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Abstract: We analyze the Schrόdinger equation iε2-j-tΨ — H(ε)Ψ, where H(ε) is the
hamiltonian of the molecular system consisting of nuclei with masses proportional
to ε~4 and electrons with masses of order 1. Using the Born-Oppenheimer method
we construct the leading order asymptotic expansion to the exact solutions of the
equation. We show that if the particles interact through smooth potentials decaying
suitably as the distance between particles tends to oo, then the expansion holds
uniformly for all times t e [0, oo). By similar analysis one can show validity of the
expansion for t € (—oo,0], thus our results hold for scattering theory.

1. Introduction

This work is devoted to the analysis of the dynamics of molecular systems. By
molecular systems we mean quantum mechanical systems consisting of two types
of particles: heavy (further referred to as nuclei) and light (electrons). It is known
that for such systems the task of solving the Schrodinger equation becomes quite
difficult, one of the reasons being the large number of particles involved. Therefore
one usually resorts to an approximation.

In 1927 M. Born and R. Oppenheimer proposed an approximate method of
solving the time-independent Schrodinger equation. It proved to be very useful
and became known as the Born-Oppenheimer approximation. The main idea was to
exploit the disparity between masses of nuclei and electrons. Born and Oppenheimer
postulated to use the fourth root of the ratio of electronic mass to nuclear mass as
a small parameter ε and seek approximate energy levels and eigenfunctions of the
molecular hamiltonian in forms of power series in ε. However, their calculations
were only formal and, quite surprisingly, there was very little rigorous work done on
this subject until late 1970's. Then Combes, Duclos, Seiler [1-3] and later Hagedorn
[8, 9] proved that the Born-Oppenheimer series is asymptotic to the exact solution
of the Schrodinger equation to arbitrary order in ε. Recently Klein et al. [11] showed
similar result for polyatomic molecules.
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The time-dependent Born-Oppenheimer approximation, which describes the dy-
namics of molecular systems, rather than energy levels, has been first rigorously
formulated by Hagedorn [6] in 1980. The principal idea is similar to the time-
independent case. Because of the disparity in masses, the electrons move much
more rapidly than nuclei. For short times we can approximately find their motion
by treating nuclei as fixed. On a longer time scale the electrons quickly adjust their
motion to slowly varying position of the nuclei. Therefore we can use the adia-
batic approximation to describe the dynamics of electrons. On the other hand the
electrons generate an effective potential in which the nuclei, because of their large
mass move semiclassically. These two approximations, adiabatic for electrons and
semiclassical for nuclei, are however coupled to each other. In order to separate
them we use so-called multiple scales technique, which will be described later.

Using this method and a certain semiclassical technique [5], Hagedorn [7] an-
alyzed the dynamics of molecular systems with smooth potentials, on finite time
interval [0, T]. He proved that solutions to the time-dependent Schrόdinger equation
have asymptotic expansions of arbitrary order in ε, but his estimates depend on T
and therefore cannot be used to analyze scattering problems.

In this work we extend the ideas of Hagedorn [7] to show that the leading order
asymptotic expansion obtained in such way is in fact uniform in time for t G [0, oo).
We restrict our attention to diatomic molecules and require potentials and their
derivatives to decay sufficiently fast as the distance between particles increases
to oo. By mimicking our proofs one can show uniformity of the expansion for
t € (—oo,0]. Therefore our results justify use of this expansion in treating scattering
problems.

The case of Coulomb potentials has been investigated by Hagedorn [10]. He
proved a result similar to the smooth case, but again, for finite times only. We plan
to analyze this problem in the context of scattering theory in the near future.

Finally, we mention the work by Klein, Martinez and Wang [12], who analyzed
the Born-Oppenheimer approximation for wave operators. They also consider a
diatomic molecule with smooth, short-range potentials. Their technique is, however,
very different from ours since they consider the time-independent scattering theory.

