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Abstract: In this paper we consider the dynamics of the monopole solutions of
Yang-Mills-Higgs theory on Minkowski space. The monopoles are solutions of the
Yang-Milis-Higgs equations on three dimensional Euclidean space. It is of interest
to understand how they evolve in time when considered as solutions of the Yang-
Mills-Higgs equations on Minkowski space-i.e. the time dependent equations. It
was suggested by Manton that in certain situations the monopole dynamics could
be understood in terms of geodesies with respect to a certain metric on the space
of guage equivalence classes of monopoles-the moduli space. The metric is defined
by taking the L2 inner product of tangent vectors to this space. In this paper we
will prove that Manton's approximation is indeed valid in the right circumstances,
which correspond to the slow motion of monopoles. The metric on the moduli space
of monopoles was analysed in a book by Atiyah and Hitchin, so together with
the results of this paper a detailed and rigorous understanding of the low energy
dynamics of monopoles in Yang-Mills-Higgs theory is obtained. The strategy of the
proof is to develop asymptotic expansions using appropriate gauge conditions, and
then to use energy estimates to prove their validity. For the case of monopoles to
be considered here there is a technical obstacle to be overcome-when the equations
are linearised about the monopole the continuous spectrum extends all the way to
the origin. This is overcome by using a norm introduced by Taubes in a discussion
of index theory for the Yang-Mills-Higgs functional.

1. Introduction

In this paper we will construct certain solutions of the Yang-Mills-Higgs equations
on Minkowski space. To write these down let (xo,*ι,*2,*3) = (f,*ι>*2,*3) be co-
ordinates on Minkowski space, then the dependent variables are an su(2) valued
one form called the connection:

A = AQdt + A\dx\
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and an su(2) valued function called the Higgs field Φ(t,x). The curvature is a two
form

1 3

F = - £ Fμvdxμ Λ dxv ,
Zμ,v=0

where
_ cUv &4μ

FMV = ~dx~v " aί; + [ μ? v] '
where [ , ] means matrix commutation (see Sect. 2 and Appendix A for notation.)
The Yang-Mills-Higgs equations are:

ΣAF o - -[Φ,A>Φ] , (1.1)
ί=l

+ ΣAfy - -[Φ,DyΦ] , (1.2)

where Z)μ = (V^)μ = θμ + [4μ, ] is a covariant derivative. The equations are writ-
ten out in terms of (A, Φ) in Sect. 5. An important property of the equations is gauge
invariance - let g(t,x) be a differentiable SU(2) valued function, then if (A, Φ) is
a solution of Eqs. 1.1-1.3 then so is (gdg~l 4- gAg~l,gΦg~l).

A static solution is one in which (A, Φ) are independent of t and AQ = 0. There
are a particularly interesting class of static solutions called monopoles which min-
imise a functional (called the Yang-Mills-Higgs functional-see Eq. 2.1) subject to
the condition |Φ| — > 1 as |jc| — > oo. The space of monopoles consists of different
components characterised by a topological integer &, which is the winding number
of the Higgs field on a very large sphere. After dividing out by the action of the
gauge transformations these different components are smooth manifolds of dimen-
sion 4k — 1 and are called the moduli spaces of monopoles of degree &, and will
be denoted Λ^ As is discussed in Sects. 2-4 it is necessary for technical reasons
to increase the dimension of Λfc by one to obtain a 4k dimensional manifold Mk
which is a circle bundle over JV*. There is a Riemannian metric on Mk defined by
taking the L2 inner product of tangent vectors. Properties of this metric have been
discussed in detail in the book [AH88]. We will construct solutions to Eqs. 1.1-1.3
which are close to one of the monopole solutions throughout a long time period. Of
course the monopole to which our solution is closest varies with time in general,
and it was suggested by Manton ([Man82]) that the time evolution of this "closest
monopole" should be approximately geodesic on Mk in the slow motion limit. This
paper provides a rigorous justification of this suggestion.

A similar problem for the two dimensional Abelian Higgs model has recently
been discussed in [Stu]. In the present paper the formal asymptotic situation is very
similar, but the proof that the asymptotics are valid is considerably more difficult.
This is because in this case when the equations are linearised about a monopole
the associated linear operator has a spectrum which extends all the way to the
origin. This is in contrast to the case of the Abelian Higgs model, where there is a
gap between the zero modes (eigenvectors with zero eigenvalue) and the rest of the
spectrum. The physical origin of this different behaviour lies in symmetry breaking -
the reader unfamiliar with these ideas can either refer to Sect. 8.3 in [CL84] for
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physical background or ignore all the physical terminology and concentrate on the
analysis. In the Abelian Higgs case there is complete symmetry breaking and all
fields are massive. This means that all physical quantities decay exponentially in
space and is associated with the existence of a gap in the spectrum of the linear
operator which is obtained by linearising about the static solutions (see [Stu]). But
in the monopole problem under discussion here the symmetry breaking is only
partial-there is a residual circle symmetry, and associated with this are massless
fields. Thus physical quantities do not decay exponentially-in fact the magnetic field
has a Coulomb tail (~ |*|~2). Associated with this is the fact that the continuous
spectrum of the linear operator extends all the way to zero-see Sects. 2 and 4.
We now sketch the proof given in this paper and discuss the resolution of these
analytical difficulties.

Let {qμ}
4μ^Ql be a local co-ordinate patch on M^-this means that we have a map

q-+Ψo(χ 9q)

which is a local diffeomorphism from an open set in R4k to a 4k parameter family
of monopoles. Such co-ordinate patches are constructed in Sect. 4, and they have

flΨnthe additional property that -*- & is square integrable. We will produce solutions°qμ
which are close to slowly varying monopoles. Slowly varying means that there is
a small parameter ε and the co-ordinates q satisfy:

We will write τ = εt, and use the shorthand / = -f-9f = -rτ We now make an

ansatz for the solution. We use the variable Ψ for (A\,A2,A3,Φ) and search for
solutions of the form:

where ψ = (ά,φ). In order for the first condition to be consistent it is necessary to
choose the gauge correctly, as we now describe.

Definition. We say that ψ = (ά,φ) = (a\9a2,a^9φ) satisfies the gauge orthogonal-
ity condition with respect to a monopole ΨQ = (a, φ) if

Σ(Va)t3t + [φ,φ] = 0. (1.4)
i=l

Remark. The geometric interpretation of this is that (a, φ) is L2 -orthogonal to the
direction of the gauge flow at ΨQ. (Here we take the inner product on su(2) defined
in Sect. 2). The gauge flow is generated by the infinitesimal gauge transformations,
which are given by

where χ is an su(2) valued function on R3. A simple integration by parts shows
that if (a, φ) satisfies the gauge orthogonality condition with respect to ΨQ then it is
L2 -orthogonal to those infinitesimal gauge transformations generated by compactly
supported χ. Notice however that this is not assured if χ does not go to zero as
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|jc| — » oo - in Sect. 3. This remark will be important for the case where χ = φ, the
Higgs field of the monopole itself.

We will choose the gauge such that both ΨQ and ψ satisfy the condition of
gauge orthogonality. The local existence theorem of Appendix E shows that this
is possible (for small ε). This choice of gauge ensures AQ = 0(ε3), and for the
remainder of this introduction we will ignore AQ. We are now left with an equation
for ψ of the form:

d2\l/
-^L+LΨoιl, = -Ψ0 + 8 j 9 (1.5)

where j represents the nonlinear terms which are given in Appendix B, and LψQ

is a second order linear differential operator. The estimates for Eq. 1.5 are for the
quantity (ψ,LψQψ)L2, so the ideal situation would be if this quadratic form were
equivalent to \ψ\2

H\. In fact there are three sources of degeneracy of this quadratic
form:

(i) Gauge invariance gives rise to an infinite dimensional null space for LψQ.
This is factored out by the choice of gauge just mentioned.

(ii) There is a 4Λ>dimensional space of square integrable eigenvectors {nμ}4^1

of LψQ having zero eigenvalue. These are called the zero modes and form an es-
sential part of the problem. They arise because there are 4&-parameter families of
monopoles. The basic idea of solitary wave perturbation theory is to choose the
evolution of q(t) such that

GMμ)L2=0 f O T J I = 0, . . . ,4*- l . (1.6)

Definition. We shall say that ψ satisfies the dynamic condition with respect to the
monopole ΨQ if it satisfies the conditions in Eq. 1.6 where nμ G Ker LψQ.

Thus if ψ satisfies the dynamic condition the finite dimensional degeneracy due to
the zero modes is removed. The reason for this terminology is that this condition
determines the monopole dynamics, i.e. the evolution of the monopole parameters
q(t). This is well understood and goes back to the paper [Ben72]. This condition
can be interpreted as choosing q(t) such that Ψ^(x\q(t)) is the closest monopole to
the solution at time t in the L2 sense (see [Stu]).

(iii) There is a degeneracy because the continuous spectrum reaches the origin.
This is a technical obstacle which arises due to partial symmetry breaking.

Thus we use the gauge orthogonality and dynamic conditions to overcome the
first two degeneracies, but on account of the third the quadratic form (ψ9Lψ0ψ)L2 is

definitely still not equivalent to the Hl norm. However it is possible to prove after
a very careful analysis of the linearized static problem that for smooth compactly
supported sections ψ satisfying the dynamic and gauge orthogonality conditions
there exists a number c such that

^ c\ψ\ψ2 , (1.7)

where

We define the space HψQ to be the completion of the smooth compactly supported
sections with respect to this norm. Further definitions are given in Appendix A. As
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a consequence of 1.7 we have to work with the norm | \ψQ - in particular we do
not have L2 control over the component of ψ in the direction of the Higgs field.
This necessitates great care in the estimates. To prove that ψ is bounded for times

of O ( ^ J we use the energy and higher order energy identites for Eq. 1.5 given in

Sect. 6. To do this we need to estimate two types of terms:

and

For the first of these we need the crucial fact that (ignoring AQ)

To explain the meaning of this in words we can say that the bad terms-the compo-
nent of ψ along the Higgs field, over which we have no L2 control - is decoupled
from the nonlinear evolution in an appropriate sense. This is one of the reasons that
Manton's approximation is valid in spite of the radiation.

