Then we define the following sets of matrices.
Γ0(n I h): The group of matrices of the form

det = 1, (A.2)

where α, b,c,d G Z. For ft the largest divisor of 24 for which h2 \ TV, Γ0(n \ h) forms
a subgroup of Js\Γ0(N)). For ft = 1, Γ0(n \ h) = ΓQ(ή).

We: The set of matrices for a given integer e

det = e' e » " (A-3)
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where α, 6, c, d G Z. e\\N denotes the property that e | N and the greatest common
divisor (e, N/e) = 1. The set We forms a single coset of Γ0(N) in J \Γ0(N)) with
Ŵ  = Γ0(N). It is straightforward to show that (up to scale factors)

W2

e = 1 mod(Γ0(7V)),

Weι Wei = We2 Weι = We3 mod(Γ0(7V)), e3 = ^ ^ . ( A ' 4 )

The coset W€ is referred to as an Atkin-Lehner (AL) involution for Γ0(N). The

simplest example is the Fricke involution WN with coset representative (

which generates τ —• —l/Nr and interchanges the cusp points at r = oo and r = 0.

For e ΐ n w e can choose the coset representative I 7 I, where ed — bN/e — 1
\NdeJ

which interchanges the cusp points at r = oo and r = e/N.
we: The set of matrices for a given integer e of the form

det = e, τ (A 5)

h
where a,b,c,d G Z. The set ^ e is called an Atkin-Lehner (AL) involution for
Γ0(n I h). The properties (A.4) are similarly obeyed by we with Γ0(N) replaced by
Γ0(n I Λ).

./f'\Γ0(N)): The Normalizer of Γ0(Λ0 in PSL(2,R) is constructed by adjoining
to ΓQ(n\ h) all its AL involutions we ,we , . . ., where /ι is the largest divisor of 24

with /ι2 I TV and N = n/ι.
,Γ0(n I /ι) + βj, e 2 , . . . : This denotes the group obtained by adjoining to Γ0(n | /z) a

particular subset of AL involutions w , ̂ β 2 , . . . and forms a subgroup of y/ XΓO(7V)).

Appendix B. Automorphism Groups for Twisted Sectors

In this appendix we will derive the centraliser formula (3.19) by describing the
automorphism group which preserves the OPA of 9ζ^ where no mixing between
the various sectors ^a Ψh is considered where b = ar is lifted from 6 = άr of order
777, = njr' with r' = (n,r). In general, b may have unit eigenvalues (for r' φ 1) so
that A contains a b invariant sublattice A~h which has dual lattice Λ£ = Λ^ = 3^Λ.
Likewise, we define Λj to be the sublattice of A orthogonal to A-h, where the dual
lattice is Aξ* = AT = (1 - .9|)Λ It is then easy to show that A^/Ah = Λτ/Λj so
that the volume of Λh is given by Vh = \Λ{ι/Λh\

1/2 = \ΛT/ΛT\1/2.

The b twisted states are constructed from a set of vertex operators ^ which
form a representation of the original untwisted OPA (2.5) with a non-meromorphic
OPA. These operators act on a b twisted vacuum which from (3.4) we expect to

have degeneracy D^ /V^. The construction of '3^A follows from considering a string

with twisted boundary condition X(e2πιz) = b~ιX(z) + 2πβ, where β e Λ [30,
26, 34] with a mode expansion similar to (3.7). The corresponding states are graded

by Lo = Σ άln^-m + ^PI + ^0 ' w n e r e P\\ n a s eigenvalues in Λ^ and EQ is the
771

vacuum energy given in (3.5e) which obeys mE^ = Omodl. As before, cocycle
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factors {cτ(a)} are required for a local OPA. These are defined as follows. Consider
the central extension A of A by ((—l)mρ) (where ρ = ωr', ω = e2™/n) given by the
following commutator [30]:

c(a)c(β)c(aΓιc(βΓι = exp(2πi^5(α, β)), (B.la)

Sh(a,β) = S-b(β,a) = [\ (<*\\,β\\) + ( α τ , ( l - S ) " 1 ^ ) ] mod 1, (B.lb)

where {c(a)} is a section of A and where αy = ^ α G Λy, aτ — (1 - ^ ) α G Λ τ .