This paper is organized as follows: in Sect. 2 we specify our choice of coordinate
system and introduce necessary notation. We also define so-called semiclassical
wave packets which we later use to describe the motion of nuclei. In Sect. 3 we
investigate the asymptotic behavior of the eigenvalues of the electronic hamiltonian
for small ε and large intercluster distance. Our main theorem is stated in Sect. 4.
This section also describes the multiple scales technique which allows us to decouple
the semiclassical and adiabatic aspects of our problem. Finally, the last section
contains the rigorous proof of the theorem.

2. Notation

We consider a diatomic molecule with N electrons. The masses of nuclei are
ε~4 and the masses of electrons are 1 (we rescale the coordinates if neces-
sary). We want to analyze the particular scattering channel where the molecule
splits into two clusters each consisting of a nucleus and a certain number of
electrons. For this cluster decomposition {CΊ,C2}, where C\ — {!,...,^Γ(1) -f-1} ,

ΛΓθ) electrons, 1 nucleus
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C2 = {K(l"> + 2,... 9N + 2} , we introduce the clustered Jacobi coordinates [13].

KW=N—KW electrons, 1 nucleus

Indices 19K™ + 2 refer to the nuclei. Indices 2,.. .9K™ + 1, A™ + 3,... ,7V + 2 re-
fer to the electrons. Then ξ^\...9^l)9ξ^\...9ξ^2 ^ are the internal coordinates
for the clusters (the upper index refers to the cluster), ζ is the coordinate between
the centers of mass of the clusters, and R is the total center of mass coordinate.

In particular we choose ξ's so that ζ*ι\ > 9 ζ ^ ( i ) _ l 9 (resp. ζf\ 9ζ^ (2)_ι) involve

only electrons and <^i), (resp. ^2>) is the vector from the center of mass of all
electrons in given cluster to the nucleus of the cluster (see Fig. 1). This choice sim-
plifies the dependence of the potentials on ε (see the comment following formula
(2c) below).

(2)«ϊ

Fig. 1. An example of the clustered Jacobi coordinates (N = 6, #(1) = 4, K^ = 2). electron;

O nucleus

In these coordinates the hamiltonian becomes:

4 κ ( 1 ) ( I

y,

where μ(ε) and v^(ε) are rational functions of ε4 tending to nonzero constants as
ε-+0.

We remove the center of mass motion and rescale ζ, so that:

(1)

where:
V =

F^^^ is the interaction within j-th cluster, V^ε is the intercluster interaction. Ex-
plicitly:
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Σ vv Σ AW + Σ r
V t=l ' i=2 t=l

Σ ^ Σ / 4 2 ) 4 2 ) + Σ
/<y^^+2 V k=\ > 1=^(0+

2 J^(/)

Σ ^te + Σ Σ Λ x Γ - (2c)

Here τ[ % μ^\ and μ[ obviously depend on ij and our choice of Jacobi coordinates.

One can also see that τj^ equal zero or constants for k — l,...,^(/) — 1. τ^/} are

rational functions of ε4 that approach constants as ε — > 0 or tend to 0 like ε4. μk

and μ^7) are ε-independent.
Vij are the two body potentials depending only on the relative positions of the

interacting particles. We also assume that they are at least C3 and decay at infinity
according to:

\V(x)\ ^dO + MΓ1-*, (3a)

\dχiV(x)\ ^C2(H-WΓ2-5, (3b)

\dχldχJV(x)\ ^ C3(l + *\Γ3~δ , (3c)

|̂  ̂ ^F(x)| ^ C4(l -h |x|)-4-' , (3d)

for some constants Cι,...,C4 and δ > 0. We will use the following notation:

(4)
ί=ι ί

(5)

4

Then we can write the hamiltonian H as a sum of nuclear kinetic part — ^-Δζ and
so-called electronic hamiltonian h£(ζ), where:

Hh

= hD + ε4Z)(ε) + rDf(ζ, ξ(l\ ί(2)) . (6)
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Here we used the obvious abbreviation:

1 2

ε4D(ε) = -rΣ ε - v / (0 ,
2 /=!*=!

To complete the notation we define so-called semiclassical wave packets [5],
which will be used later to describe the motion of nuclei in the potential given by
E(x).