To estimate the second term we use the fact that from Sobolev's theorem

so that if we can estimate ΨQ in Z,6/5 we will be done. (Apply Holder's inequality
with p = 69q = 6/5). In fact on account of the dynamic condition, we only need
prove that after subtracting out a linear combination of zero modes ΨQ eL6/5.
This is proved in Sect. 3 using a careful analysis of the linearized problem based
on Green function estimates for the Dirac operator on Euclidean R3.

The proof of 1.7 given in Sect. 7 depends on three basic facts

(i) The quadratic form (φ9LψQ\l/)L2 is non-negative. This is because the mono-
poles minimize the Yang-Mills-Higgs functional (which is defined in Sect. 2). This
non-negativity can be seen explicitly in the formula 5.13, which allows us to write
L as a product of two first order operators whose symbol is the Dirac operator on
Euclidean R3.

These operators, which are defined in Sect. 3 were studied in detail in [Tau83] and
further results are given in this paper.

(ii) The following formula:

LψQu = -Δau - [φ,[φ,u]] + -τlεijk[Fjk9u] - τl[(Va\φ,u]

shows that at spatial infinity the quadratic form (ψ,LψQψ)L2 becomes equal to \ψfy .
(iii) For each zero mode nμ there is a square integrable section fμ such that

nμ — @ψQfμ. This is the crucial analytical fact which combined with the standard
situation given by the previous two statements allows us to prove 1.7. It is proved
in Appendix A.

The dynamic condition (ψ,nμ)L2 = 0 leads to modulation equations for q(t)
which are self-contained to highest order. These are obtained by differentiating twice
and substituting for ψtt from Eq. 1.5. This leads to the equation:

μ)L2 = 0(e) .
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If we put zero on the right-hand side this is in fact just the condition that t — » Ψo(t)
be a geodesic. This is because the linear span of the zero modes nμ is the tangent
space TψQMk, and our metric with respect to the co-ordinate system is given by

Now by our requirement that ΨQ should satisfy the gauge orthogonality condition

we see that ΨQ € TψQMk, and the geodesic equation is just the requirement that the

projection of ΨQ onto TψQMk should be zero. To see this more concretely one can
calculate explicitly in the co-ordinate system q, the condition above becomes

<ϊμ = -(g~~l)μv(("v,ήλ)L2qλ)

which can be shown to be the geodesic equation by direct calculation. This calcu-
lation has been done in [Stu] and will not be repeated here.

The 0(ε) terms depend on ψ and so our asymptotics lead to a coupled system
of ordinary and partial differential equations, for which local existence is proved
in Appendix E. To prove that asymptotics are valid we have to prove that for

times of O ( | J , \ψ\L<*> is bounded and q(t) differs from qQ(t)9 the solution of the

unperturbed geodesic equation with the same initial values, by 0(ε). We now state
our main theorem using some notation defined in Appendix A:

Theorem 1.1. Consider the initial value problem for Eqs. 1.1-1.3 with initial data
of the form

Ψ(Q9x) = Ψo(q(0)) + fiV(0,*) , (1.8)

Ψt(0,x) = eqμnμ + έψt(09x), (1.9)

where ψ(Q) <Ξ L2

9(ψ(Q)9ψt(0)) G #3,y0(<KO)) ® H2,Ψ<>(qm <™d ψ(0) satisfies the dy-
namic and gauge orthogonality conditions with respect to Ψo(q(Q)). Then there

exists ε* such that for ε < ε* there is a time T = O ( | J such that there is a

solution on [0, T] of the form

where Ψ$(q(t)) and \l/(t) satisfy the gauge orthogonality with respect to Ψ$(q(t))9

and ψ(t) satisfies the dynamic condition with respect to ΨQ(q(t)). In addition

\^\4,ψ0(q(t)) = O(ε3\ |^(0b,yo(ί(0) + IMOk?Fofo(0) is bounded independent of ε
and

where qQ(t) is the solution of the geodesic equation on Mk with initial data
<7(0),#(0). The solution has the regularity described in Sect. 8.

This theorem leaves open two very interesting questions which are related.
Firstly it is known (see [MB88]) that there are closed geodesies on Af*, so it
is natural to ask whether there are corresponding periodic solutions of Eqs. 1.1-1.3,
which could be interpreted as monopole bound states. Secondly it would be inter-
esting to understand the asymptotic behaviour as t — » oo of the equations - does the
solution converge in L°° to an approximate superposition of monopoles as t — > oo?
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(Something of this type occurs in the case of the KdV equation.) Clearly the exis-
tence of a bound state would be an obstruction to this, so if bound states do exist
one might expect the asymptotic appearance of the solution to be a superposition
of monopoles and bound states. Something of this type occurs for the Sine-Gordon
equation, in which there are kink bound states (breathers) which together with the
kinks themselves dominate the behaviour as t —> oo.

Finally we summarize the contents of this paper. In Sect. 2 we review the
static solutions and discuss their asymptotic decay properties. A theorem on the
asymptotic appearance of monopoles at spatial infinity is proved in Appendix D.
In Sect. 3 we discuss the linearised problem and obtain some results on the zero
modes and their derivatives using Green function estimates for the Euclidean Dirac
operator which are proved in Appendix C. In Sect. 4 we obtain local spaces of
solutions by "integrating up" the zero modes with the inverse function theorem. In
Sect. 5 the asymptotic expansions for monopole dynamics are developed, leading
to a coupled system of equations for A^,q for which local existence is proved in
Appendix E. In Sect. 6 some higher order energy identities are written down for the
system of equations. In Sect. 7 it is shown that the higher order energies provide
a good norm for the solution-equivalent to the norm used in the local existence
theorem. Finally in Sect. 8 the main theorem is proved. In Appendix A various
definitions and background results are collected.

The reader will find good mathematical introductions to gauge theories in [JT82]
and [BleSl], while the physical background is explained in [CL84].

2. The Monopole Solutions

In this section we review the static situation - the equations of interest correspond
to critical points of the Yang-Mills functional

. (2.1)
2R3

Here all the fields are sections of vector bundles over R3 — F = dA + \[A,A\ is
the curvature (magnetic field) associated to a connection (vector potential) A on
R3 on a principal SU(2) bundle, and Φ is a section of an associated su(2) bundle.
Since the base space is R3 these bundles are all trivial and so the fields are just
su(2) valued functions. The Lie group SU(2) is the group of unitary two by two
matrices with determinant equal to +1. The Lie algebra su(2) is the vector space
of traceless, skew-hermitian two by two matrices with the multiplication given by
commutation:

[A,B]=AB-BA. (2.2)

For an inner product on su(2) we take

A B = (A,B) = -l-ti(AB) .

This inner product has the following useful invariance property:

([A9B],C) + (B,[A,C]) = 0. (2.3)

We can then take as orthonormal basis
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ίθ i\ ,...
* = (i o j (2'4)

We can now see that su(2) is isomorphic to R3 with the vector product giving the
Lie bracket operation since

[e\,e2] = 2έ?3 .

The covariant derivative of an sw(2)-valued function is DA/ = df -f [A9f]. The
subscript A will be omitted whenever no confusion is possible.

The functional defined in Eq. 2.1 is invariant under the gauge transformations.
These are given as follows - if g(x) is a differentiable SU(2)- valued function, then
it generates a gauge transformation according to:

A -+ gdg~l + gAg~l Φ -> gΦg~l F -> gFg~l , (2.5)

which will be written as

The multi-monopoles appear as minima of the functional defined in Eq. 2.1 within a
given topological sector. The different topological sectors are specified by requiring
that

|Φ| -> 1 as |;c| -» oo . (2.6)

Then at spatial infinity Φ defines a map between spheres whose degree k is the
required topological number. To be more precise in [Gro84] it is proved that if the
following conditions are satisfied:

(i) lim/^oo supw=Λ (1 - |Φ|) = 0 ,
(ii) f(A9Φ) < oo,

then

^-trfDΦ/\F= lim -?- / |Φ|-1(Φ,F) = * ι € Z . (2.7)
2π M O°4 πw=Λ

We now minimise $ in the space such that A9 Φ and their first derivatives are locally
square integrable. Now from Sect. 4.11 of [JT82] it is known that for finite action
critical points of δ there exists a number M such that lim/^oo swp\x\=R(M — |Φ|) =
0. We can then rescale to make M = 1 (see p. 102 of [JT82]). Thus we lose nothing
by restricting further the space on which we minimise by requiring the condition
(i) above to hold. To see the importance of this we use formula 2.7 to write a
Bogomolny decomposition:

$ = 1 / |*F T DΦ\2 ± 4π*ι . (2.8)
2R3

The minima of δ with negative winding number will therefore be solutions of the
Bogomolny equations

*F = -DΦ or Fln = slmnDmΦ. (2.9)

It will in fact follow from the decay results in Eqs. 2.12-2.14 that the integer k\
is equal to the winding number of Φ on large spheres (see p.44 in [JT82]). The
minima will also be solutions of the Euler-Lagrange equations corresponding to the
functional in Eq. 2.1:
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-ΣDΪAi+DtfiAt = -[Φ,AΦ] , (2.10)
ι=ι

ι=ι

The Bogomolny equations can be studied both by analytical methods (see [JT82,
Tau82]) and by integrable systems methods (see [Hit82, Hit83, AH88, Don84,
ES89]). From analytical considerations it is known that all solutions are smooth
in an appropriate gauge - in fact any solution of the second order Euler-Lagrange
equations which has the property that there exists a gauge in which A, Φ and their
first derivatives are locally square integrable is gauge equivalent to a smooth solu-
tion and locally gauge equivalent to a real analytic one. In addition we have the
following decay properties for our monopoles:

(i) \Dφ\ = + 0(\x\-3+ >9 (2.12)

(ϋ)

(in)

where TO means angular derivative, and ε e (0, 1 ). This follows from the results

of [JT82], and is proved in Appendix D. This provides a link with the integrable
systems methods where the solutions of the Bogomolny equations satisfying these
decay properties are studied and parametrised using algebraic geometry. Since all
the minima satisfy these decay properties there is a full equivalence between the
classes of solutions studied with analysis and with integrable systems methods.

