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Abstract. Given a gauge theory with gauge group G acting on a path space X,
G and X being both infinite dimensional manifolds modelled on spaces of sections
of vector bundles on a compact riemannian manifold without boundary, it is shown
that when the action of G on X is smooth, free and proper, the same ellipticity
condition on an operator naturally given by the geometry of the problem yields both
the existence of a principal fibre bundle structure induced by the canonical projection
π:X —» X/G and the existence of the Faddeev-Popov determinant arising in the
functional quantisation of the gauge theory. This holds for certain gauge theories
with anomalies like bosonic closed string theory in non-critical dimension and also
holds for a class of gauge theories which includes Yang-Mills theory.

0. Introduction

Many authors have studied various aspects of the functional quantisation of gauge
theories in terms of the geometric features that characterise the theory, investigating
problems such as the Faddeev-Popov procedure, see e.g. [BV, FP, J, Pa], the reduction
of the path space measure to a measure on the quotient space see e.g. [AGN, AHKPS,
AJPS, dHP, MN, P], the problem of Gribov ambiguities see e.g. [K, S], the structure
of moduli space see e.g. [FU, FT, IM, MV, NR]. The literature around these topics
reveals (although not explicitly) the importance of the role of differential operators
with injective symbol and of elliptic operators which naturally arise from the geometric
data decribing the gauge theory. Their role is most essential for two fundamental
aspects of the functional quantisation for gauge theories, namely first for the structure
of the fibre bundle given by the canonical projection of the path space onto its
quotient by the gauge group and the structure of the quotient space, namely the
moduli space, and secondly for the Faddeev-Popov procedure. This second aspect
was studied in the special case of string theory in a former paper [Pa]. In this present
article, we want to generalise these results to a larger class of gauge theories including
Yang-Mills theory and bosonic string theory and show how for these gauge theories,
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the same assumption concerning the ellipticity of a differential operator given by
the geometric data describing the theory, yields both the principal fibre structure
for the canonical projection (and the manifold structure on the quotient) and the
existence of the Faddeev-Popov determinant. In order to include the case of Yang-
Mills theory, we shall have to consider elliptic operators and differential operators
with injective symbol that have coefficients in some Sobolev space, to which one
can extend some essential properties - such as a Hodge-Kodaira like decomposition,
Garding's inequality, spectral properties when the operator is self adjoint, that hold
for elliptic operators and differential operators with injective symbol and smooth
coefficients.

Let us briefly describe the contents of the present article.
Given a gauge theory with gauge group G and path space X which are both infinite

dimensional manifolds modelled on spaces of sections of vector bundles with finite
dimensional fibres on a compact Riemannian manifold without boundary, the group
G acting on X on the right by a smooth, free and proper action

«>.„
(α, x) —> β(α, x),

one can consider for any x G X the differential operator-which will play a
fundamental role in the following:

τx:TeG^TxX (0.2)

tangent at e G G to the map θx that sends an element of the group into the orbit of
x through the action θ:

a —> θ(a, x)

We shall consider right actions and set θ(α, x) = x a = Rax\ however the results
also hold for left actions, replacing in the text right by left.

Let us remark here that if we denote by DRa: TeG —> TaG the tangent map to

then from θx(Rab) = (x b) a follows that

\ (0.4)

where R* is the pull-back of Ra on TX.
Let us assume X is equipped with a riemannian structure (possible weak). Under

the assumption that G acts on X by isometries, we show (see Theorem 3.1) that if
τx is an injective differential operator with smooth coefficients or with coefficients in
H™, for m large enough and if the principal symbol of τx is injective (or equivalently
if τ*rx is elliptic, r* denoting the adjoint of τx\ then

1) The quotient space has a smooth manifold structure (possibly infinite dimensional)
and the canonical projection π : X —• X/G yields a principal fibre bundle structure.
2) If for x G X, Σx is a local slice of this bundle at point x, and if we define for
a G G the Faddeev-Popov operator F^% by:

F%:TeGxTxΣx^TRaXX . ^ ^
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(where R*h is the pull-back of h by Ra), then the Faddeev-Popov operator has a
well defined determinant, for an arbitrary choice of the local slice Σx whenever the
quotient X/G is finite dimensional and for a local slice Σx orthogonal to the orbit at
point x whenever the quotient is infinite dimensional. This determinant is independent
of the point Rax chosen in the orbit of x and only depends on x and Σx.

Let us point out here that the equivalence between the assumption on the ellipticity
of the operator τ*τx and that of the injectivity of the principal symbol of τx is not
true in general, but follows here from the fact that the fibres of the vector bundle on
which τx and r* are defined, are finite dimensional.

These statements are a step towards a more systematic understanding of aspects
of the functional quantisation procedure of gauge theories from the features of the
geometric data describing the corresponding classical theory. The proof of the first of
these statements is based on classical slice theorems, which we recall in the course
of the paper. The second statement is a generalisation of results of [P].

The framework described above applies directly to Yang-Mills theory for which,
as we shall see, the path space X can indeed be equipped with a gauge (or G)
invariant riemannian structure. However, in order to include a class of gauge theories
with anomalies, like that of bosonic string theory in non-critical dimension, we study
the general case when X is equipped with a riemannian structure which is not G-
invariant, but only H-invariant, H being a subgroup of G. In our framework, G is
the whole symmetry group for the classical action and H the symmetry group left
after quantisation, i.e. the invariance group of the Riemannian structure on X. When
H Φ G, a certain type of anomaly can arise as in the example of the string model
in non-critical dimensions where conformal anomaly arises from the non-invariance
of the riemannian structure under the action of the Weyl group. The obstruction
to choosing a riemannian structure invariant under the whole symmetry group of
the classical action of the theory is of course only one aspect of the problem of
anomalies. In order to give a full treatment of anomalies in string theory, one also has
to consider the global anomaly which arises as a topological obstruction characterised
by a non-vanishing first Chern class of a line bundle built up from determinant
bundles and the local or geometric anomaly which arises as an obstruction to flatness
of this line bundle [F]. However, in the framework of functional quantisation of string
theory, these obstructions arise after the (Faddeev-Popov) reduction procedure from
the original path integral on the infinite dimensional path space down to a finite
dimensional integral over Teichmϋller parameters. Here we are interested in the first
manifestation of anomalies mentioned above, namely that of the non-invariance of the
riemannian structure on the infinite dimensional path space under the whole symmetry
group of the classical theory before the reduction procedure takes place.

We therefore extend the framework described above to the case when G is a
semi-direct product of two groups G = H Θ K, each of them being an infinite
dimensional manifold modelled on a space of sections of some vector bundle
with finite dimensional fibres on a boundaryless smooth finite dimensional compact
manifold. We shall assume that G acts on X by:

Θ:(HΘK)xX^X

{(a1, α"), x) -> Ra,(
Ra"χ) = (χ ' a") ' a'

We shall identify the tangent space to G to the product of the tangent spaces to H
and K, setting for a = {a', a"),

T{a',a")G = T a f H X T a " K >
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so that the tangent map D^a, anfix splits into a sum of maps:

D(a>,a»A = R>'RallXDR-J + R^DR-}, (0.7)

where τx = Deθ'x (resp. τx' = Deθ'J.), θ'x (resp. 0£) being the restriction of θx to H
(resp. K).

