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Abstract: The Hamiltonian structure of the monodromy preserving deformation
equations of Jimbo et al [JMMS] is explained in terms of parameter dependent
pairs of moment maps from a symplectic vector space to the dual spaces of two
different loop algebras. The nonautonomous Hamiltonian systems generating the
deformations are obtained by pulling back spectral invariants on Poisson subspa-
ces consisting of elements that are rational in the loop parameter and identifying
the deformation parameters with those determining the moment maps. This
construction is shown to lead to "dual" pairs of matrix differential operators whose
monodromy is preserved under the same family of deformations. As illustrative
examples, involving discrete and continuous reductions, a higher rank generaliz-
ation of the Hamiltonian equations governing the correlation functions for an
impenetrable Bose gas is obtained, as well as dual pairs of isomonodromy repres-
entations for the equations of the Painleve transcendents Pv and PVI.

1. Monodromy Preserving Hamiltonian Systems

The following integrable Pfaffian system was studied by Jimbo, Miwa, Mori and
Sato in [JMMS]:

(1.1)

Here {JV/(αι, . . . ,απ, yι, . . . 9yr)}l = ί> > n is a set of rxr matrix functions of n + r
(real or complex) variables {α,, )>«}* = i, « > Y is the diagonal rxr matrix

a = 1, r
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Y = diagQ?!, . . . ,yr) and the matrix differential form Θ is defined by:

Θab = (1 - δab) Nt d\og(ya - yb) . (1.2)
\ i = l Jab

This system determines deformations of the differential operator:

Sλ:= ^-^(λ)9 (1.3)
dλ

where

that preserve its monodromy around the regular singular points {λ = αJI = l j > f l

and at A = oo .
It was observed in [JMMS] (Appendix 5) that, expressing the Λ/Vs as

Nt = G?Ft , (1.5)

where {Fi9 Gt e MkiXr}i = ί ί f l l are pairs of maximal rank kt x r rectangular matrices
(fcj ^ r), with {FiGT = Li e gl(ki)}i = lt n constant matrices related to the mono-
dromy of Q)λ at {α, }ί = 1> „, Eq. (1.1) may be expressed as a set of compatible
nonautonomous Hamiltonian systems:

dFt = {Fi9ω}9 (1.6a)

Here rf denotes the total differential with respect to the variables {<xi9ya}i = ί> n

the 1-form ω is defined as: a = 1> r'

Σ ««^a, (1-7)
a = 1

with

Ht:=tr(YNt) +

b Φ

and the Poisson brackets in the space of (Fi9 Gz )'s are defined to be such that the
matrix elements of {Fi9 Gjί = 1? ,„ are canonically conjugate:

i,7 = l, . . . , n , α,fe = l , . . . , r , ai9bt= 19 . . ,9kt . (1.9)
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The Frobenius integrability of the differential system (1.1) follows from the fact
that the Hamiltonians {Hi9Ka}i = lf n Poisson commute. It was also noted in

α = 1 , r

[JMMS] that, with respect to the Poisson brackets (1.9), the matrices {#/},- = lt tΛ

satisfy:

which is the Lie Poisson bracket on the space (φ"= ι0/(r))* dual to the direct sum
of n copies of the Lie algebra gl(r) with itself. The 1-form ω is exact on the
parameter space and may be interpreted as the logarithmic differential of the
τ-function,

ω = dlogτ. (1.11)

Numerous applications of such systems exist; in particular, in the calculation of
correlation functions for integrable models in statistical mechanics and quantum
field theory [JMMS, IIKS], in matrix models of two dimensional quantum gravity
[M] and in the computation of level spacing distribution functions for random
matrix ensembles [TW1, TW2].

In the next section these systems will be examined within the context of loop
algebras, using an approach originally developed for the autonomous case, involv-
ing isospectral flows, in [AHP, AHH1]. This is based on "dual" pairs of parameter
dependent^ momentjmaps from symplectic vector spaces to two different loop
algebras gl(r) and gl(N\ where N = Σ"=ι fc*. The nonautonomous Hamiltonian
systems (1.6)-(1.8) will be generated by pulling back certain spectral invariants,
viewed as polynomial functions on rational coadjoint orbits, under these moment
maps, and identifying the parameters determining the maps with the deformation
parameters of the system. This construction leads to a pair of "dual" first order
matrix differential operators with regular singular points at finite values of the
spectral parameter, both of whose monodromy data are invariant under the
deformations generated by these Hamiltonian systems. In Sect. 3, the generic
systems so obtained will be reduced under various discrete and continuous Hamil-
tonian symmetry groups. A rank r = 2s generalization of the systems determining
the correlation functions for an impenetrable Bose gas (or equivalently, the
generating function for the level spacing distribution functions for random
matrix ensembles [TW1]) will be derived by reduction to the symplectic
loop algebra sp(2s). The "dual" isomonodromy representations of the equations
for the Painleve transcendents Pv and PVI will also be derived, and their Hamil-
tonian structure deduced through reductions under continuous groups.
A brief discussion of generalizations to systems with irregular singular points
is given in Sect. 4.