Definition. Let A, B be complex 3 x 3 matrices such that:

A and B are inυertible , (7a)

BA~l is symmetric , (7b)

ReBA~l = -[BA~l +(BA~~1)*} is strictly positive definite, (7c)

1)-1 =AA* . (7d)

a e IR3,/7 e IR3,ε > 0. ΓAe/i w

exp - - ' + , - . (8)

Let A+,B+ be such matrices and α+,^+ G R3,^+ΦO. Consider the system of
equations:

(9a)
dt

(9b)

(9c)

dt
dA(t)

dt
dB(t) _ „

dt ~~ (ί

where E' denotes the gradient of E and E" is the matrix of second derivatives
ofE.

One can show [5] that if E(x] satisfies conditions (3) then there is a unique
solution a ( t ) 9 η ( t ) 9 A ( t ) 9 B ( t ) to (9) satisfying the following conditions:

lim\\A(t)-A+-ίB+t\\ = 0, (lOa)
t—> oo

lim ||5(ί)-β+||=0, (lOb)
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limJ0(0 - a+ - η+t\ = 0, (lOc)

H m | ι K O - » / + l = 0 . (10d)

Finally we define:

(11)

Here the first two equations (9a, b) are just the Newton's equations with a(t)
being the classical path and η(t) - the classical momentum. Matrices A(t) and
B(t) describe "spreading" of the wave packet in position and momentum space.
Conditions (10) mean that in the limit t — > oo the dynamics of the interacting
clusters approaches that of the noninteracting ones.

3. Properties of the Electronic Hamiltonian

Usually the electronic hamiltonian is defined by formal substitution ε = 0 in (1).
Then it becomes an operator acting on functions of "electronic" coordinates ξ, de-
pending parametrically on the intercluster distance ζ. Our choice is slightly different.
We allow certain ε-dependence in the electronic hamiltonian, which we denote by a
subscript, as in h£(ζ) defined by (6). This is the result of our choice of coordinates.
By using the Jacobi coordinates we avoided so-called Hughes-Eckart terms in the
kinetic part, but we have to deal with ε-dependence of both the kinetic part of
the electronic hamiltonian and the intercluster interaction. The dependence of the

reduced masses vj^ on ε can be easily taken care of. One can see that Z)(ε) is
relatively bounded with respect to ho and therefore it is a regular perturbation. It
causes the eigenvalues and eigenvectors of hp -f ε4Z)(ε)-t- Vn,ε(ζ,ζ} to be smooth
functions of ε4.

Unfortunately ε also appears in the argument of the intercluster interaction. The
rest of this section is devoted to the analysis of behavior of the eigenvalues Eε(ζ}
for large ζ and small ε.

We assume that hD has a simple isolated eigenvalue ED with eigenvector φr>(ξ)
and that this eigenvalue is stable, i.e. there is a unique simple isolated eigenvalue
Eε(ζ) of hε(ζ) which tends to ED as |£| — » oo and ε — > 0. We denote the corre-
sponding eigenvector by φε(ξ, ζ).

In the following we assume that |£| is large enough and ε small enough, so we
can find y > 0 such that ED and Eε(ζ) lie inside the circle \z - ED\ — \ and there
is no other eigenvalue in \z — ED\ — J-

Lemma 1. Assume that the potentials satisfy (3). Let Pε(ζ) be the projection onto
the eigenvector φε(ξ, 0 associated with the eigenvalue Eε(ζ) of hε(ζ). Then:

ICIΓ2-* , (12a)

g C2(l + ICIΓ3-* , (12b)

^ C3(l + ICIΓ4-' , (12c)

uniformly for small ε, where δ is the same constant as in (3).
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Proof, a) From:

we get:

^ C4

^C5 sup
|z-£D|

where g(ξ):=(he(ζ)-z)-lφD(ξ). Note that sup|z_£flH(|pε(0 -zΓ'Hop)
is bounded uniformly in ζ for large ζ by our assumption on Eε(ζ).

Therefore, conclusion (12a) will be proved if we can show:

\\(dζiVn,e)g\\L2(^N,dξ} ^ C6(i + Kir2"* .