Notice that with these conventions, τx = τx+τx, but relation (0.4) does not always
hold any more. However if

τΆa,,x = R>tJ, (° 8)
then we have

£><«',«")** = R>RallχDKι (0.9)

and conversely. Here DRa has been identified to DRa, x DRa,,.
Of course, if H = G, relation (0.8) is trivially satisfied since K = {e}. Since

where adα// is the tangent map acting on the tangent space TeK to the map which
sends b" e K to a"b"a"~ι in K, condition (0.8) is also trivially satisfied when K
is commutative. Conversely, if the action of K on X is free and if K is a (possibly
infinite dimensional) connected Lie group equipped with a surjective exponential map,
then from (0.8) follows the commutativity of K.

In the following, we shall assume that condition (0.8) is satisfied, thus making an
assumption on the group K which is in particular fulfilled when K is abelian as in
the case of bosonic string theory.

In this more general framework, we also show statements 1) and 2) from the
assumption that the principal symbol of τx be injective, up to the fact that the
assumption on the G-invariance of the riemannian structure is replaced by the H-
invariance of this same riemannian structure on X.

The paper is organised as follows:
In Sect. I, we first give a slice theorem (Lemma 1.1) in the case when the manifolds

involved are Hubert manifolds, letting G be semi-Hilbert Lie group, a notion which
we introduced below and which generalises that of a Hubert Lie group, including
groups such as the group of diffeomorphisms on a compact manifold without boundary
which are of Sobolev class. This slice theorem generalises the classical slice theorem
where G is a Hubert Lie group (see e.g. [FU, FT, H, IM, NR]) and slice theorems
involving the group of diffeomorphisms of Sobolev class which implicitly underlie
works like [E] and [FM]. We then apply this slice theorem to the case when both
manifolds X and G are modelled on spaces of sections of Sobolev class of some vector
bundle with finite dimensional fibres on a compact boundaryless manifold, showing
(in Theorem 1.2) that if G acts on X through a smooth, free and proper action, and if
τx is an injective differential operator with injective symbol (and possibly coefficients
of Sobolev class), then there is a Hubert manifold structure on the quotient X/G and
a principal fibre bundle structure given by the canonical projection π:X —• X/G.
This holds for a group G of the form G = H ®K9 H φG, H acting on X through
isometries, X being equipped with a weak L2 riemannian structure.

In Sect. II, we deduce from the above slice theorem a slice theorem (Lemma 2.1)
for the case of manifolds which are inductive limits of Hubert manifolds, namely
I.L.H. manifolds, letting G be an inverse limit of a family of semi-Hilbert Lie groups.
Applying it to the case when both X and G are modelled on spaces of smooth
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sections of some vector bundle on a compact boundaryless surface, we show (up to
some additional technical assumptions explicitly given in Theorem 2.2 and discussed
in a remark following the theorem) that if G acts on X through a smooth, free and
proper action and if the operator rχ is an injective differential operator with injective
symbol (and smooth coefficients), then the quotient space is an I.L.H. manifold and
the canonical projection yields an I.L.H. principal fibre bundle. Here again, this holds
in the general case when G = H Θ K, H acting on X through isometries, X being
equipped with a weak L2 riemannian structure.

In Sect. Ill, we prove (Theorem 3.1) that under the same above assumptions
(namely that the action of G on X is smooth, free and proper and that τx is an injective
differential operator with injective symbol, G — H Θ K, H acting on X through
isometries), and for a given local cross-section at point x of the principal bundle
X —* X/G9 one can define the Faddeev-Popov determinant which is independent of
the point in the orbit of x for the action of H. We show that if the quotient X/G is
finite dimensional, then the determinant of this operator is well defined for any choice
of the local section, and if the quotient is infinite dimensional, the determinant is well
defined for any local section orthogonal to the orbit of x for the action of G.

For the sake of clarity, we chose to leave certain technical devices and one proof
out of the main text and to refer the reader to the Appendices. In particular, we
shall need a generalisation to a class of positive self adjoint elliptic operators with
coefficients of Sobolev class of the notion of regularised determinant, which we
give in Appendix A.2 using results of [C, KR] and the presentation of regularised
determinants in [AJPS, Pa] done for elliptic operators with smooth coefficients.

All along the paper, we illustrate the theorems by Yang-Mills theory and the theory
of closed bosonic strings.

I. Differential Operators with Injective Symbol
and Slice Theorems in the Hubert Case

We shall call a right (resp. left) semi-Hilbert Lie group a Hubert manifold with a
topological group structure such that the right (resp. left) multiplication is smooth. A
typical example of a right semi-Hilbert Lie group is, for s large enough, the group
of diffeomorphisms &S(M) of a smooth compact riemannian manifold M without
boundary described in [O, E] for example. If n is the dimension of the manifold M
and if HS(M x M) denotes the space of sections of the bundle M x M over M in

77

the Sobolev class Hs

9 then by classical Sobolev embedding theorems, for s > l-\—,

we have the inclusion H8(M x M) C Cι(M x M), where Cι(M x M) denotes the
space of sections o f M x M which are C 1 and the inclusion is continuous.

Let us set

®C\(M) = {feC\Mx M), such that / has an inverse and f~ι eCι(M x M)}

and
®8(M) ~ HS(M x M) Π @cι(M). (1.1)

Since &C\(M) is open in Cι(M x M), &S(M) is also open in HS(M x M), and it
is a Hubert manifold modelled on HS(M x M). The r.h.s. multiplication in
defined for h G C3\M) by:
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is C°°, but the l.h.s. multiplication defined for h G &s+ι(M) by

t u t (1.26zs)

is only of class Cι so that ^S(M) defines is a semi-Hilbert Lie group in the above
sense.

The basic theorem underlying the subsequent results is the following generalisation
to the case of a semi-Hilbert Lie group acting on a Hubert manifold of the classical
slice theorem concerning the action of a Hubert Lie group on a Hubert manifold
(which one can find for example in [B, Bo, FM, FT, IM]). It can be proved along the
lines of a classical proof used in the finite dimensional case (see e.g. [Br, V]).

Lemma 1.1. Let G be a right (resp. left) semi-Hilbert Lie group acting on X by a
right fresp. left) action on a C°° Hubert manifold through a right fresp. left) action
θ. Assume that

{ - The action is smooth, free and proper,

-For any x G X, the map θx is an immersion,

(i.e. the tangent map Dθx is injective and its image is closed in TX)

Then

1) X/G is a Hilbert manifold.
2) The canonical projection π:X —>• X/G yields a C°° principal fibre bundle
structure with structure group G.

Proof. Since the classical proof for a Hilbert Lie group acting on a Hilbert manifold
extends to the case of a semi-Hilbert Lie group acting on a Hilbert manifold without
any major modification, we leave out the proof for the moment, which is explicitly
done in Appendix A.I. D

When the manifolds X and G are modelled on spaces of sections of vector bundles
with fibres of finite dimension on a compact boudnaryless riemannian surface, the
assumption that θx be an immersion appears as a natural consequence of some
condition on the principal symbol of the operator Daθχ9 namely that it should be
injective.