2. Loop Algebra Moment Maps and Spectral Invariants

In [AHP, AHH1], an approach to the embedding of finite dimensional integrable
systems into rational coadjoint orbits of loop algebras was developed, based on

a parametric family of equivariant moment maps JA:M -> gl(r}% from the space
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M = {F, GeMNxr} of pairs of N x r rectangular matrices, with canonical symplec-
tic structure

dGτ) _ _ (2.1)
to the dual of the positive half of the loop algebra gl(r). The maps JA, which are
parametrized by the choice of an AT x AT matrix AeMNxN with eigenvalues
{%i}i = i, . n

 and generalized eigenspaces of dimension {fcj/ = ίt „, Σ1= ιki = N9 are
defined by:

JA:(F9G)^GT(A-UNrlF, (2.2)

where IN denotes the NxN identity matrix. The conventions here are such that all
the eigenvalues {α/}I = l5 n are interior to_a circle S1 in the complex A-plane on
which the loop algebra elements X(λ) e gl(r) are defined. The two subalgebras
gl(r)+, gl(r)- consist of elements X+ egl(r)+, X- egl(r)- that admit holomorphic
extensions, respectively, to the interior and exterior regions, with^Y _ ( oo ) = 0. The
space gl(r) is identified as a dense subspace of its dual space gl(r)*, through the
pairing

Xleji(r)*9X2e'ji(r). (2.3)

This also gives identifications of the dual spaces gl(r)*+ with the opposite sub-
algebras gl(r) + .

Taking the simplest case, when A is diagonal, the image of the moment map is

^0(λ) = Gτ(A-λINΓlF= Στ^> (2 4a)

(2.4b)

where (Fi9 Gt) are the fef x r blocks in (F9 G) corresponding to the eigenspaces of
A with eigenvalues {αjj = 1? . . „ . The set of all e/Γo JΞ #/(r)_ having the pole structure
given in Eq. (2.4a) forms a Poisson subspace of #/(r)_, which we denote gA. The
coadjoint action of the loop group Gl(r)+ corresponding to the algebra gl(r)+,

restricted to the subspace g^, is given by:

=1 — i ί=ί — i

9i .= g(a.i\ ί = l , . . . , n . (2.5)

We see that gA could equally have been identified with the dual space (φ"= i gl(r)}*
of the direct sum of n copies of gl(r) with itself, and the Lie Poisson bracket on
gl(r)*+

reduces on the Poisson subspace %A to that for (φ"= ι0/(r))*, as given in Eq. (1.10).
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In the approach developed in [AHP, AHH1], one studies commuting Hamil-
tonian flows on spaces of type gA (in general, rational Poisson subspaces involving
higher order poles if the matrix A is nondiagonalizable), generatedj)y elements of
the Poisson commuting spectral ring J\ of polynomials on gl(r)* invariant
under the Ad*G/(r)-action (conjugation by loop group elements), restricted to the
affine subspace 7 + g^, where Yegl(r) is some fixed r x r matrix. The pullback
of such Hamiltonians under JA generates commuting flows in M that project to
the quotient of M by the Hamiltonian action of the stability subgroup
GA:= Stab(^) c Gl(N). The Adler-Kostant-Symes (AKS) theorem then tells us
that:

(i) Any two elements of $\ Poisson commute (and hence, so do their pullbacks
under the Poisson map JA).

(ii) Hamilton's equations for HeJ>Ύ

A have the Lax pair form:

, - , , (2.7)

where

Λφ,ί):=7 + Jr*(λ,t), (2.8)

with ^egl(r)- of the form (2.4a), dH\^ viewed as an element of
(gl(r)*)* ~ gl(r\ and the subscripts ± denoting projections to the
subspace gl(r) + .

The coefficients of the spectral curve of ^Γ(λ), determined by the characteristic
equation

det(7 + GT(A - λlitΓ1 - zlr) = 0 , (2.9)

are the generators of the ring J\.
In particular, choosing

r:=diag( y ι,. . .,)v) (2.10)

and defining {Ht e ./$},. = 1§ n by:

1 n trίN-N }2 = tT(YNt) + Σ l l j) (2.11)

(where |λ=α. denotes integration around a small loop containing only this pole), we
see that these coincide with the Jtff's defined in Eq. (1.8a). Thus, the Poisson
commutativity of the H, 's follows from the AKS theorem. The Lax form of
Hamilton's equations is:

(2.12)

where

(2.13)
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Evaluating residues at each λ = α f, we see that this is equivalent to:

dNj _ ίNj9 AT,]
- α/

-, ;=K ί,7 = l, . . . n .

-,Nt

J = \ (

J*ι

(2.14a)

(2.14b)

If we now identify the flow parameters {ίji = ι,.. ,„ with the eigenvalues
{(Xi}i = ι „, we obtain the nonautonomous Hamiltonian systems

fytf<] .^. . . ,, Φ ϊ , i, ; = 1, . . . , n , (2.15a)

(2.15b)

which are the af components of the system (1.1). Viewing the Λ/Vs as functions on
the fixed phase space M, Eqs. (2.15a, b) are induced by the nonautonomous
Hamiltonian systems generated by the pullback of the H^s under the parameter
dependent moment map JA. Equations (2.15a, b) are equivalent to replacing the
Lax equations (2.12) by the system:

(2.16)—

which is just the condition of commutativity of the system of operators
{Q)λ, @i}i = ι, .. ,„, where @λ is given by (1.3) and

(2.17)
λ —

Remark. The system (2.16) could also be viewed as a Lax equation defined on the
dual of the centrally extended loop algebra gl(r)A, in which the Ad* action is
given by gauge transformations rather than conjugation [RS]. The analogue of the
spectral ring J>Ύ

A is the ring of monodromy invariants, restricted to a suitable
Poisson subspace with respect to a modified (^-matrix) Lie Poisson bracket
structure. This viewpoint will not be developed here, but is essential to deriving
such systems through reductions of autonomous Hamiltonian systems of PDE's.