The eigenvector φD decays exponentially so it is in the weighted L2 space (L2

μ)

for arbitrary μ (i.e. \\φD\\μ := 11(1 + l^l 2 )* φMOIIz^) < oo). It is proved [14] (see
Appendix, Lemma A) that, for suitable potentials, (—A + V — z)~~l is a bounded
operator from L2

μ to L2

μ. It follows that g ( ξ ) is in L2

μ for any μ. In particular:

^ c7
for any μ > 0. Moreover, the constant Cv is (-independent.

In order to estimate \\(dζiVD,ε)g\\L2(iR.iN,dξ} we SP^ ^ζ^D,ε according to (2c).
We show calculations for the term where all τ'jS are nonzero. In other terms if one

/ A.\

or more of τ'jS are zero then the corresponding variables ξj appear only in g. For

example, if τ^ = 0, then we can do the integral with respect to ξ\l\ Note that

!/£<!) *(2) V
y Vs2 j '^(2)^ •

is in ̂ (]R3^-3?ί/(.α) ^^ This way we eliminate all the coordinates ξ for

which Γj — 0 and we are back to the general situation.
Hence we need to estimate:

We separate ξ^ in the argument of dζtVmn and call the rest u\, i.e

^(1)

«ι - <ε)C 4- Στ
4=2

and do the ξ [ l ) integral in (13). Let:

B\ ={y

B2 = {y \uι+y\ >Φι l>



136 A. Kargol

for some 0 < K < 1, and let χ\,χ2 be the corresponding characteristic functions.
Then:

For /2(wt) we note:

%r*l|jd(>'l)fy f'»'»(«l +3Ί

cis

x ||(1 + I τ ) - ,

x ||(1 + |t(

1

I)(εΓ1y1|
2Γ^ Hoc,

where || ||oo denotes the L°° norm in variable ξ^. Here ||(1 +

|τ(

1

I)(ε)- |

Λ|2r«||oo = l.
Also:

n S

— sup \(dnVmn(u\ +yι))| ^ Cg(l - f/c |wι | )~

Then:
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Now let's concentrate on I\:

\\χ\(yι χa{, Vmn(uλ

137

+ I + I

+ \τ\l\ε)yι

+τί1)(εΓ2|Ml|
2(l - fc2))-^1^,...,^).

One can show that (1 + τ(

1

1)(ε)~2(l — κ2)\u\ 2)~2 is bounded by const

• (1 + |t/ι |2)~2 for ε small enough, where the constant is ε-independent. Because
μ is arbitrary this term decays like an arbitrary power of u\\~l when \u\\ — » oo, in
particular faster than /2.

Now we take μ big enough, so that:

2-
Then:

, |

τ\l\ε)ξ(

1

{)))g(ξ , .

As a next step we separate ξ2 and follow a similar procedure, choosing:

κ\u2\} ,

where

After N steps we obtain:

To prove parts b) and c) we compute derivatives explicitly. In part b), for
example, we get:
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d?dζjPε(ζ)φD(ξ)

1

(Λe(ί) -

+ /

The middle term can be handled as in part a). To estimate the remaining two terms
we write VD^ as in (2c). Below we outline the procedure for a generic term Vmn.
We rewrite the integrand as:

τ(e)C+
ΛΓ")

k=ι

K(i)

k=l

-2-<5

k=\

x (he(ζ)

k=l

Here (/zε(C) - z)~lφo(ξ) 6 1̂  by Lemma A in the Appendix. If we denote:

g(ξ) = τ(ε)C
k=\ k=\

then Lemma B shows that g(ξ) is also in L2

μ. Thus the proof of b) is reduced to
showing that:

-2-δ

We use the decay properties of g(ξ) and dp Vmn to show conclusion b) exactly the
same way as we did for a).

Proof for part c) is similar to b). D

Remark. Martinez et al. [12] give a much shorter proof for a similar result (Theorem
2.2). However, we will later refer to our proof several times, hence we present the
estimates in detail.
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Corollary 2.
\(φD9Pε(ζ)φD)-l\ g

where
θ(ζ) is c2(i + i

and δ is as in (3).