All along the paper, M denotes a finite dimensional compact boundaryless C°°
riemannian manifold. We shall consider C°° vector bundles on M that have finite
dimensional fibres, chosen in such a way that they naturally inherit a euclidean
structure from the Riemannian structure on M. Typically, we shall choose bundles
such as the trivial bundle M x R, tensor bundles TMk <g> T*M', or bundles built
up from an additional principal fibre bundle & on M with structure group S? like
& x,# g> & x& g <8> T*M, where & is a finite dimensional compact semi-simple
matrix Lie group and g the Lie algebra of ίP.

Let 9^ be a such vector fibre bundle on M and let us denote by Hs(9^) the space
of sections of class Hs of 9^, i.e. the closure of the space of C°° sections for an Hs

scalar product induced by the metric on M.

Theorem 1.2. Let <§f, 3@, 3& be C°° vector fibre bundles on M (of dimension n) with
finite dimensional fibres. Let X be a Hilbert manifold modelled on Hs(&) for some

Ti

s G N. Let k,h be two integers such that — h r + 1 > s > r, where r = max(/ι , k ) .
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Let G be a right fresp. left) semi-Hilbert Lie group which is a semi-direct product
of two groups, G = HQK, H and K being Hubert manifolds modelled on Hs+h(β%)
and Hs+k(S&) respectively. & acts on X through an action Θ:

θ:(HΘK)xX -^ X

We shall assume as before, that for a = (α/', a") G G:

DJX = R*,τa,,xDR-1 . (1.3)

Moreover, we assume X is equipped with a weak L2 riemannian structure invariant
under the action of H.

Under the following assumption

' - The action θ is smooth, free and proper,

- For each x G X the map τx :TeG -> TXX
(A) is an injective differential operator of order r with injective symbol

ΐl

and coefficients of Sobolev class m with m > —\-2r.

Then

1) X/G is a Hilbert manifold.
2) The canonical projection π:X —» X/G yields a C°° principal fibre bundle
structure with structure group G.

Remark. If G = H, relation (1.3) is of course trivially satisfied.

Proof. In order to apply Lemma 1.1, we only need to check that θx is an immersion.
For the sake of clarity, we first prove that θx is an immersion in the simpler case
H = G. The fact that Dθx is injective follows from the relation Daθx = RtτxDR~ι

since τx is itself injective.
Let us now check that ImDaθx is closed. For this we first check that Imr^ is

n
closed. Since τx has injective symbol and since m > — h 2r, by Theorem A.2.2,

Appendix A.2, the operator τx has a closed image w.r.t. the L2 topology on TX
induced by the weak riemannian structure on X and Hs{&) = lmτx 0 Ker r*. From
this, we deduce that lmDaθx is closed in TRaXX w.r.t. the L2 topology and that there
is an orthogonal splitting TRaX = ImDaθxφKεϊ(Daθx)* since Daθx = R*τxDR~ι

and since the metric is G invariant. From this follows that this image is also closed
w.r.t. the Hilbert manifold topology (see e.g. [KV, Lemma 3.1.6]) on X.

The proof in the general case G ψ H goes in the same way using relation (1.3)
and the fact that for a G G, lmτRaX is closed.

Examples. 1. We first illustrate this theorem in the case G — H by Yang-Mills theory.
Set n = dimM. Let έP = 9°(M, Sf) be a smooth principal fibre bundle on M

with structure group ^ , a compact semi-simple matrix Lie group. Let Eaά =£pχg>g
be the bundle with the Lie algebra g of & as a standard fibre and with the adjoint
action of S? on g. We set E& = &> x ^ ίP. Take % = EΆά Θ TM*, the bundle of
1-forms on M with values in Ead and .î ~ = Ead.

We first describe the Hilbert manifold X. Set for s > — h 1, X to be the

space ^S, of connections on ^ ( M , Ŝ ) of Sobolev class Hs (see for example [KR,
FU] for an explicit description of Λ>s). Λs is a closed affine spaces in the space
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Hs(Eaά Θ T*M) of H8 Sobolev sections of the bundle (S, i.e. the space of g-valued
Hs 1-forms on & (see e.g. [FU, KR, MV]) and by the Sobolev embedding theorems,
<AS is contained in the space of C 1 connections on ̂ ( M , W). The subspace ,AS of
irreducible connections in ,/&s (see e.g. [FU], Chap. 3 for a definition of irreducible
connection) is a Hubert manifold modelled on Hs(Ead®T*M). We shall set X = ,£s.

Let us now describe the group G. Let HS(E%) be the group formed by the sections
of Sobolev class of the bundle E^ or equivalently the group of fibre preserving maps
s\ϊP -± ίP which satisfy π o s = π and s(p.g) — s(p)g for p € ^ , g e W of

class Hk (see e.g. [FU, KR]) with pointwise multiplication. For s > — - ^ + 1,

Hs(Eχ) is a Hubert Lie group modelled on Hs(Ead) (the space of Hs ^-valued
equivariant functions on ίP) and a closed topological subgroup of §#S(SP) (see
e.g. [KR]), the group of all Hs diffeomorphisms which itself is not a Hubert Lie
group but only a semi-Hilbert Lie group. Let §&s be the centre of HS(E^). The
group Gs = Hs(E<f)/£>s is also a Hubert Lie group modelled on Hs(Eaά) (see
Theorem2.18, [MV]). We shall set G = Gs+ι.

The right action of Hs+ι(Ead) on ,/3s induces a right action of G on X:

where dΛ :ϋΓ s + 1(E'a d) —> Hs(Ead(g)TM*) is the exterior covariant derivative induced
by the connection A.

There is a weak L2 G-invariant metric on Λ/ (see e.g. [KR, par. 2.3]) given by

(a,β)= f(a(p),β(p))dμ(p)

where μ is a smooth ^-invariant measure on ̂ , α, /3 are g valued one forms on &
and ( , •) the bundle metric in g 0 Γ * ^ .

The action of G = Gs+1 on X = ̂ ξ is C°° (see e.g. [MV, p. 465]), free (see e.g.
[MV, p. 466]) and proper (see e.g. [KR, Theorem 2.4.9]). For A e Λ3, the map τA

tangent at 1 e G to:
ΘA:G->X

coincides with dA.
For A G ̂ s , the operator dA is a differential operator of order 1 with coefficients

of Sobolev class s — 1. With the notations of Theorem 1.2, we set m = s - 1,
r = ft=l. n _

For s > - + 3 and A G L ^ S , the operator c^ lies in Injs~ι(Eaά,Ead 0 T*M)

(see Appendix A.2 for a definition), since d\dA = L + D where L is an elliptic
operator with smooth coefficients and D a differential operator of lower order with
coefficients in Hs~2 (see e.g. [KR, par. 3.1]). The injectivity of the map τA follows
from the existence of an exponential map and the freedom of the action as in the
proof of Lemma 1.1.

The assumptions of Theorem 1.2 are therefore satisfied and we conclude that for
ηrt

s > — h 3. *y%s/Gs+1 is a Hubert manifold and that ,τβs —> ̂ s/Gs+ι is a principal

fibre bundle with structure group Gs+V
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2. We now illustrate Theorem 1.2 in the case G Φ H by the theory of closed bosonic
strings.