The fact that the matrices {F/Gf = Lt e #/(&/)},-=i,. . ,„ are constant under the
deformations generated by Eqs. (2.15a, b), (2.16) follows from the fact that

JGJF, G):= diag(FiG[, . . . , FπGj ) e gl(N) (2.18)

is the moment map generating the Hamiltonian action of the stabilizer of A in

N

GΛ:=Π i) = Stab(A) c G l ( N ) , (2.19)
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this action being given by

GA:M -> M,

K:(F,G)^(KF,(KTΓ1G),

(2.20)

The orbits of GA are just the fibres of JA, so ( JA, JGA) form a "dual pair" of moment
maps [W]. Evidently, the pullback JA(H) is GA- invariant for all H e <$\, and
hence JGA is constant under the HI flows.

So far, we have only considered the part of the system (1.1) relating to the
parameters {«,-},•= !,...,„. What about the Hamiltonians jXα}α=ι,. . ,r that
generate the ya components? As shown in [AHH1], besides JA there is, for each
Y e gl(r\ another moment map

JY:M ^l(N)l ~jjϊ(N)-

z/ r)- 1GΓ, (2.21)

where z denotes the loop parameter for the loop algebra gl(N\ whose elements
are defined on a circle S 1 in the complex^z-plane containing the eigenvalues of Y in
its interior. The pairing identifying gl(N)^as a dense subspace of gl(N)* is
defined similarly to (2.3), for elements X± e gl(N)*, X2 e gl(N). The subalgebras
gl(N)± are similarly defined with respect to this circle, and their dual spaces
gl(N)*± are identified analogously with gl(N)^ .

The moment map Jγ is also "dual" to JA, but in a different sense than JGA - one
that is relevant for the construction of the remaining Hamiltonians {Ka}a= l f . . . t r.
The space gA may be identified with the quotient Poisson manifold M/GA, with
symplectic leaves given by the level sets of the symmetric invariants formed from
each F i G f , since these are the Casimir invariants on gA. Since the Hamiltonians in
J>Ύ

A are all also invariant under the action of the stabilizer Gγ = Stab(F) c G/(r),
where G/(r) cz Gl(r) is the subgroup of constant loops, we may also quotient by
this action to obtain gA/GY = M/(GY x GA). Doing this in the opposite order, we
may define gy c gl(N)^. ~ gl(N)- as the Poisson subspace consisting of elements
of the form:

r M
Λ(o(z)= -F(Y-zINΓ1Gτ= X - a-9 (2.22a)

α = l Z ~~ y<ι

(Mβ)y:= FiaGja, 1,7 = 1, . . . , n, a = 1, . . . , r (2.22b)

(where, if the {ya}a=ι,.. ,r are distinct, the residue matrices are all of rank 1), and
identify gy with M/GY. Denoting by J*γ the ring of Ad* -in variant polynomials on
gl(N)*, restricted to the affine subspace — A + gy consisting of elements of the form

Jί = - A + J f θ 9 J?Q e gy, (2.23)

the pullback of the ring ^γ under the moment map Jγ also gives a Poisson
commuting ring whose elements are both Gγ and GA invariant, and hence project

to M/(Gy x GA). In fact, the two rings JA(J?A) and J*(J?Y) coincide (cf. [AHH1]),
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because of the identity:

det(A - λIN)det(Y + GT(A - λl^Γ^F - zlr)

= det( Y - z/r)det(,4 + F(Y - zlr) ~
1GT - λIN) , (2.24)

which shows that the spectral curve of M(z\ defined by

det(A + F( Y - zlr) ~ 1 G τ - λIN) = 0 (2.25)

and that of Λf(λ\ given by Eq. (2.9), are birationally equivalent (after reducing out
the trivial factors det(4 - λIN) and det(7 - z/r)).

Now, similarly to the definition of the elements {Ht e ,/^}i=i, . . ,„, we may
define {Ka e ./y} f l=ι,... , r as:

)2dz = -tr(AM.)+ Σ ' . (2.26)ί"z=ya b=ι yβ — yb
f t Φ α

To verify that these coincide with the Ka's defined in Eq. (1.8b), we use Eqs. (2.4a),
(2.8), (2.22a) and (2.23) to express Ka as:

K0 = -ί, f dz^-^dλλtr(J^(z)(A-λINΓ1)2 (2.27a)
4m Z2ya 2πι S

J,

= -£-.$ dλλ±-. §
qπi sι zπi z=a

(2.27b)

Evaluating residues at {ya}a=ι, . . . ,r in z and at oo in λ gives (1.8b). The Poisson
commutativity of the Ka's again follows from the AKS theorem, and the com-
mutativity with the HI'S follows from the equality of the two rings JA^A = Jγ^γ
To compute the Lax form of the equations of motion generated by the Kα's, we
evaluate their differentials, viewing them as functions of Ji (λ) defined by Eq.
(2.27b). Evaluating the z integral, this gives:

Λτr<ι\ I P . v a b b a ~dKa(λ) = λEa+ 2, - e gl(r) , (2.28)
b=ι ya — yb
Ϊ>Φ a

where Ea denotes the elementary diagonal rxr^natrix with (aa) entry equal to
1 and zeros elsewhere. Taking the projection to gl(r)+ gives:

(dKa)+(λ) = λEa+ί i E"NiE" + E»NlE° e gl(r)+, (2.29)
b=ι i=ι ya — yb
b Φ α

and hence

X (dKa)+dya = λY + Θ, (2.30)
« = ι

where Θ is defined in Eq. (1.2). By the AKS theorem, the autonomous form of the
equations of motion is

a + 9 9 (2.31)
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while the nonautonomous version is
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(2.32)

Evaluating residues at λ = OQ gives the equations

^=[_(dKa)+(κi\Nil i = !,.
oτa

.,* (2.33)

for the autonomous case and

(2.34)

for the nonautonomous one. Equations (2.34) are just the ya components of the
system (1.1). Equation (2.32) is equivalent to the commutativity of the operators
{®A,0?}«=ι f . . . .r, where

_δ_
wa

(2.35)

and implies that the monodromy of <2λ is invariant under the ya deformations. In
fact, it follows from the AKS theorem that the complete system of operators
{^A, &i9 ®*a }i=!,... ,π, f l= i , . . . . r commutes.