It is known that the moduli space of solutions (that is the space of gauge
equivalence classes of solutions) for the Bogomolny equations with these boundary
conditions is a 4k — 1 dimensional smooth manifold, which we shall call N^. For
example if k = 1 there are three parameters corresponding to the centre of the
monopole. If the centre is chosen at the origin the solution can be written explicitly:

tanhr r

a(χ) = ( -r̂  -- - } n x e rfx , (2.16)
\sinhr r )

a solution known as the Prasad-Sommerfeld solution, which is known to be unique
among the radially symmetric solutions ([Mai81]). Here n = x/|x| and e is the
orthonormal basis for su(2) defined in Eq. 2.4. We shall be concerned with these
4k — 1 parameter families of solutions, which we will genetically write as the gauge
equivalence classes

Ψ0(x;q) = (a(χ q),φ(X;q)) ~ p(g)Ψ0(x;q) = (gdg'1 + ga(X;q)g^ ,gφ(x;q)g-1)

(2.17)

for a set of local parameters {qμ}4^1 on the moduli space. The existence of such
families of solutions was first suggested by an informal parameter counting oi
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Weinberg ([Wei79]) and the construction of 3k parameter families by patching of
Prasad Sommerfeld monopoles sufficiently well separated ([JT82]). Later in [Tau83]
a rigorous index calculation was given to confirm the number 4k — 1 (subject to
a proviso on an additional "non-physical" zero mode discussed below). Integrable
systems methods confirmed this and gave much additional information ([Hit82,
Hit83, Don84, ES89]) - in particular there is a circle bundle Aft over Λ^, whose
definition will be reviewed below, which was shown in [Don84] to be identical with
the space of base point preserving rational maps. The solutions can be intepreted
as approximate nonlinear superpositions of Prasad-Sommerfeld monopoles in the
limit of large separation, and for this reason the solutions are often referred to as
multi-monopoles for \k\ > 1.

In [JT82] there are some further estimates for these solutions which we should
keep in mind. The reader will have observed from Eqs. 2.12-2.14 that the solutions
approach their asymptotic values algebraically. This is in distinction to the situation
in the Abelian Higgs model where all physical quantities - for example the magnetic
field and the energy density - decay exponentially (see [JT82, Stu]). In physical
terminology the reason for this is that for the multi-monopoles to exist it is necessary
that there be only partial symmetry breaking (see [CL84]). This is because the
magnetic field from a monopole in three dimensions has a Coulomb tail (~ |*|~2)
so if multi-monopoles are to exist there must be an attractive force to cancel out the
Coulomb repulsion. This is provided by the Higgs field, which must therefore also
approach its asymptotic value algebraically. We now make some informal comments
which will hopefully make this clearer - for details the reader should refer to [JT82].
Mathematically, if there is to be exponential decay the linearised equations at spatial
infinity must look schematically like

If this is the case then m is called the mass and controls the exponential decay rate
(see [JT82, Chapter three]). This is how things work out for the Abelian Higgs
model, and the asymptotic value of |Φ| determines the mass. However this cannot
and does not occur in the monopole case for the reasons just mentioned-there are
still massless directions in which the decay is algebraic. If we linearise the equations
at spatial infinity then we end up with equations which look schematically like

-Δu-[φ9[φ9u]] = 09

where u is an su(2) valued quantity. Thus there will only be exponential decay in
the directions which are transverse to the Higgs field. Consequently in order to
state decay results we have to decompose the su(2) valued quantities χ as

X = XL + XT χι = (χ,Φ)Φ/(\Φ\2)
into longitudinal and transverse components relative to the Higgs field. We can now
state the decay results which are proved in [JT82, Chapter Four]. In the transverse
(massive) directions we have exponential decay (broken symmetry):

\(Dφ)τ\,\Fτ\ g φXΓ^-OM (2.18)

while in the longitudinal (massless) directions there is slow algebraic decay (un-
broken symmetry):

0 £ (1 - |ψ|) £ c/\x\ \(Dφ)L\ £ c/(\x\2) . (2.19)
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It was mentioned in the introduction that this is related to behaviour of the
Hessian of <?, which we will call Hess^0 and we now explain how this comes
about. To understand the Hessian properly it is first of all necessary to "correct"
for gauge invariance. So to look at the value of the Hessian in the direction of the
variation ψ = (a, φ) we will require ψ to satisfy the gauge orthogonality condition
with respect to the background monopole ψo, and therefore we can introduce a
modified Hessian

ιSi + [φ9φ]

which takes on exactly the same value as the Hessian on gauge orthogonal directions
ιl/. A direct calculation then shows that

Ί2 + lt4>>'/']|2 + (^2τ/

As usual the critical points of the Hessian give the linearised equations and indeed
one can check that

This explains the relation between the appearance of the linearised equations and the
degeneracy of the Hessian. This formula for Hess illustrates two important points -
firstly the gauge orthogonality condition ensures that all derivatives of ψ are con-
tained in modified Hessian (whereas for general variations \jι only the exterior
derivatives appear in the ordinary Hessian). Secondly as |jc| —> oo the modified
Hessian approaches the norm \\l/\ψ0 defined in the introduction which is crucial
to proving that they are equivalent norms on the subspace orthogonal to the zero
modes - see Sect. 7. Thus we see that we get L2 control only over the massive
fields, i.e. those which decay exponentially. The existence of massless fields has as
a consequence the degeneracy of Hess.

3. The Zero Modes

The zero modes are the solutions of the linearised Bogomolny equations which
satisfy the condition of gauge orthogonality defined in Eq. 1.4. These can be written
in an economical way by introducing the quaternionic notation as in [Tau83]. So
let {y}?=1 satisfy

τV = -#•> +eι:/*τ* , (3.1)

where δ is the Kronecker delta symbol and εijk is the completely antisymmetric
tensor. These are the purely imaginary quaternions - the whole quaternion algebra
is generated by these together with 1. In this section we want to linearise the
Bogomolny equations so we consider

Ψ = (A,Φ)=Ψ0 + ψ = (β, φ) + (a, φ) ,

where ΨQ = (a,φ) is a monopole. Using the quaternionic notation we can write
ψ = (59φ) as

ιA - ΣX'S, + Φ (3.2)
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Notation. A summation convention will often be used for repeated indices. The
su(2) inner product together with the standard inner product on H = R4 gives an
inner product ( , ) on su(2) ® H. We will use φ n to denote the quaternion
obtained by taking the su(2) inner product of φ G su(2) and n G su(2) 0 H.

A calculation shows that the linearised Bogomolny equations together with the
condition of gauge orthogonality for ψ with respect to ΨQ can be written as the
single quaternionic equation

3Ψ^ι = 0, where @ΨQ = -τ^V.)/ + [&•]. (3.3)

This operator was studied in [Tau83], where it is shown that it is a Fredholm
operator from HψQ to L2, where these spaces are defined to be the completions of
smooth, compactly supported sections of the 5w(2)0H bundle with respect to the
norms

\2 + \Φ\2<*x (3.4)
R3ι=l

Theorem 3.1 (Taubes). Let ΨQ = (a,φ) represent a k-monopole, then there are
exactly 4k solutions of @ψQιl/ = 0 lying in Hψ0. These are called zero modes and

will be denoted nμ\^~^, while TψQMk will be used to denote their linear span.

Remark. Notice that the quaternions act on TψQMk by right multiplication.

Remark. Of these 4k zero modes, 4k — 1 should be regarded as corresponding to
the physical parameters of the moduli space. The remaining zero mode refers to an
infinitesimal gauge transformation produced by the Higgs field itself:

nQ = Στ?(Va)tφ . (3.5)
ι=l

This is not excluded by the condition of gauge orthogonality - in fact since the
Higgs field itself does not decay at infinity the derivation of the gauge orthogonality
condition does not apply to the case where the gauge transformation is the Higgs
field itself. The existence of such a "non-physical" zero mode is related to the fact
that the symmetry breaking is partial - there are still massless directions longitudinal
relative to the Higgs field. For example in the two dimensional Abelian Higgs model
the symmetry breaking is complete and there are no such "non-physical" zero modes
appear. Thus the true number of parameters which the monopoles depend on is
4k — 1, which agrees with the integrable systems parameter counting (see [Hit82,
Hit83]). To deal with the extra zero mode it is convenient to consider instead of
the moduli space Nk a 4A>dimensional space which is a circle bundle over Mk,
with the gauge transformations induced by the Higgs field itself defining the circle
action. This then gives a correct match between the dimension of the space and the
number of zero modes. The definition of Mk discussed in detail in the succeeding
sections.

We are interested in curves τ — > ΨQ(T) G Mk whose velocity vectors at the point
Ψo(τ) lie in TψQMk. If Ψo(τ) = r'afa', q(τ)) + φ(x\q(τ)) then this amounts to re-
quiring that
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d 4k~l

—(τ'α/ + φ) = Σ q nμ , (3.6)
«τ μ=o μ

where nμ G TψQ,.Mk. We will show in the next section that given a curve in M^ we
can apply a gauge transformation to ensure that the velocity vector at each point
satisfies this condition. We will need the following basic facts about the first two
time derivatives of the zero modes:

d d2

ήμ = —(nμ(x\τ) and nμ = -^(nμ(x',τ) (3.7)

which are known a priori to be in HψQ.

Lemma 3.2. \n\ and |Vβn| and their τ derivatives decay uniformly to zero, i.e.

lim sup (|/ι| 4- |Vβ/ι| + \ή\ + |Vβ/ί| + \n\ + |Vβί|) = 0 . (3.8)
R-+oo\x\=R

Proof. Part of the proof follows very closely arguments in [JT82] and the reader
may want to have that book in hand. In view of Lemma A. 5 we only need prove
that |π |,V|n|,VjV y |n| are in L6. To see that this is so we apply Theorem A.7 to
the identity

- (Vα)2Vjn = 2[FJi9 (Vβ), Λ] + [(Va)iFβ,n] + τ?[#kFJk + (Va)iφ9n] + [φ, [φ,n]] .

(3.9)

Notation. In regions where \φ(x)\ > 0 we define the longitudinal and transverse
components of an su(2) valued function by

fL = \φ\-\f,φ)fT = f-fL. (3.10)

Since we know that the magnitude of the Higgs field of a monopole configuration
approaches 1 uniformly as |jt| —» oo we can state decay results with regard to this
decomposition.

Lemma 3.3. Let n G TψQMk then for any δ G (0,1) there exist numbers M(δ, \n\ψQ),
M(\n\ψQ) such that

\nτ(x)\ £ M(δ9\n\ψJe-V-dM 9 (3.11)

.

Remark. Notice that a priori there is no reason to suppose that the zero modes are
square integrable. This lemma implies that this is the case. The proof given here
depends on results for the Dirac operator τj'dj given in Appendix C. The fact thai
all the zero modes are square integrable is proved by a different method in [Tau83].