Equation (B.lb) reduces to (2.6a) when 6 = 1 and to (3.8b) when b is without unit

eigenvalues. Equation (B.I) also defines a central extension Λj of the sublattice Λj by

(ρ) with centre determined by the lifting of (1—b)A c Λj. Taking the quotient of these

two groups we obtain a central extension Lb of L-h = Λ?/(l — b)A by (ρ) with centre

(ρ). L-h is a finite group of order |ΛjΓ/(l - b)Λ\ = | ^ M T | 1^/(1 - δ)Λ| = ΰg/l f .

In addition, Lb has a unique irreducible faithful representation τr(L^) of dimension

DJI /V5 in which the centre is represented by phases (ρ) [30, 3]. Let Tb denote the

vector space on which ir(L^) acts. Then the states {|σ6)} of the degenerate b twisted

vacuum form a basis for Th and the cocycle factors {cτ(a)} are an valued matrices

acting on Tb which obey (B.I).

Let us now describe the group of inequivalent automorphisms A u t ^ 7 1 ) of the
OPA of ^ A which act on the vector space T δ . This group isan extension of the
centraliser C(b\ Co0), where each lattice automorphism g G C(b\ Co0) acts on X(z)
in the usual way but is lifted to a set of automorphisms {g} of A where

gc(a)g-1 = e2πιf°(a)c(ga), (B.2)

where fg(a) parametrises the liftings of g. Let g and g1 be two inequivalent liftings
of g. Then e = g'g~ι is a lifting of the identity lattice automorphism. The group
of liftings of the identity automorphism form a normal subgroup of Aut(^"Λ) and
is parameterised by fe(a) obeying fe(a + β) = fe(a) + fe(β) and /e(0) = 0. Let
λ w be a basis for A and λ(*} a dual basis, where (AW,A(*}) = <S*. Then define
μi = /e(λ ( 2 )) so that fe(a) = μiai = (μ,a) with a = a%\(l) and μ = μjλ(*}

i.e. each lifting is parameterised by μ. We may determine μ by considering the
inner automorphisms of A, where c(β):c(a) —> exp[2πzS5(/?,α)]c(α) from (B.I)
and hence μ = ~Aι/2 — (1 - b)~ιβτ for /? G A As described above, the cocycle

factors {cτ(a)} used in constructing the vertex operators (VA are defined to act

on the twisted vacuum space Tb. Hence only the inner automorphisms generated

by cτ(Aj) = {cτ(βτ)\βτ G A?} = π(L5), with μ G (1 - b)~ιAT, give the
inequivalent liftings of the identity to automorphisms of Ψ*A since cτ(Aj) maps Tb

onto itself. Furthermore, from (B.2), the liftings of b itself are themselves equivalent
to liftings of the identity lattice automorphism to automorphisms of {cτ(a)}. (In
particular, we may define one distinguished lifting in the centre of π(ί/δ), denoted
by b = exp(-2πiE'o) G (ρ). b then describes the twisting of the vacuum states
with exp(2τriZ/0) | σb) = b~ι\σb)). Thus we find that the group of inequivalent
automorphisms Aut(9^Λ) is given by Lb.(C(b\ Co0)/(b)).

We next describe Aut(^9^*Λ) where a is the lifting of α G C(b\Co0) to an

automorphism of the OPA of ζPaΨ*A with ar = b. a acts as the identity on ό ^ ^ 4
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and hence each g G A u t ^ ^ 4 ) must commute with α. Therefore, g is lifted from
g G Gn — C(ά I Co0)/(ά}. The inequivalent liftings of g are given by the inequivalent
liftings, e, of the identity which commute with α. Using the parameterisation above,
this implies that (μ, a) = (μ, άa) mod 1 for all a G A and hence μ G (1—α)^" 1 . From
above we also know that μ G (1 — δ ) " 1 ^ . Together, we find that μ G (1 — α ) " 1 ^
so that the inequivalent liftings of the identity that commute with a are given by the

inner automoφhisms generated by K = cτ I I I Λj) C π(Lb). Two elements

c τ I ί r ) θiτ I, cτ ( ί r J /?τ I of K are equivalent <̂> ί Γ j (aτ—βτ) =

\\l—aj J \\\ — a J J \\—a J
(1 - 6)λ for λ G A <& aτ - βτ = (1 - α)λ with λ G Λ?1. Thus ^ = m.ίί, a central

extension by (ρ) of K = ^ / ( l — αMjΓ We therefore find that

A u t ( ^ α ^ ) - K . G n , (B.3)

where X is the normal subgroup of automoφhisms lifted from the lattice identity
automoφhism.