Proof. Write Pε(ζ)φD as:

m\Z-ED\=y

The last term can be estimated as above in part a) of the proof of Lemma 1,
yielding:

2πW0H(

\-\-δ

In the middle term we note that D(ε) is relatively bounded with respect to hD, so:

1̂  / (hε-zΓlD(ε)(hD-zΓlφDdz\\

hD-zΓlφD\\dz

<, C4ε
4 Γ
\z-ED\=y

^C5ε4.

D

Now we denote:

Ee(ζ) = Eε(ζ) -ED= (^(OφMO?(ε4^)+ Vp,e)φp(ξ)) (M)

Using Lemma 1 and the above corollary we can bound the corrections to the energy
level.

Lemma 3.

for α = 1,2,3, where the superscript (α) means the partial derivatives of Eε of
order α wzϊA respect to the components of ζ.

Proof We use estimates:
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for α = 1, 2, 3, ε small enough, which follow from our assumptions on Vmn. The
proof of this is similar to the estimates in the proof of Lemma 1, part a).

Also, as mentioned above, D(ε) is relatively bounded with respect to hp.
To prove the lemma we compute derivatives of Eε(ζ) explicitly. For α = 1, for

instance, we get:

- (Pε(ζ)φD(ξ)9(dζtVDf)φD(ξ))

(Pε(ζ)φD(ξ),(ε4D(ε)

((φ

Then we use the Schwarz lemma, Lemma 1, Corollary 2 and the above estimates

on \\V$ψD\\Lι(dί}. Ώ

Remark. By a similar argument one can show:

\Ee(ζ)-ED\ ^Ce' + C'O + lίlΓ1-*.

4. The Born-Oppenheimer Approximation

Our goal, as mentioned in the introduction, is to construct the approximate solution
to the time-dependent Schrodinger equation, which is asymptotic to the exact one
in the leading order. We begin by stating our main result.

First fix 3 x 3 matrices A+,B+ and vectors a+,η+ e IR3,77+ΦO. By Lemma 3
and [5] there exists a solution aε(t),ηε(t\Aε(t\Bε(t) to the system (9) satisfying
the asymptotic conditions (10). Then we have:

Theorem. Let H be defined by Eq. (1),(2). Assume the potentials satisfy (3).
Also assume the conditions on ED and Eε(ζ) mentioned in the previous section are
satisfied. Let aε(t),ηε(t\Aε(t),Bε(t) be as above. Then the function:

lfc(& C, 0 = e^ φ(A£(t\ B£(t\ ε2, a£(t\ η£(t), ζ)

x [φε(ξ, C) + ίε2r(ζ)ηε(t) Vζφ£(ξ, C)] , (15)

where r(ζ) is the reduced resolvent of hε(ζ) at Eε(ζ\ is the 0-th order asymptotic
expansion of the solution to equation:

, t ) , (16)

i.e. the following holds:

||e"^^(ξ,ζ,0)-^(ί,ζ,0|| ^Cε (17)

for all t e [0,oo).

Our main tool will be the following simple lemma [7]:

Lemma 4. Let Ψ(t) be a differentiable vector-valued function, whose values belong
to the domain of H for all t G [0, oo). If Ψ satisfies:
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iε2Ψ = HΨ + λ ( t ) , (18)

where

\\λ(ί)\\ ^F(ί)ε3 (19)

for some F G Ll(K,dt\ then:

Cε, (20)

where C = $™ F(t}dt.

To prove our theorem we first formally construct the candidate for the approxi-
mate solution. Then we substitute it to Eq. (18) and calculate the error term λ(t).
Finally we show that the error term satisfies (19) and the application of Lemma 4
finishes the proof.

The details of these formal calculations have been shown in Sect. 3 of [7]. Here
we only briefly describe the method used and state the results.

We use the so-called multiple scales technique to separate the adiabatic and
semiclassical aspects of the problem. It consists in seeking the solution Φ(ξ,x, y, t)
of the higher dimensional problem defined by a formal change of variables from

(&C,f) to (ξ,x,y,t)9 where x = ζ,y = ^ ~ ̂ \ in the equation:

9 t ) . (21)

The result is:

+ iεηe(t) Vy + Ee(aε(t) + εy) + hε(x) - Ee(x)] Φ . (22)

We formally solve (22) assuming the solution in the form of power series in ε and
collecting terms of the same order in ε. This generates a formal solution and finally,

substituting back x = ζ, y — - — £ ^ we recover Ψ(ξ, ζ, t) - the formal solution
to (21). The explicit formulae can be found in [7].