Proof. The first statement will be proved by the methods of chapter four in [JT82],
see in particular pages 164-166. Thus the crucial point is the following identity foi
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-A \η\2 + 2\φ\2\η\2 + 4fo, [Vβ,, V«/ι]) + 2| Vα^|2

+ (η, [Φ, [WJkFjk ~ (Vβ), φ),/ι]]) = 0 . (3.13)

Claim. For any μ G (0,1) there is a function vV9 which goes to zero uniformly as
|jt| —> oo, such that

-Δ\η\2 + 2(1 - μ)| Vβι/|2 £ -2|fj|2(l - t (μ)) + w|f/ | , (3.14)

where w decays exponentially:

|w(;c)| ^ c(<5)έΓ(1-5)W for any δ > 0. (3.15)

Proof of Claim. We have to estimate the terms in the previous identity. First of
all notice that since φ η = 0 we can write:

Oί,[Vβφ, Vβιι]) - foKVαφfΛVα/ifi) + 07,[(V^)L,(VflH)r]) .

Using the exponential decay of (Vaφ)τ the first of these is easily estimated in the
desired fashion. For the second we use the following vector product identity (see
p. 154 of [JT82]):

= [[Φ,(Vβ)yφ],n] + [(Va)jφ9[φ9n]] - [φ9(Va)jη] .

Again using the exponential decay of [φ9(Va)jφ] we can estimate these as required.
In a similar way we write

Using the exponential decay of the transverse fields we estimate these terms as
required, completing the proof of the claim.

Now to prove the first statement of the lemma we proceed as on p. 167 of [JT82]
with a very minor modification to deal with the extra exponentially decaying term.
Let μ = ε/2 and let R(ε) be sufficiently large that

sup Kε/2,*)| < ε/2 , (3.16)

which is possible on account of the foregoing result on uniform decay. Now choose
a number

M(ε) > e(1-ε)*(£) sup |if(jc)| (3.17)

and define a set
y = {x : \η(χ)\ > A/(e>Γ(1-β)W} . (3.18)

Then we can find a slightly larger set V on which \η\ is strictly positive, with a
smooth boundary, such that

|»y(jc)| ^ M(ε>Γ(1-ε)W for all x € V . (3.19)
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Now our aim is to apply Lemma A.6 so we have to find some way to eliminate the
troublesome |V^|2 term. To do this we consider \η\l+ε/2 (following [JT82]). This
satisfies:

^ (l - £) Me/2-'(|Vfl/7|2 - |VM|2) + |//r/2+1 (l + I) (1 - »)

, |fw. (3.20)

We now use Kato's inequality and \η\ε/2 :£ 1 + \η\l+ε/2 to derive the differential
inequality

- v -

We can now apply Lemma A.6 to obtain the result.
To prove the second statement of the lemma we consider the Dirac operator

τj'dj, and notice that by the invariance of the inner product (Eq. 2.3)

τ*dj(φ n) = (τ*(Va)jφ •«) + <£• (τ>(Vβ)yn - [φ,n])

= τj(Φa)jΦ ' n) since &ψQn = 0 . (3.22)

We can now use the Green function for τjdj to learn things about φ n. The
necessary results are given in Lemma C.I. We first apply case A using the known
decay of Dφ together with the fact that n € L6 from the Sobolev inequality. We
then substitute the result of this and apply Case B to deduce the second statement
of the lemma.

Corollary 3.4

ker^^Π^o - Ker^0βL2 - (3.23)

It turns out that it is absolutely essential for our method of proof that the time
derivatives of n = ΨQ = (ά,φ) should, modulo TψQMk, decay more rapidly than n
itself. We now set about proving this.

Lemma 3.5. It is possible to decompose

ή=™ + Σcμnμ n = l + Σdμnμ (3.24)

in such a way that for any positive number δ there exist constants such that

<3 25>
The numbers c(δ) depend only on δ, \n\Ψo, \ή\ψQ9 \ή\Ψ^ |(1 -f \x\)2Vaφ\L™.

Proof. The proof uses the Green function estimates of Lemma C.I, but this time
we have to take advantage of the fact that it is possible to choose cμ, dμ in such a
way that the integral of the right-hand side is zero. To start with notice that
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®m = @ή = -τj[άj,n] + [φ9n] (3.26)

so

τjdj(φ m) = φ 2ή + τj(Va)jΦ /w (3.27)

- - τ*(φ, [άj,n] + [

,A«μ). (3.28)

Claim. It is possible to choose the cμ in such a way that the integral of the right-
hand side is zero.

Proof of Claim. To see this we only need show that the quaternions

n, μ=l,..Λk (3.29)

span the whole of H. To see that this is so first of all notice that one of the zero
modes is n\ = τJ'(Va)jφ and for this the above expression is real:

Mf((Va)jΦ (Vβ)*0) = ~I\Vaφ\2 . (3.30)

Now recall that the quaternions act on the space of zero modes by right multipli-
cation n — > nq q G H. Thus the claim is clearly true.

Now to prove the lemma we can appeal to Case C of Lemma C.I. Notice that
this is a version of well known results for solutions of Poisson's equation (see
[JT82, Chapter 6]) adapted for the Dirac operator τj'dj. To see what the numbers
c(δ) depend on notice that the coefficients cμ are bounded in terms of the stated
quantities. Finally we can apply an identical argument for n.

Remark. It will turn out that the crucial thing is that «, n are in L6/5 modulo TψQM^ -
we shall write Πή for this rapidly decaying component.

4. Local Spaces of Solutions

As we have noted it is known that Mk is a smooth 4&-dimensional manifold with a
complete Riemannian metric and a hyperkahler structure whose tangent space TψQMk

at the monopole ΨQ can be identified with the zero modes for the operator @ψQ (see
[AH88]). In this section we produce local families of monopoles in a form suitable
for our work by integrating up the zero modes discussed in the previous section.
let Ψ0 = (a, Φ) be some fixed monopole, then we search for nearby monopoles
ΨQ + \j/9 where ψ = (α, φ) satisfies the deformation equation:

®*(> = 0WO> (4 !)

with

Ξ τ* ί -ε/y fc[αz ,αy-] + [ak9φ]\

For brevity we will omit the subscript on 2. We will first of all show that the 4k
zero modes integrate up to a local family of monopoles depending on 4k parameters.
Then we will look at some decay properties in greater detail.
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Consider the space

l = Ό€HΨ:(Ό9n)ψ=0 V« G T

On this space we know that the quadratic form \2ψ\ is equivalent to the norm \ψ\ψQ.
Therefore by the Riesz representation theorem if @*g defines, via the L2 -pairing, a
bounded linear functional on / then we will obtain a solution to the equation

g being assumed known, since the inhomogeneous term automatically satisfies the
Fredholm conditions needed to apply Theorem A.9. To see that the right-hand side
is a bounded linear functional on / we note that

from Lemma A.4. Let us write the solution of this equation as G@*(g(ψ))9 so we
can consider the map

F : HΨ -» HΨ

This maps solutions of the deformation equation to TψQMk = Ker^, and has deriva-
tive equal to the identity at the origin. It is therefore a local diffeomorphism and
produces a local 4k parameter family of solutions of the deformation equation, with
\ψ\ψo small. As we will discuss later in this section all but one of these are gen-
uine monopole parameters, while the remaining parameter corresponds to the one
parameter family of gauge equivalent solutions produced by the action of the Higgs
field as a gauge transformation.

We need some more detailed information on the behaviour of these local solu-
tions at spatial infinity. First of all we notice that by differentiating the deformation
equation once that the second derivatives of ψ are square integrable. Therefore by
the Sobolev lemma the first derivatives are in L6 and so we can apply Lemma A. 5
to deduce that

lim sup |ι/φc)l = 0 . (4.2)
R-+oo\x\=R

We will now improve this:

Claim A. The solution ψ of the deformation equation just obtained has the following
decay properties:

\[φ,ψ]\ £ c(ε)e-«-°)\x\ ,

\φ ψ\ gc(l + Mr 2.

Proof of Claim. First we will prove the first statement. Let η = [φ, ψ], then as in
the previous section we obtain the following identity:

-A\η\2 + 2\φ\2\η\2 + 4ft, [Vaφ, Vβ/ι]) + 2\Vaη\2

+ ft, [φ, [τ'V'*F> - (Vβ),φ,π]]) + ft, [φ, 9*g]) = 0 .
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Now the important thing about the last term on the right-hand side is that g
is a quadratic commutator so that the longitudinal terms commute out and so the
expression is quadratic with respect to η, Vη. Furthermore assume that we are in a
gauge such that a — > 0 as |jt| —> oo then we can write this final expression as

where α,/? are bilinear forms whose coefficents decrease to zero as |jc| — > oo by
Eq. 4.2. But this puts us in exactly the same situation as in the proof of Lemma
3.3 and the result is proved. To prove the second statement we use the formula:

τjdj(φ I/O = τy(Vα), φ ^ + φ

As just noted g is a quadratic commutator, so the longitudinal components commute
out and so by the first statement of the claim g(ψ) is exponentially decaying. We
can now apply, successively, cases A and B of Lemma C.I to deduce the second
statement of the claim.

Next we need to study the behaviour of the derivatives - , where q is a local

co-ordinate. Since the map F is a local diffeomorphism, we know that - G HψQ.

The next result says that these have the same decay properties as ψ itself:

Claim B. The derivative -Ĵ  of the solution of the deformation equation just ob-

tained has the following decay properties:

dq

Proof. The proof is almost identical to the proof of the previous claim.

