Commun. Math. Phys. 166, 317-336 (1994) Communications in

Physics

© Springer-Verlag 1994

A Four-Thirds law for phase randomization
of stochastically perturbed oscillators
and related phenomena

Robert Cogburn, James A. Ellison*

Department of Mathematics and Statistics, The University of New Mexico, Albuquerque, New
Mexico 87131, USA. Email: ellison@math.unm.edu

Received: 19 May 1993/in revised form: 11 March 1994

Abstract: Let I be a set of invariants and 6 be a set of angle variables for a system of
differential equations with an O(¢) vector field. When time dependent stochastic
perturbations, also of O(¢), are added to the system, we have shown that under
suitable conditions I becomes a stochastic adiabatic invariant satisfying a diffusion
equation on time scales of order 1/¢%, in the limit as ¢ — 0. Here we show that the
angle variables converge weakly to a Gaussian Markov process on an O(g~ %)
time scale, and thus the phase becomes randomized at these times. Application to
nearly integrable Hamiltonian systems is considered.

0. Introduction

We consider the behavior of the stochastic differential equation in R?,
X =¢ef(x,t) + eF(x,t,0) + o(&?) 0.1
as ¢ — 0. We require that the expectation EF(x,t) = 0 and that the time average

f(x) = lim lfff(x,s)ds (0.2)
0

t—>o0 t
exists for all x.
Making the change of scale v = ¢&t, (0.1) becomes

% =f(x,§> + F(x,Z,w) + o(&213) . 0.3)

Then (0.2) and the law of large numbers applied to F suggest that the method of
averaging may apply to (0.3), and for small ¢ the solution should be close to the
“unperturbed equation”

dx -
o =f(x). (0.4)

* Supported by NSF grant DMR-8704348



318 R. Cogburn, J.A. Ellison

In fact Khas’minskii [9] established that this was the case under suitable regularity
conditions. Now suppose y = I(x) taking values in R? is an invariant for the
unperturbed system:

% (x)f(x)=0. 0.5)

Letting X, denote a solution to (0.1) and Y,(z) = I(X,(t)), where I is a smooth
function, Y, solves

dy, ol s
= sa(xe(t))f(Xe(t),t) +£G(X,(1),,w) + 0(¢°7) (0.6)

ol . .
where G = ™ F. In [3] we show that, provided the unperturbed system (0.4) is

ergodic on the surfaces 1(x) = constant and certain regularity conditions apply, the
Y,(t) processes converge weakly to a diffusion on O(c™?) time scales as ¢ — 0.

In this study we suppose that, in addition to X,(¢) and Y,(t), there is a third
process Z,(t) with values in IR? solving

dz,
== (Y1) + (X, (0,0 + HX (1), b)) + o), (07)
where EH(x,t) = 0 and h has time average 0.

The corresponding unperturbed system for Z, is

dz
i ev(y), (0.8)

where y is constant, hence the unperturbed z(¢) is a linear function of ¢.

The most obvious example fitting this description is an oscillator in phase space
X, where y is the energy and z is the phase position. Or alternatively, y and z may be
the “action” and “angle” variables of the system. This problem will be discussed in
Sect. 2. In such cases there is a constant vector { whose i'"" coordinate {; is the
period of the i™ coordinate z; of z. Taking z(mod{) to be the vector whose i'"
coordinate is z;(mod {;), from one point of view we should have z(mod {) = @(x)
for some function @: RY — R?, however this implies discontinuities in the @ func-
tion, so in the usual way we regard @(x) to be a multivalued function, the branch in
effect at any given time being determined by continuity.

Another possibility would be where x is a laminar flow with shear, y indexes the
layer of the unperturbed flow and z is the distance traveled in the layer. In both of
these examples, using a suitable interpretation, we have z = @(x) and the unpertur-
bed orbital derivative of @ is

2 r=w), 0.9)
X

a function of y, and (0.7) becomes

dz 0 -
d; = B{V( Y.(1)) + %(Xe(t))((f(Xs(t),t) —f(X(1)) + F(Xs(t)>taw))}

+0(e*?). (0.10)
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Let x, be the initial value for the X, process and y, = I(x,) and z, be
corresponding initial values for the Y, and Z, processes. We will show that in the
scaled time t = ¢*3t, the process

Wi(1) = Z,(te™*?) — 2o —1e™ P v(yo) (0.11)

representing the deviation of Z, from the unperturbed solution, converges weakly
to a Gaussian Markov process as ¢ — 0, under suitable conditions. From this we
conclude, under a nondegeneracy condition, that Z,(mod {) becomes uniform on
an ¢~ %3 time scale.

The following heuristic argument motivates the ¢ ~4/3 time scale. In a one degree
of freedom nonlinear oscillator a point x, moves roughly on its phase plane oval
with variance in action increasing like E(J(t) — Jo)* = ¥(J,)et. The earliest time
to expect uniformity on a thin energy shell containing x, would be when adjacent
points on J, and J(t) have separated by one revolution, i.e.,

(v(J(1)) — v(Jp))et =2m .
Thus v'(Jo)(J(Jo)e?t) et ~ 2m, which gives

2/3
t~ <__27L_) e
V(Jo)n/Z(Jo)
In Sect. 1 we introduce notation, discuss the assumptions and state the main

results, and in Sect. 2 we discuss several examples that illustrate the theorems.
Section 3 contains estimates, auxiliary results and proofs of the theorems.

1. Formulation of the Main Results

As in the introduction, the invariant I: RY > R”. Since y = I(x) varies only by
small amounts on the time scales to be considered, it suffices to consider any open
neighborhood D, of the initial value y, = I(x,) in IR?. We let Dy be the largest
connected set in 1~ (D) such that x, € D,,.