In the case where r' = (r,ή) = 1 we have K = Lά and so A u t ( ^ ^ Λ ) =

Lά.Gn. For all the other sectors, including the untwisted sector, the corresponding

automoφhism group can always be expressed as a quotient of Lά.Gn by some

normal subgroup. In the untwisted case when r = 0, the elements of Aut^^S^ 1 )

must commute with a and are determined by μ G (1 — ά)~ιA as above. Thus

A u t ( ^ α ^ ) = L-a.Gn = φ-a.Gn)/{ω) i.e. A u t ( ^ α ^ Λ ) is a quotient group of

Lά.Gn. For b — άr and r' ^ 0,1, Lά.Gn contains a normal subgroup J — r'.J

with J = Afr/il - a)A%. J is the group of automoφhisms of S^y

aV
A lifted from

the identity lattice automoφhism and given by the inner automoφhisms generated

by cτ(Λ-b). We therefore find that Aut(^ α 9^) - K.Gn = (Lά.Gn)/J. Thus for all

sectors S?y

a

(VA, including the untwisted one, we may describe the OPA automoφhism

group A u t ^ ^ 7 1 ) by Lά.Gn, where some normal subgroup may act as the identity

on SPaΨ*A, namely (ω) for r = 0 and J for r' ^ 0,1.

The operators of &a

(VA create b twisted states from the twisted vacuum vector
space Tb. We may then define vertex operators {ψb} = S^a% which create these states
from the untwisted vacuum where (schematically) φσb ~ ψb with φ G SPaΨ*A and σb

creates a twisted vacuum state. This OPA algebra is also invariant under Lά.Gn with
an appropriate identity action under a normal subgroup as described above. Likewise,
the intertwining OPA between the various twisted sectors ^a% as in (3.14), which
is expected to exist, is invariant under Lά.Gn. Note that we are not considering here
mixing (triality) automoφhisms between the various sectors which are expected as
in the usual Moonshine constructions [3, 29, 16]. We therefore find that the OPA of
9£ζ = dϋ

a{9rAΘ9ζφ... 9ζn-i) is invariant under Ld.Gn, where no mixing between
the various twisted sectors is considered. With α* defined on 9ζ£ as in Sect. 3 (the
operators of 9ζk are eigenvectors with eigenvalue ωk) we have

σ(α*|ΛC) = 4 . G n , (B.4)

where M^rb = Aut(^r£) is the complete automoφhism group for 9ζ&. This is the
result given in (3.19) for the 38 modular invariant orbifold constructions from the
lattice automoφhisms of Table 1.
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We may also compute the centraliser C(gn \ M£rb), where gn is lifted from one of

the 13 lattice automorphisms α of Table 2. Orbifolding 9^A with respect to a! = άh

gives a modular consistent construction 9ζ£ and g% = α/5|e, where α'* is dual to the

lifting of a'. From (B.4) we have C(gn\M^h) C C(a'* |Mo

α

r£) = La,.Gn,, where

Gn/ = C(a' I Co0)/(άf). We may next repeat most of the argument given above

to firstly find the automorphism group for the OPA of the vertex operators ^a, 9ζf.

Each automorphism g e C(gn\ Aut(£Pat9£t)) is lifted from a lattice automorphism

g G C(ά I Co0) = n.Gn, where the inequivalent liftings are determined by the group

of liftings of the identity lattice automorphism which commute with gn. This forms

a normal subgroup of Aut(^/, 9ζf), as before, generated by the inner automorphisms

with respect to c τ ί ί — — J yl j C τr(Lα/). This group together with gn itself

\\ 1 — a / J
generates Lά. Thus the group of automorphisms of 0^/% that commute with gn

is Lά.Gn. By following an argument similar to that above, we can also show that the

automorphisms of £Pa, 9ζf which commute with gn are given by the quotient group

of Lά.Gn by a normal subgroup. Thus the centraliser is C(gn | M£Tb) = Lά.Gn as in

(3.19).
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