For the reader's convenience we now summarise the definition of the circle
bundle Aft over the moduli space Nk (see [AH88], to which the reader may also
refer for an alternative description). This will clarify how it is that the local solution
space produced in the last section is actually not a co-ordinate patch on Nk but
rather on the circle bundle Aft. The reason for this is of course the occurrence of
the extra zero mode no = τ7(V f l)/φ corresponding to the action of the Higgs field
as an infinitesimal gauge transformation. Thus we want to define a circle bundle
whose fibre direction corresponds to the gauge action of the Higgs field. This is
done via Hitchin's asymptotic isomorphism (see Sect. 6 of [Hit82]). The basic idea
is as follow - corresponding to an SU(2) connection there is a C2 bundle. Let us
take as basis for this the eigenvectors of Φ on a large sphere Sj so that Φ has the
form:

0
—/

Then in an appropriate gauge it turns out that the connection is asymptotically of
the form
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'a 0
A ~ 0 - a

where a is a connection on the sphere. As R — * oo this gives an asymptotic iso-
morphism α of the monopole with a direct sum Hk 0 H~k

9 where H is HopΓs line
bundle on the sphere. This is unique up to the circle action which is the automor-
phism group of this bundle. We see from the expression for Φ above that the action
of the gauge transformations etφ corresponds to a circle action

elt 0
0 £>-

on this bundle. Now —1 extends to the element —1 acting on the C2 bundle over
R3. This is the only element of the circle Sl which so extends to an automorphism
of the monopole, since the monopoles are irreducible. Thus if we define a rigidified
monopole to be made up of the gauge equivalence class of the monopole together
with an asymptotic isomorphism α fixed up to sign, then the space of rigidified
monopoles Aft is acted on freely by Sl/{±l}9 and has as quotient the space of gauge
equivalence classes of monopoles. Furthermore given a monopole, all the gauge
equivalent rigidified monopoles are obtained by considering the action of the gauge
transformations etφ. This explains the construction of the local co-ordinate patches
on Aft in the previous section-deformation in the direction «0 = DΦ corresponds to
the fibre direction in Aft.

The last thing we need to prove about our local solutions is that we can always
choose the gauge such that the velocity vectors of our monopole Ψβ(τ) satisfy the
gauge orthogonality condition in Eq. 1.4 relative to Ψo(τ). Consider a smooth one
parameter curve of monopoles

τ -> (a(χ 9 τ), φ(x; τ))

lying in one of our co-ordinate patches. It will be convenient to introduce a one
parameter family of gauge transformations to ensure that the velocity vectors of the
transformed monopoles satisfy the condition of gauge orthogonality at each τ. In
this section we prove that this is possible. Thus we are searching for a family of
gauge transformations

τ->0(*;τ)

(where for each τ,0(jc,τ) is SU(2) valued), with the property that

is orthogonal to the gauge flow at each time:

rfα ά + [φ, φ] = 0

This requirement leads to the following equation:

-ΛΛ(gg-l)-[φ,[φ,gg-1]} = ~d, (gάg-l)-[φ,gφg-1] (4.3)

Theorem 4.1. Consider a twice differ entίable curve

τ -> (a(x; τ), φ(x\ τ)) G Aft

defined for τ G (0, Γ), lying in one of the co-ordinate patches just discussed. Then
for τ G (0, T\x G R3 there is a twice differentiate function g(τ,x) G SU(2) which
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solves equation 4.3, and such that g — > 1 as \x\ — » oo. Also, for fixed τ,g is smooth
as a function of x.

Proof. We take as initial iterate g$ = 1; thereafter given the ith iterate #/ we generate
the (i + 1 )th by solving the equation:

where

(α(0,φ(0) = P(<fcX*,Φ)

This is not convenient to treat as it stands because the background monopole de-
pends on i. So we introduce

then this solves the gauge transformed equation:

-ΔaBi - [φ,[φ,B{\} = -Vβ a - [φ,φ],

and so by Theorem A.8 we see that Bi is uniformly bounded in HSίψQ for all i. By
differentiating the equation with respect to time we obtain the same conclusion for

Bi. We then obtain a subsequence which is weakly convergent for all times, and is
in fact strongly convergent on all bounded subsets by Rellich's compactness theo-
rem. We then define an SU(2) valued function inductively by solving the ordinary
differential equation

and this gives the required solution of the equation.

Corollary 4.2. Let q,q' be two points on a co-ordinate patch of Mk, then the zero
modes corresponding to the co-ordinate qμ satisfy.

\nμ(q) ~ nμ(q')\L2 ^ c\q - q'\ .

Proof. First of all we know that from the construction of the co-ordinate patches
that

Now the zero modes are obtained from -Ĵ  by applying the gauge transformations

from the previous theorem. Applying the estimates from Theorem A.8 we then
obtain the result.

5. The Asymptotic Expansions

In this section we show how to set up the asymptotic dynamics of multi-monopoles.
We will then show that our expansions do indeed provide an approximate solution
of the full equations in the slow motion limit. The equations we will consider
therefore will be the Yang-Mills-Higgs equations on Minkowski space:

-D}A0 + DidtAi = -[Φ,D0Φ], (5.1)
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DlAi - DJAt - DodiAo + DjdtAj = -[Φ, A*] , (5.2)

DlΦ - D\Φ - D\Φ - D\Φ = 0 . (5.3)

We search for solutions which represent slowly evolving multi-monopoles, whose

parameters vary on the time scale τ = εt. We will use /,/ for -/-, ~Ί^Σ Thus we

search for a solution of the form

A0 = 83a0 , (5.4)

Ai = *t(x9t) + eiSi9 (5.5)

Φ = φ + ε2φ. (5.6)

We can write the latter two equations as

and we choose the gauge such that ΨQ and ψ satisfy the gauge orthogonality con-
dition with respect to ΨQ:

(V«),<i, + [φ,φ] = 0, (5.7)

(V*)tSi + [φ9φ] = 09 (5.8)

as discussed in the introduction. This is what makes AQ = <9(ε3). It is a consequence
of the local existence theorem proved in the appendix that it is possible to choose
the gauge such that these two conditions are satisfied if ε is small enough. We now
calculate the equations for the error terms. Let Δa = XX Vα)? be the Laplacian with
respect to a connection a, then we obtain:

-A«άQ + [φ, [αb, Φ]] - 2[άi9 Si] - 2[φ9 φ] = ε/o , (5.9)

32ά
-p1 - AΛSi + [</>, [5, , </>]] - 2[Fij,άj] - 2[(Vα), 0,0] = -α/ + ε / / , (5.10)

C7 φ ~ ~ ~ " .

—ό~ — Aβφ — (Vα)i[^/?0] — [^ί>(^α)/0] ~~ —Φ ~^~ &J4 ? (^*^)

where the nonlinear error terms are given in Appendix B. To see the structure of
these equations it is best to introduce the variable ψ defined in Eq. 3.1, in terms of
which Eq. 5.10 and 5.11 can be written as the single equation

-T r̂ + Lψ = k - ε@ψΛά^t) + ε2/ , (5.12)
όtL

where k = (—ά/)τz H—φ, and the operator LψQ is defined by

(5.13)
R3 R3

where Hess is the modified Hessian at ^o = (α, φ) of the functional <?, as defined
in Sect. 2.

The final step in the asymptotic argument is to find the appropriate equations
for the evolution of the monopole parameters. This is done by requiring that q(t)
evolve in time such that



170 D. Stuart

is satisfied, as explained in the introduction. This is not very illuminating - to obtain
a set of equations for the monopole parameters which are self-contained up to O(ε)
we differentiate this condition twice and substitute for \l/tt. This leads to

(Ψ$,ri) = —ε(@ψQ(dtao),n) — 2ε(ι/^,ή) + ε2(/,w) — ε2(ψ,n),

where ( , ) refers to L2 inner product. To highest order this is the geodesic
equation as suggested by Manton. If we use a co-ordinate system qμ on our local

space of solutions we can write ΨQ = qμnμ and so the equation becomes:

We will be comparing the solution of this to the geodesic equation

Define Z by

then Z satisfies an equation of the form

where
\F\

Remark. To estimate the term (φ,ή) we need the crucial result on the decay of
ή modulo TψQMk given by Lemma 3.5, together with the fact that ψ satisfies the
dynamic condition with respect to ^o by choice of q(t).

6. The Basic Identities

In this section we give the basic identities which are needed to obtain estimates for
ψ. They can be thought of as approximate energy conservation laws which arise
because we have linearised about monopole configurations which are slowly varying
in time. We will omit the subscript on 3) with the understanding that this always
means @ψQ(t)9 with Ψv(t) = Ψ$(x\q(t)) = (α,φ). The basic energy is

. (6.1)

If we differentiate this with respect to time, substitute for ψtt and then integrate
again we obtain:

βι(0 ~ βι(0) = [Wt

+ fi/

0
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d? Ψ
3

(3ϊ d? Ψ
where ΨQ } = 3 . For the second estimate we consider ψ = @ψ which satisfies

the equation:

fiτ>[άy, ψt] + ε[φ9 <M - εV[άy,

From this equation we will obtain a higher order energy identity for the quantity:

02(0 = 1

Proceeding as before we find the following identity:

The final identity we need is the energy identity for ψ" = &*\l/' = @*@ιl/, which
satisfies the equation:

,ψ ] + ε [φ,ι// ], (6.3)

= £}*(RQ + εR\) — εS , (6.4)

which leads to an identity for

ζ?3(0 = - f ί ψ ' t i i l / t 1 ) + (@ψ'/9@ψ")dx . (6.5)
2R3

The identity for g3 is:

/
β3(0 ~~ 63(0) — K^J ®*^)l2]o — ε/

0

ί

+ f(@ψ", —τj'[άj, ψ"] -I- [φ,ψ"])L2dt. (6.6)
o

7. Co-ercive Estimates for the Conserved Quantities

In this section we relate the quantities β, to the norms defined in Appendix A. First
of all a direct calculation shows that if *Po satisfies the Bogomolny equations, then
for smooth compactly supported u we have

Theorem 7.1. There is a positive number y = γ(k) such that the following is true.
For any monopole ΨQ of charge k and any smooth, compactly supported section
u which is L2 - orthogonal to TψQMk we have
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Proof. The proof is an adaptation of the proof of a result of Taubes ([Tau83]) which
is given as Lemma A. 3 in our Appendix A. The crucial new input is Theorem A. 10.
The result follows from the following two lemmas:

Lemma 7.2. Let ul be a sequence of smooth^ compactly supported sections which
have the property that (μ\n)L2 =0 Mn G TψQMk. Then for each monopole ΨQ
there is a number y(Ψβ) such that

Proof. First of all recall from Lemma A. 3 that 2 is a Fredholm operator from
> L2. Now consider a minimising sequence with the properties

(i) |W|I2 -> 0,
(ϋ) |κVo = ι>

(iii) (ui,n)L2

We first of all show that there is a number y(Ψ^) with the required property by
using this sequence to produce a contradiction to Lemma A. 3. We then show that
the dependence of y on the background configuration can be removed. To obtain
the contradiction we introduce a new sequence

if = u* + rί where (tf,/ι)y0 =0 V n e TΨoMk

so that ri = ^2(tf9nμ)nμ. Notice that on account of the third condition on the ul

that vl φO. There are two possibilities - if \vl\ψQ ^ ε > 0 as i — > oo, then we can
renormalise to produce a sequence such that:

(i) \9v*\# -> 0,

(ϋ) \&\Ψo = 1,
(iii) (Όi,n)#=Q VneTΨoMk.