In what follows (2, %, P) is a probability space, and for each xe Dy and t = 0,
F(x,t) = F(x,t,w) is an R” valued random variable on Q.

For an m x n vector or matrix M = (M; ), let [M| =YY" Y- |M;|. When
M(x,s,t,w)is a vector or matrix valued function of x, € D, s 2 0, = 0and w € Q,
let

M| = P —esssup sup sup |M(x,s,t,w)|,
@ xeD,s,t20
M|, =P —esssup sup sup |M(xy,s,t,w)
@ x,,Xx,€D, 5,t20
X * X,
- M(XZ,sataw)l/lxl - XZI + ” M ” >
IMll2= max [dM/ox|,+ IM],

1<sksd

and use the same conventions when M depends on a subset of these arguments.
Note that

IM] =Ml =IM]-> .

Now consider the assumptions:
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(A1) Writing (0.1) as the initial value problem
X =¢f(x,t) + eF(x,t,w) + R(x,t,w,¢), x(0) = xq , (1.1)

we require F and R to be continuous in x and t, R to be locally x-Lipschitz
and | F||; < oo.Wealso require EF(x,t) = 0for all x, t. All order statements
for the limit as ¢ — 0 are to be understood in terms of the first norm defined
above, so the o(¢*'?) quantity in (0.1) means || R|| = o(&*?3).

We require f(x,t) to be almost periodic, with the Fourier representatlon
f(x,t)= Zak(x 4t Hence the A, are distnct, A_, = — 4, and a_, = af (the
conjugate of a,). Note that ay(x) = f(x) as defined by (0.2). We assume

Yladl < o, ¥ llacli/I4l < oo and ¥ flawll2/I 4" < o0 (1.2)

k+0 k+0

forsome 0 < 0 = 1.

(A2) The mapping I must satisfy (0.5) and we require that |4, < co. Note that
this assumption and (A1) imply that |G|, < co.

(A3) The function v: D; — IR? must satisfy the global Lipschitz condition

(Y2) ——-(y1) Clyz =yl . (1.3)

The equation (0.7) in z must have continuous, locally x-Lipschitz right-hand
side and we require h to satisfy

jh(x,s)ds

0

sup < o, (1.4)

x,t
lhlly < oo, EH(x,t)=0and |H|; < c0.

(Ad) For 0<s<t<L o let #; be sub-o-fields of & such that for
th St St3Sty, FicF,+ and such that F(x,t) and H(x,t) are &,
measurable for all x € Do and t > 0. If the initial state x, is random, then we
also require xo to be #J measurable. Let

p(t)=sup sup sup |P(B|A)— PB|.

s20 Ae F5:PA>0 BeF%,,

We require the mixing condition

pl1) = o(ti) (1.5
ast — 0.
Before stating the next assumption we need some notation. Let
I'(x,s,t):= E[F(x,s)F(x,t)T] (1.6)
and
I(x,s):= T(F(x,s,t) + I'(x,t,5))dt . (1.7)

An application of (A4) (see Lemma 3.1) shows that, for each fixed s and
I (x,s,t)|l; £ Cp(]t —s|), and it follows easily that I' is well defined
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and |F||; < oo. Let

J(x,0):= —(x)r(x t) (x)’ (18)
(A5) We assume there exists a function ¥(x) such that
l+l
sup j J(x,s)ds — J(x)| — (1.9)
x€Dy,t 20 t

as | - o0. Note | I'||; < o and (A2) imply | J|, < oo and |J|, < .

(A6) Let x(t,x,) be the solution to the initial value problem
X =f(x), x(0) = xo .

Assume there exists a continuous function J(y) of y on D, such that

J(I(x)) = lim % (j)z;f(;z(t,x))dt (1.10)

-
exists uniformly in x in Dy.

(A6) Assume there is a matrix M, such that

My = lim lj)](x(t x))dt (L.11)
1=

exists uniformly for xeI7'{y,}, where y, is the initial value of the Y,

process, and assume that for any sequence x, € Dy such that I(x,) — y,,

there exist X, € D, such that I(X,) = yo and |x, — £,|] — 0. Note that under

(A6), Mo = F(yo).

Our first result describes the behavior of the Y,(t) processes on ¢~ *3 time
scales. Let C,[0, co ) denote the space of continuous functions on [0, o ) to R*

with supremum norm.
Let

V(1)=& 13(Y, (e *31) — y0) . (1.12)

Theorem 1.1. If assumptions (A1) through (A4) hold then the processes {V (t)}: >0
are relatively compact in C,[0,c0) as ¢ — 0. If, moreover, (AS) and either (A6) or
(A6') hold, then as ¢ — 0, V () converges weakly to the Wiener process V o(t) having
the representation

Vo(t) = (¥(10))'*B(z), (1.13)
where B(z) is standard p-dimensional Brownian motion.

Remark. In [3] we show that Y,(t/e?) converges weakly to Yo(t), where
dY, = ji(Ye)dt + 3(Y,)"?dB(7). An heuristic perturbation argument at the ¢ /3
time scale is consistent with (1.13).