Turning now to the dual system, it follows from the AKS theorem that the Lax
form of the equations of motion induced by the Ka's on gl(N)-, viewed now as
functions of M> in the autonomous case is

(2.36)

where

Mfl (2.37)

(Note that the differential dKa entering in Eqs. (2.36), (2.37) and below has
a different significance from that appearing in Eqs. (2.28)-(2.35).) Evaluating
residues at z = ya shows that (2.36) is equivalent to the system

dMb

dτa

b Φ α, a, b = 1, . . . r , (2.38a)

dMa

dτa b=i ya - yb
b φ α

-,Mfl (2.38b)
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Identifying the flow parameters {τα} f l = 1 >. . > r now with the eigenvalues
{ya}a=ι, . ,r of Y gives the nonautonomous Hamiltonian system

dMa f Λ t £ Mb
Λ ~ "* •*- I /

y o b == i ^^ yt
b Φ α

α, y -

,Mfl

i, . . . r , \^.oy<i)

(2.39b)

or, equivalently,

— (2.40)

Equations (2.39a, b), (2.40) are equivalent to the commutativity of the system of
operators { 2Z, 3>a }α = t,. , r defined by:

(2.41a)

(2.41b)

Thus the monodromy of the "dual" operator Q)z is also preserved under the ya

deformations.
Finally, by similar computations to the above, with (A, λ, jV) and (7, z, Jl)

interchanged, we can express the H^ as functions of Jt\

(2.42)

Evaluating residues at {α, }7 =l ι . ,„ in λ and at oo in z gives

H,= -Σ
a = l 7=1 — ttj . .-1 ..... .. (2.43)

To compute the Lax equations for ^(z) generated by the /Vs, we evaluate their

differentials when viewed as functions on gl(N)- defined by Eq. (2.42). Evaluating
the λ integral, this gives:

(2.44)

where Et now denotes the elementary diagonal NX N matrix with (iί) entry equal to
1 and zeros elsewhere. Taking the projection to gl(N)+ gives:

7=1
7 Φ ί

(145)



Dual Isomonodromic Deformations and Moment Maps 347

and hence

Σ (dHί)+(z)d^i = -zdA + Φ, (2.46)

where

Φy = (1 - »ij) ( Σ (Makjd logfo - α, )) . (2.47)
\ α = l /

By the AKS theorem, the autonomous form of the equations of motion is

ΰJί
—- = [(dHi)+,Jΐ], (2.48)
dti

while the nonautonomous system is

—— = [(ίWf/)+, Jt~\ H T-̂ — — [(dHi)+, Jt~\ — EI . (2.49)

Evaluating residues at λ = αt gives the equations

dtt

for the autonomous case and

(ya\Ma ] (2.51)

for the nonautonomous one. Equation (2.49) is equivalent to the commutativity of
the operators { ®z > ̂  * } i = i,. ,«> where

®f:=^-(dff*M*), (2.52)

and implies that the monodromy of ̂ z is invariant under the αf deformations. Again,
it follows from the AKS theorem that the complete system of operators
{0z,0β,0,*}β=lf.. f f f ί = l f . ,„ commutes.

Thus, at the level of the reduced spaces g^/Gr ~ gy/G^, we have two equivalent
"dual" isomonodromy representations of the Hamiltonian systems generated by the
spectral invariants {Hi9Ka}i=ίt , n ,β=ι,. . ^-systems (2.15a, b), (2.24) in the

e gA representation and (2.39a, b), (2.51) in the J((z) e gy representation.

3. Reductions

The general scheme of [AHP, AHH1] may be combined with continuous or discrete
Hamiltonian symmetry reductions to deduce systems corresponding to
subalgebras of gl(r) and gl(N) or, more generally, to invariant submanifolds. In
particular, the Marsden-Weinstein reduction method may be applied to the sym-
metry groups GA and Gy, or to other invariants of the system.

The discrete reduction method (see^ [AHP, HHM] for further details) may be
summarized as follows. Suppose σr^:gl(r)+ -+gl(r)+ is a Lie algebra homomor-
phism that is semisimple, of finite order and induced by the group homomorphism
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σ r : G l ( r ) + -> G/(r)+. Let σ*:g/(r)_ ->g/(r)_ denote the^ dual map, which is
a Poisson homomorphism, and let hσ a gl(r)+, h* <= gl(r)~ denote the sub-
spaces consisting of the fixed point sets under σr^ and <?*, respectively. (These are
naturally dual to each other, since h * may be identified with the annihilator of the
complement^of hσ under the decomposition of gl(r)+ into eigenspaces of σ^.)
Then hσ c gl(r)+ is a subalgebra, and its dual space ft* has the corresponding Lie
Poisson structure. Suppose there also exists a finite order symplectomorphism
σM:M—>M such that the moment map JA satisfies the intertwining property:

JA°σM = σ?°JA. (3.1)

The fixed point set Mσ a M is, generally, a symplectic submanifold, invariant under
the flows generated by σM-invariant Hamiltonians. The restriction JA\Mσ'-=JAσ
takes its values in ftj, defining a Poisson map:

JAσ:Mσ^hϊ, (3.2)

which is the equivariant moment map generating the action of the subgroup

Hσ c= G/(r)+ consisting of the fixed points under σr:Gl(r)+ -> Gl(r)+.
Such reductions, when applied to the spectral invariants on Y + gA generate systems
satisfying the criteria of the AKS theorem, provided the matrices Y and A are
appropriately chosen to be compatible with the reduction. The same procedure may
be applied to^the dual systems on — A + gy if a similar homomorphism
σN*:gl(N)+ -> gl(N)+ exists, satisfying the intertwining property:

Jy°σM = σ%°Jγ. (3.3)

The corresponding moment map,

J y σ:Mσ^/cσ*, (3.4)

obtained by restriction Jγσ:= Jγ\Mσ takes its values in the Poisson subspace
fc* c^gl(N)- ^consisting of the fixed point set under the dual map
σ%:gl(N)- ->gl(N)-9 and kσ c gl(N)+ is the corresponding subalgebra consisting
of fixed points under σN#.