Take n = dimM = 2 and M of genus p > 1. Let us set CS = £ 2 T * =
T*M 0 S T*M, the symmetric tensor product of the contangent bundle on M with
itself. Let for s > 1, X be the manifold

t ^
s (M) = {g e Hs(S2T*),dεtg > 0}

of Hs riemannian metrics on M, which is a Hubert manifold modelled on Hs(&).
We now define the group G. Let ^ S + 1 ( M ) be the semi-Hilbert Lie group defined

as the connected component of the identity in &s+ι(M) defined in (1.1); it is a Hubert
manifold modelled on Hs+ι(TM) [FT]. Let W\M) = {eφ, φ G HS(M,R)} and let
the group G be semi-direct product of these two groups,

G = %s+ι(M) Θ WS(M). (1.4)

G is of the form H Θ K, where H = %s+l(M), K = Wa(M) are modelled on
Hs+ι(M) and Hs{3£\ respectively, taking ^S = TM and l = M x l .

The group G acts o n l = ^SS(M) by a right action:

1 Θ WS(M)) x .

The action θ is C°°, free and proper (see e.g. [AJPS]). For g e .MS(M), the operator
r tangent at point (Id, 1) G G to the map:

is of the form
rg:H

s+ι(TM) x HS(M,R) -> HS(S2T*)

(u, λ) -> Vgu + Xg ,

where (Vgu)ab = V'auh + V6wα. Furthermore, with the notations of the introduction,

we check that for λ G HS(Λ,R\ τ"φ X = eφτ"\, since τ"X = Xg so that
eψg y y

D(feΦ)θg(f*~ιu.e~φX) = f*τeΦg(u.X) and relation (1.3) is satisfied. As we pointed

out in the introduction, this follows from the commutativity of K = WS(M).
There is a weak I? Riemannian metric on .MS(M) induced at point g G ^/SS(M)

by the scalar product
(ft, k)jβ = / y/gh • k

M

(where, for two tensor fields t and t' the product t t' denotes the contracted product
using the metric g). It is clearly H = ^ S + 1 ( M ) invariant. For any metric g, there is an
orthogonal splitting w.r.t. the L2 scalar product induced on Tg.M

s{M) ~ HS(S2T*)
by this riemannian structure:

HS(S2T*) = HS(M,]

through which one can identify TgM
s(M) to HS(M,R) x HS(S%T*), where

HS(S$T*) is the space of Hs traceless two symmetric tensors on M and where

for a symmetric two tensor t, the trace w.r.t. the metric g is given by tr t = gαbtαb.
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Define for g e ^S(M) the operator

Pg:C°°(TM) -> Hs~ι(S%T*)

It is a differential operator with injective symbol as can be seen going over to local
coordinates (see e.g. [AJPS], Chap. 4). It is easy to check that for any integer s > 3,
Pg £ Injs~\TM, S$T*) since Pg is of order 1.

The operator τg, inteφreted as a matrix operator from HS{TM) x ϋP(M,K) to

HS(S%T*) x H3(M,R) reads

\ Py °

since rn(u, λ) = Pnu+ ^ trn(Vnu)-\-\g. One can show that the operator Pn is injective
y y L y y y

checking on one hand that its kernel is given by holomoφhic vector fields and on the
other hand, using the Riemann Roch theorem, that there are no non-zero holomoφhic
vector fields on a Riemann surface of genus p > 1. The fact that it has injective
symbol follows from the injective of the symbol of Pg. Setting m = s — l , f c = l , so
that for any integer s > 3 (recall that n = 2), τg e Injs~ι(J^, 8Γ).

The assumptions of Theorem 1.2 are hence all satisfied and for s > 3,

WS(M) is therefore a C°° Hubert manifold and the projection

Jtfa(M) -> J%S(M)/%S+\M) Θ WS(M),

a principal fibre bundle with structure group &o

s+ι(M) Θ WS(M).

II. Differential Operators with Injective Symbol
and the Slice Theorem in the I.L.H. Case

In this section, we want to extend the results of Sect. I to the case when X and G
are I.L.H. manifolds. We refer the reader to Appendix A.3 for the relevant definitions
concerning I.L.H. structures, in particular I.L.H. manifolds, I.L.H. Lie groups and
I.L.H. fibre bundles. We define here I.L.H. actions.

Definition. Let X be α C°° I.L.H. manifold, G = f| G% and I.L.H. Lie group acting

on X = Π Xi by: teN

Θ:G x X -> X

(α, x) —>• β ( α , x).

For k>0, is said to be C°°>k I.L.H. if

(i) θ induces a C°° action:

(ii) Θ:G x X -> X is a C°° I.L.H. map.
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Notice that if the action of G on X is C°°'k I.L.H., then for any a E G, the map
x -> Rax on X is C°° I.L.H. of order < 0.

We shall say that an I.L.H. action is free (resp. proper) if the Θi are free (resp.
proper). We easily check that if the action θ is free, we have for (α, x) G G x X,
θ(a,x) = x => a = e. Let us check that if the action is proper, then for sequences
(α n ,x n ) G G x X such that xn —• x G X and β ( α n , x n ) —• y G X, there is a
subsequence (α^ ( n )) of (αn) that converges in G. The actions θi being proper, for
each i G N, there is a subsequence (α^ ( n ) ) of (αn) converging in G ΐ + f e . Starting from
i = 1, we can iterate the extraction of a subsequence up to a certain j , thus obtaining

3

a subsequence (aφ ( n ) ) of (αn) converging to a- G Π G i + f c . Using the diagonal

principle, we can thus extract a subsequence (a^(n)) from (αn) which converges to an
element α G G.

Lemma 2.1. Lei G &<? an I.L.H. L/e grow/? acting on the right (resp. left) through an
action θ on a G°° I.L.H. variety X = f] X% such that G = f]ιeN Gi where Gi is a

right (resp. left) semi-Hilbert Lie group. Under the assumption that

- The action is C°°'k I.L.H., free and proper,

- For all x G Xif the map
θx:Gι+k~^ Xi

a —> θ(a, x)
is an immersion,

- For every x G l , there is a local slice Sx for the action of G on X

which is an inductive limit of slices for the action of Gi+k on Xt

and the corresponding projection X —• XG is an inductive limit

k of the projections Xi —> XzGi+k.

Then

1) X/G is a C°° I.L.H. manifold.
2) X —> X/G is a principal fibre bundle with structure group G.

Proof. Since the action θ is C°°'k I.L.H. free and proper, for any i the induced action
θz:Gi+k x Xi —> Xi is C°°, free and proper (see the above definition). Since θx is
an immersion, from Lemma 1.1 follows that Xi/Gi+k is a C°° Hubert manifold and
that π%'.Xi —> XijGiJrk is a C°° principal fibre bundle. In particular, for x,y e X,
setting 5 .̂ = Π ^ , i ' $y

 = Γ\Sy,i>
 t n e inductive families of local homeomorphisms

i i
wx4:Sχ,i ~* Xι/Gi+k a n d Ψy,ι:Sy,i ~^ Xi/^i+k induce a family of C°° transition
mappings ψ~l o ψx τ, the inductive limit of which yields a C°° I.L.H. transition
mapping for the quotient X/G. The quotient X/G is therefore a C°° I.L.H. manifold.
In the same way, since the canonical projection π is an inductive limit of a family
of canonical projections πi local trivialisations φ:π~ι(U) C X —> U C X/G x G,
^(x) = (τr(x), φx(x) of the bundle X —> X/G can be obtained as inductive limits
of families of local trivialisations φi:π~ι(Ui) d Xi -^ Ui C XjGι+k x G ΐ + / e ,
φ.(x) = (TΓ OΓ), φijX(x)). Taking two open subsets U = f] Ui9 V = f| V% of X/G, and

two families of local trivialisations φ^ψ^ieN associated to these, the corresponding

transition functions x —> φi x o ψ~J from J7Z Π Tζ to G ί + f c yield an inductive family
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of C°° maps, the inductive limit of which is a C°° I.L.H. transition function for the
bundle X —> X/G. The canonical projection map π:X —> X/G therefore yields a
principal I.L.H. fibre bundle. D

We now apply this lemma to the case of infinite dimensional manifolds modelled
on spaces of sections of some vector bundle on a compact surface.