Note. Here and in what follows, for a symmetric positive semidefinite (psd)
matrix M, (M)'/? denotes its psd square root. Of course, the matrices I, ¥, ¥,
¥ are psd.
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Theorem 1.2. If assumptions (A1) through (A4) hold then the processes { W ,(t)}.s o
defined in (0.11) are relatively compact in C,[0, oo ) as ¢ — 0. If, moreover, (AS) and
either (A6) or (A6') hold, then as ¢ — 0, W (1) converges weakly to the Gaussian
Markov process Wo(t) = 5 (y0)(J(0))"'* [6 B(s)ds, where B(s) is standard p-di-
mensional Brownian motion. This q-dimensional process has continuous sample
functions, zero mean and covariance for 0 < 1, < 1,,

1 0 N
EWo(0) Wo(r2)! = ¢ (3t = )5 00) F00) 3 00 - (L14)

When & (y0) Z(y0) & (yo)" is positive definite, it follows that W (1) has a Gaus-
sian distribution with large dispersion when 7 is large, and this implies that
Z,(te~*?)(mod{) is approximately uniform. In fact this “phase randomization”
applies even without the mean stationarity and ergodic assumptions of (A5) and
(A6) provided a minimal amount of stochastic perturbation is present, and this is
the content of our third result.

For psd matrices 4, B we write 4 = B when A — B is psd. We need:

(A7) Assume there is a g x ¢ psd matrix function 4(x), x € Dy, with 4], <
and that there is a constant positive definite matrix 4, and finite Ty and T,
such that

t+T, a a
| 5000 9068)5 (o) ds 2 4(x) (115)
: 0Y y

for all t = 0, and
T,
[ A(z(t,x))dt = 4, (1.16)
0

for all x € Dy. Note that the time scales in (1.15) and (1.16) are different.

Theorem 1.3. If assumptions (A1) through (A4) and (A7) hold, then in the iterated
limit as ¢ — 0 followed by © — o0, Z,(te¢~*?)(mod {) converges in distribution to
a uniform distribution on the rectangle {z: 0 < z, < {,, k=1,.. ., q}, where { is an
arbitrary element of R? such that {, >0, k=1,...,q.

Remarks. 1. The three theorems apply to the situation that X, (0) = x, fixed. If
X.(0) = X, is a random variable and is # § measurable, then Theorems 1.1 and 1.2
provide the conditional distributions of Vy and W, given X, = x,, provided the
appropriate regularity conditions hold for the given value of x¢, since (A4) implies
asymptotic independence of { X,(t), t = 6} from X, as ¢ — O for each fixed 6 > 0.
Marginal distributions for the V, and W, processes are then obtained by integra-
ting the conditional distributions with respect to the distribution of X (0). In similar
fashion Theorem 1.3 implies that the limit distribution of Z,(t¢~*/3)(mod {) is still
uniform.

2. Theorem 1.3 implies that an integrable Hamiltonian system with minimal
stochastic perturbation (condition (A7)) asymptotically has a kind of ergodic
averaging on constant energy surfaces, with this averaging taking place on time
scales of order ¢~*/3. This result allows the extension of the adiabatic invariance
results of [3] to this case under (A7), whether the unperturbed system is ergodic or
not. We plan to provide the details in a subsequent paper.
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2. Examples

In this section we discuss examples which illustrate the theory.

Example A. In this example we will consider perturbations of the one degree of
freedom nonlinear oscillator defined by the Hamiltonian

1
Hy(x):= §x§ +U(xy), (2.1)

where U(x,) is a symmetric bowl type potential so that all solutions are periodic.
We write our example as

dx

%=f(x)+p<x,§)+F(x,§,w> x(0) = x, , (2.2)

X2

where f(x) = < ey

denote the solution of the unperturbed problem, then the transformation,
(xy,x,) —(0,1), to the action angle variables of the unperturbed problem can be
written

), p(x,t) has zero t-mean and EF = 0. If we let X(v, x;)

x = x(0/v(1),¢(I)) ,

where v(I) is the frequency as a function of action associated with Hy, and {(I) is an
appropriately chosen initial condition, on the closed integral curve for H, asso-
ciated with I. If we let y(t) = I(x(t)) and z(t) = 0(x(t)), then

y=cel'(x)[p(x,t) + F(x,t,w)], y(0)=yo=1(x0),
Z=¢[v(y) + DO(x){p(x,1) + F(x,t,w)}], z(0)=1zo=0(xp). (2.3)

We let D, be an open interval about y, = I(xo) and thus Dy = I~ !(D,) is an
energy shell about the initial energy oval, {x: Hyo(x) = Ho(xX,)}. We assume the
smoothness and almost periodicity conditions of (A1). For U smooth, (A2) and (1.3)
of (A3) are satisfied. To apply the theorems, we need to calculate Y(x,t) and for
illustration we assume

F(x,t,0) = Q(x) (1, 0) , (2.4)

where £ is a scalar such that E£ =0 and that (A3) is satisfied. We define
Ft=0(&(1),t £1 £ 5)and assume the mixing condition of (A4) is satisfied. Now
recall that

Vo(t):= e 3(Y (¢ *P1) — yo),
Wo(1):= z(te*?) — zo — 17 P¥(yy) ,

and at this point we know from Theorems 1.1 and 1.2 that {V,} and {W,} are
relatively compact in their C-spaces. Condition (A6) is satisfied, so to proceed we
have two options, depending on whether (A5) is satisfied or not. We look first at
(A5).