For our purposes it is important to note that the only terms contributing to the
0-th order approximation are:

Ψo,e = ε-iφ(Ae(t),Bc(t), 1,0,0, y)φe(ξ,x), (23a)

Ψ&=ir(x)ηe(t)>VxΨ0f, (23b)

where r(x) is the reduced resolvent of hε(x) at Eε(x):

and Pε(x) is the spectral projector associated with the eigenvalue Eε(x). The func-
tion:

S(t) (

Φε(ζ,x,y,t) - eTe?3ίL^(Ψθf + e?Ψ& (24)

will serve as a candidate for our approximate solution. Note that upon returning to
our original variables ξ9ζ,t the function (24) becomes (15).
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5. Proof of the Theorem

We remain in the multiple scales framework and calculate the error terms in Eq.
(18) using the function (24). The result is:

- \Eε(aε(t) + εy) - Eε(aε(t)) - εyE'ε(aε(t)) - ^E'e'(

x [fot(y)<pe(M + &fos(y)φMx)]} , (25)

where:

My) = ε~l φ(Ae(t), Bε(t\ 1 , 0, 0, y ) ,

We begin analysis with the first four terms. They are basically of the form
fθέ(y) (or Vj,/o,e(.y)) multiplied by Vxφε (or V^φi^). Note that the first factor
is concentrated near ζ = a£(t) while the second is near ζ = 0. Using their decay
properties we can prove desired estimates.

Lemma 5. Let ω(x) be a function JR3 — > 1R satisfying \ω(x)\ ^ (1 -f l^l)"1"5, and
let fo^(y) be as defined above. Then:

for some F 6 Z,1 ,̂̂ )-

Proof. For 0 < μ < 1 we define the sets:

Bι={ζ:\ζ-ae(t)\ ^ A t |

B2 = {ζ : \ζ - ae(t)\ > μ\aε(t)\},

and let χ\9χ2 be the corresponding characteristic functions. Then:

\\fθM\2 - \\X\f Of 0>\\2 + \\X2fQfa>\\2 =/l(0+/2(0

By the Holder inequality:
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The second factor equals 1 and from the definition of the set B\ we see that the
first factor is bounded by Cι(l +(1 -

For 72 we have:

/2<0 =

where I + i = I.

If we take -̂  < q < 1 ,̂ then ||ω||9 = C2 < oo and - < -(1 + f ). The last

factor equals:

The first factor is bounded by:

e 4ε

2

which, because of the asymptotics of Aε(t) and aε(t), is bounded by e~c*ε for
all t. Thus we have the following bound on 72(ί):

72(0 ^ C5e~C4£ ε~~9\detAε(t)\~^

This bound decays to 0 as ε —> 0, thus we can find Cβ such that I 2 ( t ) ^
_ x

C6\detAε(t)\ v. Now, asymptotic behavior of Aε(t) and our choice of q guaran-
tee the existence of a Ll -function F2(t) such that:

72(0 ^ C6F2(0.

Combining the two bounds (for I\ and 72) together we get the lemma. D

Remark. A similar conclusion holds if we multiply /0>e by any polynomial in y.
We will further need this bound for /0>ε as well as for Vy/o,ε, thus we sketch

the proof for the latter case below. We keep notation of the proof of Lemma 5.
We calculate Vy/o,ε explicitly:

Then:

(2?)
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After change of variables to u = ^£(0~ | ? we see that (27) is bounded by
C8||5e(0llσp since tίιe operator norm of matrix Bε(t) tends to a constant as t -> oo
we get for I\ a bound similar to that in the proof of Lemma 5. The estimate for 72

is essentially the same as in Lemma 5.