Theorem 2.2. Let (S\ J%, .W be C°° vector fibre bundles on M (of dimension n) with
finite dimensional fibres built up from tensor bundles on M. Let X = f] X2 be a C°°

i

I.L.H. variety modelled on C°°(<?) such that each Xi is modelled on K%(<g) and is
equipped with a smooth L2 riemannian structure which yields a C°° exponential map
with the usual properties (in particular, it should induce a C°° local diffeomorphism
from TX to X).

Let G = p | G%be an I.L.H. Lie group which is a semi-direct product of two groups,

where G = H Θ K, H = f] Hτ

 a n d K = Π Ki a r e I.L.H. manifolds modelled on

and C°°(,9fζ') respectively. G acts on X through a right action θ, such that for
(α = (a!,a"),x) G G x X, θ(a,x) = R'a{Ra,tχ), H acting on X through isometries.
We shall assume as before that condition (1.3) is fulfilled, namely for a = (a', a") G G:

We furthermore assume that the L2 weak riemannian structure on X% is H-invariant
and that the map

is smooth. Here {Daθx)* denotes the adjoint of Daθx w.r.t. to an L2 weak riemannian
structure on G. Under the following assumption:

{ - The action θ is C°°'k I.L.H. free and proper,

- For any x G X, the map τx:C°°0^) -» C°°{CS)

is an injective differential operator with injective symbol.

Then

1) X/G is a C°° I.L.H. manifold.
2) The projection π: X —> X/G induces a C°° I.L.H. principal fibre bundle structure.

Remarks. 1) In applications, the assumption on the existence of an exponential map
associated to the weak L2 riemannian structure with the usual properties arises as a
consequence of the general features of the manifold X and the way such a riemannian
metric is built on X. Indeed, taking for example % to be a tensor bundle on M, then
each X% modelled on R%(W) can be equipped with a natural smooth L2 riemannian
structure ( , -)L2 induced at point x G Xi by a bilinear form:

H\%) x H\CS) -> R

(t, tr) -> j y/gχ(a) (t, t%(a)da ,

M

where gx is a riemannian metric on M of class Hι and ( , ) x a scalar product on the
fibre of the bundle <§ί induced by the metric gx by contraction of tensors. Applying to
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this weak riemannian metric the usual construction of a riemannian connection, one
obtains for U, V e Hs(t%) an L2 field VσV. Using the fact that VVV is characterised
by

VUV-VVU = [U,V],

W(U, V)L2 = (DWU, V)L2 + (U, DWV)L2,

one can show that since the riemannian metric is built up from tensors on M of class
Hι (arising from the riemannian metric gx), VVV is in fact an H% field so that V
is a riemannian connection in the usual sense and the smoothness of the riemannian
metric on Xt induces the smoothness of the connection. From this smooth connection
one can build an exponential map with the usual properties.
2) The smoothness of the map a —• Daθ* also appears in the applications as a
natural consequence of the general features of the manifold X and the group G and
the associated riemannian structures on them. Indeed, if the vector bundles involved in
the structure of X and G are tensor bundles, the smoothness of the map a —> (Daθx)*
then appears as a consequence of the smoothness of the map a —> Daθx and the
features of the scalar products involved in the construction of the adjoint operator.

Proof of Theorem 2.2. We shall do the proof in the simpler case G = H, for which
assumption (1.3) is of course trivially satisfied, pointing out the required modifications
for the general case G φ H. Indeed, the general case can be proved in a similar way,
using assumption (1.3) and the fί-invariance of the metric.

As in the proof of Theorem 1.2, using the relation between Daθx and τx, we
easily check that the second condition in (.^0) is satisfied since τx is injective and
has injective symbol. Since the group G acts on each Xi (because G C Gi+k and
Gi+k acts on Xi since the action is C°°'fc), the canonical projection π: X —» XjG is
an inductive limit of canonical projections πi \X% —» X%/Gi+k. The only thing left to
be checked in order to apply Lemma 2.1 is the existence, at each point x G X of a
local slice Sx obtained as inductive limit of a family of local slices Sx % for the action
o f Gi+k o n X i

We shall build the slice along the lines of the construction which can be found in
[E] in the case of the group of diffeomorphisms acting on the manifold of riemannian
metrics. We shall closely follow the scheme of the construction of a slice done
in the proof of Lemma 1.1, replacing here the strong riemannian structure on the
Hubert manifold X% underlying that construction by the weak L2 riemannian structure
common to all the Xt, i G N. Indeed, if for x £ X, one builds a slice Sx % for the
action of Gi+k on each Xi using the strong riemannian structure on Xi9 as in the
proof of Lemma 1.1, the inductive limit Π ^ % m i ght well reduce to the point x.

i

Replacing here the strong riemannian structure on the Hubert manifold X% underlying
that construction by a weak L2 riemannian structure common to all the I , i G N,
we shall obtain a family of "comparable slices," the inductive limit of which will be
a slice for the action of G on J .

Set for x e X, i G N:

N(OXi%) = {ve TXJOXtt, such that (υ,w)L2 =0,\/we TOxι} ,

where Ox i is the orbit of x under the action of Gi+k and ( , )L2 is the scalar product

on TXi induced by the L2 riemannian structure on X{. Since this L2 riemannian

structure is weak, this bundle is not an ordinary normal subbundle to TOX ijθx% in
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Or,. To see that it is all the same a C°° subbundle of TXIOΎ,, we shall
Jb «, I o f Jb j V

identify it to the kernel of a surjective C°° fibre bundle map.
Since for a G Gι+k, we have TRaXOxι = ImDaθx, the fibre of N(Oxi) at

point Rax, is ( I m D ^ ) 1 - = Ker(Daθx)*. Let us introduce a fibre bundle map
P:TXJOXI -* T0xΛ άtMεάonihtfbxzziRaxbyDJχo{DaΘtoDJxr

xoDaΘ*x

and let us describe its image. Since τx has injective principal symbol, there is an
orthogonal splitting for the L2 scalar product TXXZ — lmτx φ Kerr^. But since
A A = R>xDR-λ (resp. Daθx = # * r ^ D i ? " 1 if G = H & K, H φ G), using
the G-invariance (resp. H invariance if H φ G) of the L2 riemannian structure, we see
that TRaXXz also splits into an orthogonal direct sum TRaXXi = lmDaθxθKerDaθ*.
From this easily follows that ΊmDaθx = lmDaθx o (DJl o Daθx)-χ o Daθ* (the
inclusion from right to left is of course trivial), so that P is a surjective operator since
the fibre of TOX i at point Rax is lmDaθx. In the same way, the above orthogonal
splitting yields Ker(L>α6g* = KerDaθχo(Daθ*oDaθxy

ιoDaθ* (here the inclusion
from left to right is of course trivial), so that the kernel of P at the fibre above Rax
is indeed Ker(Daθx)* which coincides with the fibre of N(OX ) at point Rax.