Let K(s,t) = E(£(s)&(t)), then we have |K(s + ,5] < 2[|(2) |2 p(2) = 0(1/1?),
where the inequality follows from Proposition 2.2, p. 346 of Ref. [6] and the
equality is as t — oo and follows from (A4).
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Clearly
I(x,5,t) = Q(x)Q"(x)K(s,1),

and since K(s,t) = K(t,5s),

J(x,1) = 2I'(x)Q(x)QT (x)I'(x) ,f K(r,t)dr,

which clearly exists because of our mixing condition. If

1t+loc
lim= | [ K(z,s)dtds

l—*ocI t s

converges uniformly to a t-independent limit 1 C, then (A5) is satisfied with
J(x) = CI'(x)Q(x)QT(x)I'(x)T. A sufficient condition for this is the stationary of
&(t) in which case C = 2[g K(s,0)ds. (A6) is automatically satisfied because Hy is
ergodic and

2@%=hﬁyvff[2uh¢FJh—Uul)

—a

+ 3= x, =2V = U(x)]————=, (29
Vh— U ( 1)
where h = h(y) and a = a(y) are the energy and oscillation amplitude as a function
of action, respectively, for the unperturbed motion.
Theorems 1.1 and 1.2 now yield

V.= Vo, where Vo(t) = J(y0)'"*B(1),

where B(1) is standard Brownian motion, and
W, = Wo, where Wo(t)=v(y0)"*J(yo)"* | B(s)ds .
0

Thus, W, is Gauss—Markov with zero-mean and covariance given by (1.14).

Thus we obtain the phase randomization when 3(y,) > 0, which requires noise,
and v'(yo) + 0, which requires H to be a nonlinear oscillator. This type of phase
randomization can also occur, in a coarse grained sense, without noise when the
initial condition y, is not concentrated at a point [6].

In this case condition (A6) is automatic and (AS) holds, so there is no need to
resort to condition (A7); nevertheless we discuss this condition to illustrate its use.
Example B will illustrate its power.

Now assume there exists a T, such that

T, ©
inf [ [K(t+z+tz+1t)dtdz20>0,
12000

then we can choose
A(x) = 2al'(x)Q(x)Q(x)I'(x)" = 20v(y) "2(U'(x1) Q1 + x,0,)* 2 0.

The second assumption in (A7) then amounts to f(y)=
MaXg, ) =hy | U'(x1)01(x) + x2Q,(x)| bounded away from zero on D, which is
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hardly any restriction at all. Theorem 1.3 then yields the phase randomization
result.

Example B. Let x = (}), where ye D; c IR?, ze R? and d = p + q. Consider the
IVP

d
d_Jt’ =&(g(x,1) + G(x,1,0)) y(0) =y, ,
% = e(v(y) + h(x,1) + H(x,t,0)) x(0)=x,, @8)

where D, is an open neighborhood of y, and all functions are 27 periodicin z, g and
h have zero t-mean and EG = EH = 0. These equations fit our general framework

. _ g(x9t) rd _ 0 — G — 1 1
with f(x,t) = <v(y) + h(x,t))’ f(x)= <v(y)>’ F = (H)’ R = 0 and the invari-

ant
Hx) = (X1, ..., x,)7". 2.7

We assume the smoothness and almost periodicity conditions of (A1) and (A3). The
fact that Dy = D, x IR? is unbounded is not a problem since all functions are 2n
periodicin z. (A2) is trivially satisfied and we assume the measureability and mixing
conditions of (A4). It is easy to check that

J(x,1) = of E(G(x,s)GT(x,1))%dt , (2.8)

and thus we see that our results are independent of whether H = 0 or not. That is, it
is the noise in y that moves the system away from y, and allows the phase
randomization due to the v(y) term. In fact g and h do not affect the result either. If
we assume that G is stationary with E(G(x,s)G”(x,t)) =:C(x,s — t), then

Jx,t) = _}O C(x,s)ds =:J(x), (2.9)

and (A9) is satisfied.
In this example x is particularly simple,

= _ Yo
x(taXO) - <V(yo)t + zo) s

and thus J(X(t, xo)) is quasi-periodic in t since ¥(x) is a 2n periodic function of z.
For g = 2, (A6) is too restrictive since it will not be satisfied unless v is a constant
with rationally independent components, in whic case v' = 0 and there will be no
phase randomization, however (A6’) may be satisfied. Now I ~!(yo) = {(%)|z € RY|
and the limit in (1.11) will exist uniformly in I ~*(y,) if the components of v(y,) are
rationally independent (i.e. the rate of ergodization on the g-torus is independent of
initial position on the torus). Let x, = (%) with y, =y, and X, = (%), then
I(X,) = yoand |x, — X,| = |y, — Yo| — 0. Thus (A6') is satisfied for y, such that the
components of v(y,) are rationally independent and we can apply Theorems (1.1)
and (1.2) to obtain the weak convergence of { V,} and { W, }. The phase randomiz-
ation follows if v'(y9)¥(yo)V'(yo)T is positive definite (pd) and this is true if
V' (¥0) I (¥o)V (yo)T is pd. The latter is true if ¥(x) is positive definite, and the
columns of v'(y,)T are linearly independent (which requires q < p).
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However, since v is non-constant and continuous we generally expect y’s
arbitrarily close to y, such that the components of v(y) are rationally dependent
and yet it seems that the phase randomization should not be so sensitive to y,
particularly in the presence of noise. If we take T, =1 and 4(x)=Vv'(yo)¥
(x0)v'(¥0)T and assume as before that this is positive definite, then the left-hand
side of (1.16) is positive definite for all T, > 0 and Theorem 1.3 entails the phase
randomization without (AS5) and (A6’).

Example C. Here we simply point out an important special case of Example B,
namely a perturbation of an integral Hamiltonian system, H,,

H(J,O,[) = 8(I-IO(J) + Hd(‘]90’t) + Hr(JaO’tsw)) )

where JeR", 0 € T", H; has zero time mean and H, zero expected value. The
Hamiltonian equations of motion are now in the form of (2.6) with y = J, z = 0,

j = —aHand ;98
Y= T M T

3. Preliminary Estimates

W e assume (A1) through (A4) hold in all that follows. W hen (AS), (A6), (A6) or (A7) is
used, this will be explicitly stated.