Lemma 6. Assume h£(x\Eε(x) are as described in the introduction. Let β > 0 be
such that hD has no eigenvalues in the closed ball B(ED, β} other than ED. Let \x

be big enough so Eε(x) e B(ED,&) and h£(x} has no other eigenvalues in B(ED,β).
Then the reduced resolvent (hε(x) — Eε(x))~l(l — Pε(x)) and its first and second
derivatives are bounded uniformly in x.

Proof. Look at (hε(x) — z)~l(l — Pε(x)). This is the analytic part of the Laurent
series of (hε(x) — z)"1 around Eε(x\ thus it has a removable singularity at Eε(x).
By the assumption on the eigenvalues it can be continued analytically to the entire
bdlB(ED,β).

If we restrict it to B(En, |), then by maximum modulus theorem it assumes its

maximal value on the boundary dB(ED,&) i.e.:

\\(hε(x)-Eε(X)rl(l-Pε(x))\\<v ^ sup \\(hε(x)-zΓ\l-Pe(*))\\op

^ SUp \\(hε(x)-z) | |op ^

uniformly in x. This proves the first conclusion of the lemma.
To show boundedness of the derivative we write the reduced resolvent as:

(h£(x) - zΓ\\ - Pε(x)) = (l- P£(x))(hε(x) - z)-'(l - Pe(x»

and compute the derivative:

dκί((hε(x) - z)-'(l - Pe(x))) = -(dχiPε(x))(hε(x) - zΓ'(l - Pε(x))

- (hε(x) - z)-'(l - Pε(x))(dχiPε(x)) . (28)

Our assumptions on VDf guarantee that the operator norm of dxι VDf is a constant.
To analyze dx,Pε(x) we write:

\\dχiPε(x)\\ ϊ ± / \\(he(X)-ZΓ
l\\2\\SχiVD,ε(x)\\dz

|z-£Dl=|
ZC sup \\(hε(x)-zγλ\\2\\dχiVD,ε(x)\\

uniformly in x.
Since the reduced resolvent has just been shown to be uniformly bounded, the

conclusion holds for the first derivative of the reduced resolvent.
For the second derivative we prove the estimate in a similar way. We write

(28) as:
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dχi((hε(x) ~zΓ\\ -Pe(*))) = -(dχiPε(x»(l -Pε(x))(hε(x)-zT\\ -Pε(x»

-(I -Pε(x))(hε(x)-zΓl(l -Pε(

x (1 -Pε(x)Xhe(x)-zΓl(l -Pε

and compute the second derivative of Pε(x) explicitly. It consists of terms containing
products of the reduced resolvent, derivatives of VDβ and derivatives of Pε(x) up to
the second order. All of these factors, except dxidχJPε(x\ have been shown to be
bounded uniformly in x. To conclude the same for dxidχJPε(x) we proceed exactly
the same way as we did to show boundedness of the first derivative of Pε(x). Finally
we collect all these bounds to prove the last conclusion of the lemma. D

Now we have tools to estimate all but the last term in (25). We first look at
the ^-dependent factors. Recall that the normalized eigenfunction φε(ξ,x) of hε(x)
is of the form:

_p£
ΨΛς> ' (φD(ξ)

By explicit calculations and using Lemma 1 and Corollary 2 we conclude that:

\\dχiφε(ξ,X)\\^C(l + \x\Γ2~δ. (29)

We can also use Lemma 1 to show similar bounds on the second and third deriva-
tives of φε(ξ,x).

Combining (29) (and corresponding bounds for higher derivatives of φε(ξ9x))
with Lemma 6 we see that the x-dependent terms in (25) are the products of |/fe(OI
and functions satisfying the hypothesis of Lemma 5. Here we return to our original

variables by putting jc = ζ, y = ^ ~ ̂  ' . By Lemma 5 and asymptotics of ηε(t) we

see that all considered terms are bounded in norm by C F(t) with F € Ll(T&9dt).

Note: In the above considerations we temporarily disregarded the factor E'ε(a(t))
appearing in one of the terms. We need to show that this factor remains bounded
as t — > oo. Lemma 3 says that it behaves even more nicely - it decays to 0.