The following examples illustrate both the discrete and continuous reduction
procedures.

3a. Symplectic Reduction (discrete). Let r = 2s and define σ*, σ* and σM by:

σ?:X(λ) -> JXτ(λ)J , (3.5a)

σ$:ζ(z)^ξτ(-z)9 (3.5b)

σM:(F,G)^ J(GJ, - FJ), (3.5c)

Xegϊ(r)-9 ξe^ϊ(N)-, (F, G) e M ,

where
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Then Mσ a M consists of pairs (F, G) of the form:

,-β), (3.7)

where β, P e MNXs are N x 5 matrices. The blocks {(Fί9 C?i)}ί=ι, . . ,„ corresponding
to the eigenvalues {αjί= lt . . ,„ are similarly of the form

F; = -^(a,Pa Gί * (P i ?-a), (3.8)

where QhPt€ MkίXs. The reduced symplectic form on Mσ is

ω = tr(dβ Λ </PΓ) . (3.9)

The subalgebra /zσ c #/(r)+ is just the positive part sp(2s)+ of the symplectic loop
algebra sp(2s), and the dual space h* is similarly identified with sp(2s)-. The
subalgebra kσ c gl(N)+ is the positive part gl(2\N)+ of the "twisted" loop
algebra gl(2\N\ with dual space fcf ^ gl(2\N)-. The image of the moment map
J^σ has the form

(3.10)
i = l Λ — «ί

In order that the pullback of the elements of the ring <P\ under JA be σM-invariant,
and that the intertwining property (3.3) for the moment map Jy be satisfied, the
matrix Y must be in sp (2s). For diagonal 7, this means

γ-iy

-y

y = diag(y1,...,ys)egl(s). (3.11)

The image of Jy<τ then has the block form

*0(z) = ϊτ.(Q,P) = τ ^ί^L-P^L}, (3.12)z α=ι \ z ~ y<ι z ~τ~ yα /

where { qα }α = ί r and {pα}α=ι r denote the α th columns of Q and P, respective-
ly.

The Hamiltonians {Hj/^i, . . . ,„ reduce in this case to:

and generate the equations of motion:

.p.eja-ftpjft^ .
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v , .ctj 2(α, - α, )

t a ί M a

The Hamiltonians {Kα = — Ka+s)a=li . . . tS reduce to:

,

b φ α

and generate the equations

φ f l ? (316a)
4yb~ya 4yb + ya'

1 PbPaPb

4yb-ya 4yb + ya'
(3.16b)

b φ α

b Φ f l b Φ α

The particular case s = 1, {/Q = l}/=ι,. ,n of (3.13), (3.14a-d) reduces, up to
a simple change of basis, to the system of Theorem 7.5, [JMMS]. The corresponding
τ-function gives the n-particle correlation function for an impenetrable Bose gas or,
equivalently, the level spacing distribution function for a set of random matrices
having no eigenvalues in the intervals { [α2l - 1 , α2i] }/= i m, n = 2m, in the scaling
limit [TW1].

Hamiltonian Structure of Paίnleve Equations. The following two examples show
how the Painleve transcendents Pv and PVI may be derived from the generic
systems (2.15a, b), (2.34) or (2.39a, b), (2.51) through Hamiltonian reduction under
continuous symmetry groups. Our derivation will be guided by the formulation of
Painleve transcendents as monodromy preserving deformation equations given in
[JM], but the emphasis here will be on the loop algebra content, the Hamil-
tonian reductions and the associated "dual" systems. For previous work on the
Hamiltonian structure of the Painleve transcendents, see [OK] and references
therein.
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3b. Paίnleve V. Choose N = 2, r = 2, and

o o

Then F and G are 2 x 2 matrices
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(3.17)

(3.18)

with row vectors {F; = (FaFi2), G( = (G,ιG(2)}ί=1,2. The stabilizer GA c G/(2) of
/4 is the diagonal subgroup generated by the moment map

= (F1G{,F2Gi):=(μ1,μ2). (3.19)

Fixing a level set, we parametrize the quotient under this abelian Hamiltonian group
action by choosing the symplectic section MA c M defined (on a suitable connected
component) by

F =
,,*"•- I JΊ + — -

— -χ2X2

(3.20)

The reduced manifold Mred = JG^(μ^, μ2)/GA is identified with R2 x R2 minus the
coordinate axes {x^ = 0, x2 = 0}, quotiented by the group of reflections in these
axes. The reduced symplectic form is

2
ωred = Σ dxi Λ dyi . (3.21)

The image of the reduced moment map JA: Mred -> gl(2)-. translated by Y is

.=y + Λ(F, G ) =(; _;
..2 , Ml

I v2

\ X 2

2/1 - 1)
(3.22)

The stabilizer Gy c G/(2) of 7 is the diagonal subgroup, acting by conjugation on
Jί(λ\ which corresponds to scaling transformations

and is generated by

(3.23)

(3.24)

(The trace part of gl(2) acts trivially, since it coincides with the Casimir μ1 + μ2.)
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The Gy-invariant Hamiltonians HlyH2 e J>\ may be expressed

= 4πί A
,N2) = -tH-^ψ-a2-2at9

(3.25a)

-
4m λ==1

2
(3.25b)

where

(3.26)

The dual system is determined by the moment map Jγ: M -> gf/(2) defined by Eq.
(2.21) which, when restricted to the symplectic section MA defined by Eq. (3.20), gives

1 / V 2 V 2

1 2*2 2*1

z)= -A-F(Y-zI2Γ
1Gτ =

0 0

0 -1

^13^2 + ^2 —

x.