The following standard mixing result (e.g., see [10]) is needed:

Lemma 3.1. Let Z(x,w) be an F &, measurable random variable with values in R?
and be Borel measurable in x for each w. Let | Z|| < oo and let £(x) = EE(x). Then
for any F measurable random variable Z with values in IR?,

IEVE(Z) = &2 =21 2] p(2) . (3.1

In addition we need the following result (see Proposition 3.1 of [3]) where it is
stated for a different time scaling):

Lemma 3.2. Foreach¢y > Othereisa C < oo suchthat forall0 < ¢ L ¢qandt =0,

T2 (X ANS (X)) ds || < Caler + 1) (32)
00x

Lemma 3.3. Fort = ¢~ "2 there isa C < oo such that

< Crell? (3.3)

ffh(Xg(s), s)ds
0

Proof. By (A3), | h]|; < o, and by (Al),
|X.(r) — X:(s)] < Coelr —s| (34

for some Cy < 0. Hence

t t s

[h(X(s),s)ds= [ "> [ h(X.(r),s)drds + 10(c"/?)
0 g1 s—eg™ 12

t min{r+¢ 2,1}

=e2[ [ h(X,(r)s)dsdr + t0(c'?) = t0(c"?)

0 max{r,e”"?}

by (1.4). O
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Now let L = L(¢) be chosen so L(¢) = o(¢~®) and p(L(c)) = o(¢?®). This is
possible since p(t) = o(t~?) by (A4).
Lemma 3.4. For 0 <t; <t, £ t¢~*? and each fixed 1, as ¢ — 0,
Y (1) — Yi(ty) = STG(XS([),I + L)dt + o(&'?) (3.5)
t,
and
Z(ty) — Z,(t,) = ctfv( Y.(t))dt + sleH(Xs(t),t + L)dt + o(1) . (3.6)
[ L
Proof. Taking Lemma 3.2 into account, we have from (0.6) that
Y.(t,) = Y.(t;) = slsz(Xs(t),t)dt + o(e'?),
1,

and

stf G(X(t),t + L)dt — th G(X,(t),t)dt
t,+L
<e¢ | |G(X,(t — L)1) — G(X,(1),t)dt + O(¢L) = o(&'")

t,+L

by (3.4) and since || G||; < oo. This proves (3.5) and (3.6) follows by Lemma 3.3 and
a similar argument, the o(1) term arising from the defining Z equation (0.7). [

Since | E?G(X,(t),t + L)| < |G|l p(L) = o(¢?’*) by Lemma 3.1, an immediate
consequence of (3.5) is

Lemma 3.5. For 0 <t, <t, < t¢~*? and each fixed t,

IE“Y,(25) — Ye(t)) | = o(&'?), (3.7)
and, for 0 < 1, < 15 < 19 and each fixed 1,

IE®™(Vy(12) = Vel(t1))| =0 (33)
as¢ —0.

Formula (3.5) also implies that V,(t) = V,(t) + o(1), where

Vi(t):=¢** [ G(X,(t)t+ L)dt, (3.9)
0

and we will establish Theorem 1.1 for V,(t), since the necessary estimates can be
provided directly for this quantity.

To simplify notation in what follows we will use the following special symbols:
for a vector or matrix M, M2:= MM and for a square matrix M, MS:= M + M7T.
Note that if M has m rows and n columns then |M?| < |M|?* < mn|M?2|.

Lemma 3.6. For 0 <t; <t, < tc~*3 and any fixed 1, there is a C < oo such that

E“n><‘jz G(X,(t),t + L)dz)Q

L3

sC(t; — 1) (3.10)
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and

HE"*’(TH(XS(I),IT + L)dt>Q SC(t; —1y) (3.11)

L9

Proof. Let

my(t) = max
O0<st,—t, <t

E"”(tjz G(X,(s),s + L)ds>QIl .

3

We use the decomposition

E“"(tj2 G(X.(t),t + L)dt)Q

L3

1 t+L S
= E"l’(_fG(Xa(t),t +L) | G(X,(s),s + L)”S‘”)

L

+ 29 To0un+ 1) T 60shs + L7 dsar )

t, t+L
=1, +1,. (3.12)

Applying Lemma 3.1,

t, t+L S
11,0 < E“"<IG(Xs(t),t+L) | E“+L’G(Xg(s),s+L)Tdsdt> SC(t; — 1))
t, t
and
t,+L s—L
I, < 2”15"0 [ IE9G(X(s),s + L)|| [ G(X.(t),t + L) dt|ds
t,+L L
t,+L s—L Q11/2
<C, | p(L) Em( f G(Xs(t),t+L)dt> ds
t,+L t,
S Cy(t, — t))ml*(ty — ty)0(e*3) . (3.13)
Thus

my(1) £ Cyt + Ctm?(t)o(c*?),
and for t < ¢~ %3 it follows that m,t < Ct.
The second inequality is established by a similar argument. []

4

Proposition 3.1. For 0 <t, <t, <t¢”*3 and any fixed 1, as ¢ — 0,

= (t; —t;)o(1)
(3.14)

E""(tf G(X,(1),t + L)dt)Q — E® T)?(Xe(t),t + L)dt

t, 4

and

H E® (Y, (t;) — Yo(11))® — 825""}227(Xa(t),t)dt = o0(¢??). (3.15)