Let us now check that this fibre bundle map is smooth. Since the right action
of Gi+k on X% is smooth, this boils down to checking the smoothness of the maps
a —> Daθx and a —• (Daθx)*. Again by the smoothness of the action of Gι+k on
Xi, the first of these two is smooth. Using the assumption made on the latter, we
conclude that the map P is a smooth fibre bundle map. Hence its kernel N(Oxi) is
a smooth fibre bundle.

Using the exponential map associated to this weak riemannian structure, we
can build as in the proof of Lemma 1.1 a family of slices Sxi = exp{v G
Nx(Oxi), \\v\\i < ε} for the action of G%+k on Xi9 with ε chosen small enough.
Here || ||̂  is the norm associated to the Hubert structure on X{.

Let us check that the inductive limit of these slices Sx = Γ\SX i yields a slice for the
action of G on X. It is clear that for a G G, RaSx C Sx since RaSsi C Sxi for all i.
Assume RaSx Π Sx Φ φ, then, by construction of Sx, for every i, RaSx ZΠ Sx % ̂  φ
so that a = e since the Sx are slices. Since for every i, U% x Sxi ~ Vx^ for
some Ui G Gi+k open neighborhood of e, Vx i open neighbourhood of x in I i ?

the diffeomorphism being C°°, there is a C°° I.L.H. diffeomorphism U x Sx ~ Vx

in the limit, where U = ΠJJ^ Vx = diVxi are open neighborhoods in G and X
respectively, containing e and x respectively. Thus Sx defines a slice for the action
of C o n X. D

Example. On can apply this theorem to the action of G = &Q(M) Θ W(M) on
X = ,/#(M), where these spaces are defined as before, the underlying manifold
M being of dimension 2. Here H = &0(M), K = W(M). Let us check that the
hypotheses of the above theorem are satisfied. The action is C 0 0 ' 1 , free and proper and
the operator τx is injective and has injective symbol as can be seen from the example in
Sect. I. Moreover, there is a &S+X{Λ) invariant weak L2 riemannian metric on ιySs{A)
given by the scalar product at point g defined as (h,k)g = / y/g(rj)h(η)k(η)dη. It
induces a C°° exponential map which is a local C°° diffeomorphism TyMs —> ̂ s

([E] par. 4). Furthermore, it can be shown that the map (/, e^) —> (D^ eΦ)θg)* is
smooth; this follows from the fact shown in [E] (p. 31) that the map / —• (Dfθg)*
is smooth and the fact that D^eΦ)θg = Dfθeψg. Hence all the assumptions of the
theorem are satisfied and ^S(M)/^0(M) Θ W{M) is a C°° I.L.H. manifold and the
canonical projection of ̂ S(M) onto this quotient yields a principal fibre bundle.
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III. The Faddeev Popov Determinant for Gauge Theories

Let G = H Θ K be a right semi-Hilbert (resp. I.L.H.) Lie group acting on the
right on a C°° Hubert (resp. I.L.H.) manifold, where H and K are semi-Hilbert
(resp. I.L.H.) Lie goups. Let us assume that H, K and X are modelled on spaces of
Sobolev (resp. C°°) sections of smooth vector bundles J^, 3& and % respectively
with finite dimensional fibres on a fixed smooth compact Riemannian manifold M
without boundary.

X is equipped with an iί-invariant L2 riemannian structure induced by the
riemannian metric on M (resp. which induces an exponential map with the usual
properties). As before, we shall identify for a = (a1, a"), the tangent spaces
TaG = Ta/H x Ta,,K and shall furthermore assume (see formula (1.3)) that for
a = (a\ a") e G, v! G H, u" e K, we have:

In the former sections, we showed that if the action θ of G on X is smooth (resp.
G°°'k I.L.H.), free and proper and if moreover, for all x G X, the operator

is an injective differential operator with injective symbol (resp. and if the map
a —> (Daθx)* is smooth), then X/G has a smooth manifold structure (possibly
infinite dimensional) and X —> X/G a smooth principal fibre bundle structure.

In this present section, we show that these same hypotheses yield the existence of
the Faddeev-Popov determinant.

Let us assume conditions (A) of Theorem 1.2 (resp. ( ^ ) of Theorem 2.2) are
satisfied. Theorem 1.2 (resp. Theorem 2.2) tell us that the canonical projection π: X —>
X/G is a principal fibre bundle. For x € X, let Σx be a local slice of this bundle.
For a = (α', a") G G, the Faddeev-Popov operator F^% reads:

( « u"), h) -> Daθx{DRa,u' + DRa,,u") + R*h

= R*aτRaiu + Rlh, (3.1)

where u = v! + u" e TeH x TeK.
By assumption (A) (resp. (^)) , the operator r^ has injective symbol, hence since

the manifold M is compact, we have an orthogonal splitting w.r.t. the scalar product
induced by the riemannian structure on X:

TTaXX = R*AlmτRaΠX Θ K e r r ^ / / a ; ) . (3.2)

Thus, if πx denotes the orthogonal projection onto Im τx which is well defined since
the image is closed, the operator F^* seen as an operator from TaG x TXΣX to
R*,(ImτR ιιX) x R*, K e r r β f/χ can be written as a matrix operator:

rR x ' K . " - ^ . ( 3 . 3 )

0 (11 — 7ΓD

Notice that if Σ1^ is an orthogonal slice to the orbits, this matrix operator takes the

simple diagonal form R*, TR-"X , since πx(TxΣx) = {0}.
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We now define the determinant of F^£ in two cases, namely first when the slice
is orthogonal to the orbit (which is the case for Yang-Mills theory) the quotient
X/G being possibly infinite dimensional, and then when the slice is arbitrary but
the quotient is finite dimensional. For this we shall use the notion of heat-kernel
regularised determinants for strictly positive elliptic operators on smooth boundaryless
compact manifolds. As pointed out in Appendix A.2, the heat-kernel regularising
methods discussed for example in [AJPS] and [Pa] in the context of string theory,
extend to elliptic operators with Hk coefficients, for k large enough, since these
operators have the same spectral properties as the ones with C°° coefficients.

When A is a strictly positive elliptic operator on a vector fibre bundle Ψ* on the
smooth compact boundaryless surface M, this vector bundle being equipped with
a scalar product, we denote by detτ4 its regularised determinant. We can extend
this notion of determinant to injective differential operators from a vector bundle
£ to a vector bundle 77 with injective symbol, setting for such an operator B,
άetB = \/det(J9*i?), where B* is the formal adjoint to B. Under assumption (yS)
of Theorem 2.2, we can therefore define detτ x as the determinant of the injective
differential operator τx with injective symbol.