To estimate the last term in (25) we use (14). Then, with an obvious abuse of
notation, this term becomes:

[Eε(a(t) + εy) - Ee(a(t)) - εy E'εa(t)) -

x [fof(y)φe(ξ,x) + iεtfof(y)φιf(ξ,x)] (30)

We note that \\φε(ζ9x) + iε2φιίε(ξ9x)\\L2^ξ) is a bounded function of x. Also

by Lemma 3 we know that Eε satisfies the hypothesis of Lemma 3.2 of [5]. This
shows that the L2(dζ}-norm of (30) is bounded by F(t)ε3 for some F e Ll(R9dt).
Application of Lemma 4 concludes the proof. D

Appendix

Lemma A. Let V be a potential satisfying (3a, b\ HQ = —A. Then for z £
σ(//o -f F) the resolvent (HQ + V — z)"1 is a bounded operator from L2

μ to L2

μ for
arbitrary μ.
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Proof. The proof for 0 < μ <* 1 and V = 0 can be found in [14], p. 170. Here we
outline the general inductive argument. This will also make it clear how one can
generalize this result to obtain Lemma B below.

We want to show:
if

(#o + V - z)"1 is bounded L2

n -> L2

n

and di(HQ + V - z)~1is bounded L2

n-^L2

n, (Al)

then
(H0 + V - z)~1and δ/(#0 + V - z)~l

are bounded L2

n+δ -> L*+δ for 0 < δ ^ 1 . (A2)

First we show the induction hypotheses for n = 0. To simplify the notation we

write R for (HQ + V - z)"1 and put p = (1 + |j|2)^.

We start with formal calculations:

Applied to Schwarz functions the computations are legitimate. Moreover R, djR9 and
multiplication by δ/p5 are bounded on L2. Thus:

for any Ψ e L2. Then we conclude:

\\RΨ\\S := \\P

δRΨ\\

i.e. (Ho + V- z)~l is bounded L2

δ -> L2

δ for 0 < δ ^ 1.

b) di(H0 + V-zΓl.

Similarly:
\\pδdtRΨ\\ £ \\diRP

0W\\ + \\[p

The first term on the r.h.s. is bounded by const||p^y|| since djR is bounded on L2.
We expand the commutator in the second term as:

δ]diR - R(diR)R[HQ9p
δ]R - R(diP

δ} .

All terms are bounded on L2, therefore:

\\\pδ,diK\Ψ\\ £ const||!P|| ^

Thus the second hypothesis in (Al) holds for n = 0.
c) We also estimate (HQ + V - z)"1^.

Note that dtR and Rdt diίfer only by -R(dtV}R, i.e.
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The first term of the r.h.s. is bounded by const||!P||,$. For the second one we get:

\\pδR(dtV)RΨ\\ ^ \\R(dtV)RpδΨ\\ + \\R(diV)[R9p
δ}Ψ\\ + \\[R9p

δ}(dtV}RΨ\\.

Thus this statement follows from a) and b).
Now we show the implication (^41) => (A2).

Let's assume (Al). Then:

\\RΨ\\n+S = \\pδRΨ\\n ^ \\RpδΨ\\n + \\[P8,R]Ψ\\«

The first term is bounded on l}n by hypothesis. In the second term we expand the
commutator as in part a). By assumption R9diR are bounded on L2. Mimicking the
proof of c) one can show that Rdi is also bounded. Moreover the multiplication by
dipδ is bounded L2

n —» L2. Thus:

\\[pδ,R]Ψ\\n ^ const\\Ψ\\n ^ const||!P||Λ+5,

i.e. the first conclusion in (A2) holds.
The proof of boundedness of diR goes along the same lines. We write:

\\diRΨ\\n+δ - \\pδdiRΨ\\n ^ \\diRpδΨ\\n + \\[pδ,diK\\l/\\n

and expand the commutator on the r.h.s. as in b). Then the second conclusion in
(A2) follows from the induction assumptions.

D

For our purposes we also need:

Lemma B. Under similar assumptions the operator.

^ k=\ k=\

k=\ k=l ''

where hε(x) is given by (6), is bounded from L2

μ to L2

μ for arbitrary μ.

Here we used the same notation as throughout the entire paper. Proof of this
lemma can be obtained by mimicking the proof of Lemma A.
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