L3




Phase Randomization of Stochastically perturbed Oscillators 329

Moreover, if (AS) holds then

Proof. Apply the decomposition in (3.12). The term I, is (¢, — t;)o(1) by (3.13), and
applying Lemma 3.1,

E®W (Y (t;) = Yo(11)? SZE“"}Z F(X(1))dt || = o(c*?) . (3.16)

LA

I, = E‘“’(tf HjL EO[G(X,(t)t + L) G(X(s),s + L)T]dsdt>s

L9

+ (t; — t;)O(eL?)
= E® ’(tf Ta—(x (D) (X,(e),0 + Lys + L)s—<X (£))"dsdt
+(t2 —t1)o(1)

_ Em)lfﬁ(xa(t),t + L)dt + (t; — t5)o(1)

L

proving (3.14). It follows from (3.5) and (3.7) that

t; Q
EU(Y,(t;) — Yo(11)) = czE“"<§G(Xe(t),t + L)dt) +o(e?),

1,

and (3.15) follows from this, (3.14) and since

| 9(X.(t + L),t + L)) — $(X.(1),t + L)| £ ¢CL .
For (3.16) note that

t+L

§ (x.(0),0)de = j | 3(X(5),0dsdt + (12 = 1)o(1)

f j $(X,(s),t)dtds + (t; — t;)o(1) + O(L)

\+L

= (2(Xu(5))ds + o(e™*?)

L

by (A5). O
Lemma 3.7. For each fixed 1, as ¢ — 0,
t
E{ max |Z,(t) — zo — ¢ [ v(Y.(s))ds } -0. (3.17)
O<t<tess 0

Proof. By (3.6), it suffices to show that

B.:= E{ max

O<t<te 4’

fo.

ciH(Xs(s),s + L)ds
0
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as ¢ —0. Let A = ¢ 8° By (Al) and (A3), |H|, < co and, with k an integer,

} +0(e"°)

kA
Bng{ max  |¢ [ H(X.(s),s + L)ds
(4]

1<kt A

¢ kf H(X,(s),s + L)ds

k=1)2

kA Q
E( | H(X.(s),s+ L)ds)

(k—1)A

[te~%%/A)
Y E
k=1

[te™*%/4]

<C Y ¢
k=1

= 0("°)

IIA

+0(')

1/2
+ 0(e'?)

by 3.11). [J

Lemma 3.8. For each fixed t, as ¢ — 0,

E max
0t ge™d?

Proof. By Taylor’s theorem,

e[ V(Y,(5))ds - c(tv(yo) + 2 [(rls) - J’o)d3> [} ~0.
) y 0
(3.18)

W(Ye(s)) = (o) — %()’o) (Y(s) = o),

! 0
= g[g—;(% +n(Y,(s) — yo)) — a—;(yo)]dn( Yo(s) — yo) -

Integrating this over [0,¢] and using (1.3) gives that the left-hand side of (3.18) is at
most

[8'.4” tg-dlﬂ

CeE | |Yo(s) = yol?ds < Ce | E|(Y(s) = yo)°lds
o o

for some constant C. However, there exists a constant C, > 0 such that |EM2|
> C,E|M?|, and thus using (3.15) and the boundedness of 3 gives that the last
quantity is at most

e~

Cat [ |E(Yi(s) = yo)2lds =0(c'?). O
o

An immediate consequence of Lemma 3.7 and 3.8 is

Proposition 3.2. For each fixed 14, as ¢ -0,

0 g7 43
E{ max |W,(t) — ca—;(yo) [ (Y(t) = yo)dt } 0. (3.19)
0<t=Z10 0
Based on this result and (3.9) it suffices to consider
N v [
We(r):= g—(yo)j Vi(s)ds . (3.20)
y 0

In what follows we establish Theorem 1.2 for W (z).
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Lemma 3.9. For0 <t <1+ d < 14 and any fixed 1, there is a constant C depend-
ing only on ty such that, as ¢ — 0,

E|V.(t +8)— V.(1)* £ C&? (3.21)
and
E|W (1 + 8) — W.(1)|* £ CH? (3.22)
Proof. 1. By (3.9),
R R (t+8)e™4" 4
[Pt +8) =P ()* < C|e¥ | G(X,(t)t+ L)dt| . (3.23)
Let
t+1
U ()= [ G(X(s),s + L)ds
t
and

p) = sup E|U, (s)I*.

0ss<lL0<£<£,t20

To simplify notation we treat U = U,, as one dimensional. Improvising on
a method of Borodin [2],

t+1

EU*(I)=4 [ EG(X,(t +s),t + s + L)U3(s)ds = 4?

l i El(s)ds,
k=0
where

L(s) =(R)G(X,(t +s)t+s+L)(U(s)—U(s— L)U>*(s—L).
Fors £,

|Elo(s)| = |[EU(s — LYE**9 G(X,(t + s),t + s+ L)| £ Co B4 (1)e?3,
and for k=1,2,3,

t+s g1

|EL(S)| S k'@R) | duy... [ du

t+s—L t+s—L

k
-|EU*"%(s — L) [] G(Xo(w)),u; + L)E“* P G(X,(t + s),t + s + L)

< G B4 (I)L* - .l
Combining these estimates yields
B(I) £ CA(B(1)e* + B12(1) + A1) &' + &27) .
Now suppose 1 £ 1 < 1o¢™#3 and set B = B(I) = B(l)/I*. Then
BI? < C5I(B¥ + BV 4 BV 4 1)

It follows that B(l) = C¢ < o0, and applying this estimate to (3.23) yields the first
assertion.
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2. For the second assertion use

t+d

[ Vs)ds

4

E|W(t+6)— W.(0)* < C,E S Ci0% P B(roe™ ) £ 0% . O

In [3] we use the following variation on the first order stochastic averaging result
of Khas’'minskii (see [9, 8]):

Proposition 3.3. For each fixed I,

E® max |X,(t +se” ') — x(s,X,(1))]

0=ss<l

sup
t

l -0, (3.24)

ase —0.