This contradicts Lemma A.3 and is therefore impossible. The second possibility is
that \VI\ΨQ — > 0 as / — > oo. This is in fact impossible since we know from Theorem

A. 10 that we can write nμ = &fμ9fμ 6 L2, so that in this case

goes to zero in HψQ by Holder's inequality since \&*v\L2 ^ C\V\ΨQ. Taken together

this imples that \U?\ΨQ — » 0 which contradicts the second assumption. Therefore both
possibilities have been ruled out and so the lemma is proved.

Lemma 7.3. There exists a number y such that y(Ψo) ^ γ for all monopoles of
given charge k.

Proof. We prove this by first showing that γ(Ψa) is a continuous function on the
moduli space, and then showing that outside large bounded sets it is bounded below.
The existence of such a bound comes from the fact that as two monopoles separate
they look more and more like a superposition of two single monopoles. But for the
case of a single monopole 7(^0) = 7 is fixed by translation invariance. Therefore
we expect that for two monopoles the value of y will approach that of a single
monopole as the separation increases without limit. We will now be precise:
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Claim A.

y(Ψ0) = mf{\@Ψ0ψ\L2 : \φ\ΨQ = 10M)j2 = 0 V n G TψQMk}

is continuous.

Proof of Claim. This follows from two facts. First of all we know from Corollary
4.2 that the process of projecting L2-orthogonal to TψQ(q^Mk is continuous with
respect to q. Also for fixed ψ G HψQ the functional \@ψ0ψ\L2 is a continuous function
of q. The result is now immediate.

Claim B. Let #, —> oo be any sequence of monopoles tending to infinity on A/2,
then there exists a universal y > 0 such that

yCFote)) ^ r > o.
Proof. We will derive a contradiction to the possibility that K^ofe)) ~^ 0. If
this were so we would have a sequence of sections ul

9L
2 -orthogonal to the zero

modes of Ψ'ofeX with Iw1^^.) = 1 and \^w0(qi)tf\L2 —» 0. Now it is known from
Theorem A. 11 that there are sequences of points xf and gauge transformations
gf G C°°(R3;SU(2)) such that Pl = ρ(g<f)(Ψi

0( -xf) converges, subsequentially,
to a Ar/-monopole Q in the following sense - on any compact subset of R3 all
derivatives converge uniformly. We will refer to the well-separated ^-monopoles
as the emerging monopoles for the sequence, since as the sequence goes outside
larger and larger compact sets on Mk the solution looks locally more and more
like a superposition of well-separated monopoles. This picture of the asymptotic
behaviour of the moduli space is discussed in [AH88, page 24] and [Tau85]. Ap-
plying these same translations and gauge transformations to ul we obtain a sequence
wl,L2-orthogonal to all the zero modes of P1

9 such that \wl\Pi = 1 and

\9pirf\L2 -»0. (7.1)

Now using the uniform convergence Pi —> Q on compact sets we can deduce that w*
is uniformly bounded in HQ(K) for each compact set K, where this is the Sobolev
space obtained by completing the smooth sections C°°(R3);sw(2) ® H) with respect
to the norm obtained by restricting | \Q to K. By a diagonal argument we obtain
a subsequence which converges weakly to a limit w in HQ(K) for each compact
set K. We next need to show that we may assume that w φ 0 - this is because as
discussed above outside sufficently large compact subsets the moduli space consists
of collections of monopoles at large separations from one another. Furthermore, in
between these emergent monopoles, as we called them above, it is known from
Taubes' cluster theorems (see [Tau85, Section C]) that F and DΦ decrease to zero
with a Coulomb tail. Therefore if all the minimising sequence w' were concentrating
away from the emerging monopoles as / —> oo we would contradict 7.1 on account
of Eq. A.22. Therefore the sequence must be accumulating in the neighbourhood
of one of the emergent monopoles and without loss of generality this may be taken
to be Q. We next claim that the limit satisfies @ψ0w = 0. Since this is an elliptic
equation we only need show that w is a solution in the weak sense, i.e. for all
compactly supported smooth test functions s
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But by Rellich w' — > w strongly on compact sets, so this follows from ^PIW
Z =

0. But also we can deduce from the strong convergence on compact subsets that
\w\HQ(K) ύ 1 for all compact sets K and therefore w G Hq(R3) so w = n e TgMk.

This then gives a contradiction to the fact that w1 were orthogonal to all the zero
modes of Pl via Corollary A. 12.

From Theorem 7.1 follows the fact that Q\ -f- Qι -h βs is a good norm for the
solution. We now state this using the spaces //r,«p0 defined in the Appendix A.

Theorem 7.4. Let t — > Ψo(t) = (a(x\ t\ φ(x\ t ) ) be a curve in one of the local solu-
tion spaces. Then there is a number k, depending on \Ψ^\ψQ and \Fa\ψQ, such that

for (ψ9ψt)€ (Hι,Ψo n^2) Φ (#2,y0 ΠL2) with ψ being L2 orthogonal to TψQMk, we
have:

Proof. From the previous lemma we know that

where κ\ = max(l,y~2) and γ is as in Theorem 7.1. Now (&\l/)t =

τj[άj,ψ] H- [0,̂ ] so we get

by an application of Lemma A.4. But since \φt\
2

L2 ^ 2Qι we obtain

Next we notice that by the previous lemma

Σ
ι=l

so that using the identity

we see that

To complete the proof we apply these commutator arguments to if/ and ψ", noting
that ψ" — <£t*\l/' is automatically L2 -orthogonal to TψQMk and so the previous lemma
can be applied to obtain information from Qτ> .

8. Proof of Main Theorem

We are now in a position to prove that the asymptotic expansions do indeed provide
a good approximation to the full equations for small ε. The idea is that we can
produce local solutions with a continuation theorem with respect to a norm which
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is equivalent to Q\/2 + Q1

2

/2 + β3

1/2. But the identities of Sect. 6 then allow this

solution to be continued for times of O ( | J. Let us introduce the following norms:

-f

where ΨQ(U) = (a(0)9φ(0)) is the initial monopole. As above we will write Ψv(t) =
y0(*;*(0) = (α,Φ).

Theorem 8.1. Consider the system of equations

ψtt + Lψo(t)ψ = -ΨQ- εSVo(0(δ,β0) + ε2/

-Aaάo + [φ, [50, φ]] = 2[άk,ak] + ε/0

derived in Sect. 5, w/fλ miϊ/α/ data ^(0),^/(0),Z(0) satisfying:

(i) ιA(θ)eL2,
(ii) OKO),Λ)L2 = 0 V« G

(iii)

(iv)

//zere exist numbers ε*,7Ίoc, depending on Γ, such that for ε < β*,ί < Γιoc

^ΛΓM'ίΛ' α unique solution which satisfies the following bounds:

(a) ||<K7ioc)l!ι + ||Z(Γloc)||3 g Γ,
(b) ίAere exwί numbers A(Γ\B(Γ} such that

The solution has the following regularity: the maps

t l-> UQ G

ί ̂  (Z,Z) G C^O, Γloc) Θ C(0, Tux.)

strongly differ entiable, while the maps

αr^ continuous. The solution satisfies the identities given in Sect. 6 and also the
orthogonality conditions

(i) GM^O V«G7V o ωM*,

(ii) Vα(0 S(ί) -f [φ(t\φ(t)} = 0 a.e.

Proof. This is given in Appendix E.
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Now to prove the theorem we use the identities of Sect. 6 to obtain an a priori

estimate which allows us to continue these local solutions for times of O ( j> j with

bounds independent of ε.

Lemma 8.2. Consider a local solution given by the previous result. Then the higher
order energy defined by

satisfies

Q(T) ^ β(0) 4 cβ1/2(Γ)(l -h βc(Γ))

Proof. We start off with some observations on the size of q and its derivatives for
these solutions. From Eq. 5 we see that using Lemma 3.5 and the result given in
Appendix B that

while if we differentiate this equation we see that

Given this we can estimate the terms. Most of these are done in the obvious fashion
- the crucial point is that the nonlinear error terms are estimable using only the ^o
norm (see Appendix B) and the linear terms are estimated as

\f(ψ9ΨQ)dx\ ^ \ψ\L6\\Π(Ψ0)\L6/5 ,

where we use the fact that since ΨQ G TψQMk we can apply Lemma 3.5 to obtain

77(^0), the component of ΨQ which decays rapidly according to Lemma 3.5. Here
we have used the fact that

(ψ,n)L2=Q VneTΨoMk9

so the other component of ΨQ drops out. The other terms are treated using Lemma
B.I from the second appendix, together with the observations above on q.

We can now prove the main theorem. We will search for solutions satisfying

β1/2(0 ^ L (8.1)

for suitable L, with the initial data satisfying β^2(0) ^ / < L. By the local ex-
istence theorem for a short time condition 8.1 will certainly hold by continuity.
By Lemma 7.4 there exists a K = κ(L) such that ||tKO||ι ^ κ~lL. So we get a
corresponding solution from the local existence theorem which will satisfy

0(0 ^ 0(0) 4- cβ1/2(00 4 εc(κ-lL» 4 εtc(κ~lL) .

From this we see that in fact β1/2 ^ L for a time of order ~ and so the solution
can be continued throughout such a time interval by successive application of the
local existence theorem. To complete the proof of the theorem we observe that by
direct calculation our solution will satisfy the gauge conditions which were required
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in Sect. 5 and therefore our solution will be a solution to the Yang-Mills-Higgs
equations of the required form.

Remark. The solution is expected to be unique up to gauge invariance.

A. Appendix A: Some Basic Facts

In this appendix we collect together various definitions and results, mostly due to
Taubes, needed in the paper. Unless otherwise stated all norm and integrals are for
R3. First of all we introduce the function spaces used in this paper:

Definition. Let ΨQ = (a, φ) be a monopole configuration. The Hubert space HψQ

is the completion of the smooth, compactly supported sections Γ(su(2) ® H) with
respect to the norm

The Hubert space Hr\pQ is the completion of the smooth, compactly supported sec-
tions with respect to the norm

where α is a multi-index. Finally we will use the following notation for the induced
norm on bounded linear functionals of HψQ:

uΨo

Kato's lemma (see [JT82, Sect. 6.6]) gives a connection between the ordinary
Sobolev spaces and those defined with covariant derivatives:

Lemma A.I Let Ψ be a section of a smooth section of a vector bundle on
Euclidean space with smooth connection a. Then

f\V\Ψ\\2dx ^ f(DaΨ,DaΨ)dx . (A.1)

Proof. See [JT82].