2(z - ί)
• + -

2(z + t)
(3.27)

Here, the quantities a and μ^ + μ2 are interpreted as Casimir invariants, whereas μt

and μ2 individually are conserved quantities because they belong to the spectral ring
J>γ . In terms of the dual system, we may express the Hamiltonians KΪ9 K2 e J>γ as:

_

2 8ί

μ2

2
(3.28a)

H

2 8ί

The relations

(3.28b)

= -H2- 2at (3.29a)
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, (μi -μi)2

 2 o . .H α — 2at — tμ2
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(3.29b)

= 2tK2 - a2 -2at + tμ2 (3.29c)

can also be derived from the identity (following from Eq. (2.24)):

z2 -

z2-t2

λ(λ -
(3.30)

Integrating both sides around contours in the z-plane containing either the pole at
z = ί or the one at z = — t and contours in the Λ-plane containing either the pole
at λ = 0 or the one at 1, we obtain Eqs. (3.29a-c).

Viewing K^ and K2 as functions of Ji we have, from Eq. (2.29),

(3.31a)

(dK2)+ =
0 0

0 λ

\_
4t

(3.31b)

, (3.31c)

and hence the monodromy preserving deformation equation for ^V(λ) generated

by KI — K2 is given by the commutativity of the operators @λ = —- — J^(λ] and
oλ

2tΐ, where JT(λ) is given by Eq. (3.22), and

.
dt -λ

. (3.32)
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Viewing K^ and K2 instead as functions of M, from (2.37) we have

/ x

(3.33a)

(3.33b)

To obtain the corresponding dual monodromy preserving deformation equation
for Ji(z\ we cannot simply restrict Eqs. (2.39a, b), (2.40) to the submanifold
MA c= M. The image of MA under Jr is 3-dimensional, since points related by the
scaling transformation (3.23) have the same image. Unlike JA\MA, the restriction
JY\MA is not a Poisson map, since GA does not leave Jγ invariant, but acts by
conjugation on the image JY(F, G). Therefore Jγ does not project to define a map
on the quotient space M/GA. However, the reduced systems generated by the GA

and Gy-invariant Hamiltonians Hl9 H2, K^ and K2 are determined by the projec-
tion of their Lax equations to the quotient manifold M/GA. The projected
(nonautonomous) Hamiltonian vector field determined by KI — K2 has a unique
lift that preserves the section MA, obtained by adding a "vertical" term

(3.34)

to the factor (dK±)- — (dK2)- entering in the Lax equation for Jί(z\ Equation
(3.34) is obtained by noting that, apart from the conditions that the diagonal terms
μl9 μ2 in Mj. + M2 be conserved, and the Casimirs detM1? detM2 vanish, all of
which are automatically satisfied by the Lax system, the only remaining condition
defining the image Jγ(MA) is:

det(ΛίT(z) - JIΎ( - z)) = 0 , (3.35a)

or, equivalently,

det(Mi + Mj) = 0 . (3.35b)

Up to multiples of the identity matrix, the unique element in the diagonal subal-
gebra (corresponding to GA) which, when added to (dK±)- — (dK2)-, preserves
this condition is dKv. Thus, the correct dual deformation operator 2t9 whose

commutativity with Q)z = -— M(z\ gives the Hamiltonian system generated by
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Ki - K2, is:

I
X!

X2

2(z - ί)

?Λ Y2 ^2 / °
V ' ' , . . . . , ,\ (336)

o 1

To reduce the system under the Gγ action generated by α, we first introduce the
"spectral Darboux coordinates" (u, w) (cf. [AHH2]) defined by

V 2 V 2 \ ΛΛ,ί Ί 1I\

Xl , x2 Y W(λ-u) (33?)

where

w = χ2 + χ2

 9 (3.38a)

x2

u = 2

 i

 2 . (3.38b)

In terms of these, the symplectic form (3.21) becomes

&>red = dlogw Λ da + du Λ dv , (3.39)

where

;T=Ί) (3 40)

is the momentum conjugate to u and α is the invariant defined in Eq. (3.24). The
operators &λ92Z92* and 2t may be expressed in terms of these coordinates by
substituting

x2 = ww, x2 = (1 — w)w, x^i = 2u(a — uv + υ), x2y2 = 2(1 — u)(a — uv),

,}.«!,.-. + .,.. ri.4»^!>,.-»). (Ml)

in Eqs. (3.22), (3.27), (3.32) and (3.36).
Choosing a level set α = α0> the symplectic form (3.21) reduces to

υ, (3.42)
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so (w, v) provide canonical coordinates on the reduced space obtained by quotient-
ing by the Gy-flow. From Eqs. (3.22), (3.25a, b) it follows that we may write

1 " H H II2 II2

-*- . , x, O κ Λ ̂  O •" 1 " 2 M l fA 2 /^ Λ^\

ττ;—775 (3-43)
2 ' ' λ λ - 1 2λ

From (3.37) and (3.40) it follows that

(,).(.-,,.^.=i + -= ϊ | . ,3.44,

Evaluating the integral

1 . λ(λ -
— M 2

, ^ ,, ,
= -«(«- l)tivr2(M)