The result in [3] is stated for times scaled by 1/¢2. As noted there, the uniformity in
t and the use of E® in place of E are justified by uniformity of conditions (A1), (A2)
and (A4).

Lemma 3.10. Let (A5) hold and let (A6) or (A6') hold. Then for each 6 > 0,as ¢ — 0,
IEC<™(Vi(t + 8) — V()2 = 8F (yo) | - 0. (3:25)

(To simplify notation we use J(y,) for M, under (A6’) as well as (A6) since as noted
under (A6'), M, and J(y,) coincide when (A6) and (A6') both hold.

Proof. For fixed 1 and I, using Proposition 3.3 at the second equality,

13
1 T+¢ 1

1
g3 [ A(Xo(se™R))ds = TIE(M—”J)Z(XJTS"‘“ +re” ) dr
v 0

(te~ )

% E®" I 3(X(r, X (te~3)))dr + 0(e'?) .

oY E——

Under (A6) the last integral is E® *2J(Y,(1¢~*?)) + o(1) in the iterated limit as
¢ = 0thenl — oo, whichis J(yo) + o(1) since | E® (Y, (te™*3) — yo)2| —0as
¢ »>0by (3.15) and since | F||; £ | F |1 < .

Under (A6'), the above convergence of Y,(te~*/) implies there exist X, such
that I(X,) = yo and X,(1e~*/*) — X, — 0 uniformly in P ") probability. Using
the continuous dependence of x(r,x) on x and the dominated convergence the-
orem, it again follows that

T+ g3

EC™ [ (X, (se™*?))ds = &' 1(F(yo) + 0(1))

ase¢ >0 then! - .
Applying (1.12), (3.7), (3.16) and a change of the integration variable,

ECT (Pt + 8) — V(1)) =& 2B EC (Y (1 + 8)e™*3) — Y, (te~**))2 + o(1)

T4+
=E®™ [ (X0 *?))do + o(1)
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o+l

| E“I(X(se™*3))dsdo + o(1)

T+ 0

1
g3

N C— +

T+

= [ (J(yo) + o(1))da + o(1)

T

=06F(yo) +0(1),

as¢ »0then! - 0. [

Proof of Theorem 1.1. By (3.9) it suffices to prove the asserted limit for the
processes {178(1),1 >0} as ¢ »0. Lemma 3.9 implies that these processes are
relatively compact in C,[0, 7,) for each 7o, and this implies relative compactness in
C,[0,00)([1] [7]). Moreover fourth moments are bounded on each [0, 7o), so the
V.(7) are uniformly integrable as ¢ — 0.

To prove the asserted weak convergence when (A5) and (A6) hold, it suffices
to show that for any weakly convergent sequence I7£" — V, the limit process
has the asserted distribution. Using the Skorohod representation theorem,
we can assume without loss of generality that 178" -V, as. Now let
T,<1,< - <t <t<1+6and n: R* > R! be bounded and continuous.

Then, using (3.25) at the third equality below,
E[n(Vo(t1), . .., Vo(t)) (Vo(t + 6) — Vo(1))?]
= lim E[n(V,(t1), ..., Vo (r)) (Ve (1 + 8) — V. (1)2]

= lim E[n(V.(t1), - . ., Ve (@) E* (P, (x + 8) = V,(1))]
= lim E[n(V,(11), . . ., Ve (1)) 09(yo)]

= E[n(Vo(t1), - - -, Vo(t))04(v0)] -
Letting o7, = o(V(s), s < 1), it follows that
E((Vo(t + 0) — Vo(1))21..) = 6F(yo) as.,

and a similar argument using (3.8) in place of (3.25) shows that V(7) is a martingle.
It then follows that V(1) = (J(y))!/? B(t), where B(t) is standard Browninan
motion in R4 (The essential ideas are in [4] and a modern treatment of the
multivariate case can be found in [7].) [J

Proof of Theorem 1.2. The relative compactness in C,[0,7,] for each 7, follows
from (3.22).

_ Now assume (A5) and (A6), so v, — Vo, weakly as ¢ — 0. Since by (3.20), each
W,(t) is a continuous functional of {V,(s): s < t}, it follows that W, converges
weakly to W,, where the process { Wy(t): T = 0} has the distribution of

@(yo)j Vo(s)ds, t>0. (3.26)
dy 0
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Since V, is Gaussian, it follows that W, is Gaussian, too, and the independence of
the increments of V,, implies W, is a Markov process. Moreover

a T
EW,o(c) = a—;(J’o) [EVy(s)ds =0,
0

and for0<1t, <1,

v, uu d
ELWo(t1)Wo(12)™] = == (yo) | | ELVo(s) Vo(t) T dt ds— (yo)
5y 00 (3y

_ S—;(yo)i(yo)g—;(yo)fz;fmin{s,t}dtds

i o 0
=5 6 = 1) 5 00 F00) 5, 00)"
O

Proof of Theorem 1.3. Let
?,(r,0) = (X (16~ *3, 0),16747) .