This leads us to the following gauge invariant Sobolev inequalities

Theorem A.2.

\Ψ\L* ^

Theorem A.3. The operator &ψQ = —τJVa + [</>, ] is a Fredholm operator from
HψQ to L2 with 4k dimensional kernel TψQMk when ΨQ represents a k-monopole.
There is a number γ(Ψo) such that

\Ψ\ψQ £ y-l\®ψQΨ\ι2 (A.2)

for any ψ G HψQ such that (^, w)«p0 = 0 for all n G TψQMk
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Proof. See Lemma 7.6 in [Tau83].

Lemma A.4. Let ΨQ = (a,φ) be a configuration in which \φ\ — > 1 uniformly as
\x\ — > oo. Then there exists a number M(Ψo) such that for any \l/\,\l/2 £ HψQ, and
any <5,ε<E 1,2,3,4,

Ψo\ψ2\ΨQ , (A.3)

ΨQ (A.4)

The number M(Ψ$) depends only on the measure of the set on which \φ(x)\ < |.

Proof. See Lemma 6.6 in [Tau82].

Lemma A.5. Let u € Lp(Rd) and Vw e Lp(Rrf) wftλ / ? > < / . 7%^ w decoys' ww/-
formly to zero:

lim sup \u(x)\ = 0 . (A.5)

See Lemma 7.5 in Chapter three of [JT82].

Lemma A.6. Let u and v be smooth functions, both decaying uniformly to zero
as \x\ —> oo, and that u is positive. Assume further that q is a smooth function
which is exponentially decaying

\q(x)\ ^ Mιe-
σW . (A.6)

Finally assume that

l-v)u^\q\. (A.7)

Then for any δ > 0 there is a number M(δ) such that for sufficently large |jc|,

|ιι(jc)| ^ M(o)e-«-**W 9 (A.8)

where m = min < 1 + έ, σ \.

Proof. The proof is as in chapter three of [JT82]. We consider a comparison function

s = cM^e-^ . (A.9)

Then choosing m < σ we can ensure that for sufficiently large \x\9

As ^ m2s-c\q\ . (A.10)

Thus we obtain for w = u — s:

-Aw + (l + I) (1 - t?)w ^ (m2 - (l + I) (1 - υ))s - c\q\ + \q\ . (A.ll)

Now for sufficently large |jc| we can ensure that |t;| < έ, and thus that if c > 1

and m < (l + | J then
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-Aw + (l + (1 - υ}w ^ 0 . (A.12)

Thus to complete the proof we just have to apply the maximum principle to a
region \x\ > R(δ) and choose c large enough that \u\ < s on \x\ = R(δ).

Theorem A.7. Let a be a smooth connection on a vector bundle over R3 and
assume the associated curvature is square integrable. Let u be a smooth square
integrable section of E which satisfies an equation of the form

where A is a matrix with square integrable entries and v is square integrable. Then
\u\ G Z/'2(R3)/or 2 ^ p ^ 6; in particular \u\ and its first and second derivatives
are all square integrable.

Proof. See Chapter five, Sect, seven in [JT82].

We next discuss some elliptic equations which turn up frequently in the paper.
First of all we will discuss the equation

for a fixed background ΨQ = (a, φ).

Theorem A.8. Assume that f is an su(2) valued function such that

(a) |/(/,ιO| S |/ΓMy 0 , (A.15)

(b) | / | G L 2 , (A.16)

(c) / G HStΨQ for some s ^ 0 , (A. 17)

then there exists a unique continuous, solution to AΛ4 which tends to zero as
\x\ — > oo. It satisfies estimates

\u\2+S9Ψ, ^ c(\f\StΨQ9 |/r, |/|L2, |F|J+1,y0,|F|tf), (A.18)

where F is the curvature of a.

Proof.

Step One. The functional f\Vau\2 4- |[</>,w]|2 is a norm on HψQ, so since / defines
a bounded linear functional on this space we get by the Riesz representation theorem
an element u G Hψ0 such that for every υ G HψQ9

/(Vβ«, Vav) + /([</>, «], [φ, v]) = /(/, v) , (A.19)

so u will be weak solution.

Step Two. We next differentiate the equation to obtain an estimate in #2,ϊv S° let
«ι = (Vα),M, then it satisfies the equation

- (Vα ),'[%«]

(A.20)
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Now multiply this equation by w, and integrate by parts; the right-hand side is
estimated by:

I

^ \f\L2\Ui\ΨQ ,

and similarly for the fourth term. This leads to an estimate of the form

\«\2.r0 ίc(\f\*,\f\L2,\F\Ψo).

Step Three. We continue the process of the last section indefinitely to obtain the
stated estimate. We then know by A.5 that the solution decays uniformly to zero,
and the theorem is proved.

Remark. It is shown how to justify fully the integration by parts calculations in
these proofs in Sect. 5.7 of [JT82].

Example. Using Lemma A.4 we can apply this in the following two cases:

(i) If / = to,A] with g G HψQ9h G L2 .
(ii) If / - [/ι,[/2,/3]] with all /, G HΨo .

We also need to apply this to solving the equation

Here the associated quadratic form is \2u^2 which is only equivalent to the HψQ

norm on the subspace orthogonal to TψQMk. Apart from this everything works ex-
actly as in the previous theorem, as long as / satisfies the Fredholm conditions
(f,nμ)L2 = 0, on account of the following Lichnerowicz formula:

9*9U = -Δau - [φ9[φ9u]] + εtjk[Fjk,u] - τ*[(Va)iφ,u\ - (A.22)

This leads to the identical theorem in this case:

Theorem A.9. Assume that f satisfies the conditions in the previous theorem, and
is 1} -orthogonal to TψQM^, then there exists a unique, continuous solution to A.21
which is Hψ ̂ -orthogonal to TψQMk and tends to zero as \x\ — > oo. It satisfies
estimates

|«|2+s,n <Ξ c(\f\s,Ψΰ, I/I*, \f\L2, \F\s+,tΨo, |F|L2) , (A.23)

where F is the curvature of a.

Theorem A.10. Let n G TΨoMk, then there exists f G L2 Π HψQ such that

Proof. The existence of such an / G HψQ is immediate from the results just given.
We have to show that / G L2. We know that [(/>,/] G L2, so we have to investigate
φ /. The crucial point is the equation:
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We would now like to estimate the decay of the solution as |;c| — » oo. The first
term is easy as it fits into the set up of Lemma C.I, but the second term has to be
treated carefully. On the face of it it only decays like \x\~2, and we cannot apply
Lemma C.I. However the situation is in fact much better. To see this notice that
if u is the solution of

τ^djU = φ n ,

then applying τ'δ, to this we get:

-Δu = Jφa)iφ n=F since 9ψn = 0 .

Now in this Poisson equation the inhomogeneous term F = 0(|*|~4), and also each
component is a derivative since F = τ'd^φ n). Therefore by Fubini we can write
the integral as an iterated integral and deduce that the integral of F is zero. This
allows us to apply Proposition 6.4.6 in [JT82] to deduce that

for any r € (0, 1 ). Combining this with the estimates in cases A and B of Lemma
C.I, we find that φ / is square integrable and the result is proved.

The next result is from [AH88]:

Theorem A.ll. Given an infinite sequence of k-monopoles Ψ*Q, there exists a par-

tition k = Σ«.=\k<* with &α > 0, sequences of points xf and gauge transformations
gf G C°°(R3; SU(2)) such that

(i) p(gf)(Ψl

Q( —xf) converges, subsequently, to a krmonopole in the following
sense - on any compact subset of R3 all derivatives converge uniformly.

(ii) As i — > oo the distance between xf and xf tends to oo while the direction of
o

the line joining xf to xp

t converges to a fixed direction.

The proof ([AH88, p. 24]) of this uses the compactness theorems of Uhlenbeck
([Uhl82]) in the form given in [Tau82, Part one, Theorem 5.6] and the argument
given in [Tau85, p. 527]. The following corollary tells us that there is a one-to-one
correspondence between the zero modes of Ψ*Q and those of the £α-monopoles into
which it breaks up for large /:

Corollary A.12. In the situation of the previous theorem let P* = p(0?)(¥o( -xf)

and let Q be the k\-monopole whose existence is assured. Let {qμγμl^ be an
orthonormal basis for the zero modes of Q. Let pR be the cut-off function defined
as follows: p is a smooth, positive, radially symmetric, bump function equal to
one for \x\ ̂  ^ and decreasing monotonically to zero for \x\ ̂  1. Now rescale
PR(X) = p(x/R) Then for large R the projection in HPι of the pRqμ onto the space
of zero modes of PI has dimension 4k\.

Proof. As in [Tau83, Lemma 9.11] we look for a zero mode for Pi of the form

4

so that vl

μ satisfies the equation

μ - τkdkpRqμ .
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The idea is to show that \vl

μ\Pi is small for large i and therefore the rl

μ are linearly
independent, since for large R the pκqμ are. There exists a solution to this equation
which goes to zero as |jt| —> oo by Theorem A. 8. This is true for any i - however
there is nothing to guarantee the linear independence of the rμ yet. This is where
we use the previous theorem. The basic estimate for the previous equation gives us

where the last line uses \q\ = O(\x\ 2), and the Poincare and Kato inequalities. Now
let ε be any positive number. Then the first term in brackets can be made less than
ε/2 for large R. Fix this value of R, then the second term can be made less than
ε/2 by choosing / sufficently large on account of the uniform convergence of Pl to
Q. We therefore deduce that for large /, |t?jJPι gets small and therefore if qμ is an

orthonormal basis then rμ are linearly independent for large i since

where ε(i,R)μv —> 0 as i — » oo and R—*oo. This completes the proof.