In the first case, i.e. when the slice is orthogonal to the orbit, it is clear from the
shape of the matrix in (3.3) that the determinant of the Faddeev-Popov operator (3.1)
can be defined as the regularised determinant of the injective differential operator
with injective symbol rR //X. The pull-back Ra, in front of the matrix does not have

any influence since the L2 -Riemannian structure on X is H invariant.
The second case, i.e. when the quotient X/G is finite dimensional and the

slice arbitrary, has been studied in a former paper [Pa] in which it was shown
(see Proposition 3.1) that the determinant of the Faddeev-Popov operator is up to
a multiplicative factor (the determinant of a finite dimensional matrix which depends
on the choice of the slice), the regularised determinant of τR f/X.

Let us summarise the above discussion in the following theorem which concerns
both the Hubert and the I.L.H. case.

Theorem 3.1. Let G — H Θ K be a semi-Hίlbert fresp. I.L.H.) Lie group acting on
the right on a C°° Hubert fresp. I.L.H.j manifold, where H and K are semi-Hilbert
fresp. I.L.H.j Lie groups. Let us assume that H, K and X are modelled on spaces of
Sobolev fresp. C°°) sections of smooth vector bundles 3$, 3& and % respectively with
finite dimensional fibres on a fixed smooth compact Riemannian manifold M without
boundary. X fresp. X%, where X = Π^JQ) is fresp. are) equipped with an H-invariant
L2 Riemannian structure induced by the riemannian metric on M fresp. and we shall
assume that there is an exponential map induced by this L2 structure with the usual
properties, namely such that it induces a local C°° dijfeomorphism exp : TXi —> Xi

for each i). Under the assumption that
- The action of X on G is C°° fresp. C°°*k I.L.H.), free and proper,
— Vx G X, the operator

is an injective differential operator with injective symbol fresp. and the map a —» Daθ*
is smooth).

Then

1) The quotient X/G has a smooth manifold structure (possibly an infinite dimensional
Hilbert fresp. I.L.H.) structure) and the canonical projection π:X —> X/G yields a
principal fibre bundle structure.
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2) Let Σx be a local slice for this bundle at point x G X. If either this slice is
orthogonal to the orbit of x, or - when the quotient XjG is finite dimensional -for
an arbitrary local slice Σx, the Faddeev-Popov operator F^£ (where a G G) has a
well defined determinant:

detFJ;* = det(τβα//x)det(l - πRalljTxΣx),

where this last determinant is defined as 1 when the slice Σx is orthogonal to the orbit
at x and as the determinant of a finite dimensional operator when the quotient X/G
(and hence when Σχ) is finite dimensional

Applications

Application to Yang-Mills Theory. This corresponds to the first case when the local
slice is chosen orthogonal to the orbit. The quotient space here is infinite dimensional.
On the other hand, we saw that in the case of Yang-Mills theory, G = H.

We recall that in the case of Yang-Mills theory, X = L/βs, G = Gs+ι. For A G ,/£s,
we can choose a local slice contained in ΣA = {A + h, h G Hs(Ead <g) T*M), d\h =
0} orthogonal to the orbit A. For g G Gs+{9 A G ,/&s, the Faddeev-Popov operator
reads (see e.g. [Ja])

where the operator rA is given for A G ̂ Ss, by dA, the covariant derivative associated
to the connection A. In the example concerning Yang-Mills theory of Sect. I, we
saw that τA = dA is an injective differential operator with injective symbol with

coefficients of Sobolev class, namely for s > — + 3, dA G I n f " 1 ^ ^ , EΆά 0 T*M).

From the results of Appendix A.2, we can define the regularised determinant of dA

and we have for g G Gk+ι\

Application to Bosonic Closed Strings. This corresponds to the second case, when
the quotient is finite dimensional and the local slice arbitrary. We recall that here, the
group H corresponds to %(M), the group G to %(M) W\M).

If the genus p of M is strictly larger than 1, one can show the existence of a global
section Σ of the bundle ,J&(M) -> J6{M)I%{M) Θ W(M) given by the harmonic
gauge (see e.g. [AHKPS]). This section is of the form Σ ΞΞ {gvt e ^ ( M ) } , where
y~(M) is the Teichmϋller space on M and where gt varies in the riemannian metrics
of curvature — 1. One finds for the Faddeev-Popov determinant (see [Pa]):

where g = eφg and ψι

g, i— 1,.. ., 6p - 6 is a basis of Ker P^*, χg, i = 1,..., 6p — 6
being a basis of T Σ, whenever g G Σ.
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Appendix A.I: Proof of Theorem 1.2

Step 1. The action being proper, for x e X, θx is a closed mapping and hence a
homeomorphism onto its image. Being both an injective immersion and a homeomor-
phism onto its image, it is a diffeomorphism onto its image (by the inverse mapping
theorem). Hence G ~ Ox, the orbit of x is a closed submanifold of X.

Step 2. Since X is a Hubert manifold, there is a C°° strong riemannian structure on
X and a corresponding C°° exponential map exp : TX —> YX. Let us define

N(OX) = {vβ TX/OX, such that (υ, w) = 0, Vw e TOX} ,

which is a C°° subbundle of TX/OX. Set NX(OX) = N(OX) Π TXX and

N£tX = {ve NX(OX), \\v\\ < ε} .

For ε small enough, the exponential map exp is a diffeomoφhism on Nε x and we
set

which is a C°° submanifold of X with tangent space (Γ^O^)^.

Step 3. Sε x has the properties of a slice, namely

(a) RaSε'xnSεiXfφ^a = e,
b) Vx G I , there is a neighbourhood U of e in G, a neighbourhood V̂  of x in X
such that

^ X Sε,* ^ Vχ .

The assertion a) follows from the fact that the action is continuous, proper and free.

Assuming the assertion a) does not hold, letting ε take the values —, one can build
n

sequences (αn), an e G and (xn), xn G X such that xn e Sεx and Rarιxn G Sε^x.
By construction, we have that xn —> x and Ranxn -^ x The properness of the action
yields the existence of a subsequence (ctφ^) of (αn) converging to some a G G, from
which would follow, by the smoothness of the action that Rn X^^Λ tends to ^ x .
But then, in the limit we would have Rax = x, which yields a = e since the action
is free.

The assertion b) follows from the fact that the action is C°° and that θx is an
immersion combined with the local inversion theorem. The tangent map at point
(e, x) to

F.GxX ^X

(α, x) -> i^αx

reads

where τx = Deθx is the tangent map to θx at point e e G. The injectivity of D F
is a consequence of that of τx and of the equality TxSε x = (Irnr^,)1. The fact that
its range is closed follows from the fact that the range of τx is closed. The local
inverse function theorem then yields the existence of a neighborhood U of e G G, a
real number ε > 0 and a neighborhood Vε x of x small enough such that

be a C°° diffeomoφhism.
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Appendix A.2: Differential Operators with Coefficients in i ϊ m

This Appendix is a review of some properties of elliptic operators and of differential
operators with injective symbol that have coefficients in a Sobolev space H171, for m
large enough.

Let M be a smooth compact Riemannian manifold without boundary of finite
dimension. Let ξ and η be two vector bundles on M with finite dimensional fibres,
chosen in such a way that they naturally inherit a euclidean structure from the
Riemannian structure on M. Typically, we shall choose bundles such as the trivial
bundle MxM, tensor bundles TMk ®T*Mι, or bundles built up from an additional
principal fibre b u n d l e ^ o n M with structure group S? l i k e ^ x ^ g , ^ x ^ g ® Γ * M ,
where ΪF is a compact semi-simple matrix Lie group and g the Lie algebra of &.