Since | J] < o, {¥P(1,0)}0<r<s is a weakly sequentially compact set in
L([0,70] xQ, mx P) for each t,, where m is Lebesgue measure [5]. Using
a diagonalization argument, given any sequence of the ¥,’s, there exists a subse-
quence that converges weakly in L,([0,1]xQ, mx P) for every finite . By
Theorem 1.1, the V, processes are relatively compact, and from any weakly
convergent sequence of V, we can extract an L,-weakly convergent subsequence
17% such that ¥, — ¥, for some ¥, the convergence holding for L;([0,7] x @,
mx P) and each t < 0. It suffices to establish that the asserted uniform limit
distribution of Z,(t¢”%3)(mod ) is approached by all such sequences in the
iterated limit as ¢, — 0 then T — o0.

Using the Skorohod representation theorem, letting t, <t,< '-- <
7w <t<t+dand n: R¥ - R! be bounded and continuous,

E[n(Vo(ty), ..., Volt)(Vo(t + 8) — Vo(1))?]
= 1lim E[n(V, (1), ..., Vo (t) (Vo (x + 8) — V,(1))%]

— lim Et}‘sn(ﬁ"(rl), co o V() o (s)ds
T+ 6
=1lmE | n(Vo(t1), ..., Vo(w)) Pe(s)ds
T+ 0
=E | n(Vo(t1), ..., Volt) Pols)ds, (3.27)

where at the second equality we use (3.15) and at the third equality we use the a.e.
convergence of V, (t;) to V(t;), which implies

T+6

E j (’1( V&,(Tl)a B I"/A.e,,(‘fk)) - ’7( VO(T1)$ RS VO(tk))) 'Pc,,(s)dsl

T+

< I[gll j EI”(VS,(TI)9 LIRS 17t:,,(‘L-k)) - n(VO(Tl)a LS VO(Tk))lds -0 ’
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as n — oo by the dominated convergence theorem. Again we set &/, =
a(Vo(s),s < ). Then (3.27) implies

E((Vo(t + ) — V()2 L,) = E(T}O ‘Pds)ds]%,) as. .
Let ¥(7) = E(¥o(1)| ;). Then

E(fs ‘I’O(s)dsld,> - E<I}‘$E(Wo(s)|ﬂs)dslﬂ,> - E<rr‘l’o(s)ds|d,> as.

and

0 0
E(gj—;(yo)(vo(r +6)— Vo(r))Q—”wo)’w,)

T

‘t+1)a
=E< ) (yo)‘I’(S)—(yo)TdSIJ?/>

As in Theorem 1.1, & (yo)Vo(7) is a martingale in C,[0,70] with §(yo)V(0) = 0.

> Oy

By [4] %-‘(yo)Vo(r) has the representation

T

P o) Vo) = [ [ Z(yoywis) 2 )T)”de(s) (3.28)
ay Yo) Vo ! ay 0 6y Yo ’ .

where B(s) is a Brownian motion process in R? with B(t + é) — B(t) independent
of &, for each 7.

Next we establish a lower bound on £ (yo) ¥ %(yo)" using (A7). Let A € # and
1,0=20andlet K=T,T,:

1+Ja

(] 3 (yo)‘l’(S) ()’o)TdeP
A y

T+ 1 T, av

=11 w13 (yo)27(X —1), se“‘”) (yo)TdtdsdP+0(z,)
A 1 10
e 1 f 6v —4/3 —4/3 T

=1 7] 5,00 FXuls™), 50 +t)—(yo) dtdsdP + O(c)
A 10
T+0

= T— A(X (s¢™*7))dsdP + O(c)
At 1
Tyt+d+1e'3

=[] [ gAX(sc™*))dsdtdP +O(c'")
A0 T+
th+51

=[[ | gA(X(se™ + 1c7")dsdtdP + O(c')
A0 1
t+6T, 1

=] [ [ A(X(se™ +1c7")dsdtdP + O(c')
A 1t O
t+0T, 1

=/ fEA(f(t,Xs(sc“‘”)))dsdth+o(1)
A 1 O
1+61

=S zAodsdP +o(1),
A 1

where Proposition 3.3 is applied at the next to last line.
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Thus
T+ av

Ha (yo)'l’(s) (yo)Tde >( [ —AodsdP
A 1

and it follows that &(yo)¥Po 7'( yo)T > K~ !4, a.e. and, since conditional expecta-
tion is a positive operator, £(yo)¥ £(yo)" = K™ !4, ae. Let BY) be Brownian
motion in IR? with BY(t 4+ §) — BY)(1) independent of 7., for each 1, and let B‘®
be a second Brownian motion in IR? independent of B! and ¢(uU .%Z;). Then

T

ov 1 1/2 1 1/2
Auo:f< (o) ¥(s) 5 (%V—Eﬁ) dwwn+<EAQ B2(x),
0

is a martingale with respect to 4, := a(sZ,va(M(s), 0 < s < 1)) and satisfies

‘t+l)av

E((M(r+5)-M(T))QI%)=E< § (yo)‘l’(S)—(yo)TdSI%>

But then M(7) has a representation like that in (3.28) with o7, replaced by #., so
this process is equal in distribution to the process £ (o) V o(7). Using (3.26), W (1)
is equal in distribution to

T 1/2 1/2 ¢

H( (o) P () 2 (mf—inQ dwwna+(iAQ  B(s)ds
00 K K 0

The second term is independent of the first and Gaussian with covariance matrix

(t3/3K) 4, . The density for W (1) is the convolution of this Gaussian density with

that of the first term, and has derivative bounded by the derivative of the Gaussian

density. It follows that Wy(7) (mod {) is approximately uniform for large . [
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