B. Appendix B: The Error Terms

If we write the equation for ψ in the form

We write j = (jiJ^hJ^) with, for i = 1, 2, 3,

ji = - 2[50,ά«] + [Sj,[aj,<*iϊ\ + [5/,(Vα)y5f] + (Vβ)y([α/,5I ])

- ε[J0, 3f5/] - ε^([α0, 5/]) - ε2[50? [#o, α, ]]

+ ε2[αy , [αy , 5<]] -h ε2[α0, δ/α0] - ε4[α0, [50, α, ]] ,

74 - - 2[αo, φ] + [ft, [ft, φ]] + [*, (Vβ), φl + (Vβ)χ[5/, φ])

- 870

If we write the equation for ao as

-( Vβ)/( Vβ)/db + [φ, [άθ9 φ]] + 2[ah

then the error term 70 is given by

7o = ~ [5, ,5ί^] - [Φi,Φt] + e[5/,(Va)ifl0] + e(Ve)/([a/,50]) - ε[φ,[
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We need the following estimates for the error terms:

Lemma B.I. Assume that (\l/9\l/t) £ H^ψ0 Θ//2,«p0

 an^ (0o»5o>0 £ H^

2 + \jo\L2 ^

|Vα/0|L2 ^

L/Ό|*,y0 = c(\Ψt\ι2> \Ψ\ψQ + εl«ok0

Proof. We use Holder's inequality and Lemma A.4. The only subtle point is that
in the use of Lemma A.4 we lose a derivative so that we need to do something
different to estimate those terms with the highest number of derivatives. What we
do is use Sobolev's theorem which ensures that ι^,5o £ L°° and then estimate

and similarly for the other terms.

C. Appendix C: The Green Function Estimates

In this section we derive estimates for the Green function for the operator τj'dj.
This Green function G(x, y) is easily seen to be

This means that τldiG(x,y) = — δy.

Lemma C.I. Let u, f be smooth quaternion valued functions which decay uni-
formly to zero as \x\ — > oc and satisfy

ϊdju = f , (C.2)

then

Case A. If f = gh where \g\ G L6 and

then for any positive ε there is a number c(ε, \g\L69M) such that
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Case B.
M

then there exists c = c(M) such that

I , M * C(M">|MWI = (ΓTMP

Case C.
M

ff(y)dy = 0 and \f(x)\ <, ,

then for any positive ε there is a number c = c(M,ε) such that

, , c(M,ε)
\U(X)\ = „ _^_ \χ\\3-ε '

Remark. No attempt has been made to be either general or sharp in this lemma.

Proof. In all three cases we will split up the integral into an inner region 7 =

< y : \x — y\ < -U > and an outer region O = < y : \x — y\ > U >. Notice that on

account of the inequality

\y\ > -U in the inner region. For Case A we estimate the integrals as follows:

rl0IW^.y r l^l l^l^y ίr o\
ί \x - y\2 +l\χ-y\2

c ' x 5/6

(C.4)
o

where we choose p = 3/2 + δ and

1 1 1 ,
- + - + - = 1 .
6 p q

For sufficiently small δ this will give the result. For Case B we proceed similarly:

i\X-y\2 J

0\x-y\- 2

(C5)
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Finally for Case C we take advantage of the fact that // = 0 to write the
solution as

Φ) - (4.) ( f f ( y ) (ΐHp - £P ) dy + //ω (τ~& - ωO\ι \ F ~ 7 I Fl / o V x — y\ \x\ /
]τi

The inner integrals can both be easily estimated as £Ξ ——c

 3 since |j;| ^ \x\/2
(I + \x\)

in the inner region. For the outer integral we use the following identity:

(Xj - yj)\xf -Xj\x - y\3 = (*/ - yj)\x\2(\x\ -\x- y\) + 2x y\x - y\(xj - yj)

- xj\y\2\x -y\+ yj\x - y\(2x y - \x\2) .

This allows us to estimate the outer integral as

< c_ f\y\\f(y)\dy + ̂ _ Λy\\f(y)\dy + _c_ f\y\2\f(y)\dy
~ \x\J

0 \x-y\2 \x\2ί \x-y\ \x\2ί \x - y\2

c
(C.6)

Λ|" ~'r \ |Λ| ' "!f J

where
1 I I Λ Λ , 3 I I

q > !,- + - = ! and q >-,— + — = I .
p q 2 p' q'

Now we choose p large and 3 — p1 small to obtain the desired estimate.

D. Appendix D: Asymptotic Behaviour of Monopoles

In this section we give a proof of an assertion in [Hit83] which is attributed to
unpublished work of Taubes. The proof is an application of the ideas in [JT82].

Theorem D.I. Finite action solutions with monopole number k of the Bogomolny
equations with boundary conditions

\φ\ —> 1 as \x\ —> oo

automatically satisfy the following boundary conditions (for any ε > 0):

~

.

Proof To start with it is proved in [JT82] that \Dφ\ = O(|;c|~2). To improve this
to the first statement we use the identity
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Aw = -g where w = -(I - \φ\2)g = \Dφ\2

from which we obtain the following formula:

kx

Then since \g\ = O(\y\~4) we can apply case C of Theorem C.I to obtain

but since Vw = —(φ,Dφ) and the transverse component of Dφ is exponentially
decaying this gives the result.

To obtain the second statement we notice that since f\Dφ\2 = 4πk we can write

Now we know that

We treat these two terms separately - for the radial term . ^ _4 we can solve the

Poisson equation explicitly, to find it contributes i&2|jt|~2 to w. For the second
term we can apply Theorem 6.4.6 of [JT82] to show that this also contributes a
term of O(|x|~2) to w. This completes the proof of the second statement.

Finally for the third statement we have to consider the effects of angular deriva-
tives Ω = x\^2 — X2d\. We use Eq. D again, and the formula

and since we may evaluate directly the effect of the radial term we may assume
that g = O(\x\~5+ε). But then an examination of the proof of Case C of Theorem
C.I shows that the second term in the formula for Vw contributes O(|x|~3). Finally
taking angular derivatives we find the effect of the first term vanishes:

M3 W3

and we end up with the result we wanted.

£. Appendix £: The Local Existence Theorem

In this section we explain how to prove the local existence theorem. The approach
is via a very standard iteration scheme, and since the method is very similar to an
analagous proof in [Stu] we will be brief. We want to construct solutions of the
system of equations:
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= ΨQ- ε@ψQ(dta0) + ε2/ ,

+ [φ, [ά0, φ]] = 2[άk, ak] -f β/o >

To solve these we set up an iteration scheme as follows: for initial data for ψ^
iterate we take a smooth compactly supported approximation of ψ(Q,x)9ψt(Q,x) sucn

that

where δ can be taken arbitrarily small, while for Z^ we take

Z(z)(0) = Z(0) .

For the initial iterate we take

) = ιA(0)((U), 40)(ί,^) - o, z(0)(o - z(θ) .
We then produce successive approximations by solving the equations

[φ

where ψ$> = (ef '\φW) = f0(9(0) + εZ«). The first equation is solved by means
of Theorem A.8, while for the second we need the following:

Lemma E.I. Let Ψ0 = (a,φ) be a fixed monopole configuration, and consider the
equation

φtt~Aaφ + [φ,[ψ,φ]] = f .

Assume that

I I/I2 + ΣI(Vαλ /|2 + ΣI(Vα)/(Vfl);/|2 < 00 ,
R3 ί ij

and that t — * f(t) is continuous with respect to the topolgy defined by these norms.
Assume that the initial data is smooth and compactly supported. Then there exists
a solution which satisfies
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ΣI(Vα)! /|2
0

1/2

Proof. See Sect. 3(b) of Chapter Five of reference [JohSl] for example. In applying
(Vα)ϊ to the equation to obtain the higher order energies commutator terms appear
which is what makes the final term on the right-hand side necessary.

The iterates are now well defined. The crucial step in proving the local exis-
tence theorem is obtaining uniform bounds on the iterates. Once this is done it is
straightforward to show that the iterates are a Cauchy sequence.

Step One. Uniform Boundedness. The uniform bounds come from the following
result:

Claim. Given a positive number Γ, there exist numbers A(Γ),B(Γ) such that the
following is true: assume that for j g / we have bounds

^ Γ, ||47)(Γ)|| g 2A(Γ\ ||Zω(Γ)|| ^ Γ, max |^J/\ΨQ ^ 2B(Γ),

(E.I)
then for the (/ -f 1 )th iterate we have

ll^'+I)(Γ)ll ϊ^ + δ-

max
0<t<T

Proof of Claim. Let us consider first the #o equation. From our assumptions on the
previous iterates we can estimate the O(ε) term by:

By our assumptions on ZJ\j ^ / we have an estimate of the form

l^o° ~ *Ό(0)|tf + \Ψ$> - y0(0)|r,!Fo(0) ^ eίc(Γ) , (E.3)

from which we can estimate the term

[Ψ(i\ [5(o°, φ(°]] ~ W>(0), [a®, ψ(0)]] . (E.4)

Finally we have a bound for the norm of 2^[α,5] which gives the required

estimate for a^+l\ In an identical fashion we get the other estimates. The estimate
for ψtt comes from the equation. Now by choosing ε, T sufficently small we find that
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the (z-h l)th iterates obey the bounds in E.I. These bounds imply further bounds
by differentiation with respect to time. This gives uniform bounds for \φm\L2 and

|5& K and Z(i\

Step Two. Convergence of the iterates. Having obtained these uniform bounds the
convergence of the iterates in the norm

^+ ||α~o(0||2 + ||Z(ί)||3 + max | o ( 0 ) (E.5)

follows in the usual way since the inhomogeneuous terms are Lipshitz with respect
to the norms || | |/ (see e.g. [Stu].) By using the equations and their time derivatives
we can deduce from this the convergence of the iterates measured by

- IIZ^IU 4- II7^IU fF Mz-ί 3 ι̂  11^ 3 \ /

Step Three. Properties of Solution. The uniform bounds on the higher time deriva-
tives then ensure the stated regularity properties with respect to time. By writing
down the corresponding versions of the energy identities of Sect. 6 for the iterates,
and then taking the limit, we deduce that the solution satisfies those identities. Di-
rect calculation shows that the gauge orthogonality condition is preserved by the
equations, as are the condition (ψ,nμ)L2 = 0. (Indeed the equation for Z was chosen
exactly such that this is so!). Notice that while we do not prove estimates for |ι/ΊL2,
we know that as long as the initial data is square integrable then so is ψ since

\ψ(t)\L2 ^ \ψ(0)\L2 + f\Ψt(t)\L2dt. (E.I)
0

Thus the condition (ψ,nμ)L2 = 0 makes sense.
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