2u 2(ιι -

and using Eqs. (3.29a-c), (3.44), (3.45) gives

(3.45)v

Kl - κ2 = -^—-+(v2 - 2vt) + 2au + -P- ^ ._ - 2α . (3.46)
ί 4wί 4(w — l)ί ί

(Note that the simple canonical change of coordinates v -> i; + —^ + ——2—-
2w 2(u — 1)

transforms this to polynomial form; cf. [Ok].) The reduced equations of motion
generated by the Hamiltonian K^ — K2 are therefore

(t> - 1), (3.47a)
dt t v / 5

— = (v2 — 2vt) -\ = rτ 2a . (3.47b)
dt t 4u t 4(u — I) t

Eliminating v by taking second derivatives gives:

1 \idu\2 Idu u u-l

- ^M(W - l)(2ιι - 1), (3.48)

where

α = y, β=~^> y = *a + 29 δ = 2, (3.49)

which is one of the equivalent forms of Pv. The more usual form is obtained by
transforming to the new variable

w - . (3.50)
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3c. Paίnleve VI. We take N = 3, r = 2, A = diag(0,1, ί), 7 = 0, so F, G are 3 x 2
matrices

G = (3.51)

with rows {Ft = (FnFi2)9 Gt = (GαG ί 2)}i=ι, . ,3. If f φ 0,1 the eigenvalues of
A are distinct and the stabilizer GA c: G/(3) is the diagonal subgroup generated by
the moment man

(3.52)

Fixing a level set, we parametrize the quotient under this abelian Hamiltonian
group action by choosing the symplectic section MA c M defined (on a suitable
connected component) by

F =

yi

, ^3
*3 - 3^3 + —

/, .+& -χ,\

μ3 v*3

(3.53)

(The choice of signs is made such that subsequent reductions be at nonsingular
points in the real case.) The reduced symplectic form is

ωred = (3.54)

and the reduced manifold Mred = JG^(μι, μ2, μ?>)IGA is identified with R3 x R3

minus the coordinate planes {xγ = 0, x2 = 0? *3 = 0}, quotiented by the group of
reflections in these planes. The image of the reduced moment map

)- is

= JA(F, G)

/ x y2 + μί

1 X v2x,

1 X 2^ X! XiΛ μi

/ *y μ y* + " 5 \ / x y i.
2 *i 3 3

1 ^2 ^2^2 ~μ2 1 1 ~^3

-L -L

2 ^ \
^3 χ2

^3^3 — /*3 i

- 1) 2(λ - t)

(3.55)
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Choose the Hamiltonian

V 2 V 2

•*- \ / \ •? 23 2 1

^l/^

1 Γ v2 v2 Ί- * - ! 2 9 •** 3 9 X 2 I

— -*-/ L *^2 X s I
.56)

Let

α = ̂ Σ>3Ί, (3 57a)

^ = ̂  (y i + J>i — yi) — ;r̂ 2 — ;r~~2 + y~2 ' (3.57b)

c = -(x\ + x% — x2) . (3.57c)

These are the generators of the constant 5/(2) conjugation action

g: ^o(λ) i—> g<Λ^o(λ)g ~1 , (3.58)

and satisfy

{a,b} = b, {c,a}=c, {b,c}=-2a. (3.59)

(In this case, since 7 = 0, Gγ = G/(2), but the trace term acts trivially.) The
Hamiltonian (3.56) is invariant under this S7(2)-action

since the elements of the spectral ring J>\ are Gγ invariant.
The monodromy preserving deformations generated by H are then determined

by the commutativity of the operators 3)λ = — — Jf(k) and ̂ ί? with *W(λ) given
oλ

by Eq. (3.55) and

®t = ί + '- . (3.61)
dt 2 ( λ - t ) v ;

They also preserve the monodromy of the "dual" operator &z = -— Jt(z\ where
cz ^

Ji(z) is determined by restricting the moment map Jy:Mred -» gl(3)~ to the
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submanifold MA a M,

0 0 0

(z)= -A + Jt0(z) = -A + J Y ( F , G ) = - ( 0 1 0

0 0 ί

359

X2

2μ2 ^3^2 -

In this ^f/(3)_ representation, the quantities

tr(FGΓ)2 = tr(GTF)2 = 2(a2 - be) +
i=ι

det(.FGΓ) =Γ =

(3.62)

(3.63a)

(3.63b)

(3.63c)

are the Casimir invariants, while the individual elements μι,μ2,μ3 are not

Casimirs, but generators of the stabilizer GA a G/(3) of A, and hence constants of

motion. Thus, what appeared before as Casimirs on #/(2)_ become elements of the
spectral ring ,/y, while the element of JΎ

A given by Eq. (3.63b) becomes

a Casimir on #/(3)_.
Viewing H3 now as a function of Jί, we have, from Eq. (2.45),

(dH3)+ =

0 0 0

0 0 0

0 0 -z

\

1 ,
- X
ί

(3.64)

The dual monodromy preserving representation is therefore given by the com-

mutativity of the operators Sΰz=- Jί(z\ and @ f , with J((z) given by
oz
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Eq. (3.62), and

*-!_
' ~~dt~

I

\

0 0 0\

0 0 0

0 0 z

J. Harnad

a + x3yι +
X! X3

\~,

1 / μ2x2 \ 1 / μ2x3 μs*2

0 ( μ3 - 1 ( *2j>3 + *3j>2 +
ί - 1 V x2

2 / ί - 1 V x2 x3

/ i j X g μ3*ι\ 1 / ^2^3 ^3^2 \ I / ^3χί \ J / ^^^
x^a + X 3y 2 + ^2^3 + ~ I Mi + ^2

Xi x3 / ί - l V x2 x3 / Λ x2 / t - l \ x2

Here
(3.65)

-- μi

1

2(ί-l)

(3.66)

is the element of the diagonal subalgebra (corresponding to G^) that must be added
in order that the lift of the GA -reduced Hamiltonian vector field on Mred be
tangential to MA.