Let Ck(ξ) (resp. Ck(η)) denote the space of sections of ξ (resp. η) of classes Ck

and C°°(0 (resp. C°°(η)), the space of C°° sections of ξ (resp. η). Let L2(ξ) and
Hk(ξ) (resp. L2(η) and Hk(η)) be the closure of C°°(ξ) (resp. C°°(η)) w.r.t. the L2

and the Hk Riemannian structures induced on ξ (resp. η) by the Riemannian structure
on M. The corresponding norms will be denoted by || ||L2 and || ||fc.

Let now D:C°°(ξ) —» Hm(η) be a differential operator of order k with injective
symbol, locally expressed as

\a\<k

where each aa G Hm, m > sup < —, k >. For 0 < s < m + k, D extends uniquely to

a continuous linear operator Ds :Hs(ξ) —» Hs~k(η) (see e.g. [KR] p. 57).
Let us introduce a class of elliptic operators

EΠm(ξ,77) = ίD:C°°(ξ) -> H^iηl s.t. L> = ^ α α D α is elliptic

and with aa G i ί m , s.t. m > ^ + 1
2

Garding's inequality extends to this class of elliptic operators (see e.g. [C] Theo-
rem 3.6):

Theorem A.2. For D G EΠm(ξ, η) of order k9

\\f\\k<C(\\Df\\L2 + \\f\\L2)

for all f G L2(ξ), such that Df G L2(η).

For D: C°°(ξ) —• Hm(η), we can define the formal adjoint D* defined on a subspace
of L2(7/). Let us introduce a class of differential operators with injective symbol

InJm(£>τ?) = {D:C°°(ξ) -+ Hm(η), s.t. D*D G Ell771"^^,?]),

where k is the order of D} .

The Hodge Kodaira like decomposition theorem extends to these classes of elliptic op-
erators and of differential operators with injective symbol (see e.g. [C] Theorem 3.12
and Theorem 3.13):
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Theorem A.2.2. If D e Ell(£, η) (resp. D G Injm(£, η)) is an operator of order k
Ti ί Tϊ \ TL i

with m > — + k I r e s p . m > — + 2k I , then for k < s < - + k + l l r e s p .

n \
2k < s < — h 2k + 1 J, we have the following decomposition:

range Im _DS is closed and the sum is orthogonal w.r.t. the L2 scalar product,
furthermore, the range is closed in Hs~k(η).

As in the case of self adjoint elliptic operators with smooth coefficients, from self
adjoint elliptic operators, with coefficients in Hm, one can build Fredholm operators.

Corollary A.2.3. Let D be a self adjoint operator, D G El l m (ξ ,0 of order k, with

m > y + k. For k < s < y + k + 1, the operator Ds:H
s(ξ) -> Hs~k(η) is a

Fredholm operator.

Proof From Theorem A.2.2, we know that Im Ds is closed. On the other hand, one
can check that the kernel Ker Ds is finite dimensional (see e.g. [C], Theorem 3.8) and
hence Ds is a Fredholm operator (see e.g. [G] Chap. I, Par. 4 for a definition of a
Fredholm operator).

Self adjoint elliptic operators with Hm coefficients and m large enough have the
same spectral properties as the ones with smooth coefficients as shown in this theorem.

Theorem A.2.4. A self adjoint operator D e El l m (£,0 of order k with m > - + k

has purely discrete spectrum {λn, n G N} and that there exists a constant C > 0 and
an exponent δ > 0 with |λ n | > Cnδ for large enough n.

Proof. We can apply exactly the same proof as in Lemma 1.6.3 [G] since it is based
on the previous results of this appendix.

Since the spectral properties for self adjoint elliptic operators with Hm coefficients
are the same as that of self adjoint elliptic operators with smooth coefficients, we can
apply the procedure described in [AJPS] to define regularised determinants of self
adjoint elliptic operators with coefficients in Hm (m chosen large enough), so that
following [AJPS] Chap. 1.5, for a positive self adjoint operator A e El l m (0, we can
define det.A and for an operator B e Injm(ξ, 77), we can define det B = (det B*B)1/2.

Appendix A.3: I.L.H. Structures

The following definitions can be found in [B, FT, O] for example.
Recall that a topological linear space E is an I.L.H. space if E = f] Hi9 where

Hτ, i G N are Hubert spaces such that Hτ C HJ for j < i, and the inclusion is a
bounded linear operator.

Definition A.3.1. A topological space X is an I.L.H. Ck manifold modelled on an
I.L.H. space F if it satisfies conditions 1), 2), 3):

1) X is a protective limit of Hubert manifolds Xi modelled on Hi such that Xh C X%

for i < j and such that for all x G X, there is a neighborhood U^x) G X , a
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neighborhood Vi of 0 in H% and a map ιφ%:Ui(x) C X% —» V% C Ht such that
Uι+λ(x) C Uτ(x) and φJUι+ι(x) = ψι+ι.

2) ψι o ψ~1 Vj —» Uι is Ck between Hubert spaces.
3) The inductive limit ofU^x), i G N is a neighborhood of x in X.

If it is Ck for all fc, then it is a C°° I.L.H. manifold.

Remark. We have included condition 3) in the definition of an I.L.H. manifold which
makes it a strong I.L.H. manifold, according to the usual convention, so that all I.L.H.
manifolds considered here are in fact strong I.L.H. manifolds.

A typical example of such a C°° I.L.H. manifold is the manifold

ΛS(M) = {g e C°°(S2T*), άctg > 0} = f] J4\M),
zGN

where M is as before a C°° riemannian boundaryless manifold. In order to define
the notion of I.L.H. Lie group, we need that of I.L.H. map.

Definition A.3.2. a) A map φ:X —> Y between I.L.H. manifolds of class Ck is an
I.L.H. map of class Ck if it is an inductive limit of Ck maps φι:XJ^ —> Yi for a

certain j(i) such that φJXj{ι+l) = φi+ι. It is C°° if it is Ck for all k. It is of order
smaller or equal to k if j(i) can be chosen smaller or equal to i + k for all i.
b) An I.L.H. Lie group is a C°° I.L.H. manifolds such that all operations are C°°
I.L.H. maps.
c) Let X be a C°° I.L.H. manifold, G an I.L.H. Lie group acting on X and X/G
an I.L.H. manifold. Let π:X —> X/G denote the canonical projection. The triple
(τr,X, X/G) defines an I.L.H. fibre bundle if and only if the transition functions are
C°° I.L.H.

A typical example of an I.L.H. Lie group is (with the same notations as above):

= {/ G (7°°(MxM), such that / has an inverse and f~ι G C°°(MXM)}

= f| ̂
It is indeed a C°° I.L.H. manifold modelled on C°°(TM) (see e.g. [O]). Moreover
for each fc, there is an s{k) > k such that the left multiplication defined for h G by:

and such that the inversion:

are of class Ck. Furthermore, the right multiplication defined for h G &k(M) by:

is C°°.
Another similar example is the group given by the semi-direct product 3{M) Θ

W{M), where W{M) = { e ^ G C°°(M,R)} = f| WS(M).
sen
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