To obtain the S7(2)-reduced system, first choose the level set

b=c=Q,

and again define the "spectral Darboux coordinates" (w, w) by

w(w — λ)
2ί =

λ λ-l λ-t a(λ)

on this level set, where

w = t)x\

u =
tx\

w

a(λ):=λ(λ-ί)(λ-t).

(3.67)

(3.68)

(3.69a)

(3.69b)

(3.69c)
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Thus (w, w) are elliptic-hyperbolic coordinates on the cone

x? + *i = x i . (3.70)

On the invariant manifold defined by b = c = 0, the symplectic form reduces to

&wl(b,c) = (o,o) = d(logw) Λ da + du Λ dv , (3.71)

where

2\ u u-1 u-t J v '

is the momentum coordinate conjugate to u. (Note that the slight difference
between this choice and that of Eq. (3.40) results in a polynomial form for the
Hamiltonian.)

Restricting to the level set a = a0, we have

ω r e dl(f l ,b,c) = (f l 0 ,o,o) = du Λ dv , (3.73)

which is the reduction of the symplectic form under the S7(2)-action generated by
(α, b, c). The coordinates ( u , v ) project to the quotient under the action of the
stability group of the image (a0, 0, 0) of this s/(2) moment map, since they satisfy
{u, a} = {v, a} = 0 on the level set (α, fe, c) = (α0, 0, 0).

To compute the Hamiltonian in terms of the reduced coordinates, we write

Ti1 + ΐ(λ \2' ^3'74^

where

and evaluate

2u

μϊu(u-t) ( μlu(u-l)
(176)

where the integral is around a circle containing only the pole at λ = u. Since

ί! + ̂ L_^L = 0, (3.77)
u u — 1 u — t
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we have

>u u-ί u-t 2 u u-l u-t

(3.78)

and hence,

PO = u(u - l)(u - t)v2 + v(μ1(u - ί)(u - t) + μ2u(u - ί) + V*u(u - 1))

+ μιμ2(w - 0 + μ2^u + μιμ3(w - 1) - Pitt . (3.79)

From (3.56), (3.79),

ί(ί - 1)

1

ί(ί-

•-!))

[tt(tt - l)(tt - t)v2 + u(^i(tt - l)(tt - ί) + μ2M(M - ί)

(3.80)

To compute Hamilton's equations, the explicit ί-dependence of the coordinates w, v
implied by Eqs. (3.69a, b), (3.72) must be taken into account. The ί-derivatives with
respect to this ί-dependence are:

- >

ί(t-l)

The reduced form of Hamilton's equations are then

du 1

(3.82a)

dv 1
(u(u - 1) + u(u - t)

ι>(μι(2u — t — 1) + μ2(2w — ί) + (μs + l)(2u — 1))

(3.82b)
1 3 1 3 "1
7 X ^ ^ + 2 Σ f t
t j = l ^ i = l J
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Upon elimination of v, this gives PVI:

\du- _ _ _
dt2~~2\u u-1 u-t)\dt) \t t-1 u-t)dt

where

4. Generalizations

The approach developed in [AHP, AHH1] is equally valid for matrices A, Y that
are nondiagonalizable, giving rise to isospectral deformations of matrices of the
form

a= ma= a

A straightforward generalization of the moment map construction may also be
made, yielding the more general forms

«0 n nt \τ

Σ V° + Σ Σ TT-^w;, (4 2a)
ί0 = 0 i=l li=l \A ^ί)

r° r r° M
Σ A^m° + Σ Σ 7—vk (4 2b)

m0 = 0 α = l m α =l V z fa)

Such ^(λ), Jί(z) may be viewed as elements, respectively, of subspaces
g^ c gl(r)*, gy c gl(N)* defined by the rational structure appearing in Eqs.
(4.2a, b). These are Poisson subspaces with respect to the Lie Poisson bracket on

gl(r}* (resp. gl(N)*) corresponding to the Lie bracket:

[*, Π*:= \ IRX, Π + \ IX, RYl , (4.3)

where

R:=P+ -P- (4.4)

is the classical R^matrίx given^by the difference of the projection operators P± to
the subalgebras gl(r)+ (resp. gl(N) + ). The .R-matrix version of the AKS theorem
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[S] again implies that results of the type (i) and (ii) (Eq. (2.7)) hold for the
autonomous systems generated by elements of the ring <f\ (resp ,/y) obtained
by restriction of the ring of Ad*-invariant polynomials on gl(r)* (resp. gl(N)*)
to £A (resp. gr). Isomonodromic deformations of operators of the type

2)χ = — — ̂ (λ)9 where ̂ V(λ) is of the form (4.2a), were the subject of the series of
oλ

papers [JMU, JM]. They are required, in particular, for the isomonodromy formu-
lation of the remaining Painleve transcendent equations PI — PIV ([JM, HW])
and for the Hamiltonian dynamics governing the level-spacing distribution func-
tions in random matrix models at the "edge of the spectrum" [TW2]. A brief
discussion of the latter from the loop algebra viewpoint is given in [HTW]. The
Hamiltonian formulation of more general systems of monodromy preserving
deformations of operators with irregular singular points of arbitrary order within
the framework of spectral invariants on loop algebras will be addressed in a sub-
sequent work.

Acknowledgements. The author wishes to thank C. Tracy and M.-A. Wisse for helpful discussions.
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